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1 Affine schemes

1.1 Motivation and review of varieties

“Classical” setup: What is a variety? A variety X is a set, a topological space, and a ringed
space (X,OX).

Locally: an affine variety. Every point p of a variety X an has open neighborhood U
which can be identified with an algebraic set.

What is a scheme? A scheme X is also a set, a topological space, and a ringed space
(X,OX).

Local picture: affine scheme.
We will have a correspondence:{

affine varieties over k = k
}
oo //

� _

��

{f.g. reduced k-algebras}� _

��

{affine schemes} oo // {commutative rings with 1}

Recall:

Definition 1.1. An affine algebraic set V = V(g1, . . . , gr) ⊆ kn, where gi ∈ k[x1, . . . , xn] and
k = k. The coordinate ring of V is

k[V ] = {restrictions of polynomials on kn to V } =
k[x1 . . . , xn]

I(V )
.

Hilbert’s Nullstellensatz: There’s a category (anti-)equivalence:

{affine algebraic varieties} ←→ {f.g. k-algebras without nilpotents}
V → k[V ]

mSpecR = {maximal ideals in R} →R =
k[x1, . . . , xn]

I(
V

f−→ W
)
←→

(
k[W ]

f∗−−→ k[V ]
)

1.2 First attempt at defining an affine scheme

Given a commutative ring R, associate

mSpecR =
{
m ⊆ R

∣∣ m is a maximal ideal of R
}
.

Example 1.2. If R = Z, then

mSpecZ = {(2), (3), (5), (7), . . . } .

4



Fact 1.3 (Hilbert’s Nullstellensatz). Given a map of f.g. reduced k-algebras R ϕ−→ S, there is
an induced map of the corresponding algebraic sets

mSpecS
f−→ mSpecR

m 7→ ϕ−1(m).

In particular, ϕ−1(m) is a maximal ideal of R.

Question: If R ϕ−→ S is a map of rings (i.e., commutative rings with unit), is there an
induced map

mSpecS → mSpecR

m 7→ ϕ−1(m).

Answer: No, not in general!

Example 1.4. Consider the map Z
ϕ
↪→ Q. We have mSpecQ = (0) and

ϕ−1(0) = (0) ⊆ Z.

This is not maximal in Z. However, it is still prime.

1.3 Affine schemes

Lemma 1.5. If R ϕ−→ S is a ring map and p ⊆ S is a prime ideal, then ϕ−1(p) ⊆ R is
prime.

Proof. We have a commutative diagram

R
ϕ

//

��

S

����

R/ϕ−1(p) �
�

// S/p.

A subring of an integral domain is an integral domain, and the result follows.

Definition 1.6. An affine scheme (as a set) is SpecR, where R is a ring and

SpecR =
{
p
∣∣ p ⊆ R is prime in R

}
.

Example 1.7. For SpecZ, we have the maximal ideals (2), (3), (5), (7), . . . and the ideal (0),
which we picture as geometrically “containing” all the other points in the spectrum.
Example 1.8. For Spec k[x], where k = k, there are two kinds of points: maximal ideals
(x− λ) and the zero ideal (0). Maximal ideals correspond to a point on the affine line, and
the zero ideal is a “fuzzy” point covering the whole line.
Example 1.9. Consider k[x, y] with k = k. The maximal ideals are those of the form (x −
α1, y − α2), corresponding to (α1, α2) ∈ A2

k.
There are also prime ideals of the type (f), where f ∈ k[x, y] is irreducible. These are

irreducible plane curves, which we now think of as points in the spectrum. Finally, there is
the ideal (0), corresponding to the whole affine plane.
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1.4 The Zariski topology

Definition 1.10. Fix a ring R. The Zariski topology on SpecR has closed sets

V(I) =
{
p ∈ SpecR

∣∣ p ⊇ I
}
.

Remark 1.11. This really forms a topology:

• ∅ = V(R)

• SpecR = V(0)

• closed under arbitrary intersection:⋂
λ∈Λ

V(Iλ) = V
(∑
λ∈Λ

Iλ

)
.

• closed under finite unions:

V(I1) ∪ · · · ∪ V(Ir) = V(I1 ∩ · · · ∩ Ir).

For any p ∈ SpecR, what is the closure of p in the Zariski topology? We have

p = V(p),

so p ∈ SpecR is closed ⇐⇒ p is a maximal ideal.
In other words, mSpecR is the subset of all closed points of SpecR.

Example 1.12. The closed sets of SpecZ are of the form

V(n) = V(pa11 · · · parr ) = {(p1), (pr), . . . , (pr)} ,

where p1, . . . , pr are prime and n = pa11 · · · parr . Note that any finite set not including (0) is
closed.

The zero ideal (0) is not closed; its closure is all of SpecZ, i.e., {(0)} is dense.
Example 1.13. If f ∈ k[x, y] is irreducible, the closure of (f) in Spec k[x, y] consists of all the
points on the affine plane curve defined by f(x, y) = 0, plus the point (f) itself.

1.5 The ringed space structure

Caution 1.14. An affine scheme is a set with the structure of a topological space, plus a
ringed space structure!

Example 1.15. The affine schemes SpecR and SpecFp are homeomorphic as topological spaces
(since they are both the 1-point space), but they are not the same scheme.

Another example: SpecR[t]/(t2) is also a 1-point scheme, but in some sense, it is even
more different than the other two.
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Proposition 1.16. If R ϕ−→ S is a map of rings, then the induced map

SpecS
f−→ SpecR

p 7→ ϕ−1(p)

is continuous in the Zariski topology.

Proof sketch. Need to show: If W ⊆ SpecR is closed, then f−1(W ) is closed in SpecS, i.e.,

f−1(V(I)) = V(IS),

where IS = ideal in S generated by ϕ(I).

Example 1.17. Consider the surjection R
ϕ
� R/I. We have

Spec(R/I) oo
homeomorphism

//

f
44

V(I) ⊆ SpecR

A surjective homomorphism of rings corresponds to a closed embedding of schemes.

Caution 1.18. There can be many different subscheme structures on a closed set of SpecR.

Example 1.19.

Spec k[x] � Spec
k[x]

(x2)
�

k[x]

(x)

Example 1.20 (Localization). Let R be a ring and U ⊆ R a multiplicative system in R. We
have a natural map

R→ R[U−1] =

{
r

u

∣∣∣∣ r ∈ R, u ∈ U} ,
and hence an induced map

SpecR →SpecR[U−1],

corresponding to the subset of primes in R disjoint from U .
Special case: U = 〈1, f, f 2, f 3, . . . 〉. Then

R[U−1] = R

[
1

f

]
,

inducing

SpecR SpecR
[

1
f

]
oo

yy

SpecR− V(f) = D(f)

⊆

where D(f) is an open subset. Subsets of this form form a basis for the Zariski topology in
SpecR.
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Definition 1.21. Let p ∈ SpecR. The residue field of p, denoted k(p), is

Rp/pRp = (R/p)(0) = Frac(R/p).

The map R→ Rp/pRp induces a map of schemes

Spec
Rp

pRp

→ SpecR,

and we have a commutative diagram

R //

��

R/p

��

Rp
// Rp/pRp

which induces a diagram of schemes

SpecR Spec(R/p)? _oo

SpecRp

OO

SpecRp/pRp

?�

OO

oo

We think of a “point in the scheme” as corresponding to its residue field

Spec(R/p)(0) = SpecRp/pRp = “p” .

The scheme SpecRp corresponds to the primes of R contained in p.

1.6 The ringed space structure, continued

Let R be a ring. We have the set

SpecR = {p prime ideal in R} ,

and the topological space with closed sets

V(I) =
{
p ∈ SpecR

∣∣ p ⊇ I
}
.

A map of rings R ϕ−→ S induces a continuous map

SpecS → SpecR

Q 7→ ϕ−1(Q).

Today’s goal: Explain how to get a ringed space structure on SpecR.

Proposition 1.22. The topological space SpecR has a basis of (open) sets of the form

D(f) = Spec(R) \ V(f).
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Proof. Take U ⊆ SpecR. Then U = Spec(R) \ V(I) for some ideal I. Consider

Ũ =
⋃
f∈I

D(f).

We will show that U = Ũ .
If p ∈ Ũ , then p ∈ D(f) ⇐⇒ f /∈ p ⇐⇒ p ∈ U = SpecR \ V(I) [otherwise p ⊇ I, but

f ∈ I, f /∈ p].
Conversely: p ∈ U means p + I, so ∃f ∈ I but not p. So p ∈ D(f), and hence p ∈ Ũ .

Proposition 1.23. The localization map R 7→ R
[

1
f

]
, r 7→ r

1
induces

SpecR
[

1
f

]
� � //

'
%%

SpecR

D(f)

⊆

Goal 1.24. We will put a ringed space structure on SpecR = X for each U ⊆ X, yielding a
ring OX(U) satisfying

OX(X) = X,

OX(D(f)) = R
[

1
f

]
,

and the “restriction” maps on the rings will be

D(f) ⊆ X

OX(X)
restriction−−−−−−→ OX(D(f))

R
localization−−−−−−−→ R

[
1
f

]
.

2 Sheaves

2.1 Sheaves

Fix a topological space X and a category C (rings, abelian groups, modules).

Definition 2.1. A presheaf on X with values in C is a contravariant functor

{open sets of X with inclusions} F−−→ C.

That is, for each open U ⊆ X, we have a ring F (U), and for each inclusion of open sets
U ⊂ U ′, we have a ring homomorphism

F (U ′)
ρU′,U−−−−→ F (U)

s 7→ ρU ′,U(s) = s
∣∣
U

respecting composition, i.e.,
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• U1 ⊆ U2 ⊆ U3 induces F (U3) → F (U2) → F (U1), which is the same as the map
F (U3)→ F (U1) induced by U1 ⊆ U3.

• U ⊆ U =⇒ F (U)
idU−−→ F (U).

• F (∅) = the trivial ring.

Definition 2.2. A sheaf is a presheaf F with the following additional property (sheaf
axiom): If U ⊆ X is an open set with an open cover U =

⋃
i∈I Ui and si ∈ F (Ui) such that

si
∣∣
Ui∩Uj = sj

∣∣
Ui∩Uj ∀i, j ∈ I,

then there exists a unique s ∈ F (U) such that s|Ui = si ∀i.

Exercise 2.3. Check that this is equivalent to the definition in Hartshorne (when C is a
category where we have a zero).
Example 2.4 (A presheaf which is not a sheaf). Let X be a reducible topological space, and
let F be the presheaf of constant R-valued functions:

F (U) =
{
constant function U → {λ}

∣∣ λ ∈ R} .
Since X is reducible, there exist open sets U1, U2 ⊆ X such that U1 ∩ U2 = ∅; write U =
U1 ∩ U2.

Take u1 ∈ U1 and u2 ∈ U2 to be constant functions with different values. Then this does
not agree with the restriction of any single constant function on U .

There is a natural way to fix, or “sheafify” F : take locally constant functions on U .

2.2 Stalk of a (pre)sheaf

For F a presheaf on X and a point p ∈ X, the “stalk” of F at p is a ring Fp.
Example 2.5 (Main example). If p is a point on a variety X, then (OX)p = OX,p consists of
functions regular at p.

Recall: A directed set I is a partially ordered set such that ∀i, j ∈ I, there exists k ∈ I
such that i ≤ k, j ≤ k.
Example 2.6. If X is a topological space and I is the set of open sets of X, define U1 ≤ U2

iff U1 ⊆ U2.
Say Ai are objects in a category (e.g., rings) indexed by I, some directed set such that if

i ≤ j, then there is a map ϕij : Ai → Aj, and these maps are functorial.

Definition 2.7. The direct limit of {Ai}i∈I is

A = lim−→Ai =
(∐
i∈I

Ai

)
/∼,

where for all ai ∈ Ai and aj ∈ Aj, we have ai ∼ aj ⇐⇒ ∃k such that

ϕik(ai) = ϕjk(aj).
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This has a ring structure: if [a], [b] ∈ lim−→i∈I Ai with a represented by ai ∈ Ai and b
represented by bj ∈ Aj, map both a, b to Ak with i, j ≤ k, and define the ring operations in
that Ak.

Example 2.8. Let the indexing set I be N with the order n ≤ m ⇐⇒ n | m. Associate to
n ∈ N the ring Z

[
1
n

]
.

If m ≤ n = mq, then we have a map

Z
[

1
m

]
→ Z

[
1
n

]
a

mt
7→ aqt

(mq)t
=
aqt

nt
.

This system of maps is also clearly functorial, i.e., the composition Z
[

1
2

]
→ Z

[
1
4

]
→ Z

[
1
12

]
is

the same as the composition Z
[

1
2

]
→ Z

[
1
6

]
→ Z

[
1
12

]
.

The direct limit is
lim−→
n∈N
Z
[

1
n

]
= Q.

Definition 2.9. Let F be a presheaf of rings on X, and let p ∈ X be a point. The stalk of
F at p is

Fp = lim−→
p∈U⊆X

F (U).

The indexing set is
I =

{
U ⊆ X

∣∣ U is open and p ∈ U
}

with the ordering U2 ⊆ U1 ⇐⇒ U2 ≥ U1.

Example 2.10. If F = OX on a variety X, then this is the stalk of the structure sheaf at p.

An element [s] ∈ Fp is represented by some s ∈ F (U), where we think of U as “arbitrarily
small.”

Example 2.11. The stalk at 0 ∈ C of the sheaf of analytic functions on C is the ring of
convergent power series at 0.

2.3 Direct and inverse limits

Say {Ai}i∈I is a collection of objects in a category, indexed by a poset I, and whenever i ≤ j
in I, there is a map Ai → Aj (respectively, Ai →Aj) such that the diagram commutes (for
all i ≤ j ≤ k):

Ai //
66Aj // Ak

(Respectively, with the arrows in the opposite direction.)
Assuming I is a directed poset:

Definition 2.12. The direct limit (also injective limit, inductive limit, colimit) of the direct
limit system {Ai}i∈I , if it exists, is an object A, denoted lim−→Ai, to which all Ai map functo-
rially, which is universal with respect to this property: If there exists an object B to which
all Ai map functorially, then there exists a unique map A → B which makes the diagram
commute.
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Construction of lim−→Ai in abelian groups (or rings):

lim−→Ai =
∐

Ai/∼,

where Ai 3 ai ∼ aj ∈ Aj ⇐⇒ ∃k ≥ i, j such that ϕik(ai) = ϕjk(aj).

Remark 2.13. Important idea: Direct limits generalize union.

Exercise 2.14. If all Ai are subobjects of some fixed Ã and all morphisms are inclusions, then
lim−→Ai =

⋃
i∈I Ai.

Definition 2.15. If F is a presheaf on X and p ∈ X, then the stalk of F at p is

Fp = lim−→
p∈U

F (U).

(Here, the limit system is given by restriction.)

Note 2.16. By definition, for all neighborhoods U of p, there exists a unique map

F (U)→ Fp

s 7→ sp.

Terminology: sp is the germ of s at p.
Each t ∈ Fp is an equivalence class of sections ti ∈ F (Ui), where ti ∼ tj means ∃V ⊆

U1 ∩ U2 such that ti|V = tj|V . So, we can represent t by any ti ∈ F (Ui).

Definition 2.17. The inverse limit (also projective limit, indirect limit, limit) of the inverse
limit system {Ai}i∈I , if it exists, is an object A, denoted lim←−Ai, from which all Ai map
functorially, A → Ai, and A is universal with respect to this property: If there exists an
object B from which all Ai map functorially, then there exists a unique map B → A which
makes the digram commute.

Equivalently, an inverse limit is a direct limit in the opposite category.

Construction of lim←−Ai in abelian groups (or rings, etc.):

lim←−Ai =
{

(ai)i∈I
∣∣ i ≤ j =⇒ ai 7→aj

}
⊆
∏
i∈I

Ai.

Exercise 2.18. If Ai are all subobjects of some fixed object and the maps Ai →Aj are
inclusions Aj ↪→ Ai, then lim←−Ai =

⋂
i∈I Ai.

Example 2.19. Consider the inverse system

k[x,y]
(x,y)

k[x,y]
(x,y)2
// // k[x,y]

(x,y)3
// // k[x,y]

(x,y)4
// // . . .// //

The inverse limit is the ring of formal power series

lim←−
k[x, y]

(x, y)i
= k[[x, y]] .

12



2.4 Sheaves on a fixed space

The sheaves on a fixed space X with values in a category C is a category.

Definition 2.20. A morphism of sheaves of abelian groups on X

F
ϕ−→ G

is, for all open U ⊆ X, a morphism

F (U)
ϕ(U)−−−→ G (U)

of abelian groups, compatible with restriction maps: for each inclusion V ⊆ U of open sets,
the following diagram commutes:

F (U)
ϕ(U)

//

ρ

��

G (U)

ρ

��

F (V )
ϕ(V )

// G (V )

Example 2.21. Let X = C \ {0}, and let A = sheaf of analytic functions on X. Consider the
map

A
exp−−→ A

f(z) 7→ exp(f) = ef(z).

This is a morphism of sheaves of abelian groups, one additive and one multiplicative.

Example 2.22. Let X = R. The map

C∞
d
dx−−→ C∞

C∞(U)→ C∞(U)

f 7→ d

dx
f

is a morphism of sheaves of R-vector spaces.

Definition 2.23. Let X be a topological space, p ∈ X, and k a fixed abelian group. The
skyscraper sheaf at p with values (sections) k is

k(p)(U) =

{
0 if p /∈ U
k if p ∈ U.

with restriction maps k(p)(U) → k(p)(V ) given by the zero map if p /∈ V and the identity if
p ∈ V .
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Example 2.24 (A morphism of sheaves of R-algebras). Let p ∈ X be a fixed point. We have
the morphism

C0
X

eval at p−−−−−→ R(p)

C0
X(U)→ R(p)(U)

f 7→ f(p).

Proposition 2.25. If F → G is a morphism of (pre-)sheaves of abelian groups X, then for
all p ∈ X, there is an induced map of stalks

lim−→
p∈U

F (U) = Fp → Gp = lim−→
p∈U

G (U).

Proof. By abstract nonsense: For each open neighborhood U of p, we have an induced map

F (U)→ G (U)→ lim−→
p∈U

G (U) = Fp → Gp.

By the universal property of direct limits, we have a unique compatible map

Fp = lim−→
p∈U

F (U)→ Gp.

Concretely: Take a germ sp ∈ Fp. Represent it by some si ∈ F (Ui) with p ∈ Ui. We
have a diagram

Fp
∃! // Gp

F (Ui)

OO

ϕ(Ui)
// G (Ui)

OO

sending si 7→ ϕ(si) 7→ ϕ(sp), and sp 7→ ϕ(sp) is the well-defined map.

Definition 2.26. A morphism of sheaves (not presheaves) F
ϕ−→ G is injective (resp. sur-

jective) if for all p ∈ X, the induced map Fp → Gp is injective (resp. surjective).

Note 2.27. Here, we do not define injectivity and surjectivity for presheaves.

Caution 2.28. The above is false for presheaves. If F → G is a map of presheaves, and
Fp → Gp is injective (or surjective) for all p, then there is an induced map of associated
shaves which is injective (or surjective):

F
ϕ
//

��

G

��

F + ϕ+
// G +

14



2.5 Morphisms of sheaves, continued

Remark 2.29. Say F
ϕ−→ G is a morphism of sheaves.

(1) Is it true that ϕ is injective iff for all U ⊆ X, the map F (U)
ϕ(U)−−−→ G (U) is injective?

(2) Is it true that ϕ is surjective iff for all U ⊆ X, the map F (U)
ϕ(U)−−−→ G (U) is surjective?

It turns out that the first is true, and the second is not.

Proposition 2.30. If F
ϕ−→ G is an injective map of sheaves, then ∀ open U ⊆ X, the map

F (U)→ G (U) is injective.

Proof. Take U ⊆ X open. Consider

F (U) //

��

G (U)

��

Fp
// Gp

s � //
_

��

0_

��

sp
� // 0

For all p ∈ U , the image sp ∈ Fp is 0. Hence, there exists a neighborhood U ′p ⊆ U of p such
that s|U ′p = 0.

Now
{
U ′p
}
cover U and s|U ′p = 0, so s = 0 on U (by the sheaf axiom).

