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Chapter I

Quadrics, cubics, and elliptic curves

I.1 2013-09-04

I.1.1 Preliminaries

Course information:

• Course website: http://www.math.wisc.edu/~boston/844bis.html

• Office hours:

– W 1:30–3, 3619 Engineering Hall

– Th 9:30–11, 303 Van Vleck

• The grade is based on 10 homeworks.

Textbooks:

• Rob Rhoades’ notes (questionable — contains numerous errors)

• Silverman, The Arithmetic of Elliptic Curves I, II

• Silverman–Tate, Rational Points on Elliptic Curves

• Knapp (modular curves)

• Koblitz (special family of elliptic curves)

• ...

• All derive from Tate, Inv. Math 23 (1974) and Cassels, J. London Math Soc. (1966).
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I.1.2 Overview

A few examples:

Example I.1.1. Consider the 3-4-5 triangle, which has area 6. We call an integer n congruent
if it is the area of a right triangle with rational sides.

Which integers are congruent?

• 5 is congruent.

• 1 is not congruent (Fermat: x4 − y4 = u2).

It turns out that

Proposition I.1.2. An integer n is congruent ⇐⇒ the only rational solutions of y2 = x3−n2x
are

(0, 0), (n, 0), (−n, 0).

This is an elliptic curve: we have turned a question about a diophantine equation into a
question about points on an elliptic curve.

Remark I.1.3. We will often work with a homogeneous version:

y2z = x3 − n2xz2.

The points are in projective space P2, i.e., equivalence classes (x : y : z), where (x, y, z) 6=
(0, 0, 0) and

(x, y, z) ∼ (λx, λy, λz)

for all λ 6= 0.

Definition I.1.4. Let K be a field. An elliptic curve over K is a nonsingular cubic curve
with coefficients in K which has a point.

Remark I.1.5. By “nonsingular”, we mean nonsingular (smooth) over any extension field.

Example I.1.6. The curve
3x3 + 4y3 + 5z3 = 0

has no solutions over Q, so it is not an elliptic curve over Q.

Example I.1.7. The curves y2 = x3 and y2 = x3 − x2 are singular cubics, and therefore are
not elliptic curves.

Remark I.1.8 (Standard form). The standard form for elliptic curves in charK 6= 2 is

y2 = f(x),

where f ∈ K[x] is a cubic with distinct roots in K.
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I.1.3 Some examples by Elkies

Example I.1.9 (Elkies, 1986). Euler (1769) incorrectly claimed that

x4 + y4 + z4 = t4

has no nonzero integer solutions. This is the same as asking for rational points on

x4 + y4 + z4 = 1.

Elkies (1986) showed there are infinitely many counterexamples (dense). The method is to
show that this surface contains lots of elliptic curves with lots of rational points.

Example I.1.10. (Trinks) The Galois group of x7 − 7x + 3 over Q is simple of order 168.
Elkies came up with several more equations with the same Galois group:

x7 − 154x+ 99

372x7 − 28x+ 9

4992x7 − 23956x+ 34 · 113

Elkies conjectured that these are the only solutions.
Polynomials ax7 + bx+ c having Galois group G168 are parametrized by the curve

y2 = x
(
81x5 + 396x4 + 738x3 + 660x2 + 269x+ 48

)
,

which has genus 2. A conjecture of Mordell, proving by Faltings, is that there are only finitely
many rational points on such a curve. In fact, in this case, there are exactly 7 rational points.

Example I.1.11 (Elkies). Over charK = 0, how often does ax5 + bx2 + c have Galois group
G20 = C5 o C4 ≤ S5? The solution is parametrized by points on

E : y2 + xy + y = x3 + x2 + 35x− 28

(154A in Cremona’s database).
E(Q) has 8 points, of which 2 give solutions to the original question.

I.1.4 Moral

Many problems lead to us asking for the rational points on some variety.
Say this is a curve. There are basically three flavors, depending on the genus:

(1) Genus 0 is very easy (Diophantus’ method).

(2) Genus 1 is the intermediate case (elliptic curves).

(3) Genus > 1 is hard.

Some applications of elliptic curves:

(1) Fermat’s Last Theorem
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(2) Elliptic curve cryptography

These use an additional fact:

Fact I.1.12. Suppose E is an elliptic curve over a field K. Given a field extension L ⊇ K,
let

E(L) = {points on E defined over L} .

This is an abelian group.

Remark I.1.13. So, for instance, the question about congruent numbers becomes a question
of whether there is a point of infinite order on the corresponding elliptic curve. Similarly, in
Example I.1.11, E(Q) is a cyclic group of order 8.