Caution 2.31. Proposition 2.30 is false for surjectivity. There are surjective sheaf maps
F

ϕ
� G and open sets U ⊆ X for which F (U)

ϕ(U)−−−→ G (U) is not surjective.
Example 2.32. Let X = C \ {0}, and let A be the sheaf of analytic functions. We have a
map

A → A ∗

f 7→ exp(f)

which is locally surjective but not globally.
Example 2.33. Let X be a connected Hausdorff space with at least two distinct points p, q ∈
X. Let RX be the sheaf of locally constant functions, and let G be defined by

G (U) =


0 if p, q /∈ U,
R⊕ R if p, q ∈ U,
R otherwise.

Define a map

RX
ϕ−→ G

RX(U)
ϕ(U)−−−→ G (U)

f 7→


0 if p, q /∈ U,
f(p) if p ∈ U, q /∈ U,
(f(p), f(q)) if p, q ∈ U.

This is a surjective map of sheaves, but if U is a connected open set such that p, q ∈ U , then
ϕ(U) is not surjective.
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2.6 Sheafification

Proposition–Definition 2.34. Given any presheaf F on X, there is an associated sheaf
F + together with a presheaf map

F → F +

which is an isomorphism on stalks. Furthermore, F + has the following universal property:
for all sheaves G and morphisms F → G , we have a diagram

F //

!!

F +

∃!
��

G

Proof. To construct F +, for all open U ⊆ X, define

F +(U) =


U

s−→
∐
p∈U

Fp

∣∣∣∣
• s(p) ∈ Fp

• ∀q ∈ U , there exists a neighborhood V ⊆ U of q
and a section t ∈ F (U) such that s(x) = tx for all
x ∈ V .


,

and the morphism

F (U)→ F +(U)

s 7→

[
U →

∐
p∈U Fp

q 7→ sq

]
.

The verification of the rest is straightforward.

2.7 Kernel, image, and cokernel of sheaves

Definition 2.35. Let F
ϕ−→ G be a morphism of sheaves of abelian groups on X. There

are naturally arising presheaves:

• presheaf kernel U 7→ ker(ϕ(U))

• presheaf image U 7→ im(ϕ(U))

• presheaf cokernel U 7→ coker(ϕ(U))

By definition, the kernel kerϕ, the image imϕ, and cokernel cokerϕ of ϕ are the associated
sheaves.

Exercise 2.36. The presheaf kernel U 7→ ker(ϕ(U)) is already a sheaf, so the presheaf kernel
of ϕ is naturally isomorphic to kerϕ.
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2.8 Pushforward/pullback of sheaves

Say X f−→ Y is a continuous map of topological spaces. If F is a sheaf on X, then there’s
an easy way to get a sheaf on Y :

Definition 2.37. The direct image sheaf , denoted f∗F , assigns to U ⊆ Y

f∗F (U) := F (f−1(U)).

This is a sheaf!

Say G is a sheaf on Y . There is a natural sheaf on X defined as follows:

Definition 2.38. The inverse image sheaf , denoted f−1G [not f ∗G ] is a sheaf on X defined
as follows: For open U ⊆ X,

f−1G (U) = lim−→
V⊇f(U)

G (V ).

Note that f−1G (U) = G (f(U)) if f(U) is open.

3 Ringed spaces and schemes

3.1 Morphisms of ringed spaces

Definition 3.1. A ringed space (X,OX) is a pair consisting of a topological space X and a
sheaf of rings OX on it.

Definition 3.2. A morphism of ringed spaces

(X,OX)
(f,f#)
−−−−−→ (Y,OY )

is a continuous map X f−→ Y together with a map of sheaves of rings

OY → f∗OX .

Example 3.3. If X f−→ Y is a regular map of varieties, then there is a naturally induced
morphism of ringed spaces

(X,OX)
f,f#−−−→ (Y,OY )

X
f−→ Y

OY
f#−−→ f∗OX

OY (U)
f∗−−→ OX(f−1(U))

h 7→ h ◦ f.
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3.2 The ringed space structure of the spectrum

Let R be a ring. We have the affine scheme SpecR = X, and we want to define OX (a sheaf
of rings) on X.

Approach: A sheaf is determined by its values on a basis.
Example 3.4. If X is an affine variety, k[X] its coordinate ring, and k(X) its function field,
recall:

OX(U) =

{
ϕ ∈ k(X)

∣∣∣∣ ∀p ∈ U , ∃ a representation ϕ = f
g
where

f, g ∈ k[X] such that g(p) 6= 0

}
,

i.e., the ϕ ∈ k(X) such that ϕ ∈ k[X]
[

1
g

]
where p ∈ D(g).

Lemma 3.5. If X is an affine variety and U ⊆ X is open, then

OX(U) =
⋂

D(g)⊆U

OX(D(g)) = lim←−
D(g)⊆U

OX(D(G)).

Proof. Let D(g) ⊆ U . Then OX(U) ⊆ OX(D(g)), so OX(U) ⊆
⋂
D(g)⊆U OX(D(G)).

Conversely: Say ϕ ∈
⋂
D(g)⊆U OX(D(g)). Then ϕ ∈ OX(U) since ∀p ∈ U , there exists a

basic open neighborhood D(g) of p: p ∈ D(g) ⊆ U . We have

ϕ ∈ OX(D(g)) = k[X]
[

1
g

]
,

i.e., ϕ has a representation f
gn

for some gn, f ∈ k[X] and gN(p) 6= 0.

Remark 3.6. In general, given values of a sheaf F on a basis {Uλ}λ∈Λ (together with the
restriction maps F (Uλ) → F (Uµ) whenever Uµ ⊆ Uλ), we can reconstruct the sheaf at any
open set U as follows: sheafify the presheaf

F (U) = lim←−
Uλ⊆U

F (Uλ).

3.3 Construction of the spectrum

Exercise 3.7. If F is a sheaf (of abelian groups) on X, and {Uλ}λ∈Λ is a basis for the topology
on X, and we know F (Uλ) and F (Uλ)

ρ−→ F (Uλ′) (for all Uλ in basis), then F is uniquely
determined by

F (U) = lim←−
Uλ⊆U

F (Uλ)

and all restriction maps F (U)|F (U ′) are likewise uniquely determined.
Let X = SpecR. A basis for the topology is

D(g) = X − V(g) =
{
P ∈ SpecR

∣∣ g /∈ P} .
Assign OX(D(g)) = R

[
1
g

]
. If D(g) ⊆ D(h), there’s a natural ring map (localization)

OX(D(h)) = R

[
1

h

]
ρ−→ R

[
1

g

]
= OX(D(g)).

This is because:
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Lemma 3.8. If D(g) ⊆ D(h), then there exists f ∈ R and n ∈ N such that gn = hf .

Proof. D(g) ⊆ D(h) ⇐⇒ V(g) ⊇ V(h) =⇒ g ∈ Rad(H) =⇒ ∃n such that gn ∈ (h).

Now: Define
OX(U) = lim←−

D(g)⊆U
R

[
1

g

]
.

Easy to check:

Exercise 3.9. If V ⊆ U , then there exists a uniquely induced map

OX(U)→ OX(V ).

Harder to check (done in Shafarevich) that this satisfies the sheaf axioms.

Definition 3.10. The ringed spaced structure on SpecR is given by

OX(U) = lim←−
D(g)⊆U

R

[
1

g

]
.

Proposition 3.11. • OX(D(g)) = R
[

1
g

]
.

• OX,P = lim−→D(g)3P R
[

1
g

]
= lim−→g/∈P R

[
1
g

]
= RP .

• OX(X) = OX(D(1)) = R
[

1
1

]
= R.

Example 3.12. Special case: If R is a domain, then all OX(D(g)) = R
[

1
g

]
are all subrings of

the fraction field of R, and all restriction maps

R

[
1

h

]
→ R

[
1

g

]
are inclusions. So

OX(U) =
⋂

D(g)⊆U

R

[
1

g

]
=
{
ϕ ∈ Frac(R)

∣∣ ∃P ∈ U ∃g /∈ P, f ∈ R such that ϕ = f
g

}
.

Definition 3.13 (Alternate definition, Hartshorne). Let X = SpecR, U ⊆ X. Define

OX(U) =

U ϕ−→
∐
P∈U

RP

∣∣∣∣ ϕ(P ) ∈ RP , and ∀p ∈ U , ∃ neighborhood P ∈ V ⊆ U
such that ∃r, g ∈ R such that ∀Q ∈ V , we have

ϕ(Q) = r
g
, g /∈ Q

 .

• Easy to see that this is a sheaf.

• OX,P = RP .

• Harder to see (Hartshorne?): OX(X) = R and OX(D(g)) = R
[

1
g

]
.
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3.4 Locally ringed spaces

Definition 3.14. A ringed space (X,OX) is a locally ringed space if for all P ∈ X, the stalk
OX,P is a local ring.

Note 3.15. (SpecR, R̃) = (X,OX) is locally ringed.

Recall: A map of ringed spaces

(X,OX)
f−→ (Y,OY )

is a continuous map X f−→ Y together with a map of sheaves of rings

OY → f∗OX

on Y . (For all U ⊆ Y , we have OY (U)→ f∗OX(U) = OX(f−1(U)).)

Note 3.16. If (X,OX)
f−→ (Y,OY ) is a map of ringed spaces and P ∈ X, then there is an

induced map on stalks
OY,f(P ) → OX,P .

Indeed: if we have OY → f∗OX , then we have

OY,f(P ) → (f∗OX)f(P ) = lim−→
f(P )∈U

OX(f−1(U))→ lim−→
V 3P open

OX(V ),

where the last map is uniquely given by the universal property of the direct limit over all
open V 3 P .

Definition 3.17. A morphism of locally ringed spaces

(X,OX)
f−→ (Y,OY )

is a map of ringed spaces such that for all P ∈ X, the induced map on stalks

OY,f(P ) → OX,P

is a local map of local rings. [A local map of local rings (R,m)
ϕ−→ (S, n) is a ring map such

that ϕ(m) ⊆ n.]

Proposition 3.18. If R ϕ−→ S is a map of rings, then there is an induced map

(SpecS, S̃)
(f,f#)
−−−−−→ (SpecR, R̃)

of locally ringed spaces.

Proof sketch. Let f be the map

SpecS
aϕ−−→ SpecR

p 7→ ϕ−1(p).
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And, let f# : R̃→ f∗S̃ be defined on D(g) ⊆ SpecR by

R̃(D(g)) = R

[
1

g

]
ϕ−→ S

[
1

ϕ(g)

]
= f∗S̃(D(s)) = S̃

(
f−1(D(g))

)
= D(ϕ(g))

r

gt
7→ ϕ(r)

(ϕ(g))t
.

Exercise 3.19. Check this is a map of locally ringed spaces.

3.5 Schemes

Definition 3.20. An affine scheme is a locally ringed space (X,OX) which is isomorphic to
(SpecR, R̃) as a locally ringed space, for some ring R.

A scheme is a locally ringed space (X,OX) such that for all P ∈ X, there exists a
neighborhood U ⊆ X of P such that (U,OX |U) is an affine scheme.

Exercise 3.21. For any sheaf F on a topological space X and any open set U ⊆ X, there is
a sheaf F |U defined by F |U(V ) = F (V ).
Example 3.22. X = SpecR, where R = k[V ] for V ⊆ Ank an affine algebraic variety (e.g.,
V = V(y2 − x3) ⊆ A2

C).
By the Nullstellensatz, there is a natural embedding

V → X = SpecR

(λ1, . . . , λn) = P 7→ mP = (x− λ1, . . . , x− λn)

onto the closed points in X. We have the sheaf of regular functions

OV (D(g)) = R

[
1

g

]
.

In category-theoretic language, there is a fully faithful embedding of the category of
varieties into the category of schemes.
Example 3.23. Let (V,m) be a discrete valuation ring. (Examples: Ẑ(p),C[[t]] , k[x](x).) The
only primes are (0) ⊆ m = (t):

X = SpecV = {m, ν} = {ν}.

Open sets: ∅, {ν,m} , {ν} = (X − V(m)) = D(t). We have

Ṽ (∅) = 0, Ṽ (X) = V, Ṽ (ν) = V

[
1

t

]
= Frac(V ).

Stalks:

Ṽm = V, Ṽν = Frac(V ).

This can be drawn as a single point, plus a “fuzzy” point, e.g., the scheme of the “marked
point” 0 ∈ A1.
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3.6 Equivalence of affine schemes and commutative rings

There is a contravariant functor

CRing→ {affine schemes} ⊆ {schemes} ⊆ {locally ringed spaces}

sending each ring map R ϕ−→ S to

SpecS
F=aϕ−−−−→ SpecR

p 7→ ϕ−1(p).

We have a sheaf map on SpecR:

R̃
f#−−→ f∗S̃

R̃(D(g)) = R

[
1

g

]
ϕ−→ S̃

(
f−1(D(g))

)
= S̃ (D(ϕ(g))) = S

[
1

ϕ(s)

]
.

This functor defines an (anti)equivalence of categories of commutative rings CRing and
affine schemes Aff .

Proposition 3.24. Say (SpecB, B̃)
(f,f#)
−−−−−→ (SpecA, Ã) is a morphism of locally ringed

spaces. Then
(
f, f#

)
is induced by the map of rings A ϕ−→ B.

Proof. The map Ã→ f∗B̃ is a map of sheaves of rings on SpecA. Evaluate at SpecA:

Ã(SpecA)→ f∗B̃(SpecB) = B̃
(
f−1(SpecA)

)
= B̃(SpecB) = B.

Need to show: The ring map A ϕ−→ B induces the map f : SpecB → SpecA. In other words,
for all P ∈ SpecB, we need f(P ) = ϕ−1(P ).

Note: We have a map of locally ringed spaces for all P ∈ SpecB, the induced map on
stalks

Ãf(P )
//

44(f∗B̃)f(p)
// B̃P

is a local map of local rings. We have a diagram

Ã(SpecA) A
ϕ

//

��

B

��

B̃(SpecB)

lim−→D(g)3P Ã(D(g))

''

Af(P )
//

∃!
��

BP

Aϕ−1(P )

<<

∃!

TT

where the map from Af(P ) to Aϕ−1(P ) is by the universal property of the direct limit, and the
map in the opposite direction from the universal property of localization. These maps are
inverse, giving an isomorphism.1

Now ϕ−1(P ) and f(P ) are two prime ideals in A which have the same localization, hence
ϕ−1(P ) = f(P ).

1All of this is in Hartshorne.
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Remark 3.25. An affine scheme is “essentially the same as” a ring. A map of affine schemes
is essentially the same as a ring map. In other words, (X,OX) is determined by OX(X).

There is an especially nice category, “quasi-coherent sheaves” of OX-modules, which are
determined by modules over OX(X).

4 The Proj construction
The “Proj” construction is a way to construct a (usually non-affine) scheme from a graded
ring.

4.1 Graded rings

Definition 4.1. An N-graded ring S (or a G-graded ring, where G is any semigroup) is a
ring S together with a decomposition

S =
⊕
n∈N

Sn = S0 ⊕ S1 ⊕ S2 ⊕ . . .

such that Si · Sj ⊆ Si+j.

Example 4.2 (Main example). S = k[x, y], where Sn = homogeneous polynomials of degree
n.

Definition 4.3. An ideal I ⊆ S is homogeneous if for all f =
∑

i fi ∈ I (where each fi ∈ Si),
each homogeneous component fi is in I.

Equivalently: I can be generated by homogeneously elements.

Example 4.4. The ideal
S+ = S1 ⊕ S2 ⊕ S3 ⊕ . . .

is called the irrelevant ideal .

4.2 The set Proj

Fix an N-graded ring S. Define the set

ProjS =
{
p ∈ SpecS

∣∣ p homogeneous, p + S+

}
⊆ SpecS \ V(S+).

Example 4.5. If S = k[x, y] with k = k, then

ProjS ⊆ SpecS \ V(x, y) = A2 \ {0} .

Some ideals in ProjS: (x), the generic point (0), etc.
We have 0 6= p ∈ ProjS iff p ⊆ k[x, y] is homogeneous, height 1, generated by an

irreducible polynomial. These correspond to irreducible subvarieties of P1, which correspond
to “cone shaped” subvarieties of A2. In other words,

ProjS =
{
p = (bx− ay)

∣∣ [a : b] ∈ P1
k

}
∪ {(0)} .
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Example 4.6. The scheme

Proj k[x, y, z] ⊆ SpecS \ V(x, y, z)

has three types of points, each corresponding to an irreducible subvariety of the classical P2
k:

(1) generic point (0)

(2) height 1 ideals, which correspond to p = (f) irreducible, homogeneous.

(3) height 2 ideals, corresponding to points [a : b : c] in P2, i.e., lines through (0, 0, 0) in k3:

p = (cx− az, cy − bz, bx− ay).

4.3 The Zariski topology on Proj

As a topological space, ProjS has the subspace topology induced from SpecS.
In other words, the closed sets of ProjS are

V(I) =
{
p ∈ ProjS

∣∣ p ⊇ I
}
⊆ ProjS,

where I is homogeneous.
The following open sets form a basis for the topology:

D+(f) =
{
p ∈ ProjS

∣∣ f /∈ p
}
⊆ ProjS.

Exercise 4.7. The height 2 ideals in Example 4.6 are closed in ProjS.

4.4 Proj as a ringed space

Fix an N-graded ring S. We now define the sheaf of rings OX = S̃ on X = ProjS.
On basic open sets D+(f), it is the ring

OX(D+(f))
def
=

[
S

[
1

f

]]
0

=

{
s

f t

∣∣∣∣ deg s = t · d
}
.

Example 4.8. If X = Proj k[x, y], we compute

OX(D+(x)) =

[
k

[
x, y,

1

x

]]
0

= k
[y
x

]
.

Lemma 4.9. If D+(f) ⊇ D+(h) with f, h homogeneous, then without loss of generality,
h = gf .

Now we can define the restriction maps to be the following localization:

OX(D+(f))→ OX(D+(gf))[
S

[
1

f

]]
0

→
[
S

[
1

gf

]]
0

=

[
S

[
1

f

][
1

g

]]
0

.
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Note 4.10. If f is homogeneous of degree d, then[
S

[
1

f

]]
0

=
⋃
t∈N

Sdt
f t
→
[
S

[
1

gf

]]
0

=

[
S

[
1

f

][
1

g

]]
0

=

[
S

[
1

f

]]
0

[(
gd

fdeg g

)−1
]
.

(The last equality is an exercise.)

For any open U ⊆ ProjS, define

OX(U) = lim←−
D+(f)⊆U

OX(D+(f)) = lim←−
D+(f)⊆U

[
S

[
1

f

]]
0

.

Exercise 4.11. Check that this is a sheaf.

4.5 Proj is locally ringed

We have now defined the ringed space (ProjS, S̃). Is it locally ringed?
Compute OX,p for any p ∈ ProjS:

OX,p = lim−→
p∈D+(f)

OX(D+(f)) = lim−→
f /∈p

homog.

[
S

[
1

f

]]
0

=

{
s

f

∣∣∣∣ s, f homogeneous of same degree, f /∈ p

}
=
[
SU−1

]
0
,

where U is the multiplicative system of homogeneous elements not in p.

Claim 4.12. [SU−1]0 is a local ring whose maximal ideal is

[
pSU−1

]
0

=

{
s

f

∣∣∣∣ s, f homogeneous of same degree, f /∈ p, s ∈ p

}
.

To show that [pSU−1]0 is maximal, let r
f
∈ [SU−1]0 \ [pSU−1]0 be arbitrary. Then r /∈ p,

so f
r
∈ [SU−1]0.

Example 4.13. Consider p = (x, y) ∈ Proj k[x, y, z] = X with the usual grading. Then, for
example,

OX(D+(z)) =
[
k
[
x, y, z, 1

z

]]
0

= k
[x
z
,
y

z

]
,

so
OX,p = lim−→

f /∈p

[
S

[
1

f

]]
0

= k
[x
z
,
y

z

]
U−1 = k

[x
z
,
y

z

]
(xz ,

y
z )
.

Note that [k[x, y, z]U−1], without taking the degree 0 component, is not local.
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4.6 Proj is a scheme

So far: (ProjS, S̃) is locally ringed.

Claim 4.14. (ProjS, S̃) is a scheme, meaning that it has a cover by open sets {Uλ} such
that

(Uλ,OX
∣∣
Uλ)

'−→ (SpecAλ, Ãλ)

as locally ringed spaces.
Note 4.15. Since

ProjS =
⋃

f∈S+homog.

D+(f),

it suffices to check that each D+(f) is affine.
Proposition 4.16. For all homogeneous f ∈ S+, the basic open set U = D+(f) ⊆ ProjS is
an affine scheme. Namely,

(U,OX
∣∣
U)

'−→ (SpecA, Ã),

where
A = OX(U) =

[
S

[
1

f

]]
0

.