I.1.5 Order of specific topics

(1) Elliptic curves over R and C

(2) Elliptic curves over finite fields

• Hasse’s theorem

(3) Elliptic curves over Q and Z

• Mordell’s theorem

(4) L-functions ∑
n≥1

an
ns

(5) Modular forms ∑
n≥1

anq
n

(6) Shimura–Taniyama

(7) Galois representations

(8) Tate–Shafarevich group

(9) Complex multiplication

(10) Birch–Swinnerton-Dyer conjecture
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I.2 2013-09-06

I.2.1 Projective space

Let K be a field.
We define projective space

Pn(K)
def
= (Kn+1 − {0})/∼,

where
(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ xi = λyi

for some λ ∈ K×. The equivalence class of (x0, . . . , xn) is denoted (x0 : · · · : xn).

I.2.2 Nonsingular/smooth

Consider
f(x0, . . . , xn) = 0

with f ∈ K[x0, . . . , xn] homogeneous, and let L ⊆ K be an algebraic extension. A point
P ∈ Pn(L) is a singularity of f = 0 provided that f(P ) = 0 and

∂f

∂xi
= 0 ∀i.

We say that {f = 0} is nonsingular ⇐⇒ it has no singularities in any such L.

Example I.2.1 (elliptic curves). Let f ∈ K[x] be a cubic with distinct roots inK (charK 6= 2).
Then

y2 = f(x)

is nonsingular, so defines an elliptic curve. (Indeed, it has a point at infinity, so it has at
least one point.)

Proof. Write
y2 = (x− a)(x− b)(x− c)

with a, b, c ∈ K distinct. Then we have

y2 − (x− a)(x− b)(x− c) = 0,

and homogenizing, we obtain

y2z − (x− az)(x− bz)(x− cz) = 0.

The points at infinity are where z = 0; hence there’s only the point (0 : 1 : 0).
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To show nonsingularity, simultaneously solve

F = y2z − (x− az)(x− bz)(x− cz) = 0,

∂F

∂x
= −(x− bz)(x− cz)− (x− cz)(x− az)− (x− az)(x− bz) = 0,

∂F

∂y
= 2yz = 0,

∂F

∂z
= y2 + a(x− bz)(x− cz) + b(x− cz)(x− az) + c(x− az)(x− bz) = 0.

Since 2yz = 0 and charK 6= 2, we have y = 0 or z = 0. If z = 0, then x = 0 and so y = 0,
which is impossible. But if y = 0, then

(x− az)(x− bz)(x− cz) = 0.

Say (without loss of generality) x− az = 0. Then

(x− bz)(x− cz) = 0.

Say (WLOG) x − bz = 0. But a 6= b, so this is a contradiction. Hence there are no
simultaneous solutions.

I.2.3 Applications of elliptic curves

(1) h(Q(
√
−∆)) as ∆→∞: effective bounds (Gross–Zagier, Goldfeld)

(2) Factoring integers (Lenstra)

(3) Sphere-packings (Elkies)

(4) Inverse Galois problem

(5) Taxicab problem:
1729 = 13 + 123 = 93 + 103.

I.2.4 Favorite curves over Q
Remark I.2.2. Now we start the course proper.

Some favorite curves (with homogeneous f̃ = 0 solution on the right, since we’ll often
look at that):

x3 + y3 = 1 x3 + y3 − z3 = 0

y2 = x3 − x y2z −
(
x3 − xz2

)
= 0

y2 + y = x3 − x y2z + yz2 − x3 − xz2 = 0

Note I.2.3. The solutions of E : f̃ = 0 in K ⊇ Q are denoted

E(K)
def
=
{

(a : b : c)
∣∣ f̃(a, b, c) = 0

}
.
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Example I.2.4. Consider
E : y2z − x3 + xz2 = 0.

Then you get a graph with two circles (one of which goes off to infinity). But if we look at
y2 = f(x) where f has only 1 real root, then we get only one “circle” in the real plane.

I.2.5 Diophantus’ method

We want all the rational solutions to

x2 + y2 = z2.

The affine equation is
x2 + y2 = 1,

the unit circle. Look at the line of slope t through (−1, 0). This intersects the unit circle at
a point

(−1 + a, at),

where a is given by

(−1 + a)2 + (at)2 = 1.

Solving for a, the line has exactly one other intersection point:

1− 2a+ a2 + a2t2 = 1

−2a+ a2
(
1 + t2

)
= 0,

whence
a = 0 or a =

2

1 + t2
.

So the point is

(−1 + a, at) =

(
1− t2

1 + t2
,

2t

1 + t2

)
,

and the parametrization is

(x : y : z) =
(
1− t2 : 2t : 1 + t2

)
.