Example 4.17. If S = k[x, y, z], then

ProjS = D+(x) ∪D+(y) ∪D+(z),

so, as we will show,
D+(x) ∼= Spec k

[y
x
,
z

x

]
︸ ︷︷ ︸
S̃(D+(x))

.

To prove Proposition 4.16:
(1) Find ϕ homeomorphism

U = D+(f)
ϕ−→ SpecA.

(2) Check that Ã→ ϕ∗(S̃)|U is an isomorphism of sheaves.

(3) Check that ϕ induces an isomorphism of locally ringed spaces.
To find ϕ: We have

S → S

[
1

f

]
⊇ A =

[
S
[
f−1
]]

0
.

Observe that if p ∈ ProjS with f /∈ p, then pS[f−1] is a prime ideal, so

pS
[
f−1
]
∩ A =

[
pS
[
f−1
]]

0

is prime in A. So define

ProjS ⊇ D+(f)
ϕ−→ SpecA

p 7→ ϕ(p) =
[
pS
[
f−1
]]

0

D+(f) ∩ V(I)←→ V
([
IS
[
f−1
]]

0

)
.

Exercise 4.18. Check that this is a homeomorphism which induces an isomorphism of locally
ringed spaces.
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4.7 Examples of Proj

Example 4.19 (Projective n-space over A). Define projective n-space to be

PnA
def
= (X = ProjA[x0, . . . , xn],OX)

with the standard grading. This has a cover by affine schemes {D+(xi)}ni=0, where

D+(xi) = Spec
[
A[x0, . . . , xn]

[
x−1
i

]]
0

= SpecA

[
x0

xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

]
,

a polynomial ring in n variables.

Example 4.20 (Weighted projective space over A). Let S = A[x0, . . . , xn], and say the degree
of xi is di. Denote the scheme

PnA(d0, . . . , dn)
def
= ProjA[x0, . . . , xn].

For example, consider Proj k[x, y, z] with deg x = 2 and deg y = deg z = 1:

D+(x) = Spec

[
k

[
x, y, z,

1

x

]]
0

= Spec k

[
y2

x
,
yz

x
,
z2

x

]
∼= Spec

k[S, T, V ]

(SV − T 2)
.

By contrast, with Proj k[x, y, z] with the grading,

D+(x) = Spec k
[y
x
,
z

x

]
.

Remark 4.21. We have a natural map

ProjA[x0, . . . , xn]

��

⊇ D+(xi) = SpecA
[
x0
xi
, . . . , xn

xi

]
��

A
[
x0
xi
, . . . , xn

xi

]

SpecA SpecA A
?�

OO

which expresses ProjA[x0, . . . , xn] as a scheme of finite type over A.

Example 4.22. Consider

S =
k[x, y, z]

(x2 + y2 − z2)

with the standard grading. We have

ProjS

��

⊆ SpecS \ V(x, y, z)

Spec k

The closed points in ProjS are in bijective correspondence with classical points on the pro-
jective variety V(x2 + y2 − z2) ⊆ P2

k.
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There is also a generic point (0). This is the only non-closed point; the dimension of
ProjS is 1.

On D+(z):

D+(z) = Spec

[
S

[
1

z

]]
0

= Spec
k
[
x
z
, y
z

]((
x
z

)2
+
(
y
z

)2 − 1
) .

We call this ring a conic, even if k is replaced with some arbitrary ring.

Example 4.23. There is the conic

Proj
Z[x, y, z]

(x2 + y2 − z2)
,

called a “conic in P2
Z.” We then have

D+(z) = Spec
Z
[
x
z
, y
z

](
x
z

)2
+
(
y
z

)2 − 1
.

This has dimension 2.

4.8 Example from the homework

Let A be a k-algebra k → A; i.e., SpecA is a k-scheme SpecA→ Spec k.
Say

Spec
k[ε]

ε2
→ SpecA

is a map of k-schemes. Then we have a commutative diagram of k-algebra maps

A //

η

�� ��

k[ε]
ε2

kill ε
����

k,

where the kernel of η is mP ∈ SpecA. We then have:

Spec k� _

��

Spec k[ε]
ε2

��

SpecA

We get that a k-scheme map Spec k[ε]
ε2
→ SpecA is giving us a k-rational point mP ∈ SpecA

together with a tangent vector to mP .
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4.9 Étale neighborhoods

What about the scheme SpecA/m2
P ? This is essentially the point mP , together with its

cotangent space.
If A = k[x, y] and mP = (x, y), then we have

Spec k �
�

// Spec
k[x, y]

(x, y)2

� � // Spec k[x, y]

k
k[x, y]

(x, y)2
oooo k[x, y]oooo

sending f = λ0 + λ1x+ λ2y + . . . to λ0 + λ1x+ λ2y + m2, and then to λ0 + m.
Likewise, k[x, y]/(m3) preserves the degree ≤ 2 terms of f , and similarly for higher degree.
Taking limits, we have

Spec k[[x, y]] = lim−→

(
Spec k ↪→ Spec

k[x, y]

m
↪→ Spec

k[x, y]

m2
↪→ Spec

k[x, y]

m3
↪→ . . .

)
k[[x, y]] = lim←−

(
k �

k[x, y]

m
�
k[x, y]

m2
�
k[x, y]

m3
�. . .

)
.

Now consider V(y2− x2− x3) ⊆ Spec k[x, y] = A2. The polynomial y2− x2− x3 does not
factor in k[x, y]; however, pulling back to Spec k[[x, y]],

y2 − x2 − x3 =
(
y − x

√
1 + x

)(
y + x

√
1 + x

)
in k[[x, y]], where

√
1 + x is given by its Taylor series expansion. (By Hensel’s lemma, z2+1+x

has a solution in k[[x, y]].) This can be thought of as an “étale neighborhood” which is smaller
than the Zariski neighborhoods.

5 Constructions on schemes

5.1 Products in the category of S-schemes

Let S be any scheme. [Classical example: Spec k, where k = k.]
Given two S-schemes X → S, Y → S, is there a product? That is, a scheme “X ×S Y ”

together with “projections” (maps of S-schemes)

X ×S Y
π1−−→ X

X ×S Y
π2−−→ Y
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satisfying the universal property:

W

��



∃!

��

X ×S Y
π2

��

π1

��

Y

��

X

��

S

If there exists an S-scheme W fitting in the above diagram, then there is a unique S-scheme
map W // X ×S Y making the diagram commute.

Theorem 5.1. Products exist in the category of S-schemes (unique up to unique isomor-
phism).

Proof sketch. Do the affine case, and glue together. Affine case: S = SpecA, and we have
maps A→ R, A→ T (i.e., S-schemes SpecR→ SpecA, SpecT → SpecA).

We need an A-scheme Z together with

Z
π1−−→ SpecR

Z
π2−−→ SpecT

making the product diagram commute.
Let Z = Spec(R⊗A T ). Then

B

R⊗A T

∃!

OO

T

__

XX

T

??

FF

A

__ ??

The details of the proof are all worked out in Hartshorne.

5.2 Examples of products

Example 5.2. Over S = Spec k, let

X = Spec k[x1, x2] = A2
k,

Y = Spec k[y1, y2] = A2
k.
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Then
X × Y = Spec (k[x1, x2]⊗k k[y1, y2]) = Spec k[x1, x2, y1, y2] = A4

k.

Example 5.3. Over S = SpecR, let X = SpecC. Then

A2
R ×R C = Spec (R[x, y]⊗R C) = SpecC[x, y].

Example 5.4. Over R, consider

Spec
R[x, y]

(x2 + y2)
→ SpecR.

Base change: make it a scheme over C:

Spec

(
R[x, y]

(x2 + y2)

)
×R SpecC = Spec

C[x, y]

(x2 + y2)
.

Not irreducible.
Caution 5.5. The product X ×S Y can be non-irreducible, non-reduced, etc., even if X, Y, S
are all irreducible.

5.3 Products of S-schemes, continued

Global picture:
X ×S Y

π2

��

π1

��

Y

��

X

��

S

Local picture:
SpecR⊗A T

����

SpecT

��

SpecR

��

SpecA

Example 5.6. Let X = Proj k[x, y, z] (with the standard grading), Y = Spec k[t]: both k-
schemes. We have

X = D+(x) ∪D+(y) ∪D+(z) = Spec k
[y
x
,
z

x

]
∪ Spec k

[
x

y
,
z

y

]
∪ Spec k

[x
z
,
y

z

]
.

So

X ×k Y = (D+(x)×k Spec k[t]) ∪ (D+(y)×k Spec k[t]) ∪ (D+(z)×k Spec k[t])

= Spec k
[
t,
y

x
,
y

z

]
∪ Spec k

[
t,
x

y
,
z

y

]
∪ Spec k

[
t,
x

z
,
y

z

]
= Proj k[t][x, y, z].
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To summarize:

X ×k Y = Proj k[t][x, y, z] = P2
k[t]

P2
k × A1 = P2

k[t] = P2
A1 .

We have the family

P2
k[t]

π2−−→ Spec k[t] = A1
k

P2 × A1 → Spec k[t]

P2 × {λ} 7→ λ.

5.4 Base change

Given a family X → B of schemes (“given a B-scheme”) parametrized by B, we can “change
base” for any B′ → B by considering the new family

X ×B B′
π2−−→ B′.

This is called “base change to B′.”

Example 5.7. Given P2
k → Spec k, we get a new family

P2
k[t] = P2

k ×k Spec k[t]→ Spec k[t].

Example 5.8 (Main applications). Consider

Proj
Z[x, y, z]

(x3 + y3 + z3)
→ SpecZ.

The map SpecQ→ SpecZ lets us change base:

Proj
Q[x, y, z]

(x3 + y3 + z3)
= Proj

Z[x, y, z]

(x3 + y3 + z3)
×Z Q

π2−−→ SpecQ.

5.5 Fibers

First, we motivate the definition with an example.

Example 5.9. Consider the following product over Spec k[t]:(
Spec

k[t]

(t− λ)

)
⊗k[t]

(
Spec

k[t][x, y]

(xy − t)

)
//

��

Spec
k[t][x, y]

(xy − t)

��

Spec
k[t]

(t− λ)
// Spec k[t]
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We have (
Spec

k[t]

(t− λ)

)
⊗k[t]

(
Spec

k[t][x, y]

(xy − t)

)
= Spec

(
k[t]

(t− λ)
⊗k[t]

k[t][x, y]

(xy − t)

)
= Spec

k[t]
(t−λ)

[x, y]

(xy − t)

= Spec
k[x, y]

(xy − λ)

= fiber over λ ∈ A1.

In more detail, we have the map

X = Spec
k[t, x, y]

(ty − x2)
→ Spec k[t] = S.

A point (t− λ) = P ∈ Spec k[t] corresponds to

Y = Spec k(P ) =
k[t]

(t− λ)
↪→ Spec k[t].

We have

Spec
k[x, y]

(λy − x2)
//

��

Spec
k[t, x, y]

(ty − x2)

��

Spec
k[t]

(t− λ)
� � // Spec k[t].

This is the (classical) fiber over λ.

Definition 5.10. If X f−→ B is a morphism of schemes and p ∈ B, then the (scheme
theoretic) fiber is X×B Spec k(p). [Here, if p ∈ U = SpecR ⊆ B, then k(p) = Rp/pRp →R.]

Example 5.11. Continuing from Example 5.9, we compute the fiber over the origin in Spec k[t]:

f−1(origin) = Spec k(origin)×Spec k[t] Spec
k[t, x, y]

(ty − x2)

= Spec

(
k[t]

(t)
⊗k[t]

k[t, x, y]

(ty − x2)

)
= Spec

k[x, y]

(x2)
.

Now, the fiber of the generic point:

Spec k(t)[x,y]
(ty−x2)

� � //

��

Spec k[t,x,y]
(ty−x2)

f

��

Spec k(t) �
�

// Spec k[t]

So
f−1(generic point) = Spec

k(t)[x, y]

(ty − x2)
.
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Example 5.12. Given a morphism of affine schemes SpecS
f−→ SpecR and a point p ∈ SpecR,

we have
f−1(p) = Spec

(
Rp

pRp

⊗R S
)
.

Exercise: Check that there is a homeomorphism

Spec

(
Rp

pRp

⊗R S
)
∼= f−1(p) ⊆ SpecS.

In other words, f−1(p) is also the set-theoretic fiber.

Example 5.13. Consider the family

Proj
Z[x, y, z]

(x3 + y3 + z3)

f−→ SpecZ.

If p is prime, then

f−1(p) = Proj
(Z/pZ)[x, y, z]

(x3 + y3 + z3)
,

and
f−1(generic point) = Proj

Q[x, y, z]

(x3 + y3 + z3)
.

This is reduction to characteristic p. So if a property holds for a typical Z/pZ, then it holds
for the generic fiber Q. In this case, p = 3 is the “non-typical” case.

6 Quasi-coherent sheaves
Most important class: coherent sheaves (of modules) on schemes.

6.1 Sheaves of modules

Definition 6.1. Fix a ringed space (X,OX). An OX-module (or a sheaf of modules on X)
F is a sheaf of abelian groups on X such that for all open U ⊆ X, there is an action of
OX(U) on F (U) making F (U) into an OX(U)-module, compatibly with restriction: for all
open U ′ ⊆ U , and for all r ∈ OX(U) and m ∈ F (U),

(rm)
∣∣
U ′ = (r

∣∣
U ′)m

∣∣
U ′ ∈ F (u′).

Note 6.2. For any P ∈ X, the stalk FP is an OX,P -module.

Example 6.3 (Trivial examples). A ringed space OX is itself a OX-module. Also, there is the
free OX-module of rank n:

OX ⊕ . . .⊕OX︸ ︷︷ ︸
n copies
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Example 6.4 (Vector bundles). Let X be a smooth manifold. Then (X,C∞X ) is a ringed space
given by

C∞X (U) =
{
U

ϕ−→ R
∣∣ ϕ smooth

}
.

Say
V

π−→ X

is a rank n vector bundle over X. Let V be the sheaf of smooth sections of V over X:

V(U) =
{
U

s−→ V
∣∣ s smooth, π ◦ s = idU

}
.

Observe that V is a sheaf of abelian groups:

(U
s1−−→ V ) + (U

s2−−→ V ) =
(
U → V, x 7→ s1(x) + s2(x)

)
,

where s1(x) + s2(x) ∈ Vx = π−1(x) in V ; this is an R-vector space.
Moreover, V is a C∞-module: for any open U ⊆ X, V(U) is a C∞(U)-module, given for

all s ∈ V(U) and f ∈ C∞(U) by

fs : U → V

x 7→ f(x)s(x).

Example 6.5 (The trivial vector bundle). Consider V ×Rn ⊇ U ×Rn as a vector bundle over
V ⊇ U . Then

[C∞X (U)]⊕n = V(U) ∼= C∞X (U)⊕ . . .⊕ C∞X (U).

Easy to check: V ∼= C⊕nX .
The stalks of V are, for x ∈ X,

Vx = lim−→
U3x
V(U) =

(
C∞X,x

)⊕n
.

Given open U ′ ⊆ X, we have

V

π

��

⊇ π−1(U ′)

��

ϕ

'
// U1 × Rn

xx
X 3 U ′

We have
V
∣∣
U ′
∼= (C∞U ′)

⊕n .

6.2 Quasi-coherent sheaves

Idea: “globalization” of the idea of an R-module. Rings are to schemes are modules are to
quasi-coherent sheaves.
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Example 6.6. Fix a ring A and an A-module M . The sheaf associated to M on SpecA is

M̃
(
D(g)

)
= M

[
g−1
]

= M ⊗A A
[
g−1
]
,

which is obviously an A[g−1] = OX
(
D(g)

)
-module.

It is easy to check that M̃ is a presheaf of modules on SpecA:

M̃(U) = lim←−
D(g)⊆U

M̃
(
D(g)

)
= lim←−

D(g)⊆U
M
[
g−1
]
.

Easy to see the stalks

M̃p = lim−→
p∈D(g)

M̃
(
D(g)

)
= lim−→

g/∈p
M
[
g−1
]

= Mp = M ⊗A Ap.

Proposition 6.7. In fact, M̃ as we defined it is a sheaf. [so M̃(SpecA) = M ]

Proof. The sheafification of M̃ on U is

M̃(U) =

U → ∐
P∈U

MP

∣∣∣∣ s(P ) ∈MP , and ∀P ∈ U , ∃ neighborhood D(g) and
m ∈M

[
g−1
]
such that ∀Q ∈ D(g), s(Q) = germ of m

in MQ

 .

See Hartshorne II.5 for the details.

Definition 6.8. A quasi-coherent sheaf on a scheme (X,OX) is a sheaf of OX-modules M
such that X has an open cover by affines Ui = SpecAi where M |Ui = M̃i for some Ai-module
Mi.

If X is Noetherian, we say M is coherent if the Mi can be taken to be finitely generated
Ai-modules.2

Proposition 6.9. If F is a quasi-coherent sheaf on an affine scheme SpecA, then F = M̃
for some A-module M (i.e., M = F (SpecA)).

Proof. Prove the following lemma: If F is a quasi-coherent sheaf on any scheme (X,OX)

and SpecA = U ⊆ X is any open affine subset, then F |U = F̃ (U). (See Hartshorne.)

Fact 6.10. If M → N is an A-module homomorphism, then there is a naturally induced
homomorphism of OX-modules M̃ → Ñ on X = SpecA.

There is a functor

A-Mod→ {sheaves of abelian groups}

which induces an equivalence of categories

A-Mod
'−→ {quasi-coherent sheaves on SpecA} .

2If we do not require X to be Noetherian, then the correct criterion is that theMi be coherent Ai-modules.
A coherent module is a finitely generated module whose finitely generated submodules are finitely presented.
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6.3 Examples of quasi-coherent sheaves

Fix a scheme X. Some quasi-coherent sheaves on X:

• OX is a quasi-coherent OX-module.

• O⊕nX is the free quasi-coherent OX-module of rank n.

• If V π−→ X is an algebraic vector space of varieties, then the sheaf of regular sections
V is a quasi-coherent sheaf on X. The stalks are

VP = O⊕ rankV
X,P ,

and the vector bundle is given by

U × Ank

%%

π−1(U)'oo ⊆ V

π

��

U

s

OO

⊆ X,

where for p ∈ U ,
p 7→

(
p, s1(p), . . . , sn(p)

)
with si ∈ OX(U).

• Say X = SpecA, and let M be any locally free (projective), rank 1 module3 which is
not free. Then M̃ is a quasi-coherent sheaf on X, not free, but the stalks are

M̃P = MP
∼= AP .

Example 6.11. Consider A = Z
[√
−5
]
and I =

(
2, 1 +

√
−5
)
⊆ A. Then I is height 1, and is

not free as an A-module. However, it is locally free: since A is a Dedekind domain, IP ⊆ AP
is principal, so we can write IP = (f · AP ), and

AP
'−→ f · AP

1 7→ f

is clearly an isomorphism.

Example 6.12. Let Y
i

⊆ X be a closed subscheme. Then we have the map of sheaves of rings
on X

OX � i∗OY .

So the kernel
I = IY ⊆ OX

3IfM is an A-module, where A is a domain, then the rank ofM is the dimension ofM⊗AK as a K-vector
space, where K = Frac(A) is the fraction field.
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is a sheaf of ideals in X (i.e., OX-modules). It is quasi-coherent : For any affine U ⊆ X, we
have Y ∪ U ⊆ X ∩ U = U , and the exact sequence

0→ IY (U) ⊆ OX(U) � OY (Y ∩ U).

On U , need
I
∣∣
U = Ĩ (U) = Ĩ .

If U = SpecA, Y ∩ U = Spec(A/I) under the closed embedding Y ∩ U ↪→ U induced by
A� A/I.

We need to show that for any basic open SpecA[g−1] = D(g) ⊆ U . Need: I
(
D(g)

)
=

I[g−1]A[g−1]. The following are exact sequences:

0 // I // A // A/I // 0

0 // I[g−1] // A[g−1] // (A/I)[g−1] // 0

Proposition 6.13. The category of quasi-coherent sheaves on a scheme X is closed under
taking direct sums, kernels, cokernels, direct limits, and inverse limits.

6.4 Equivalence of modules and q.c. sheaves

Fix a ring A, and let X = SpecA. There is an equivalence of categories

{A-modules} ←→ {quasi-coherent sheaves on SpecA} ⊆ {sheaves of modules on SpecA}
M 7→ M̃

A 7→ Ã = OX
F (SpecA) 7→F

Given an element f ∈M , the “value of f at p ∈ SpecA” is the image of f in(
A→ Ap

pAp

)
⊗AM

M → Mp

pMp

= fiber of M̃ over p.