I.2.6 Example from Emissary, MSRI newsletter

The numbers 1, 2, . . . , 8 have the property

1 + 2 + 3 + 4 + 5 = 7 + 8.

Say
1 + 2 + 3 + 4 + · · ·+ (k − 1) = (k + 1) + · · ·+ n.
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Then

1

2
k(k − 1) =

1

2
n(n+ 1)− 1

2
k(k + 1)

=⇒ 1

2
n(n+ 1) = k2.

We want to find lots of solutions to this equation. Say n = 2m (with m ∈ Z). Then

m(2m+ 1) = k2,

gcd(m, 2m+ 1) = 1,

so m = x2, 2m+ 1 = y2 yields
y2 = 2x2 + 1.

We now have Pell’s equation:
y2 − 2x2 = 1.

We can solve this using some algebraic number theory: the units of Q(
√

2) have the form
{±1} × 〈u〉 for some fundamental unit u, and y +

√
2x has norm 1.

For instance, (3, 2) is a solution. More generally,(
3 + 2

√
2
)n

= yn +
√

2xn

yields infinitely many integral solutions.
Suppose we want rational solutions of

y2 = 2x2 + 1.

We use a method due to Diophantus (Διοφαντος). Consider lines of rational slope t through
the point (0, 1), with equation

y = 1 + tx.

This gives

(1 + tx)2 = 2x2 + 1

2tx+ t2x2 = 2x2,

so x = 0 (the original point) or

2t =
(
2− t2

)
x,

x =
2t

2− t2
,

y = 1 + tx =
2 + t2

2− t2
,

which is the desired rational parametrization.
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I.2.7 Diophantus’ method in greater generality

Challenge question: Can n be divided into 2 integers whose product is a cube minus a side?
This is given by the equation

x(n− x) = y3 − y.

This is an elliptic curve. We will use the “tangent-chord method” to analyze this situation.

I.3 2013-09-09

I.3.1 The tangent-chord method

Last time, we looked at Diophantus’s (3rd century) method for solving plane quadratics.
What about plane cubics? E.g.,

x(6− x) = y3 − y. (∗)

Consider the tangent at (0,−1). This is

6− 2x = 3y2 dy

dx
− dy

dx
,

which gives
dy

dx
=

6− 2x

3y2 − 1
=

6

2
= 3

at (0,−1). Hence the tangent line is

y = −1 + 3x.

To find the other point of intersection, we have

6x− x2 = (3x− 1)3 − (3x− 1)

6x− x2 = 27x3 − 27x2 + 9x− 1− 3x+ 1

26x2 = 27x3

x = 0, 0,
26

27
.

In the last case, we have

x =
26

27
=⇒ y = −1 +

26

9
=

17

9
.

Take the line joining (0, 0) to
(

26
27
, 17

9

)
,

17

9
x =

26

27
y.

Plug in (∗): get rational-coefficient cubic in x, solutions

x = 0,
26

27
, some rational number.
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In fact, the solutions are

x = 0,
26

27
,−5382

4913
,

so the other point of intersection is (
−5382

4913
,−621

289

)
.

Remark I.3.1. This is known as the tangent-chord method for producing points with rational
coordinates (rational points).

I.3.2 Rational points on our favorite curves

Let us look at the rational points on some of our favorite elliptic curves.

Example I.3.2. The curve
y2 = x3 − x

has rational points at ∞, (−1, 0), (0, 0), and (1, 0). In fact,

E(Q) = {∞, (−1, 0), (0, 0), (1, 0)} .

Example I.3.3 (a curve with a cusp). The curve

y2 = x3

has a rational parametrization:
x = t2, y = t3.

Exercise I.3.4 (a curve with a node). Find a rational parametrization of the nodal curve

y2 = x2(x+ 1).

Remark I.3.5. In the singular case, a cubic curve’s genus degenerates down to zero, which
is why rational parametrizations can be found. (Genus zero curves are simpler than genus
one.)

Example I.3.6. The curve
x3 + y3 = 1

has points of inflection at (1, 0) and (0, 1). In fact,

E(Q) = {∞, (1, 0), (0, 1)} .

Remark I.3.7 (inflection points). We will see later that points of inflection have order 3.

Example I.3.8. It will turn out that

y2 + y = x3 − x

has infinitely many rational points.
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I.3.3 The group structure

Consider an elliptic curve
y2 = f(x),

where f ∈ Q[x] is cubic with distinct roots in Q. A line intersections the elliptic curve at
exactly 3 points P1, P2, P3 (counting multiplicity). We will see that the rule

P1 + P2 + P3 = 0

defines a group law.

I.3.4 Complex curves

Fact I.3.9. IfX is a smooth curve defined overK ⊆ C, thenX(C) is a compact, 1-dimensional
complex manifold (i.e., a compact Riemann surface).
Fact I.3.10 (Griffiths–Harris, chapter 2). If X is defined by f̃ = 0 (smooth), where deg f̃ = d,
then the genus is

g(X) =
(d− 1)(d− 2)

2
.

Remark I.3.11. From the above, if d = 3, then the genus is 1. In other words, the complex
points of an elliptic curve is homeomorphic to a torus S1 × S1.

The product of two circles has a group structure:

S1 × S1 ∼= R/Z× R/Z.

If K ⊆ C is a subfield, then X(K) ⊆ X(C) is a subgroup.

I.3.5 Genus trichotomy

Let X be a smooth curve defined over a number field K.
Genus 0 Genus 1 Genus ≥ 2

Analysis
Riemann surface
X(C) isomorphic to
the Riemann sphere

X(C) isomorphic to a
complex torus (with
group law)

X(C) has universal
cover isomorphic to
Poincaré disc

Differential
geometry

X(C) has Riemannian
metric of constant
positive curvature

X(C) has flat metric
induced from C

X(C) has Riemannian
metric of constant
negative curvature

Arithmetic
geometry

If X has a rational
point over K, then
X ∼= P1 over K (ratio-
nal parametrization)

If X has a rational
point over K, then
X(K) is a subgroup of
X(C) (Mordell, 1922:
X(K) finitely gener-
ated)

(Faltings) X(K) is fi-
nite.

Conjecture I.3.12 (Poincaré, 1901). Given an elliptic curve E/Q, there exist finitely many
points such that the tangent-chord method yields all rational points. That is, E(Q) is a
finitely generated group.
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I.3.6 Next time

Hasse Principle failing for elliptic curves:

3x3 + 4y3 + 5z3 = 0.

Why are they called elliptic curves?

I.4 2013-09-11

I.4.1 Hasse Principle

Theorem I.4.1 (Hasse Principle for genus 0 curves). Suppose f̃ ∈ Z[x, y, z] is a homogeneous
polynomial defining a curve of genus 0. If

f̃(x, y, z) ≡ 0 (mod pm)

has a solution for all primes p and all m ≥ 1, and has a real solution, then

f̃(x, y, z) = 0

has a solution in P2(Q).

Remark I.4.2. This is not true for general curves. Lind (1940) and Reichardt (1942) inde-
pendently came up with a counterexample:

x4 − 17 = 2y2.

Selmer (1951, 1954) came up with another counterexample:

3x3 + 4y3 + 5z3 = 0.

I.4.2 Elliptic integrals

Consider an integral of the form ∫
R(x, y) dx,

where R is a rational function and x, y are related by a curve of genus 0.

Example I.4.3. Setting y2 = 1− x2, we have∫ x

0

dx√
1− x2

=

∫ x

0

dx

y
.

This has a rational parametrization:

x =
2t

1 + t2
, y =

1− t2

1 + t2
.
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We have
dx

dt
=

2(1 + t2)− 2t · 2t
(1 + t2)2

=
2− 2t2

(1 + t2)2
.

Hence we obtain∫ x

0

dx

y
=

∫ T

0

(1 + t2)(2− 2t2)

(1− t2)(1 + t2)2
=

∫ T

0

2

1 + t2
dt = 2 tan−1(T ) + C.

What about ∫
R(x, y) dx,

where x and y are related by a genus 1 curve?

Example I.4.4. Consider an elliptic integral of the second kind (0 < k < 1):

E(k) =

∫ 1

0

√
(1− x2) (1− k2x2) dx.

The name comes from the fact that the arc length of the ellipse (0 < b < a)

x2

a2
+
y2

b2
= 1

is

4a · E
(√

1−
(
b
a

)2
)
.

We can put
y2 =

(
1− x2

) (
1− k2x2

)
in the form

Y 2 = X(X − 1)(X − λ)

for a suitable change of variables

X =
ax+ b

cx+ d
,

Y =
ey

(cx+ d)2
,

where
(
a b
c d

)
is invertible and e 6= 0. Expanding this out, we get

e2y2

(cx+ d)4
=

(
ax+ b

cx+ d

)(
(a− c)x+ (b− d)

cx+ d

)(
(a− λc)x+ (b− λd)

cx+ d

)
=⇒ e2y2 = (cx+ d)(ax+ b)

(
(a− c)x+ (b− d)

)(
(a− λc)x+ (b− λd)

)
,

from which we can find the right values of a, b, c, d, e.
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I.4.3 Branch cuts

Viewing this in terms of branch cuts: For∫
dx√

1− x2
,

we have two branches and poles at x = 1,−1, so we can “slit” two copies of the Riemann
sphere from 1 to −1, then glue them together to get another sphere (a complex curve of
genus 0).