Operations on A-modules (e.g., M ⊗A N , where M,N are A-modules) induce operations
of sheaves of A-modules (e.g., M̃ ⊗OX Ñ = ˜(M ⊗A N)), which induce operations on quasi-
coherent sheaves on arbitrary schemes: if F ,G are quasi-coherent sheaves on X, define
F ⊗OX G by locally on affines U setting

(F ⊗OX G )(U) = F (U)⊗OX(U) G (U).

Exercise 6.14. If F ,G are quasi-coherent, then F ⊗OX G is quasi-coherent.

Caution 6.15. It is not true for all open U that (F ⊗ G )(U) = F (U)⊗ G (U).
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6.5 Key functors on quasi-coherent sheaves

Given A-modules M,N , the hom-set HomA(M,N) induces a sheaf

HomOX (M̃, Ñ) = ˜HomA(M,N).

Say we have a map of schemes

X
f−→ Y, OY → f∗OX .

If F is quasi-coherent on X, then f∗F is quasi-coherent on Y .
Local picture: A f#−−→ B is a ring map. If M is a B-module, then M is an A-module by

restriction of scalars, and the quasi-coherent sheaf M̃ on SpecB is sent to f∗M̃ = AM̃ , a
quasi-coherent sheaf on SpecA.

In other words, f∗ is “restriction of scalars” to Y .

Caution 6.16. If F is coherent, then f∗F is quasi-coherent, but in general not coherent. For
example, consider

X = Spec k[t]
f−→ Spec k

M̃ = k̃[t] = OX 7→ f∗OX = k

(
k̃[t]
)
,

but k[t] is not a finitely generated k-module.

Next, if F is a quasi-coherent sheaf on Y , then f−1(F ) is a sheaf of modules over f−1OX :
for any open U ⊆ X,

f−1(F )(U) = “F
(
f(U)

)
” = lim−→

V⊇f(U)

OY (V ),

so f−1F (U) is a module over lim−→V⊇f(U)
OY (V ) = f−1OY (U).

Definition 6.17. For F any sheaf of OY -modules on a ringed space (Y,OY ) and any mor-

phism (X,OX)
(f,f#)
−−−−−→ (Y,OY ), define

f ∗F = OX ⊗f−1OY f
−1F .

In practice, consider the local picture: given a morphism SpecB → SpecA, A→ B and
an A-module M , we have

f ∗M̃ = ˜(B ⊗AM).

6.6 Example on Proj

Consider S = k[x, y] with the standard N-grading, and let M be the Z-graded S-module
given by M = S as an abelian group, and as an S-module with the grading shifted by d:

Mn = Sn+d.

39



Notation: M = S(d). This is the same S-module structure as the trivial module S, but with
a different grading.

Define a sheaf on ProjS as follows:

D+(f) 7→ M̃
(
D+(f)

)
=
[
M [f−1]

]
0
.

This is a [S[f−1]]0-module: if deg s = t · deg f and degm = e · deg f , then(
s

f t
· m
f e

)
=

sm

f t+`
,

and all of the above are degree 0.
Remark 6.18. For any Z-graded S-module M over any N-graded ring S,

M̃(U) = lim←−
D+(f)⊆U

[
M [f−1]

]
0

is a module over
OX(U) = lim←−

D+(f)⊆U

[
S[f−1]

]
0
.

We denote this sheaf M̃ .
Exercise 6.19. This is a quasi-coherent sheaf on ProjS. On an affine set D+(f),

M̃
∣∣
D+(f) = M̃ [f−1]0,

where D+(f) = Spec [S[f−1]]0.

Returning to our example with Proj, let us compute M̃ = S̃(1) on ProjS = Proj k[x, y] =
P1
k:

P1
k = D+(x) ∪D+(y) = Spec k

[y
x

]
∪ Spec k

[
x

y

]
M̃
(
D+(x)

)
=

[
M

[
1

x

]]
0

=

{
m

xt

∣∣∣∣ m ∈Mt = [S(1)]t = St+1

}
=

{
xt+1

xt
,
xty

xt
, . . . ,

xyt

xt
,
yt+1

xt

}
= x ·

[
S

[
1

x

]]
0

= x · k
[y
x

]
= x · OX

(
D+(x)

)
,

which is a free OX
(
D+(x)

)
-module of rank 1.

On D+(y):

M̃
(
D+(y)

)
= y · OX

(
D+(y)

)
= y · k

[
x

y

]
=

[
k

[
x, y,

1

y

]]
1

=

[
M

[
1

y

]]
0

.

So this is a locally free OX-module of rank 1.
Exercise 6.20. If M = S(d), then

M̃
(
D+(x)

)
=

[
M

[
1

x

]]
0

=

[
S

[
1

x

]]
d

= xd ·
[
S

[
1

x

]]
0

,

so S̃(d) is locally free of rank 1 for all d ∈ Z.
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6.7 Twists of the structure sheaf on Proj

Definition 6.21. If S is an N-graded ring, the quasi-coherent sheaves S̃(d) are called “twists”
of the structure sheaf.

Proposition 6.22. If S is a domain, finitely generated over S0 by elements of degree 1, then
S̃(d) is locally free of rank 1.

Proof. We have
ProjS = D+(x0) ∪ · · · ∪D+(xn),

where x0, . . . , xn are degree 1 generators for S as an S0-algebra. Then

S̃(d)
∣∣
D+(xi) = xdi · OX

(
D+(xi)

)
.

Claim 6.23. S̃(d) � S̃(d′) is general.

For example, consider S = k[x, y] with the standard grading, ProjS = P1
k. Let us compute

ϕ ∈ S̃(d)(P1):

ϕ
∣∣
D+(x) = xd · f

(y
x

)
∈ S̃(d)

(
D+(x)

)
= xd · k

[y
x

]
and

ϕ
∣∣
D+(y) = yd · g

(
x

y

)
,

so

xd · f
(y
x

)
= yd · g

(
x

y

)
.

Clearly,
Sd = {homogeneous polynomials of degree d in x, y} ⊆ S̃(d)(P1).

Indeed,

xayd−1 = xd ·
(
yd−axa

xd

)
= yd ·

(
xayd−a

yd

)
.

It’s not too hard to show that the above is actually equality:

S̃(d)(P1) = Sd.

So the Sd are vector spaces of different dimension, and hence are not isomorphic.
In p = [0 : 1] ∈ P1, we have Ip ⊆ OP1 :

Ip

∣∣
D+(x) = OP1 ,

Ip

∣∣
D+(y) =

(y
x

)
⊆ k

[y
x

]
.
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If f ∈ Sd is a homogeneous polynomial of degree d, then

M = f · S ⊆ S,

[M ]d = [f · S]d → S0.

We have an isomorphism of graded S-modules

S(−d)
'−→ f · S

1 7→ f,

where 1 ∈ S(−d) is a generator for the S-module S(−d). So

S̃(−d) = (̃f · S)

is the ideal sheaf of the closed subscheme of ProjS defined by

S � S/(f)

ProjS ↪→ProjS/(f).

7 Separated and proper morphisms
Guest lectures by David Speyer.

7.1 Notation and motivation

• If X is a scheme over Spec k (denoted X/k), then “X is [adjective]” means “X → Spec k
is [adjective]”.

• Separated “means” Hausdorff.

• Proper “means” compact.

Motivation: For X/C of finite type, there is a topological space Xan. The point set of
Xan is

X(C) = Hom(SpecC, X) =
{
x ∈ X

∣∣ k(x) = C
}
.

Then X is separated ⇐⇒ Xan is Hausdorff, and X is proper ⇐⇒ Xan is compact.

7.2 Separated morphisms

Motivation: Let X be a topological space. Let ∆ be the diagonal in X × X. Then the
following are equivalent:

• X is Hausdorff.

• For all x, y ∈ X with x 6= y, there exist open U, V ⊆ X with x ∈ U, y ∈ V and
U ∩ V = ∅.
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• For all (x, y) ∈ X × X with (x, y) /∈ ∆, there exists an open W with (x, y) ∈ W and
W ∩∆ = ∅.

• (X ×X) \∆ is open in X ×X.

• ∆ is closed in X ×X.

Definition 7.1. A scheme X over S is separated if ∆ is closed in X ×S X, or equivalently,
if ∆ ↪→ X ×S X is a closed embedding.

Note 7.2. If we have morphisms X → B → C, then using the universal property, we have

∆→ X ×B X ↪→ X ×C X.

Check in Hartshorne if this is true: separated over C implies separated over B.
Example 7.3 (The line with two origins). Here is the standard example of a nonseparated
scheme: Take two copies of A1. Inside each, we have A1 \ {0}. Glue these open subsets by
identity, but don’t glue the origins 0, 0′. Call this space X.

Now consider the product X ×X. This consists of the affine plane, but with two copies
of each axis and four copies of the origin. The diagonal contains two of the four origin
points, namely (0, 0) and (0′, 0′), but (0, 0′) and (0′, 0) are also in the closure of the diagonal.
Therefore, X is not separated.
Example 7.4 (An orbit space). The punctured plane A2 \ {(0, 0)} has an action of

Gm = Spec k[t, t−1]

by
t : (x, y) 7→

(
tx, t−1y

)
.

Write the coordinates on A2 by (x, y). Consider affine open subsets

U1 = {x 6= 0} = Spec k[x, x−1, y],

U2 = {y 6= 0} = Spec k[x, y, y−1].

Then

U1/Gm = Spec k[xy] ∼= A1,

U2/Gm = Spec k[xy] ∼= A1.

The projection map U1 → U1/Gm is

(x, y) 7→ xy.

So (A2 \ {(0, 0)}) /Gm is A1 glued to A1 along

(U1 ∩ U2)/Gm = A1 \ {(0, 0)} .

Remark 7.5. Gluing can created nonseparatedness!
However, open and closed subschemes of separated schemes are separated. Since An and

Pn are separated, anything affine, projective, or quasiprojective is separated.
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7.3 Properties of separated schemes

Theorem 7.6. If X is separated, Z is reduced, f, g : Z → X are two morphisms, and U ⊆ Z
is a dense open subset such that f |U = g|U , then f = g on Z.

Proof. Consider the map

h : Z → X ×X
h(z) =

(
f(z), g(z)

)
.

This is the map given by the diagram

Z
g

{{

h
��

f

##
X X ×Xoo // X

Since X is separated, ∆ ⊂ X ×X is closed, so h−1(∆) is closed in Z. Since h−1(∆) contains
U , the closed subscheme h−1(∆) is supported on all of Z. But Z is reduced, so h−1(∆) = Z,
and so f = g.

Caution 7.7. Here is why we assumed Z is reduced. Consider

Z = Spec
k[x, y]

(y2, xy)
.

Note that Zred = Spec k[x]. We will find two morphisms that agree on Zred, but not on Z.
Consider the maps

f : Z → A2

k[x, y]

(y2, xy)
→k[x, y]

x 7→x
y 7→y

and

g : Z → A2

k[x, y]

(y2, xy)
→k[x, y]

x 7→x
0 7→y.

Inside Z, we have

U = Spec
k[x, y, x−1]

(xy, y2)
= Spec

k[x, y, x−1]

(y)
= Spec k[x, x−1].

This sort of situation can occur anywhere on the nonreduced locus of the scheme Z.
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Fact 7.8 (Key fact). If Z is reduced, and W is a closed subscheme supported on Z, then
Z = W . For any scheme Z, the subscheme Zred is supported on all of Z.

Example 7.9. Consider the maps

f : A1 → A2 \ {0}
u 7→ (u, 1)

and

g : A1 → A2 \ {0}
u 7→ (1, u).

Sending these to the quotient space

A1 f−→ A2 \ {0} →
(
A2 \ {0}

)
/Gm

A1 g−→ A2 \ {0} →
(
A2 \ {0}

)
/Gm,

we see that (1, u) and (u, 1) are in the same orbit when u 6= 0, but in different orbits (the
y-axis and the x-axis) when u = 0.

Theorem 7.10. If X is a separated scheme, and U and V are open affine subsets in X, then
U ∩ V is affine.

Proof. See Hartshorne.

Example 7.11 (Nonseparated counterexample). Glue together two copies of A2 except at the
origin. Then the intersection of the two affine planes is A2 \ {0}.

7.4 Proper morphisms

Definition 7.12. A map f : X → Y is closed if, for any closed K ⊆ X, the set f(K) is
closed in Y .

Example 7.13. The inclusion map A1 \ {0} ↪→ A1 is not closed.

Example 7.14. The map

Spec k[x, x−1] t Spec k → Spec k[x]

given by “filling in” the discrete point into the hole is not closed.

Example 7.15. The map

A2 → A1

(x, y) 7→ x

is not closed. Indeed, the hyperbola xy = 1 is closed in A2, but its image is A1 \ {0}.

45



Definition 7.16. A scheme X over S is called proper if X → S is separated, of finite type,
and universally closed : for every B → S, the projection X ×B → B is closed.

So the previous example shows that A1 is not proper.
Remark 7.17. Using the same definition, a topological space X is proper ⇐⇒ compact.4
Let’s see that proper =⇒ sequentially compact.

Let x1, x2, . . . be a sequence in X. Let B =
{

1, 1
2
, 1

3
, 1

4
, . . . , 0

}
⊂ R. Set

S =
{(
xi,

1
i

)}
⊆ X ×B.

Then the projection of S to B, namely
{

1, 1
2
, 1

3
, . . .

}
is not closed, so S must not be closed.

Thus, a point of S \ S must be the form (x, 0), where x is an accumulation point of {xi}.
Proper says: For any B/k, U dense in B, V in X ×B projecting onto U , and any u ∈ U ,

there is some v ∈ V over u.

7.5 Proper morphisms, continued

A morphism X → Y is proper if it is of finite type, separated, and for all B → Y , the map
X ×Y B → B is closed.

This means that: “If you have a ‘path’ in Y which approaches a limit u in B, and you lift
that to a ‘path’ in X ×Y B, then that path upstairs accumulates at some v above u.”
Example 7.18. The map

A1 → A1

t 7→ t2

is proper, even though A1 itself is not proper.
Returning to the general case, let us formulate this property of proper maps more pre-

cisely: For any g : B → Y , U dense in B, V in X ×Y B projecting onto U , if u ∈ g(U) ⊆ Y ,
then there is a point v ∈ V above u.

A map f : X → Y of topological spaces obeys this condition (for all B → Y , the map
X ×Y B → B is closed) ⇐⇒ for any K ⊆ Y with K compact, f−1(K) is also compact.

7.6 Facts about proper morphisms

Proposition 7.19. The projective space Pnk is proper, i.e., for any K ⊆ Pn × B with K
closed, the projection of K onto B is closed.

If ft(x, y) and gt(x, y) are some homogeneous polynomials in x, y, then letting t vary in
A1, the equations

ft(x, y) = gt(x, y) = 0

define a closed subscheme of P1×A1. The set of t for which there is a common root of ft(x, y)
and gt(x, y) is closed.

Similarly, over any base scheme S:
4A full proof can be found at http://ncatlab.org/toddtrimble/published/Characterizations+of+

compactness.
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Proposition 7.20. PnS → S is proper.

Proposition 7.21. If X/k is proper, so is any closed subscheme of X, and so is any surjective
image of X.

Fact 7.22. Proper maps have the following useful properties:

• Proper maps are closed.

• If X is proper and f : X → Y is a morphism, then f(X) is closed in Y .

• If X → Y and Y → Z are proper, then the composition X → Z is proper.

• X → Y is proper and affine5 ⇐⇒ X → Y is finite.

7.7 Valuation rings

Definition 7.23. Let R be a domain, and let K = FracR. We say R is a valuation ring if,
for all u ∈ K×, either u or u−1 is in R. That is, for any a, b ∈ R with a, b 6= 0, either a | b or
b | a.

Example 7.24. The ring R = k[[t]] is a valuation ring: If

a = ait
i + ai+1t

i+1 + . . . ,

b = bjt
j + . . . ,

then b
a
∈ k[[t]] if i ≤ j, and a

b
∈ k[[t]] if i ≥ j.

Example 7.25. Here are a few more valuation rings:

k[t](t) =

{
f

g

∣∣∣∣ f, g ∈ k[t], t - g(t)

}
Zp = lim←−Z/p

nZ

Z(p) =
{a
b
∈ Q

∣∣ p - b} .
Example 7.26. Valuation rings are not necessarily discrete. Here is a non-discrete valuation
ring:

∞⋃
n=1

k
[[
t1/n
]]
.

Given a valuation ring, we can define a valuation. Let

A = K×/R×,

A+ = (R \ {0}) /R× ⊆ A.

For example, if R = k[[t]], then A = Z and A+ = Z≥0; and if R =
⋃∞
n=1 k

[[
t1/n
]]
, then A = Q

and A+ = Q≥0.
Then A is an ordered abelian group. Moreover,

5A morphism f : X → Y is affine provided that for any affine open subset V ⊆ Y , the preimage f−1(V )
is also affine.
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• Every a ∈ A is either in A+ or in −A+.

• A+ ∩ −A+ = {0}.

• A+ is closed under addition.

Define the map
v : K× → A = K×/R×.

Then

• v(xy) = v(x) + v(y),

• v(x+ y) ≥ min
(
v(x), v(y)

)
,

• R = v−1(A+).

We can carry out this process in reverse:

Definition 7.27. Let k be a field. A valuation is a map

v : k× → A

for an ordered abelian group A, such that

• v(xy) = v(x) + v(y),

• v(x+ y) ≥ min
(
v(x), v(y)

)
.

The corresponding valuation ring is v−1(A+).

Example 7.28. Take the map

v : k(x, y)× → Q+Q
√

2 ⊆ R

defined by v(x) = 1, v(y) =
√

2, and v(k×) = 0.

7.8 Spectra of valuation rings

Let v be a valuation. Then R = v−1(A≥0) is a ring, and m = v−1(A>0) is a maximal ideal.
Indeed:

Proposition 7.29. R/m is a field.

Proof. If ū ∈ (R/m)− {0}, lift to u ∈ R − m. Then v(u) = 0. So u−1 ∈ R, and the class of
u−1 in R/m is an inverse to ū.

So m is a closed point of SpecR, and (0) is another point of SpecR.
Example 7.30. Let A = Z2 with the lexicographic ordering. We have the valuation

v : k(x, y)∗ → Z2

x 7→ (1, 0)

y 7→ (0, 1)

k× 7→ (0, 0).

Then the prime ideals of the associated valuation ring are (0), v−1(A(>0,∗), and v−1(A>(0,0).
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7.9 The valuative criterion

Theorem 7.31. A scheme X/k is separated (resp. proper) iff the following criterion holds:
For every valuation ring (R, v) which is a k-algebra, we have v(k) = 0; and for every map

f : Spec FracR→ X,

there is at most (resp. at least6) one way to extend f to a map SpecR→ X.

Proof. See Hartshorne §2.4.

7.10 Projective space is proper

We now use the valuative criterion to prove that Pn is proper. To check this, let R be a
valuation ring with fraction field K and valuation v : K× → A.

Let f : SpecK → Pn be a morphism, and let (x0 : x1 : · · · : xn) ∈ Kn+1 \{0} be arbitrary.
Let vi = v(xi) or ∞ if xi = 0. Without loss of generality, v0 ≤ v1, v2, . . . , vn. So

P :=

(
1 :

x1

x0

:
x2

x0

: · · · : xn
x0

)
represents the same map SpecK → Pn. But v(xi/x0) ≥ 0, so xi

x0
∈ R. Thus P gives a map

SpecR→ Pn.
Example 7.32. Consider two copies of A2, with A1 × (A1 − {0}) glued to A1 × (A1 − {0}) by
gluing (x, y) to (x+ y−1, y).

To have a map Spec FracR→ X, we must have (x, y) ∈ R2 with v(y) > 0 and x+y−1 ∈ R.
If v(u) < v(w), then v(u + w) = v(u); also, if v(x)� 0 and v(y) > 0 =⇒ v(y−1) < 0, then
v(x+ y−1) < 0. So no such (x, y) ∈ R2 exists, hence this scheme is separated.

8 Quasi-coherent sheaves, continued
. . .

9 Divisors on schemes

9.1 Assumptions on schemes

Fix a scheme X.
Assumption (*): X Noetherian, separated, integral, regular in codimension 1.

Definition 9.1. A scheme is regular in codimension 1 if for all codimension 1 integral
subscheme Y ⊆ X, the stalk OX,y (local ring, dimension 1) of the generic point y of Y is
regular.

6And therefore exactly one, since proper morphisms are defined to be separated.
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Remark 9.2. Look at the subset

W =
{
P ∈ X

∣∣ OX,P is regular
}
⊆ X.

Non-obvious fact: W is open.7
A scheme is regular in codimension 1 ⇐⇒ the closed set X −W has codimension ≥ 2.

Remark 9.3. If X = SpecA, then “regular in codimension 1” means that Ap is regular for all
height 1 prime ideals p in A.

We will introduce two types of divisors under assumption (*):

Cartier divisors or “locally principal” divisors ⊆Weil divisors.

9.2 Weil divisors

Definition 9.4 (Weil divisors). • Assume (*) is satisfied for X. A prime divisor is an
integral codimension 1 closed subscheme of X.

• A (Weil) divisor is a formal Z-linear combination of prime divisors

D =
t∑
i=1

aiYi,

where Yi ⊆ X are prime divisors and ai ∈ Z.

• Div(X) = free abelian group generated by prime divisors.

• If all ai ≥ 0, then say D is effective.

Example 9.5. The subscheme

Spec
k[x, y]

(x2)
⊆ Spec k[x, y]

corresponds to the divisor

2 · Spec
k[x, y]

(x)
.

9.3 Aside: Normal rings

Let A be a Noetherian domain, let K = Frac(A) be its fraction field, and let p ⊆ A be a
height 1 prime. Then

A ⊆ Ap ⊆ K,

and
A ↪→

⋂
p ht 1

Ap
thm
= normalization of A.

If A is normal, then Ap is normal for all p height 1, so Ap is regular.
7This was an open question in general for a number of years. It was proven by Serre.
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9.4 The valuation associated to a prime divisor

Under assumption (*), if Y ⊆ X is a prime divisor, let ξ ∈ X and y ∈ Y denote the generic
points. Then OX,y is a DVR, so we get a valuation of K = “function field of X”, the stalk of
OX at the generic point of X.

We have an inclusion OX,y ⊆ K. Indeed, restricting to an affine patch

∅ 6= Y ∩ U ↪→ U = SpecA,

then Y ∩ U corresponds to a height 1 prime p in A. Then

OX,y �
�

// OX,ξ

Ap
� � // A(0) = K.

This gives the “valuation of Y ”, denoted vY :

vY : K∗ → Z
f 7→ vY (f) = “order of f in OX,y”

Example 9.6. Here’s an example that isn’t from 631:

Y = SpecZ/(7) ⊆ SpecZ.

Let
f =

17

49
∈ Q = K.

Then
vY

(
17

49

)
= vY (17)− vY (49) = 0− 2 = −2.

Note 9.7. Because X is separated, the valuation vY uniquely determines Y . That is, use the
valuative criterion for separatedness:

SpecK

��

// X

��

SpecOX,y //

88

SpecZ,

where the map SpecOX,y → X sends the closed point of SpecOX,y to the generic point of
Y ⊆ X. By the valuative criterion, this is the unique such map.

Lemma 9.8. For all f ∈ K∗, there are at most finitely many prime divisors Y such that
vY (f) 6= 0.

Proof. Choose affine U ⊆ X. Write f = h
g
. Then

vY (f) = vY (h)− vY (g).
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Without loss of generality, we can assume f ∈ A such that U = SpecA ⊆ X is an affine
chart.

Which Y ⊆ SpecA can be such that vY (f) 6= 0? Observe that

vY (f) 6= 0 ⇐⇒ f ∈ pY = ideal of Y .

By the following commutative algebra fact, we are done.

Fact 9.9 (Commutative algebra). If A is a Noetherian domain and f 6= 0, then there are
finitely many primes of height 1 (“minimal primes”) containing f .

9.5 The divisor class group

Proposition–Definition 9.10. Fix X satisfying (*). Let K = function field of X (stalk at
the generic point of X). There is a group homomorphism

K∗ → Div(X)

f 7→ div f
def
=
∑
Y⊆X
prime

vY (f)Y.

Its image P (X) is the subgroup of principal divisors . The quotient group

Cl(X) = Div(X)/P (X)

is called the divisor class group.

Example 9.11. Cl(Spec k[x, y]) = 0 because every height 1 prime p is principal, so if p =
(f) ⊆ k[x, y] is prime, height 1, then

div f = p ∈ Div(Spec k[x, y]).

Indeed, vp(f) = 1, and vq(f) = 0 for all q 6= p.

Theorem 9.12 (see Hartshorne). SpecA has trivial class group ⇐⇒ A is a UFD.

Proposition 9.13. There is a natural map

Div (Proj k[x0, . . . , xn]) = Div(Pnk)
deg−−→ Z

D =
t∑
i=1

niYi 7→
t∑
i=1

nidi,

where Yi corresponds to pi = (Fi) with Fi homogeneous of degree di. The kernel of this map
is P (PNk ), so

Cl(Pn) ∼= Z.

Proof. See Hartshorne.
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9.6 Cartier divisors

If we assume (*), then we can think of Cartier divisors as special kinds of Weil divisors.
However, Cartier divisors can be defined on arbitrary schemes.

Here, we will only define Cartier divisors on integral schemes; Hartshorne defines them
in full generality using the total quotient ring.

Definition 9.14. Fix an integral scheme X. Let K = function field of X, and let K be the
constant sheaf on X of K. A Cartier divisor is a global section ϕ of the sheaf K ∗/O∗X .

More concretely: ϕ is data {Uλ, fλ}, where
⋃
λ∈Λ Uλ = X is an open cover of X, and

fλ ∈ K ∗(Uλ) = K∗, such that each fλ and fµ agree on Uλ ∩ Uµ, i.e.,

fλf
−1
µ ∈ O∗X(Uλ ∩ Uµ).

[If we do not assume X integral, instead of K, use the sheaf of “total quotient rings” K , the
sheaf associated to the presheaf which assigns to U ⊆ X the ring

K (U) = OX(U)
[
{non-zerodivisors}−1] ,

which agrees with this definition when X is integral.]

Remark 9.15. Since K ∗/O∗X is a sheaf of abelian groups, Cartier divisors form a group.

Proposition 9.16. Assume X satisfies (*). There is a natural map of groups

{Cartier divisors on X} → Div(X)

ϕ = {(Uλ, fλ)}λ∈Λ 7→ “ divϕ”,

where divϕ is the unique divisor D on X such that

D
∣∣
Uλ = divUλ(fλ) =

∑
Y⊆X prime
Y ∩Uλ 6=∅

vY (fλ) · Y.

9.7 Summary of Weil divisors

Recall assumption (*): X is a Noetherian integral separated scheme, regular in codimension
1 [always holds when X is normal].

Example 9.17. Here is a scheme which satisfies (*), but is not normal:

X = Spec k[s4, s3t, t3s, t4].

Indeed,

s2t2 =
(s3t)

2

s4

is in the normalization, but not in the ring.
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Let us now briefly review Weil divisors. Let K = function field of X. Consider a Weil
divisor D =

∑
niYi, where ni ∈ Z and each Yi ⊆ X is a prime divisor (i.e., a codimension 1,

integral, closed subscheme).
In an affine patch U = SpecA ⊆ X,

D
∣∣
U =

∑
ni(Yi ∩ U).

Each nonempty Yi ∩ U ⊆ U corresponds to a prime pi ⊆ A of height 1, the “generic point of
Yi”. This induces a DVR

OX,Yi = Api ,

which induces a valuation vYi on K.
Each f ∈ K∗ = K − {0} determines a principal divisor, the “divisor of zeros and poles”:

divX f =
∑
Y⊆X
prime

vY (f) · Y ∈ P (X) ⊆ Div(X).

There is a group homomorphism

K∗
div−−→ Div(X)

f 7→ divX f.

The cokernel is called the divisor class group Cl(X).
For any f ∈ OX(U),

divU f =
∑
Y⊆X
prime

vY (f) · Y ≥ 0.

Indeed, if f ∈ OX(U), then f ∈ OX,Y , so vY (f) ≥ 0.
Caution 9.18. The converse is false; contrary to our initial intuition, there are effective
principal divisors divU f such that f /∈ OX(U). For example, if X is the scheme from
Example 9.17, then divX(s2t2) ≥ 0, but s2t2 /∈ OX(X).

Proposition 9.19. If X is normal, then for all f ∈ K∗ and for all open U ⊆ X,

divU f ≥ 0 ⇐⇒ f ∈ OX(U).

Proof. Reduce to the case where U = SpecA is affine. If divU f ≥ 0, then . . .

9.8 An explicit example

Consider

X = P3
k = Proj k[x0, x1, x2, x3] ⊇ U0 = Spec k

[
x1

x0

,
x2

x0

,
x3

x0

]
,

K = k

(
x1

x0

,
x2

x0

,
x3

x0

)
,

f =
x2

1x0 − x3
2

x3
0

=

(
x1

x0

)2

−
(
x2

x0

)3

.
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Note: Most prime divisors in P3 have generic point in U0. In fact, only H0 = V(x0) ⊆ P3

does not.
Let’s compute the associated principal divisor:

divP3(f) =
∑
Y⊆P3
prime

vY (f) · Y

divU0(f) =
∑

p⊆k
[
x1
x0
,
x2
x0
,
x3
x0

]
ht 1 prime

vp

((
x1

x0

)2

−
(
x2

x0

)3
)
· p =

∑
p

vp(t
2
1 − t32)p = S = V(t21 − t32) ⊆ U0.

To see what happens at H0, we need to choose an affine chart containing the generic point
of H0:

U1 = Spec k

[
x0

x1

,
x2

x1

,
x3

x1

]
= Spec k[x0/1, x2/1, x3/1],

f =
(x2

1x0 − x3
2) /x3

1

(x0/x1)3
=
x0/1 − x3

2/1

x3
0/1

.

We just need to look at the valuation vH0 of the valuation ring

OX,H0 = k[x0/1, x2/1, x3/1](x0/1).

This is given by
vH0(f) = vH0(x0/1 − x3

2/1)− vH0(x
3
0/1) = −3.

Thus,
divP3(f) =

∑
vY (f) · Y = V(x0x

2
1 − x3

2)− 3H0.

9.9 Summary of Cartier divisors

Recall, on a scheme satisfying (*):

Definition 9.20. A Cartier divisor is a Weil divisor which is locally principal, i.e., writing

D =
∑

Yi prime

niYi ∈ DivX,

there exists an open cover {Uλ} of X and fλ ∈ K∗ such that D|Uλ = divUλ(fλ).
Equivalently: A Cartier divisor is a global section of K∗/O∗X . [Advantage: This makes

sense even if X does not satisfy (*).]

Example 9.21. On P3, let

D = S + 5H0 = V(x2
1x0 − x3

2) + 5 · V(x1).
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Take the standard cover U0, U1, U2, U3. Then

D ∩ U0 = divU0

(
x2

1/0 − x3
2/0

)
= 1 · S,

D ∩ U1 = divU1

((
x0/1 − x3

2/1

)
· x5

0/1

)
,

D ∩ U2 = divU2

(
(x0x

2
1 − x3

2) (x5
0)

x8
2

)
,

etc. So D is locally principal!

The above situation occurs in more generality:

Definition 9.22. We say that X is locally factorial provided that OX,P is a UFD for all
P ∈ X.

Theorem 9.23. If X is locally factorial, then every Weil divisor is Cartier.

9.10 Sheaf associated to a divisor

Assume X is normal, not just (*). Let K be the function field of X. For D ∈ DivX, we
define a coherent sheaf of OX-modules OX(D) which is a subsheaf of K:

OX(D)(U) =
{
f ∈ K∗

∣∣ divU f +D
∣∣
U ≥ 0

}
∪ {0} ⊆ K.

If U ⊆ U ′ is an open inclusion, then restriction is given by

OX(D)(U ′) ↪→ OX(D)(U)

f 7→ f.

Hence, OX(D) is a presheaf.
Easy to check:

• OX(D) is a sheaf.

• OX(D) is an OX-module: for any f, g ∈ OX(D)(U), we have f + g ∈ OX(D)(U).

Exercise 9.24. vY (f + g) ≥ min {vY (f) + vY (g)}.

Also, we define
div(rf) = div r + div f,

which is still effective.

Also easy to check:

• If D = 0, then OX(D) = OX (uses normality).8

• If U = X − SuppD, then OX(D)|U = OX |U . This is a “rank 1 subsheaf of K.”

Proposition 9.25. If D is Cartier, then OX(D) is locally free of rank 1 (i.e., invertible).
8Hartshorne uses the notation L (D); this is somewhat outdated.
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Proof. If D is Cartier, then there is an open cover {Uλ, fλ} such that D|Uλ = divUλ fλ. For
all λ,

OX(D)(Uλ) =
{
g ∈ K∗

∣∣ divUλ g +D
∣∣
Uλ ≥ 0

}
∪ {0}

=
{
g ∈ K∗

∣∣ divUλ g + divUλ fλ ≥ 0
}
∪ {0} .

We have divUλ g + divUλ fλ = divUλ(gfλ) ≥ 0 ⇐⇒ gfλ ∈ OX(Uλ) ⇐⇒ g ∈ OX(Uλ) · f−1
λ ⊆

K.
Thus, OX(D) is free on Uλ, generated by f−1

λ .

Proposition 9.26. Let X be a normal scheme satisfying (*). (Actually, arbitrary X is fine,
too.)

(1) There is a one-to-one correspondence

CDiv(X)←→ {invertible subsheaves of K} X integral←→ {invertible sheaves on X}
D 7→ OX(D).

(2) Given two Cartier divisors D1, D2,

OX(D1 −D2) ∼= OX(D1)⊗OX [OX(D2)]−1 .

(3) D1 ∼ D2 ⇐⇒ OX(D1) ∼= OX(D2).

Proof sketch. (1) Fix an invertible subsheaf L of K.9 Take an open cover {Uλ} such that
L |Uλ ⊆ K is free of rank 1 on Uλ, generated by f−1

λ via the map

OX
∣∣
Uλ
∼= L

∣∣
Uλ

1 7→ f−1
λ .

Let D = {Uλ, fλ}. It is easy to check that OX(D) = L .

(2) A commutative algebra fact: O(−D) = [OX(D)]−1. The local picture to show this:
Let A be a domain with fraction field K. Let M = Af be a rank 1 free A-submodule
of K. Then

M∗ = HomA(M,A) = HomA(A · f, A) =
1

f
· A.

(3) It is equivalent to show D = div f ⇐⇒ OX(D) ∼= OX .
Say we have

OX
'−→ OX(D) ⊆ K

1 7→ f−1.

9If X is integral with generic point η, then we have

OX ↪→ OX,η = K

L = OX ⊗L ↪→ L ⊗K = K,

so any invertible sheaf is a subsheaf of K.
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Check that D = div f .

Conversely, if D = div f , then check that there is a map

OX
'−→ OX(D) ⊆ K

1 7→ f−1

which is an isomorphism.

Remark 9.27. From what we have just shown, PicX := CDiv(X)/P (X) is isomorphic to the
group of isomorphism classes of invertible sheaves (under ⊗).

9.11 Summary of the correspondence

Let X be a Noetherian integral separated scheme, and let K be its function field.
Last time, we defined a map

WDivX → {coherent OX-modules} ⊆ K

D 7→ OX(D)

which restricts to an isomorphism

CDiv(X)
'−→ {invertible sheaves} ⊆ K

D
∣∣
U = divU f 7→ O(D)(U) = f−1 · OX(U)

given on principal divisors by

P (X)
'−→ {invertible sheaves ∼= OX}

D = div f 7→ 1

f
OX ∼= OX .

These are homomorphisms with respect to addition of divisors and the tensor operation on
coherent OX-modules.

Aside 9.28 (not in Hartshorne). The image of WDivX under the above map is the set of
reflexive subsheaves of K. For any OX-module F , there is a natural map F → F ∗∗. We
say that F is reflexive if this is an isomorphism.

Corollary 9.29. By the above correspondence,

PicX
def
= ({invertible sheaves} /∼=) ∼= (CDiv(X)/≡) .

Proof. The natural group homomorphism

CDiv(X)→ PicX

D 7→ [OX(D)]

is surjective, and its kernel is P (X). (Recall: On an integral scheme, every invertible sheaf
is isomorphic to a subsheaf of K.)
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9.12 Examples of sheaves associated to divisors

First, an important general example:

Example 9.30. Say Y ⊆ X is a prime divisor on X. Then IY ⊆ OX , and we have a sheaf
OX(−Y ) which is given on U by

OX(−Y )(U) =
{
f ∈ K∗

∣∣ divU f − Y
∣∣
U ≥ 0

}
.

Fact 9.31. OX(−Y ) = IY ⊆ X.

More generally: If D =
∑t

i=1 aiYi is an effective divisor (i.e., each ai > 0), then

OX(−D) ⊆ OX

is an ideal sheaf defining a closed subscheme of X.10

Let us compute a more explicit example.

Example 9.32. Consider

X = P2 = Proj

S︷ ︸︸ ︷
k[x0, x1, x2]

D = C + 3H0 = V(x0x
2
1 − x3

2) + 3 · V(x0)

F =
(
x0x

2
1 − x3

2

) (
x3

0

)
.

Then (F ) ⊆ S, inducing an inclusion

ID = (F̃ ) ⊆ S̃ = OP2 ,

and
(F̃ )(U1) =

[
FS

[
1

x1

]]
0

=

(
F

x6
1

)
k

[
x0

x1

,
x2

x1

]
,

where
F

x6
1

=
(
x0/1 − x3

2/1

)
x3

0/1 =
(
s− t3

)
s3.

We have FS → S(−6), the free S-module generated 1, which has degree 6. Then

(FS) ∼= S(−6),

OP2(−D) = ID = (F̃S) ∼= S̃(−6) = OX(−6).

Recall: Pic(P2) = Z. So since D is degree 6 in P2,

OX(D) = OP2(6).

10As a set, this subscheme corresponds to the union of the components of D, i.e.,

SuppD = Y1 ∪ · · · ∪ Yt.
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Example 9.33. Continuing from the previous example:

P2 = Proj k[x0, x1, x2] ⊇ U1 = Spec k[x0/1, x2/1],

OP2(6)(U1) = S̃(6)(U1) =

[
S(6)

[
1

x1

]]
0

=

[
S

[
1

x1

]]
6

= x6
1 ·
[
S

[
1

x1

]]
0

= x6
1k[x0/1, x2/1].

On Ui, it is generated by x6
i · OX(Ui). The transition functions are:

OP2(6)(Ui)
∣∣
Ui∩U1 → OP2(6)(U1)

∣∣
Ui∩U1

x6
i 7→ x6

1, “multiplication by
(
x1

xi

)6

∈ OX(Ui ∩ Ux)”

If we do the same thing with the sheaf OP2(D) (from Example 9.32), then we get the
same transition functions. As a Cartier divisor, D is given locally on Ui by

D
∣∣
Ui = divUi

(
F

x6
i

)
.

So
OX(D)(Ui) =

(
x6
i

F

)
· OX(Ui).

On Ui ∩ U1,
x6
i

F
· a =

x6
1

F
· x

6
i

x6
1

· a,

meaning that we have the same transition functions.

10 Maps to projective space
We are interested in maps from A-schemes to

PnA = ProjA[x0, . . . , xn] = ProjS.

10.1 Initial remarks

Recall: PnA has an invertible sheaf
O(1) = S̃(1)

which is globally generated by sections x0, . . . , xn.
Given any morphism X

ϕ−→ PnA of A-schemes, the sheaf L = ϕ∗O(1) is an invertible sheaf
on X, globally generated by si = ϕ∗(xi).

Here is the picture on an affine chart:

X
ϕ−→ PnA

ϕ−1(U0)→ SpecA

[
x1

x0

, . . . ,
xn
x0

]
= U0
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(Note that O(1) is generated by x0.)

OX
(
ϕ−1(U0)

)
→A
[
x1

x0

, . . . ,
xn
x0

]
.

This is free, rank 1, generated by s0 = x0 ⊗ 1:

O(1)(U0)⊗
A
[
x
x0

] OX(ϕ−1(U0)
)
.

10.2 Invertible sheaves and Pn

Theorem 10.1. Let X be a scheme over A.

(1) If ϕ : X → PnA is a morphism of A-schemes, then L = ϕ∗O(1) is an invertible sheaf
on X which is globally generated by

ϕ∗(xi) = 1⊗ xi ∈ ϕ∗O(1).