With ∫
dx√

x(x− 1)(x− λ)
,

we instead slit from 1 to −1 and from λ to ∞ on both spheres, whence gluing along both
slits yields a torus (a complex curve of genus 1).

Remark I.4.5 (Periods). Let ω = dx/y, and take

ω1 =

∫
α

ω,

ω2 =

∫
β

ω,

which are linearly independent over R. So

Λ :=
{
mω1 + nω2

∣∣ m,n ∈ Z
}
⊆ C

is a lattice.

We can show

E(C)→ C/Λ

p 7→
∫ p

0

ω (mod Λ)

is a well-defined complex analytic isomorphism (Abel–Jacobi).

I.4.4 Standard forms of elliptic curves

Question: How do we get a “nice” equation for an elliptic curve?
What is a nice form?
Weierstrass form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

If charK 6= 2, then we can complete the square on the LHS to obtain(
y +

a1x+ a3

2

)2

= cubic in x,
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which becomes y2 = f(x) after change of variables.
If charK 6= 3, then we can complete the cube on the right:

y2 = x3 + ax+ b.

Another nice form is Deuring form: if charK 6= 3, we can write

y2 + αxy + y = x3.

Remark I.4.6 (Idea of going from general smooth cubic to the Weierstrass form). Take a flex
point (point of inflection), move it to (0 : 1 : 0), and make the tangent z = 0.
Example I.4.7. The Fermat cubic (charK = 0)

x3 + y3 = 1

has a flex point at P = (1 : 0 : 1). The change of coordinates

x2 = x− z
x1 = x

x0 = y

sends P to (0 : 1 : 0), and the tangent at the flex point is x = z, i.e., x2 = 0. The resulting
equation is

x3
0 = −3x2

1x2 + 3x1x
2
2 − x3

2,

which in the affine plane x2 = 1 is

x3
0 = −3x2

1 + 3x1 − 1.

Now we get

x3
0 = −3x2

1 + 3x1 − 1 = −3

(
x1 −

1

2

)2

− 1

4(
x1 −

1

2

)2

= −1

3
x3

0 −
1

12

y2 = −1

3
x3

0 −
1

12
...
= x3 − 432.

I.5 2013-09-13

I.5.1 Converting to Weierstrass form

Take a general cubic and put it in Weierstrass form:

F (x, y, z) = c03y
3 + c12xy

2 + c21x
2y + c30x

3 + c02y
2z

+ c11xyz + c20x
2z + c01yz

2 + c10xz
2 + c00z

3 = 0.
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Want:
y2z + a1xyz + a3yz

2 = x3 + a2x
2z + a4xz

2 + a6z
3.

Impose conditions (remarks before proof):

(1) Make the curve pass through (0 : 1 : 0), i.e., c03 = 0.

(2) Make (0 : 1 : 0) a nonsingular point. Do this as always: Let

φ =

0 0 1
1 0 0
0 1 0

 .

Then φ maps (0 : 1 : 0) to (0 : 0 : 1), and

f(x, y) = F
(
φ−1(x, y, 1)

)
= F (y, 1, x) = (c02x+ c12y)︸ ︷︷ ︸

f1

+
(
c01x

2 + c11xy + c21y
2
)︸ ︷︷ ︸

f2

+cubic terms

with f1 6= 0, so c02, c12 are not both zero.

(3) Want the tangent line at (0 : 1 : 0) to be z = 0. So x = 0 in the new affine coordinates,
hence c12 = 0 (and c02 6= 0).

(4) Make (0 : 1 : 0) a flex (point of inflection) ⇐⇒ f1 divides f2.∣∣∣∣∣∣∣
∂2F
∂x2

∂2F
∂x∂y

. . .
... . . .

∂2F
∂z2

∣∣∣∣∣∣∣ = 0

We have f1 = c02x, so f1 | f2 ⇐⇒ c21 = 0.

Then

F (x, y, z) = c30x
3 + c02y

2z + c11xyz + c20x
2z + c01yz

2 + c10xz
2 + c00z

3 = 0.

Remark I.5.1. There is an alternate approach of proving this using Riemann–Roch.

Theorem I.5.2. If X : F (x, y, z) = 0 is a homogeneous smooth cubic over K such that X
has a K-rational flex, then there exists a projective transformation Φ defined over K such
that F (Φ−1(x, y, z)) is in Weierstrass form.

Proof. Choose φ to map the flex point to (0 : 1 : 0). Use ψ such that

ψ−1 =

a 0 b
0 1 0
c 0 d

 , ad− bc 6= 0

to make the tangent at (0 : 1 : 0) be z = 0.
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By conditions (1) to (4) above, we have a projective transformation θ such that

F θ(x, y, z) = c30x
3 + c02y

2z + c11xyz + c20x
2z + c01yz

2 + c10xz
2 + c00z

3.

Let

χ−1 =

t 0 0
0 t 0
0 0 1

 .

Then (
F θ
)χ

(x, y, z) = F θ(tx, ty, z) = c30t
3x3 + c02t

2y2z + . . . .

Set t = c02/c30.

Example I.5.3. The point P = (0 : 1 : 1) is a flex point of x3 + y3 = z3. Take

Φ =

1 0 0
0 0 1
0 1 −1

 ,

so that

Φ

xy
z

 =

 x
z

y − z

 =:

ab
c

 .

Then Φ sends (0 : 1 : 1) to (0 : 1 : 0), and the tangent line at P is y = z, which is mapped
to c = 0. Note that

Φ−1 =

1 0 0
0 1 1
0 1 0

 .

So if x = a, y = b+ c, z = b, then

x3 + y3 = z3 =⇒ a3 + (b+ c)3 = b3,

and we get
a3 + 3b2c+ 3bc2 + c3 = 0,

which is in Weierstrass form. In affine coordinates, c = 1, so

a3 + 3b2 + 3b+ 1 = 0 =⇒ 3b2 + 3b = −a3 − 1.

If we set b = −3Y and a = −3X, then

2yY 2 − 9Y = 27X3 − 1

Y 2 − 1

3
Y = X3 − 1

27
.

Taking Y = y/u3 and X = x/u2 (coefficients of y2 and x3 still match), for u = 3, we get

y2

36
− 1

3

y

33
=
x3

36
− 1

33

y2 − 9y = x3 − 27,

and completing the square yields
y2 = x3 − 432.
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I.5.2 A classical example

Fermat showed by infinite descent that u4 + v4 = w2 has no nontrivial (uvw 6= 0) integer
solutions.

By change of variables

Y ′ =
w

v2
, X ′ =

u

v
,

we obtain
(Y ′)2 = (X ′)4 + 1.

Writing X ′ = x and Y ′ = y + x2, we get(
y + x2

)2
= x4 + 1 =⇒ y2 + 2x2y = 1,

which is a smooth cubic. Projectivizing yields

y2z + 2x2y = z3,

an elliptic curve with a flex at (1 : 0 : 0). The tangent line at the flex is y = 0. The transform0 1 0
1 0 0
0 0 1


sends (1 : 0 : 0) to (0 : 1 : 0) and y = 0 to x = 0. Next apply0 0 1

0 1 0
1 0 0

 ,

which fixes (0 : 1 : 0) and sends x = 0 to z = 0. The composition of these is

Φ =

0 0 1
0 1 0
1 0 0

0 1 0
1 0 0
0 0 1

 =

0 0 1
1 0 0
0 1 0

 .

Setting ab
c

 = Φ

xy
z

 ,

we have xy
z

 = Φ−1

ab
c

 =

0 1 0
0 0 1
1 0 0

ab
c

 =

bc
a

 .
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I.6 2013-09-16

I.6.1 Correction

Consider
F θ(tx, ty, z) = c30t

3x3 + c02t
2y2z + . . . .

Set t = − c02

c30
(coefficients equal but on opposite sides of the equation).

I.6.2 Hessian and flex points

Consider a smooth cubic F (x, y, z) = 0. The Hessian is the cubic

H =

∣∣∣∣∣∣∣
∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂z

...
...

...
∂2F
∂z2

∣∣∣∣∣∣∣ .
The flex points are given by {F = 0} ∩ {H = 0}. (Bezout: ≤ 9 points.)

Try
F (x, y, z) = ax3 + by3 + cz3.

Then

H =

∣∣∣∣∣∣
6ax 0 0
0 6by 0
0 0 6cz

∣∣∣∣∣∣ = (216abc)xyz.

Say charK = 0. Then

{flex points} =
{
ax3 + by3 + cz3 = 0

}
∩ {xyz = 0} .

Suppose −c = a+ b, e.g.,
x3 + 2y3 − 3z3 = 0. (∗)

This has a point. But, if a
b
, a
c
, b
c
are not cubes in K, then there are no flex points defined

over K. For example, take K = Q in (∗).

Proposition I.6.1. Suppose C is a smooth plane cubic curve over K, and 0 ∈ C(K) is a
flex point. Then there is a unique group law on C(K) such that P + Q + R = 0 whenever
P,Q,R are collinear points lying in C(K), and 0 is the identity.