(2) Conversely, if L is an invertible sheaf on X, and s0, . . . , sn are a set of global generators
for L , then there is a unique morphism of A-schemes ϕ : X → PnA such that ϕ∗O(1) =
L and ϕ∗(xI) = si.

Remark 10.2. The map in (2) can be intuitively thought of as

X → Pn

x 7→ [s0(x) : · · · : sn(x)]
si
sj
∈ OX(Uj).

Proof of part (2). Given L and s0, . . . , sn ∈ L (X), let

Xi =
{
x ∈ X

∣∣ si generates L at x
}
,

(i.e., the image of si in Lx generates Lx as an OX,x-module)

=
{
x ∈ X

∣∣ si /∈ mxLx, where mx ⊆ OX,x is the maximal ideal
}

by Nakayama’s lemma. Easy to check: Xi ⊆ X is open (Hartshorne, II, Lemma 5.14).

Claim 10.3 (Main point of proof). On Xi, we can think of sj/si as an element of OX(Xi).

Here is why: on Xi,
L (Xi) = OX(Xi) · si,

and we can restrict the global generator sj ∈ L (X) to L (Xi), so that

sj = r · si =⇒ sj
si

= r ∈ OX(Xi).

Plan: Trying to define a map
X

ϕ−→ PnA.
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We’ll give maps

Xi
ϕi−−→ Ui = SpecA

[
x0

xi
, . . . ,

xn
xi

]
which agrees on Xi ∩Xj. Giving ϕi is equivalent to giving an A-algebra map

A

[
x0

xi
, . . . ,

xn
xi

]
→ OX(Xi)

xj
xi
7→ sj

si
∈ OX(Xi).

To check that these morphisms glue up to a morphism X → PnA, observe that

xj
xk

=
xj/xi
xk/xi

7→ sj/si
sk/si

=
sj
sk
.

Remark 10.4 (Important point). The sections si cannot be “evaluated at P ” so that si(P ) ∈ k.
But their ratios sj/si are regular functions on Xi.

10.3 Some examples

Consider P1
A = ProjA[x, y], and let L = OP1A(d) for some d > 0. Consider the global sections

si = xd−iyi for i = 0, . . . , d. We get an A-morphism

P1
A

νd−−→ PdA
“ [x : y] 7→

[
xd : xd−1y : · · · : xyd−1 : yd

]
”

Xi =
{
P ∈ X

∣∣ si generates L at P
}
→ SpecA

[
x0

xi
, . . . ,

xd
xi

]
= Ui

OX(Xi) →A
[
x0

xi
, . . . ,

xd
xi

]
(y
x

)j
=
xd−jyi

xd
=
sj
si

→xj
x0

This is the d-th Veronese map.
What if we use a different set of global generators of the same size that differ linearly

from the si? Then we get the same map, up to a linear change of coordinates.
The global sections xd, yd also globally generate O(d). This gives a map

P1
A → P1

A

“ [x : y] 7→
[
xd : yd

]
”

which is given by the d-th Veronese map νd, followed by a projection to P1
A.

10.4 Automorphisms of projective space

Theorem 10.5. Let k be any field. The automorphism group of Pnk (as a k-scheme) is
PGL(n, k) = GL(n+ 1, k)/k∗.
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Proof. We have a natural homomorphism

GL(n+ 1, k)→ AutPnk
g 7→ g

whose kernel consists of all “scalar multiplication” linear transformations, i.e., k∗. Thus, we
have an injection

PGL(n, k) ↪→ Aut(Pnk).

Say we have a k-automorphism

Pnk
ϕ−→ Pnk ,

ϕ∗O(1) = L ,

ϕ∗(xi) = si.

Recall that Pic(Pnk) ∼= Z via the isomorphism O(d)←→ d.
Because ϕ is an automorphism, the induced map

PicPnk → PicPnk
L 7→ ϕ∗L

is an automorphism of groups. Since O(−1) has no global sections,

ϕ∗O(1) = O(1).

Given an automorphism ϕ : Pnk → Pnk corresponding to L = O(1) = ϕ∗O(1) and si =
ϕ∗(xi) ∈ Γ(Pnk ,O(1)). So we can write si = ai0xi + · · ·+ ainxn, whence

[s0 : · · · : sn] = A · [x0 : · · · : xn],

where A is a matrix, and we are done.

10.5 Connection with linear systems

Fix X, an invertible sheaf L , and a nonzero global section s ∈ L (X). There is a corre-
sponding Cartier divisor, called “the divisor of zeros of s”.

Definition 10.6. The divisor of zeros (s)0 is the Cartier divisor defined as follows. Fix a
trivialization of L :

gλ · OX
∣∣
Uλ = L

∣∣
Uλ

'−→
ϕλ
OX
∣∣
Uλ

gλ 7→1
s 7→ ϕλ(s) = rλ.

So s|Uλ = gλ · rλ ∈ L (Uλ), where rλ ∈ OX(Uλ). Define (s)0 on Uλ as div(rλ).
This is a well-defined divisor on X since on Uλ ∩ Uλ′ ,

rλ = sλλ′rλ′ ∈ O∗X(Uλ ∩ Uλ′).
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Example 10.7. On P1
k, let L = O(d) and s = xyd−1. Write

H0 = V(x) ⊆ P1
k,

H1 = V(y) ⊇ P1
K .

The corresponding divisor is
(s)0 = H0 + (d− 1)H1.

On U0 = Spec k[y/x],

O(d)
∣∣
U0 = xd · k

[y
x

]
s = xyd−1 = xd

(
xyd−1

xd

)
r0 =

(y
x

)d−1

,

so (s)0|U0 = divU0 r0.
Example 10.8. Let L = O(d) on Pnk . Then

[k[x0, . . . , xn]]d = {global sections of O(d)} “divisor of zeros”−−−−−−−−−−→ {effective divisors}
Fd 7→ V(Fd) ⊆ Pnk .

This gives the complete linear system of all effective divisors in Pn of degree d.

Proposition 10.9. If s ∈ L (X) is a nonzero global section of an invertible sheaf L of X,
let D be its divisor of zeros. Then there is an isomorphism

OX(D)
“multiplication by s”−−−−−−−−−−−−→

'
L .

Proof. Take U such that

g · OX
∣∣
U = L

∣∣
U
'−→ OX

∣∣
U

s = r· ←→ r.

We have D|U = divU r. Then

OX(D)(U) =
{
f ∈ K∗

∣∣ divU f +D ≥ 0
}

=
1

r
· OX

∣∣
U .

Consider the map

OX(D)
'−→ L

OX(D)
∣∣
U → L

∣∣
U

1

r
· OX

∣∣
U

“mult. by s”−−−−−−−→ g · OX(U)

f

r
7→ sf

r
= g · f.

This glues on the different patches to give the desired isomorphism.
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Example 10.10. Again, consider L = OP1k(d). Then x0x
d−1
1 = Fd ∈ Γ(Pnk ,O(d)) corresponds

to
D = H0 + (d− 1)H1 = V(x0) + (d− 1)V(x1) = V(Fd).

By Proposition 10.9, L ∼= O(D). Note that D is an effective divisor.

Example 10.11 (The hyperplane bundle). On Pn, consider a global section L =
∑

i=0 aixi of
OPnk (1) corresponding to a divisor H.

The full vector space of global sections of O(1) is in bijection with the full set of hyper-
planes in Pnk (so O(1) is the “hyperplane bundle”).

Remark 10.12. A bad abuse of notation that you might see sometimes: “O(1) = O(H) =
O(C −H1)”. Don’t do this; it’s confusing!

Remark 10.13 (Connection to 631). Fix a divisor D. Then

|D| =
{
D′ ∈ DivX

∣∣ D′ ≥ 0, D′ = D + div f
}

=
{
f ∈ K∗

∣∣ div f +D ≥ 0
}

= OX(D).

10.6 Example: An elliptic curve

Let k be any field. Consider an elliptic curve

E = V
(
y2z − x3 − xz − z3

z3

)
⊆ A2 = Spec k

[x
z
,
y

z

]
⊆ Proj k[x, y, z].

Taking the projective closure, this looks like

E = Proj
k[x, y, z]

(y2z − x3 − xz − z3)
↪→ P2.

Observe that y, z globally generate L = ϕ∗O(1) on E. The associated map is

E → P1

[x : y : z] 7→ [y : z][x
z

:
y

z
: 1
]
7→
[y
z

: 1
]
.

10.7 Divisors and projective morphisms

10.7.1 Summary of invertible sheaves and projective morphisms

Fix an A-scheme X. Then

{A-morphisms X → PnA} ←→

{ invertible sheaves on X, plus a set of
n+ 1 global sections which generate the

sheaf

}
[
X

ϕ−→ PnA
]
7→ L = ϕ∗OPnA(1), si = ϕ∗(xi), i = 0, . . . , n[

x 7→ [s0(x) : · · · : sn(x)]
]
7→[L , s0, . . . , sn ∈ L (X)].

If A = k, L = OX(D) ⊆ K, and X integral, then each si ∈ K. Then si(x) makes sense as
an element of k for each k-point x ∈ X.

65



10.7.2 Alternate, classical perspective

Let us now translate this into the language of linear systems of divisors. Let A = k, and
assume X is normal.

Recall that each s ∈ L (X) has an associated effective divisor D, the “divisor of zeros of
s”, denoted

D = (s)0 = {s = 0} ⊆ X.

We have OX(D) ∼= L . [If L = OX(D′), then s ∈ L (X) = {f ∈ K∗ | div f +D′ ≥ 0}.]
Given two different global sections s1 and s2 of L (X), the corresponding divisors of zeros

D1 and D2 are linearly equivalent.
Observe that s ∈ L (X) generates L and P ∈ X ⇐⇒ s generates LP ⇐⇒ s /∈

mPLP ⇐⇒ s does not vanish at P ⇐⇒ P /∈ SuppD. We have

Xs =
{
P ∈ X

∣∣ s generates L
}

= X − SuppD.

Global sections s0, . . . , sn ∈ L (X) fail to generate at P ⇐⇒ P ∈
⋂n
i=0 SuppDi, where

Di = (si)0. So s0, . . . , sn generate L ⇐⇒
⋂n
i=0 SuppDi = ∅.

Here is how complete linear systems fit into the picture:

{k-vector space L (X)} ←→
{
complete linear system |D| =

{
D′ = (s)0

∣∣ s ∈ L (X)
}}

.

For any representative D in the complete linear system, L ∼= OX(D). Linear systems
correspond to vector subspaces:

{subvector space V ⊆ L (X)} ←→
{
linear system D =

{
D = (s)0

∣∣ s ∈ V \ {0}}} .
There is also a correspondence between base loci :{
P ∈ X

∣∣∣∣ the elements of V
fail to generated L

at P

}
←→ Bs(D)

def
=
⋂
D∈D

SuppD ⊆ X.

Definition 10.14. The base locus of V is the set of points P ∈ X such that the elements of
V fail to generate L at P .

The base locus of a linear system D is

Bs(D)
def
=
⋂
D∈D

SuppD ⊆ X.

Fix a basis s0, . . . , sn ∈ V ⊆ L (X). These generate L on the open set X −Bs(D). The
linear system D igves a map

X − Bs(D)→ PnA
x 7→ [s0(x) : · · · : sn(x)] ,

which extends to a rational map X → PnA.
Remark 10.15. The sheaf L is globally generated ⇐⇒ |D| is a base-point-free linear system.

Also, L is very ample ⇐⇒ ∃s0, . . . , sn ∈ L (X) globally generate and define an immer-
sion in PnA.
Remark 10.16. • L is very ample over k ⇐⇒ |D| defines an embedding.

• L is ample over A ⇐⇒ L n is very ample for some n > 0.
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10.8 Example: A blowup of projective space

Example 10.17. Let X be the blowup of P2 = Proj k[x, y, z] at [0 : 0 : 1]. Then

X =
{

(p, `)
∣∣ p ∈ `} =

{
[x : y : z], [s : t]

∣∣ rank

(
x y
s t

)
= 1

}
= V(xt− sy) ⊆

[x:y:z]

P2 ×
[s:t]

P1 ,

where P1 = lines in P2 through [0 : 0 : 1]. We have

PicP2 = Z ·H,
PicX = Z (π∗H)⊕ ZE,

where E is the exceptional divisor π−1([0 : 0 : 1]). The blowup map X
π−→ P2 is given by

L = π∗OP2(1) and π∗x, π∗y, π∗z. Since π is well-defined but not an embedding, L is globally
generated by π∗x, π∗y, π∗z, but not very ample.

Write L1 := V(x) = (x)0, L2 := V(y) = (y)0, L∞ := V(z) = (z)0 for the divisors of zeros
in P2. Then in X,

(π∗x)0 = L̃1 + E,

(π∗y)0 = L̃2 + E,

(π∗z)0 = L∞.

The corresponding linear system on X is |π∗H| = divisors on X satisfying either

• birational transforms of lines in P2 not through [0 : 0 : 1],

• E + L, where L is the birational transform of a line through [0 : 0 : 1].

Example 10.18. Let’s look at the other projection now:

P2 × P1 ⊇ V(xt− ys) = X
ν−→ P1

k = Proj k[s, t].

This collapses to the central line E. So this is essentially the tautological bundle. It is given
by

M = ν∗OP1(1)

and s, t. The corresponding vector space is

V =
{
bs+ at

∣∣ a, b ∈ k} ⊆M (X).

The corresponding system of divisors are

{bs+ at = 0} = {[a : b], [a : b : z]} ,

which is the line in X corresponding to the line through [0 : 0 : 1] in P2 determining the
point [a : b] ∈ P1.

For each of the divisors D above, D ∼ −E.
Example 10.19. Consider

X �
�

//

ϕ

77P2 × P1 � � σ // P5.

Write ϕ∗O(1) = N . The global sections sx, sy, sz, tx, ty, tz generate the linear system
|L∞ − E|. Note that the image actually lands in P4 = V(sy − tx).
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11 Cohomology of sheaves

11.1 Big picture

We now turn to the cohomology of sheaves of abelian groups on schemes.
Fix a scheme X. We’re interested in the functor

{sheaves of abelian groups on X} Γ−→ {abelian groups}
F 7→ Γ(X,F ) = global sections of F .

This is covariant and left exact, i.e., given an exact sequence of sheaves

0→ A → B → C → 0,

we have an exact sequence

0→ Γ(X,A )→ Γ(X,B)→ Γ(X,C ).

The propose of sheaf cohomology is to construct a collection of (additive) functors: for
each i = 0, 1, 2, . . . ,

{sheaves of abelian groups on X} Hi

−−→ {abelian groups}

such that

(1) H0(F )
def
= H0(X,F ) = Γ(X,F );

(2) If 0 → A → B → C → 0 is a short exact sequence of sheaves, then we get a long
exact sequence of cohomology

0→ H0(A )→ H0(B)→ H0(C )→ H1(A )→ H1(B)→ H1(C )→ H2(A )→ . . . .

Remark 11.1 (Right derived functors). In general, given any left exact covariant functor from
one abelian category to another, we can always construct “right derived functors” (provided
the source category “has enough injectives”, which is always true for sheaves). [An injective
object in a category is an object I such that Hom(−, I) is exact.]

If the original functor is A
F−→ B, we’ll get ∀i ∈ Z≥0 a functor

A
RiF−−−→ B

such that

• R0F = F ;

• For any short exact sequence 0 → M1 → M2 → M3 → 0 in A , we get a long exact
sequence

0→ R0FM1 → R0FM2 → R0FM3 → R1FM1 → R1FM2 → . . . ;
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• If I is injective, then RiI = 0 for all i > 0.

Example 11.2 (Ext). Fix a commutative ring R and an R-moduleM . Then we have a functor

R-Mod
Hom(M,−)−−−−−−−→ R-Mod

A 7→ Hom(M,A).

This is covariant and left exact. Given

0→ A→ B → C → 0,

we obtain the Ext long exact sequence

0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C)→ Ext1(M,A)→ Ext1(M,B)→ . . . .

The right derived functors are called Exti(M,−).
Example 11.3 (Tor). We also have a functor

R-Mod
−⊗M−−−−→ R-Mod

A 7→ A⊗RM

which is covariant and right-exact. Since we have enough projectives, there are left derived
functors Tori such that, given a short exact sequence

0→ A→ B → C → 0,

there is the Tor long exact sequence

. . .→ Tor2(M,B)→ Tor2(M,C)→ Tor1(M,A)→ Tor1(M,B)

→ Tor1(M,C)→M ⊗ A→M ⊗B →M ⊗ C → 0.

11.2 Motivation: global generation

Let X be a projective scheme over k, and let L be an invertible sheaf. Consider

X P
(
Γ(X,L )

)
x 7→ [s0(x) : · · · : sn(x)] .

In order to use this, we need to know what is dimk (Γ(X,L )). In other words, given P ∈ X,
when is L globally generated at P?

Fix P ∈ X. Suppose P
i
↪→ X is a k-point. Then we have an exact sequence ofOX-modules

0→ mP ↪→ OX → i∗OP =
OX

mPOX
→ 0.

Tensor with L . Locally free =⇒ flat, so we get an exact sequence

0→ mP ⊗OX L → L
“eval at P ”−−−−−−→ L

mPL
→ 0

s 7→ s (mod mPL )
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Now, L is globally generated at P ⇐⇒ the sequence

0→ Γ(X,mP ⊗L )→ Γ(X,L )→ Γ(X,L /mPL )→ 0

s 7→ s(P )

is still exact.
In general, cohomology gives us a long exact sequence:

0→ Γ(X,mP ⊗L )→ Γ(X,L )→ Γ(X,L /mPL )

→ H1(X,mP ⊗L )→ H1(X,L )→ . . . .

Often, we prove that L is globally generated at P by showing H1(X,mP ⊗L ) = 0.

11.3 Motivation: invariants of schemes

We can use cohomology to define new invariants of schemes.

Example 11.4. If X is a smooth projective curve over k, then its (arithmetic) genus is
dimkH

1(X,OX).

Let C
i

⊆ P2 be a smooth curve. How can we compute the genus of C? By definition,

g = dimkH
1(C,OC).

There is an exact sequence of OP2-modules

0→ OP2(−C) = IC → OP2 → i∗OC → 0.

We can also write this has

0→ O(−d) ↪→ OP2 → OC → 0.

This is because

Γ(P2, i∗OC) = Γ(C,OC),

i∗OC(P2) = OC(C).

There’s a corresponding long exact sequence:

0→ Γ
(
P2,O(−d)

)
→ Γ(P2,OP2)→ Γ(C,OC)

→ H1
(
P2,O(−d)

)
→ H1(P2,OP2)→ H1(C,OC)

→ H2
(
P2,O(−d)

)
→ H2(P2,OP2)→ . . . .

Theoretically, if we know all H i(Pn,O(d)) for all i, n, d, then we could compute H1(C,OC).
In fact, in this case:

H1(P2,OP2) = H2(P2,OP2) = 0,

so
H1(C,OC) ∼= H2

(
P2,O(−d)

)
.
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Also, by Serre duality (or using some commutative algebra), H2(P2,O(−d)) is dual to[
k[x, y, z]

]
d−3

.
Thus, the genus of C is

g = dimkH
1(C,OC) = dimkH

2
(
P2,O(−d)

)
= dimk

[
k[x, y, z]

]
d−3

=

(
d− 3 + 2

2

)
=

(d− 1)(d− 2)

2
.

11.4 Abelian categories and injective objects

An abelian category is a category where “exact sequences make sense”: kernels exist, cokernels
exist, can add objects and morphisms, etc.
Example 11.5. Here are some abelian categories:

• Abelian groups

• Vector spaces over a fixed field k.

• Modules over a fixed ring R.

• Sheaves of abelian groups on a fixed topological space X.

• Sheaves of modules on a fixed ringed space (X,OX).

• Quasi-coherent sheaves on a fixed scheme X.

• Coherent sheaves on a fixed scheme X.

• Finitely-generated modules over a ring R.

• Finitely-generated abelian groups.

Some things that aren’t abelian categories:

• Topological spaces

• Manifolds

• Complex manifolds

• Varieties

• Rings (assuming you’re sensible and require rings to have a multiplicative identity)

• Schemes

Definition 11.6. A object (in an abelian category) I is injective provided that Hom(−, I)
is exact.

Equivalently, given A ↪→ B and A→ I, we have a lifting

A �
�

//

��

B

∃
��

I.
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Example 11.7. In the category of abelian groups, Q, Q/Z, and Z[p−1]/Z are injective objects.

Lemma 11.8. If I ↪→M , where I is injective, then this splits, so M ∼= I ⊕N for some N .