I.6.3 Example from last time, continued

Consider u4 + v4 = w2. By some changes of variables described in §I.5.2, the equation
becomes

c2a+ 2cb2 = a3.

The affine points at c = 1 are a+ 2b3 = a3, so

2b2 = a3 − a,
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and taking b 7→ 2y, a 7→ 2x yields

8y2 = 8x3 − 2x

y2 = x3 − 1

4
x.

Now we apply (setting u = 2)

y 7→ y

u3
=
y

8

x 7→ x

u2
=
x

4
,

so we get
y2

64
=
x3

64
− x

16
,

which finally gives us the integer Weierstrass form

y2 = x3 − 4x.

I.6.4 Congruent integers

Observe: (
3

2

)2

+

(
20

3

)2

=

(
41

6

)2

,

so 5 is congruent! (Fibonacci, 1225)
Recall:

Definition I.6.2. A positive integer n is congruent if it is the area of a right triangle with
rational sides.

Example I.6.3. 5 and 6 are congruent.

Proposition I.6.4. If n is a squarefree positive integer, then the following are equivalent:

(1) n is congruent.

(2) There are three rational squares in arithmetic progression with common difference n.

Proof. Suppose n is congruent. Let n = 1
2
ab with a2 + b2 = c2 (a, b, c ∈ Q>0). Let x = c2

4
.

Then

x+ n =
a2 + b2

4
+

1

2
ab =

(
a+ b

2

)2

,

x− n =
a2 + b2

4
− ab

2
=

(
a− b

2

)2

,

so x− n, x, x+ n is the arithmetic progression.
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Conversely, given x ∈ Q such that x, x± n are all squares, let

a =
√
x+ n+

√
x− n,

b =
√
x+ n−

√
x− n.

Check: 1
2
ab = n, and

a2 + b2 = 4x,

which is a square.

Proposition I.6.5. A positive integer n is congruent ⇐⇒ there exists a Q-rational point
on the elliptic curve y2 = x3 − n2x other than the trivial points ∞, (0, 0), (n, 0), (−n, 0).

Proof. Given three rational squares x, x± n,

x(x+ n)(x− n) = square.

This is the nontrivial point. (We will prove the converse later.)

Remark I.6.6. The fact that 2 is not congruent follows from Fermat’s proof that u4 +v4 = w2

has no nontrivial integer solutions.

I.6.5 Elliptic curves over C
Genus zero case: X is topologically a circle x2 + y2 = 1 (S1). Embed the circle as

S1 → P2(C)

θ 7→
(
f(θ) : f ′(θ) : 1

)
,

where f must satisfy f(θ)2 + f ′(θ)2 = 1 and be periodic with period 2π. (Example: f(θ) =
sin θ.) The image is the circle. Such functions are

C(cos θ, sin θ) ∼= C(u)[v]/(u2 + v2 − 1) ∼= C(t).

We want to copy this for genus 1. Let Λ be a lattice in C, i.e., a discrete subgroup of C
containing an R-basis. Write Λ = Zω1 + Zω2.

Aim: define a embedding

C/Λ→ P2(C)

z 7→
(
f(z) : f ′(z) : 1

)
,

where f must be doubly periodic.
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Chapter II

Elliptic Curves over the Complex
Numbers

II.1 2013-09-18
Remark II.1.1. Al-Karaji, 953–1029, Persian mathematician, proved 5 congruent.

II.1.1 Lattices and elliptic functions

Definition II.1.2. A lattice is a discrete subgroup of C containing an R-basis, i.e.,

Λ = Zω1 ⊕ Zω2,

where ω1, ω2 are R-linearly independent.

Goal: to define an embedding

C/Λ→ P2(C)

z 7→

{(
f(z) : f ′(z) : 1

)
(z /∈ Λ),

(0 : 1 : 0) (z ∈ Λ).

with image an elliptic curve.
We’ll need f, f ′ doubly periodic, i.e.,

f(z + ω) = f(z) ∀ω ∈ Λ.

Definition II.1.3. An elliptic function with respect to Λ is a meromorphic function such
that

f(z + ω) = f(z) ∀ω ∈ Λ, z ∈ C.

Remark II.1.4. The set of elliptic functions forms a field C(Λ).

Definition II.1.5. The Weierstrass ℘-function for Λ is

℘Λ(z) =
1

z2
+
∑
ω∈Λ
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

31
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The Eisenstein series of weight 2k for Λ is

G2k(Λ) =
∑
ω∈Λ
ω 6=0

ω−2k.

Remark II.1.6. This is our first example of a modular form.