Definition 11.9. An abelian category has enough injectives if every object embeds into an
object object.

Example 11.10. Of the abelian categories we listed in Example 11.5, the following have enough
injectives:

• Abelian groups

• Vector spaces over a fixed field k.

• Modules over a fixed ring R.

• Sheaves of abelian groups on a fixed topological space X.

• Sheaves of modules on a fixed ringed space (X,OX).

• Quasi-coherent sheaves on a fixed scheme X.

However, these do not have enough injectives:

• Coherent sheaves on a fixed scheme X.

• Finitely-generated modules over a ring R.

• Finitely-generated abelian groups.

Note 11.11. If we have enough injectives, then every object has an injective resolution.

We can construct an injective resolution

0→ F → I0 → I1 → I2 → . . . ,

which is exact by diagram chasing.

Aside 11.12 (The language of derived categories). The derived category is formed from chain
complexes with a notion of isomorphism. We can embed an object F in the derived category
via

0→ F → 0→ 0→ . . . ,

and think of F as “(quasi-)isomorphic in the derived category” to

0→ I0 → I1 → I2 → . . .

because it has isomorphic cohomology.
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11.5 Grothendieck’s derived functors

(1) Start with a functor [left exact, covariant] Γ from one abelian category [with enough
injectives] to another.

{Sheaves of abelian groups on X} Γ(X,−)−−−−−→ {Abelian groups}
F 7→ Γ(X,F ) = F (X).

(2) Fix F in the source category.

(3) To compute the derived functor RiΓ of F , take an injective resolution of F :

0→ F → I0 → I1 → I2 → . . . ,

also denoted
0→ F → I•.

(In practice, this is the impossible part.)

(4) Apply the functor Γ to I• to get a sequence of objects in the target:

0→ Γ(I0)→ Γ(I1)→ Γ(I2)→ . . . .

(5) Define

RiΓ(F ) =
ker (Γ(I i)→ Γ(I i+1))

im (Γ(I i−1)→ Γ(I i))
.

Definition 11.13 (sheaf cohomology). The cohomology of a sheaf F is

H i(X,F )
def
= RiΓ(X,F ).

Proposition 11.14 (easy to check). (0) This is independent of the choice of injective res-
olution.

(1) R0Γ(F ) = Γ(F ).

(2) Given a short exact sequence 0→ A→ B → C → 0, there is a long exact sequence

0→ R0Γ(A)→ R0Γ(B)→ R0Γ(C)→ R1Γ(A)→ R1Γ(B)→ . . . .

(3) If I is injective, then RiΓ(I) = 0 for all i > 0.

(Use diagram chasing, the snake lemma, and Lemma 11.8.)
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11.6 Acyclic sheaves

Definition 11.15. A sheaf F is “acyclic for Γ” if RiΓ(F ) = 0 for all i > 0.

Example 11.16 (Main example of acyclic sheaves for Γ). A sheaf F is flasque if, for all
nonempty open inclusions U ⊆ V , the restriction map F (V )

ρ−→ F (U) is surjective. Flasque
sheaves are acyclic for Γ.

Example 11.17. If X is an integral scheme, then the constant sheaves K and K∗ are acyclic
for Γ.

Example 11.18 (Another important example). Let X be a smooth manifold. Any sheaf “with
partitions of unity” is acyclic for Γ.11 For instance, C∞X is acyclic for Γ.

Proposition 11.19 (Hartshorne III.1.2A). In computing H i(X,F ) = RiΓ(F ), instead of
resolving F by injectives, we can resolve F by acyclic (for Γ) sheaves.

Example 11.20 (de Rham cohomology). Let X be a smooth (compact) manifold. We have
the de Rham complex

0→ R→ C∞X
d−→ Ω1

X
d−→ Ω2

X
d−→ . . . ,

which is exact (as sheaves, not globally) by the Poincaré lemma. Note that Ω1
X is locally free

of rank = dimX over C∞X . Moreover, C∞X and Ωi
X are acyclic sheaves (for Γ).

Thus, we can compute H i(X,R) using the de Rham resolution

0→ C∞X (X)
d−→ Ω1

X(X)
d−→ Ω2

X(X)
d−→→ . . . ,

which is usually called the “de Rham complex” for X. By definition, the de Rham cohomology
of X is

H i
DR(X) = i-th cohomology of the de Rham complex = H i(X,R).

Remark 11.21. There is a complex analogue of de Rham cohomology, known as Dolbeault
cohomology .

Example 11.22 (Another cool application). Let X be an integral scheme, K its function field.
We have a short exact sequence of sheaves

0→ O∗X ↪→ K∗ → K∗/O∗X → 0,

which induces a long exact sequence of cohomology

0→ Γ(X,O∗X)→ Γ(X,K∗)
d−→ Γ(X,K∗/O∗X)→ H1(X,O∗X)→ H1(X,K∗) = 0.

f 7→ div(f)

The cokernel of d is
coker(d) =

CDiv(X)

P (X)
= Pic(X).

Thus, Pic(X) ∼= H1(X,O∗X).
11This is known as a fine sheaf.
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11.7 Cohomology between categories

Let X be a scheme, and let F be a quasi-coherent sheaf on X. We can think of F in three
different categories:

quasi-
coherent

sheaves on a
scheme X

“forget”
//

Γscheme
((


OX-modules
on a ringed

space
(X,OX)

 “forget”
//

Γring
��

{ sheaves of abelian
groups on a

topological space X

}

Γtop
vv

Ab

However, these categories do not have the same injectives! For example, consider SpecR,
where (R,m) is a local ring: this is not an injective Z-module.

Theorem 11.23. Injective objects in the category of quasi-coherent sheaves are flasque
(hence acyclic) in the category of sheaves of abelian groups.

11.8 Vanishing in some special cases

Theorem 11.24 (Grothendieck’s vanishing theorem). Let X be a Noetherian topological
space, and let F be a sheaf of abelian groups on X. Then

Hp(X,F ) = 0 ∀p > dimX.

Theorem 11.25. If X is an affine scheme and F is quasi-coherent, then H i(X,F ) = 0 for
all i > 0.

Proof. Let X = SpecA. Then F = M̃ for some A-module M . Consider a resolution of M
by injective A-modules

0→M → I0 → I1 → I2 → . . . .

By the equivalence of categories, this yields an exact sequence of quasi-coherent sheaves

0→ M̃ → Ĩ0 → Ĩ1 → Ĩ2 → . . . ,

and since HomX(−, Ĩ) = HomA(−, I), this is an injective resolution. Taking global sections
yields again

0→M → I0 → I1 → I2 → . . . ,

which is exact. Thus, the p-th cohomology is zero for p > 0.

Theorem 11.26 (Serre). Let X be a Noetherian separated scheme. The following are equiv-
alent:

(1) X is affine.

(2) Hp(X,F ) = 0 for all p > 0 and all quasi-coherent sheaves F .

(3) H1(X,I ) = 0 for all quasi-coherent ideal sheaves I ⊆ OX .
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12 Čech cohomology

12.1 Serre’s approach to cohomology

Let X be a topological space, and let F be a sheaf of abelian groups on X. Fix an open
cover U = {Ui}i∈I .

Definition 12.1. The Čech cohomology Ȟp(U ,F ) of F with respect to U is the p-th coho-
mology of the Čech complex for F w.r.t. U :

0 // C0(U ,F ) // C1(U ,F ) // C2(U ,F ) // . . .

0 //
∏
i∈I

F (Ui) //
∏
i<j

F (Ui ∩ Uj) //
∏
i<j<k

F (Ui ∩ Uj ∩ Uk) // . . .

The maps are given by (for instance)∏
i∈I

F (Ui)→
∏
i<j

F (Ui ∩ Uj)

(si)i∈I 7→
(
sj
∣∣
Ui∩Uj − si

∣∣
Ui∩Uj

)
i<j

.

We have Ȟ0(U ,F ) = F (X) by the map s 7→ (s|Ui)i∈I .

Theorem 12.2 (Serre). If X is a Noetherian separated scheme, and F is a quasi-coherent
sheaf, then if U is an affine cover, then Ȟp(U ,F ) is the same for all U , and isomorphic to
Hp(X,F ).

Idea: For any cover U , there’s always a map

Ȟp(U ,F )→ Hp(X,F ).

It is an isomorphism if X is a Noetherian separated scheme, U is affine, and F is quasi-
coherent.

12.2 Twisting on the projective line

As an example of how to compute Čech cohomology, consider

X = P1
A = ProjA[x, y],

F = OX(d),

U = U0 ∪ U1,

U0 = SpecA
[y
x

]
= D+(x),

U1 = SpecA

[
x

y

]
= D+(y).
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Compute Ȟ•(U ,OX(d)):

0→ OX(d)(U0)⊕OX(d)(U1)→ OX(d)(U0 ∩ U1)→ 0.

This is the d-graded piece of

0→
[
A[x, y][x−1]

]
⊕
[
A[x, y, y−1]

] ∂−→ A

[
x, y,

1

xy

]
→ 0(

f

xt
,
g

yt

)
7→ g

yt
− f

xt
=
xtg − ytf

(xy)t
.

So

Ȟ1
(
U ,O(d)

)
= cokernel of ∂ in degree d

=

[
h

(xy)t

∣∣∣∣ where ∀t, h ∈ [A[x, y]
]

2t+d

]
/(im ∂).

If d ≥ −1, then for any h =
∑

i,j aijx
iyj ∈

[
A[x, y]

]
2t+d

, we cannot have a monomial in the
sum with i ≤ t− 1 and j ≤ t− 1, so h ∈ (xt, yt), and so we can write

h = −gxt + fyt

for some g, f . Hence,
H1
(
P1,O(d)

)
= 0 ∀d ≥ −1.

However, in the case d = −2, [
(xy)t−1

(xy)t

]
=

[
1

xy

]
is a nonzero cohomology class.

12.3 The Čech complex

Definition 12.3. Let X be a topological space, F a sheaf of abelian groups on X, and
U = {Ui}i∈I an open cover of X.

The Čech complex of F w.r.t. U is

0→ C0(U ,F )→ C1(U ,F )→ C2(U ,F )→ . . . ,

where

Cp(U ,F ) =
∏

i0<···<ip

F (Ui0 ∩ · · · ∩ Uip)
∂p−−→

∏
j0<···<jp+1

F (Uj0 ∩ · · · ∩ Ujp+1) = Cp+1(U ,F )

(si0,...,ip)i0<···<ip 7→
p+1∑
k=0

(−1)k(sj0,...,̂k,...,jp+1)j0<···<jp+1 .

Exercise 12.4 (Easy exercise). This is really a complex, i.e., ∂p+1 ◦ ∂p = 0.
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Definition 12.5. The Čech cohomology of F w.r.t. U , denoted Ȟp(U ,F ), is the p-th coho-
mology of Ȟ•(U ,F ).

Remark 12.6 (Easy). For any cover U ,

Ȟ0(U ,F ) = F (X).

However, the Čech cohomology Ȟp(U ,F ) ∀p ≥ 1 definitely depends on the cover U in general.

Theorem 12.7. There is a natural map

Ȟp(U ,F )→ Hp(X,F ) ∀p

which is an isomorphism when X is a Noetherian separated scheme, U is an affine cover,
and F is quasi-coherent.

Proof sketch. Consider a sheafified version of the Čech complex

0→
∏
i∈I

F
∣∣
Ui →

∏
i<j

F
∣∣
Ui∩Uj → . . . .

This is a resolution of F by sheaves of abelian groups. Embed this into injectives to get a
map of complexes

0 //F //

��

∏
i∈I F |Ui //

��

∏
i<j F |Ui∩Uj //

��

. . .

0 //F // I 0 // I 1 // . . .

When U is affine and F is quasi-coherent, then the sheaf Čech cohomology is a resolution of
F by acyclic objects, so we can use it to compute cohomology.

Aside 12.8. We say that a cover U ′ is a refinement of a cover U if for all U ′ ∈ U ′, there exists
U ∈ U such that U ′ ⊆ U .

In this situation, there is an induced map of corresponding Čech complexes

Č•(U ,F )→ Č•(U ′,F ),

which induces a map
Ȟp(U ,F )→ Ȟp(U ′,F ).

This forms a direct limit system, and we get the limit

lim−→
U open cover

Ȟp(U ,F ) = Ȟp(X,F )→ Hp(X,F ).
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12.4 Cohomology of projective space

Let A be a Noetherian ring. We will compute

H1
(
P1
AO(D)

)
= Ȟ1

(
U ,O(d)

)
using the cover

U = U ∪ V,

U = D+(y) = SpecA

[
x

y

]
,

V = D+(x) = SpecA
[y
x

]
,

U ∩ V = D+(xy) = Spec

[
A

[
x, y,

1

xy

]]
0

= SpecA

[
x

y
,
y

x

]
.

The Čech complex is

0→ O(d)
(
D+(y)

)
×O(d)

(
D+(x)

)
→ O(d)(U ∩ V )→ 0,

which is the d-th graded piece of

0→ A[x, y]

[
1

y

]
× A[x, y]

[
1

x

]
→ A

[
x, y,

1

xy

]
→ 0.

The middle map is defined by (
0, xayb

)
7→ xayb,(

xiyj, 0
)
7→ −xiyj.

The cokernel H1(P1,O(d)) is the free A-module spanned by {xiyj} for i+j = d, i < 0, j < 0.
Thus:

• H1(P1,O(d)) = 0 for all d ≥ −1.

• H1(P1,O(−2)) =
[

1
xy

]
A ∼= A.

• There is a perfect pairing12[
A[x, y]

]
−d−2

×H1
(
P1,O(d)

)
→ H1

(
P1,O(−2)

) ∼= A(
xiyj,

[
xa, yb

])
7→
[
xa+iyb+j

]
=

{[
1
xy

]
iff i = −a− 1 and j = −b− 1,

0 otherwise.

In other words,
H1
(
P1,O(d)

) ∼= [(A[x, y])−d−2]∨ .

12Recall: If V,W are free A-modules and 〈:〉V ×W → A is a bilinear map, then we say 〈·, ·〉 is a perfect
pairing if the maps

V →W∨ = HomA(W,A) W → V ∨

v 7→ (w 7→ 〈v, w〉) w 7→ (v 7→ 〈v, w〉)

are isomorphisms of A-modules. That is, if V ×W → A is a perfect pairing, then V ∨ ∼=W and W∨ ∼= V .
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Theorem 12.9. H1
(
P1,O(−m)

)
is dual to

[
A[x, y]

]
m−2

. Therefore, H1
(
P1,O(−m)

)
is a

free A-module of rank m− 1.

Remark 12.10. This is a case of Serre duality.
Here is the generalization to higher-dimensional projective space:

Theorem 12.11. For all integers n ≥ 1, the cohomology of O(d) on PnA is as follows:

• H i
(
Pn,O(d)

)
= 0 for 0 < i < n or i > n and ∀d.

• There is the natural map
[
A[x0, . . . , xn]

]
d

'−→ H0
(
Pn,O(d)

)
.

• Hn
(
Pn,O(−n− 1)

) ∼= A.

• There is a perfect pairing[
A[x0, . . . , xn]

]
d
×Hn

(
Pn,O(−d− n− 1)

)
→ Hn

(
Pn,O(−n− 1)

) ∼= A.

Proof sketch. Look at Č•(U ,O(m)), where U = D+(x0)∪ · · · ∪D+(xn) is the standard cover.
Then we have

. . .→
n∏
i=0

A[x0, . . . , xn]

[
1

x0 · · · x̂i · · ·xn

]
∂−→ A[x0, . . . , xn]

[
1

x0 · · ·xn

]
→ 0.

A basis is
(
xi00 · . . . · xinn

)∑
ik=m

. The image of ∂ is the free A-module spanned by xi00 · . . . ·xinn ,
where at least one ik ≥ 0. Thus, the cokernel is the free A-module spanned by xi00 · . . . · xinn
where all ik < 0 and

∑
k ik = m.

Note that the critical value is m = −n− 1, where

Hn
(
Pn,O(−n− 1)

)
= A

[
1

x0 . . . xn

]
.

12.5 Serre duality

Over a field k, consider the sheaf ΩPn/k on Pnk . This is a locally free sheaf of rank n; on
Ui = Spec k[x0/i, . . . , xn/i], it is the free OUi-module spanned by dx0/i, . . . , dxn/i.

Define the canonical sheaf

ωPnk :=
n∧

ΩPn/k.

This is locally free of rank 1 (invertible) on Pn.
Exercise 12.12. ωPnk

∼= OPnk (−n− 1).

Theorem 12.13 (Serre duality). Let X be a smooth projective variety over k of dimension
n, let L be an invertible sheaf, and define

ωX :=
n∧

ΩX/k.

Then Hn(X,ωX) ∼= k, and for all i, there is a perfect pairing

H i(X,L )×Hn−i(X,L −1 ⊗ ωX)→ Hn(X,ωX) ∼= k.

So H i(X,L ) is dual to Hn−i(X,L −1 ⊗ ωX) over k.
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Remark 12.14 (Special case). Let X be a smooth projective curve over k. By Serre duality
and the definition of genus,

genusX = dimkH
1(X,OX) = dimX H

0(X,ωX).

Remark 12.15 (Local cohomology). Let S = k[x0, . . . , xn]/I, let X = ProjS, let d = dimX,
let U be a cover by d+1 open affines {D+(fi)}i=0,...,d, letM be an S-module, and let F = M̃ .

12.6 Cohomology of projective schemes

. . .

Theorem 12.16. Let X be a projective scheme over a Noetherian ring A. For any coherent
sheaf F on X, F (X) is a finitely-generated A-module.

Note 12.17. This is wildly false without the projective assumption: if X = Spec k[x] = A1
k,

then OX(X) = k[x] is not a finitely-generated k-module.

More generally:

Theorem 12.18. Let X be projective over a Noetherian ring A, let F be coherent, and let
L be a very ample line bundle on X. Then

(1) For all i, H i(X,F ) is finitely-generated over A.

(2) There exists N0 such that for all n ≥ N0 and all i > 0,

H i(X,F ⊗L n) = 0.

Note 12.19 (Some current research). In (2), the N0 that “works” depends on F and X. There
are two different research directions:

(1) Fix X, and try to find N0 that works for all F in some sense “positive” (for all ample
invertible sheaves F ):

Hn(X,L n) = 0 ∀n ≥ N0.

This uses “characteristic p techniques”.

(2) Fix a distinguished F (usually F = ωX , and assume X is smooth). Try to find N0

that works for all L very ample:

H i(X,ωX ⊗L n) = 0.

Theorem 12.20 (Smith). If X is smooth and L is very ample, then H i(X,L n⊗ωX) = 0 for
all n > dimX.
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Proof of Theorem 12.18, part (1). First, we reduce to the case X = PnA. Consider X
i
↪→ PnA,

L = i∗OPnA(1). We claim that

H i(X,F ) = H i(PnA, i∗F ).

Indeed, let U = {Ui} be the standard affine cover of Pn. Then U ∩X = {Ui ∩X} is an affine
cover of X, and

H i(X,F ) = cohomology of Č(U ∩X,F ) : 0→
n∏
i=0

F (Ui ∩X)→ . . .

H i(PnA, i∗F ) = cohomology of Č(U , i∗F ) : 0→
n∏
i=0

i∗F (Ui)→ . . . ,

and these are exactly the same complex.
So, without loss of generality, X = PnA, and F = M̃ for some finitely-generated graded

S = A[x0, . . . , xn]-module M .
Say M is generated over S by m1, . . . ,mt, where degmi = di. We map onto M by the

degree-preserving map of graded S-modules

0→ N → S(−d1)⊕ . . .⊕ S(−dt) �M → 0

ei = (0, . . . , 1, . . . , 0) 7→ mi.

This induces by the ·̃ functor

0→ K = Ñ → OPn(−d1)⊕ . . .⊕OPn(−dt) � F → 0.

We get a long exact sequence of cohomology

H i(Pn,K )→ H i
(
Pn,

t⊕
i=1

O(−di)
)
→ H i(PNA ,F )→ H i+1(PnA,K )→ . . .

The cohomology module

H i
(
Pn,

t⊕
i=1

O(−di)
)

=
t⊕
i=1

H i
(
Pn,O(−di)

)
is finitely-generated over A by explicit computation. For i = n, this becomes

t⊕
i=1

Hn
(
PnA,O(−di)

)
� Hn(Pn,F )→ 0.

The homomorphic image of a finitely-generated A-module is also finitely-generated, hence
Hn(Pn,F ) is finitely-generated over A.

Now use reverse induction on i: Assume that for all F coherent on PnA, the cohomology
module H i+1(PnA,F ) is finitely-generated over A. Then we have

t⊕
i=1

H i
(
Pn,O(−di)

) d−→ H i(Pn,F )
d′−→ H i+1(Pn,K ).
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The modules on the left and the right are finitely-generated. Breaking this up into a short
exact sequence, we obtain

0→ im d→ H i(Pn,F )→ im d′ → 0.

Since A is Noetherian, im d and im d′ are finitely-generated, hence H i(Pn,F ) is as well.

Proof of Theorem 12.18, part (2). Again, take X
i
↪→ PnA and L = i∗OPnA(1). Then

H i(X,F ⊗L n) = H i
(
Pn, i∗(F ⊗L n)

)
.

By the projection formula,

i∗(F ⊗L n) = i∗
(
F ⊗ (i∗O(1))n

)
= i∗

(
F ⊗ i∗O(n)

)
= i∗F ⊗O(n).

So
H i(X,F ⊗L n) = H i

(
Pn, i∗(F ⊗L n)

)
= H i

(
Pn, (i∗F )⊗OPn(n)

)
.

Since OPn(n) is locally free and hence flat, we have a short exact sequence

0→ K (n)→
t⊕
i=1

OPn(−di + n)→ F (n)→ 0.

We proceed similarly to the proof of part (1); the details are left as an exercise.

13 Curves

13.1 Main setting

Definition 13.1. By a curve, we mean a projective, integral, smooth scheme X of dimension
1 over a field k. (If k = C, these are (compact) Riemann surfaces.)

Questions:

• Classify curves up to isomorphism.

• Study maps between them.

• Study covers of P1 by curves: X � P1.

To answer these, we need to understand invertible sheaves L on X and H0(X,L ).
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13.2 The Riemann–Roch theorem

Fix a basis s0, . . . , sn for H0(X,L ). This defines a map

X → P
(
H0(X,L )

)
= Pn

x 7→ [s0(x) : · · · : sn(x)] .

Recall: L ∼= OX(D) for some divisor D =
∑r

i=1 niPi (where Pi are points) on X.
Remark 13.2. In general, it can be hard to compute h0(X,L ) := dimH0(X,L ). But it is
easier to compute

χ(X,L ) = h0(X,L )− h1(X,L ) + h2(X,L )− h3(X,L ) + · · · =
dimX∑
i=0

(−1)i dimH i(X,L ).

Formulas for χ(L ) can be given in terms of invariants of X and L (called Riemann–Roch
formulas).
Remark 13.3. For an invertible sheaf L on a curve, the degree of L is defined as

∑
i ni,

where D =
∑

i niPi such that L ∼= O(D).

Theorem 13.4 (Riemann–Roch for curves). Let X be a curve of genus g, and let L be a
“line bundle” (invertible sheaf) on X. Then

χ(X,L ) = deg(L ) + 1− g.

Note 13.5. Using Serre duality,

χ(X,L )
def
= h0(X,L )− h1(X,L ) = h0(X,L )− h0(X,ωX ⊗L −1).

So, in dimension 1, we can rewrite the Riemann–Roch theorem as

h0(X,L ) = deg L + 1− g + h0(X,ωX ⊗L −1).

Proof of Riemann–Roch. We can view the term 1− g in terms of the trivial line bundle:

χ(OX) = h0(X,OX)− h1(X,OX) = 1− g.

So the theorem just states that χ(L ) = χ(OX) + deg L .
We will use induction on deg L . In the case of the inductive step where L has degree

d > 0, write L = O(D), where D =
∑t

i=1 niPi. Take one point P in the support. Then

0→ OX(−P )→ OX → k(P )→ 0.

Tensor with L to get

0→ OX(D − P )→ OX(D)→ L ⊗ k(P ) = k(P ) = k → 0,

which induces a cohomology exact sequence

0→ H0
(
X,OX(D − P )

)
→ H0

(
X,OX(D)

)
→ k

→ H1
(
X,OX(D − P )

)
→ H1

(
X,OX(D)

)
→ 0.
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Hence, the alternating sum of the dimensions is zero:

χ(OX(D)) = h0(X,O(D))− h1(X,O(D))

= h0(X,O(D − P1))− h1(X,O(D − P1)) + 1

= χ(OX(D − P1)) + 1

= χ(OX) + deg(D − P1) + 1 = χ(OX) + degD.

Aside 13.6 (General fact). If 0 → A → B → C → 0 is a short exact sequence of coherent
sheaves on a projective variety Z, then

χ(Z,B) = χ(Z,A ) + χ(Z,C ).

Returning to the proof, for any D and any P ,

χ(OX(D)) = χ(OX(D − P )) + 1,

χ(OX(D)) = χ(OX(D + P ))− 1.

To prove Riemann–Roch, now write

D =
t∑
i=1

niPi −
s∑
i=1

miQi, ni,mi > 0, Pi, Qi ∈ X.

Hence

χ(OX(D)) = χ(OX) +
t∑
i=1

ni −
s∑
i=1

mi = χ(OX) + degD.

Recall that
χ(OX) = dimH0(X,OX)− dimH1(X,OX) = 1− g.

So
χ(D) = χ(OX) + degD = 1− g + degD.

13.3 Remark on arbitrary fields

Let us make sense of the Riemann–Roch theorem over fields that are not necessarily alge-
braically closed.

The only place the assumption k = k is used is to say k = k(P ). If k 6= k, we still have a
finite extension

k ↪→ k(P ) =
k(X ∩ U)

mP

.

Hence
deg k(P ) = dimk k(P ),

and the same argument goes through, except that

χ(OX(D)) = OX(D − P ) + dimk k(P ).

So the statement of Riemann–Roch is the same over arbitrary fields, once we use the following
revised definition:
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Definition 13.7. For a divisor D =
∑t

i=1 niPi, let

deg(D)
def
=

t∑
i=1

ni degk k(Pi).

An alternative approach is to “base change” to k:

X = X ×k k //

��

Spec k

��

X // Spec k.

A divisor D =
∑

i niPi with Pi ⊆ X induces an inclusion

Pi ×k k ⊆ X ×k k.

Hence, from the exact sequence

0→ OX(−P ) ↪→ OX →
OX

OX(−P )
→ 0,

we can tensor with k to obtain an exact sequence

0→ OX(−P ) ↪→ OX →
OX

OX(−P )
→ 0.

Example 13.8. If X = P1
R = ProjR[x, y], then

X = X ×R C = ProjC[x, y] = P1
C.

Consider the divisor
D = P =

(
t2 + 1

)
⊆ P1

R.

We have k(P ) = C, so degR k(P ) = 2. Viewed in P1
C,

D ×R C = P1 + P2,

where P1 = [i : 1] and P2 = [−i : 1].
Returning to the general case,

χ(OX(D)) = 1− g + deg(D ×k k).

Writing

D =
∑
i

niPi,

D ×k k =
∑
i

ni
∑
j

mijQij,

we have
degD = degD ×k k =

∑
n−I

degk k(Pi).

Letting v be the projection X ×k k → X, for any coherent sheaf F on X, the cohomology is

Hp(X,F )⊗k k = Hp(X, v∗F ) = Hp(X ×k k,F ⊗k k).
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13.4 Divisors of degree zero

Assume k = k. What can we say about divisors of degree 0 on a curve X?

Proposition 13.9. If f ∈ k(X), then deg(div f) = 0.

Proof. Consider the rational map

X k = A1
k ⊆ P1

k

x 7→ f(x),

which extends to a map

X
ϕ−→ P1

k

x 7→ [f(x) : 1].

Recall: If X � Y is a finite map of projective varieties, then fibers of all points have the
same cardinality (counting multiplicities).

Hence the divisor of zeros and poles of f is given by

div f = “zeros of f ” − “poles of f ” = ϕ−1([0 : 1])− ϕ−1([1 : 0]) =
∑
i

niPi −
∑
i

miQi,

and so deg(div f) = 0.

13.5 Degree zero divisors

Let Div0(X) be the subgroup of degree zero divisors on X. Then we have a short exact
sequence

0→ Div0(X)→ Div(X)
deg−−→ Z→ 0.

As we just showed, the group P (X) of principal divisors is contained in Div0(X), so this
induces

0→ Div0(X)

P (X)
→ Div(X)

P (X)

deg−−→ Z→ 0,

denoted
0→ Pic0(X)→ Pic(X)

deg−−→ Z→ 0.

The subgroup Pic0(X) turns out to have the structure of a variety over k. This is a
smooth projective (abelian) variety, called the Jacobian variety of X. Its dimension is g(X).

In the case of an elliptic curve (i.e., g(x) = 1),

Pic0(X) ∼= X.

This is the usual group structure on an elliptic curve.
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Remark 13.10 (Higher dimension). Let X be a smooth projective variety over a field k = k.
In higher dimension, “degree” makes no sense. However, we still have a subgroup

Pic0(X) ⊆ Pic(X) =
Div(X)

P (X)
� NS(X) ∼= Zr → 0,

the group of numerically trivial divisors . It turns out that Pic0(X) is again an abelian variety,
called the Picard variety of X.

The cokernel NS(X) is a finitely-generated, torsion-free abelian group, the Néron–Severi
group of X.

Returning to divisors of degree zero on a curve:

Lemma 13.11. (a) If h0(X,D) 6= 0, then degD ≥ 0.

(b) If h0(X,D) 6= 0 and degD = 0, then D ∼ div(f) ∼ 0 is principal.

(c) If L is a non-trivial invertible sheaf of degree 0, then H0(X,L ) = 0.

Proof. (a) Observe that

h0(X,D) = dimkH
0(X,O(D)) = dimk

{
f ∈ k(X)∗

∣∣ div f +D ≥ 0
}
∪ {0} .

If f ∈ H0(X,D) is nonzero, then div f +D ≥ 0, so

degD = deg(div f +D) ≥ 0.

Alternatively, write L ∼= OX(D). Then for all s ∈ H0(X,L ), we can look at (s)0, the
divisor of zeros, which is automatically effective.

(b) If degD = 0 and f ∈ k(X)∗, then div f +D ≥ 0 is degree zero, so div f +D = 0. Hence

D = − div(f) = div(1/f),

so D is principal.

13.6 Divisors of positive degree

Divisors of negative degree have no global sections! So, to understand maps from a curve
to Pn (“to do geometry for curves”), we should focus on divisors of positive degree. [In
higher dimension, we also want to understand “positive” divisors. A major question is what
“positive” should mean in the higher-dimensional context.]
Example 13.12. Consider a smooth, degree-d plane curve

X = ProjS = Proj
k[x, y, z]

(Fd)
= V(Fd) ⊆ P2

k = Proj k[x, y, z].

Write L = i∗O(1), and let s = ax + by + cz ∈ H0(X,L ), where a, b, c ∈ k. If H =
V(ax+ by + cz), then

(s)0 = “divisor of zeros of ax+ by + cz” = H ∩X = V(s, Fd) =
d∑
i=1

Pi,
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where the Pi are points (not necessarily distinct) on X.
We have

L n = OX
(
n · (H ∩X)

)
,

so
deg(L n) = n · d.

By Riemann–Roch for L n on X,

χ(L n) = 1− g + deg L n,

so
dimH0(X,L n) = 1− g + nd+ dimH1(X,L n).

By Serre vanishing, dimH1(X,L n) = 0 for sufficiently large n. We have

Γ∗(X,L ) =
⊕
n∈N

H0(X,L n) ↪→
⊕
n∈Z

Sn = S,

with equality in large degree, and we have

dim(Sn) = d · n+ 1− g.

Note that dim(Sn) is the Hilbert function of n evaluated at n, and d ·n+1−g is a polynomial
of degree 1 in n. Thus this is the Hilbert polynomial for S.

13.7 Base-point-free and very ample linear systems

Question: Given a curve X and a divisor D, how can we tell if

|D| =
{
D′
∣∣ D′ ≥ 0, D′ ∼ D

}
is base-point-free or very ample?

The following are equivalent:

• |D| is base-point-free.

• For all P ∈ X, there exists D′ ∈ |D| such that P /∈ D′.

• For all P ∈ X, OX(D) has a global section s ∈ Γ(X,OX(D)) such that s(P ) 6= 0.

• OX(D) is globally generated.

For very ample, look at a basis s0, . . . , sn ∈ H0(X,OX(D)). The map

X ↪→ Pn

x 7→ [s0(x) : · · · : sn(x)]

is a closed embedding. (In this case, members of |D| are hyperplane sections of X ⊆ Pn.)
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Example 13.13. Consider X = P1 = Proj k[x, y] and

D = span
{
x4, x3y, x2y2, xy3

}
⊆ H0

(
X,O(4)

)
.

The associated map is

X
ϕ P3

[x : y] 7→
[
x4 : x3y : x2y2 : xy3

]
,

defined everywhere expect at [0 : 1], which is a base point of D . This map extends to the
Veronese embedding

X
ν3−−→ P3

[x : y] 7→
[
x3 : x2y : xy2 : y3

]
,

which corresponds to |O(3)|:
L = ν∗3O(1) = O(3),

which is globally generated by the pullbacks x3, x2y, xy2, y3 of x0, x1, x2, x3.

Remark 13.14. When |D| is base-point-free,

X → Pn = P
(
H0(X,OX(D))

)
x 7→ [s0(x) : · · · : sn(x)] ,

and the members of |D| are the pullbacks of hyperplane sections.

Proposition 13.15. Let |D| be a linear system of divisors.

• |D| is base-point-free ⇐⇒ for all P ∈ X,

dim |D − P | = |D| − 1.

• |D| is very ample ⇐⇒ for all P,Q ∈ X (including P = Q),

dim |D − P −Q| = dim |D| − 2.

Remark 13.16. We have a bijection

P
(
H0(X,OX(D))

)
→ |D|

f 7→ divisor of zeros of (div f +D),

so we can think of |D| as a projective space.

Proof of Proposition 13.15. Take any P ∈ X. We have an exact sequence

0→ OX(−P )→ OX
eval at P−−−−−−→ k(P ) = k → 0

f 7→ f(P ).
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Tensoring with OX(D), we obtain an exact sequence

0→ OX(D − P )→ OX(D)→ k(P )→ 0,

which yields a long exact sequence of cohomology

0→ H0(D − P )→ H0(D)→ k → . . . .

So

dimH0
(
X,OX(D)

)
=

{
dimH0

(
X,OX(D − P )

)
+ 1 iff “eval at P ” is surjective,

dimH0
(
X,OX(D − P )

)
iff “eval at P ” is 0.

Note that f 7→ f(P ) is zero ⇐⇒ OX(D) is not globally generated at P ⇐⇒ P is a
zero of every section of OX(D) ⇐⇒ P is a base point of |D|. This proves the first part of
Proposition 13.15.

For the “very ample” part, first observe that if |D| is very ample, then |D| is base-point-
free, so for all P ∈ X,

dim |D − P | = dim |D| − 1.

Hence, for all Q ∈ X,

dim |D − P −Q| =

{
dim |D − P | − 1 = dim |D| − 2 iff Q is not a base point of |D − P |,
dim |D − P | iff Q is a base point of |D − P |.

Observe that

H0
(
X,O(D −Q− P )

)
⊆ H0

(
X,O(D − P )

)
$ H0

(
X,OX(D)

)
.

If there exists Q 6= P such that dim |D − P −Q| = dim |D − P |, i.e., Q is a base point of
|D − P |, i.e., for all s =

∑n
i=0 aisi ∈ H0(X,D − P ), we have s(Q) = 0.

Find a hyperplane H =
∑

i aixi ⊆ Pn which passes through P and not Q. Then

ϕ∗H = divisor on X of zeros of ϕ∗
(∑

aixi

)
.

But we have

ϕ∗
(∑

aixi

)
=
∑

aiϕ
∗xi =

∑
aisi = s ∈ H0

(
X,OX(D)

)
,

so s(P ) = 0 =⇒ s ∈ H0(D − P ). But s(Q) 6= 0.
To summarize: we have P,Q ∈ X ⊆ Pn. Find H such that P ∈ H and Q /∈ H. . . .
Now for the case P = Q. We have

|D − 2P | ⊆ |D − P | $ |D| ,

viewed as hyperplane sections, and we want to show that the first inclusion is proper. If
|D − 2P | = |D − P |, then every ` =

∑
i aixi vanishing at P ∈ X vanishes to order 2.
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Choose an affine chart so that P is the origin in X ∩ An ⊆ An ⊆ Pn. Then we have

k[t1, . . . , tn] �
k[t1, . . . , tn]

I
(t1, . . . , tn)

(t1, . . . , tn)2
=

mP

m2
P

�
mP

m2
P

.

Find a section of O(1) on Pn whose local defining equation in a neighborhood of P is a
generator of mP (meaning that the equation is not in m2

P ). In other words, s ∈ H0(X,D−P ),
but s /∈ H0(X,D − 2P ).

(See Hartshorne for the other direction of the proof.)

Corollary 13.17. • If degD ≥ 2g, then |D| is base-point-free.

• If degD ≥ 2g + 1, then |D| is very ample.

Remark 13.18 (Some classical language). If there exists D′ ∈ |D| such that P ∈ SuppD′

but Q /∈ SuppD′, then we say |D| “separates points P and Q”. We say that L = OX(D)
“separates” P and Q provided that there exists s ∈ H0(X,L ) such that s(P ) = 0 but
s(Q) 6= 0. In either case, the map

X
ϕ−→ Pn

is such that ϕ(P ) 6= ϕ(Q). This is the case if and only if

dim |D − P −Q| = dim |D| − 2

for all P 6= Q.
We also say that |D| “separates tangent vectors at P ” provided that

|D − 2P | $ |D − P | ,

or equivalently, X ϕ−→ Pn induces an injective map of vector spaces

TPX
dPϕ−−−→ TPPn,

i.e., ϕ is an embedding at P . If |D| separates all points, then ϕ|D| is injective.
Recall from last time: if D has degree ≥ 2g − 1, then

h1(D) = h0(KX −D) = 0.

Proof of Corollary 13.17. Suppose degD ≥ 2g. To show |D| is base-point-free, we need to
show that for all P ∈ X,

dim |D − P | = dim |D| − 1.

Compute using Riemann–Roch:

h0(D − P ) = 1− g + deg(D − P ) + h1(D − P ).

Since deg(D − P ) = degD − 1 ≥ 2g − 1, we have h1(D − P ) = 0, so

h0(D − P ) = 1− g + deg(D − P ) = 1− g + degD − 1 = degD − g.

The proof of the very ample part is similar.
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13.8 Classification of curves

Let us classify curves by genus:

• g(X) = 0 ⇐⇒ X ∼= P1.

• g(X) = 1 ⇐⇒ X = V(F3) ↪→ P2 via the linear system ϕ|3P0|. We have

X �
� ϕ|3P0| //

2:1

ϕ|2P0|

%%

P2

��

[x : y : 1]
_

��

P1 [x : 1]

The equation F3 is given by

F3(x, y, z) = F3

(x
z
,
y

z
, 1
)

= f(x, y) = y2 − x(x− 1)(x− λ).

By the Hurwitz formula, there are 4 ramification points 0, 1,∞, λ.
For g(X) ≥ 2, consider the canonical divisor KX . We have

degKX = 2g − 2.

Claim 13.19. |KX | has no base points when g ≥ 2.

(We will not prove this claim here; it does not follow from Corollary 13.17.)
Note that

dim(KX) = dimH0(X1, ωX)− 1 = dimH0
(
X,OX(KX)

)
− 1 = g − 1.

We get a map

X
ϕ|KX |−−−−→ Pg−1.

In the case g = 2, we get a finite cover of P1; the degree of the cover is

degKX = 2g − 2 = 2

because members of |KX | are ϕ∗(P ). Thus, every genus 2 curve is a 2-to-1 cover of P1,
ramified at 6 points 0, 1,∞, a, b, c by the Hurwitz formula. So we can parametrize genus 2
curves by a family

M2 ⊆
P1 × P1 × P1

S6

.

So, to summarize:

• g(X) = 2: X
2:1
� P1 ramified at 6 points (3 degrees of freedom).

• g(X) ≥ 3: |KX | is either very ample (yielding ϕ|KX | : X ↪→ Pg−1) or it gives a map
X � P1.

As a special case, consider X of genus 3, not hyperelliptic. Then |KX | is very ample, so
we have an embedding

X = V(F4) ↪→ P2.

Members of |KX | are hyperplane sections, and

degKX = 2g − 2 = 6− 2 = 4.
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