Theorem II.1.7. (a) G2k is absolutely convergent for k > 1.

(b) ℘Λ is absolutely convergent and uniformly convergent on every compact subset of C−Λ.
It defines a meromorphic function on C with a double pole of residue 0 at each lattice
point, and no other poles.

(c) ℘Λ is even, i.e., ℘Λ(−z) = ℘Λ(z).

Proof. (a) Consider the set

S =
{
ω ∈ Λ

∣∣ ω ∈ ball of radius R with center (0, 0)
}
.

Let A be the area of a fundamental domain of Λ.

Exercise II.1.8.
#S =

πR2

A
+ O(R).

Thus,
#
{
ω ∈ Λ

∣∣ N ≤ |ω| < N + 1
}
< cN

for some constant c. So∑
ω∈Λ
ω 6=0

|ω|−2k =
∑
ω∈Λ
ω 6=0

1

|ω|2k
<

∞∑
N=1

cN

N2k
=

∞∑
N=1

c

N2k−1
,

which converges when k > 1.

(b) Observe that∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ =

∣∣∣∣ω2 − (z − ω)2

ω2(z − ω)2

∣∣∣∣ =
|2zω − z2|
|ω|2 |z − ω|2

=
|z| |2ω − z|
|ω| |z − ω|2

.

We have

|2ω − z| ≤ 2 |ω|+ |z| ≤ 5

2
|ω| ,

|z − ω| ≥ |ω| − |z| > 1

2
ω.

Thus, if |ω| > 2 |z| (all but finitely many ω), then∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ ≤ |z||ω|2 ·
5
2
|ω|(

1
2
ω
)2 =

10 |z|
|ω|3

.
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By part (a), ∑
ω∈Λ
ω 6=0

1

|ω|3

converges. So ℘Λ converges absolutely for any z ∈ C − Λ, and converges uniformly on
compact subsets.

We will show the statement about the poles later.

(c) Since −Λ = Λ, this is clear.

Theorem II.1.9. ℘Λ is an elliptic function with respect to Λ.

Proof. By uniform convergence, we can differentiate term by term:

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
,

℘′(z + ω) = ℘′(z) ∀ω ∈ Λ. (Λ = Λ + ω)

Integrating with respect to z,
℘(z + ω) = ℘(z) + C,

where C is a constant depending only on ω. Let z = −ω
2
. Then

℘
(ω

2

)
= ℘

(
−ω

2

)
+ C,

but ℘ is even, so C = 0 and therefore ℘ is elliptic.

II.1.2 Embedding elliptic curves

Consider the well-defined map

C/Λ→ P2(C)

z 7→
(
℘(z) : ℘′(z) : 1

)
(z /∈ Λ)

z 7→ (0 : 1 : 0) (z ∈ Λ).

Theorem II.1.10. (
℘′(z)

)2
= 4℘(z)3 − 60G4(Λ)℘(z)− 140G6(Λ).

Lemma II.1.11. The Laurent series for ℘(z) about z = 0 is:

℘(z) = z−2 +
∞∑
k=1

(2k + 1)G2k(Λ)z2k.
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Proof. Observe that
1

(z − ω)2
− 1

ω2
= ω−2

((
1− z

ω

)−2

− 1

)
= ω−2

[
1 + (−2)

(
− z
ω

)
+

(−2)(−3)

1 · 2

(
− z
ω

)2

+ · · · − 1

]
= ω−2

[
2
z

ω
+ 3

z2

ω2
+ . . .

]
=

∞∑
m=1

(m+ 1)zm

ωm+2
.

Thus,

℘(z) = z−2 +
∞∑
m=1

(m+ 1)zm
∑
ω∈Λ
ω 6=0

1

ωm+2

= z−2 +
∞∑
k=1

(2k + 1)z2kG2k+2(Λ).

II.2 2013-09-20

II.2.1 The Weierstrass ℘-function, continued

Let us prove the theorem from last time. Recall:
Theorem (II.1.10). (

℘′(z)
)2

= 4℘(z)3 − g2℘(z)− g3,

where g2 = 60G4(Λ) and g3 = 140G6(Λ).
Proof of Theorem II.1.10. We have

℘(z) = z−2 + 3G4z
2 + 5G6z

4 + . . .

℘(z)3 = z−6 + 9G4z
−2 + . . .

℘′(z)2 = 4z−6 − 24G4z
−2 + . . .

Set
f(z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6 = z2 + . . .

This is the Laurent series about z = 0 for

f(z) =
(
℘′(z)

)2 − 4℘(z)3 + g2℘(z) + g3. (II.2.1.1)

The expansion starts with z2 (no z0, z−2, z−4, z−6 terms). In particular, f(z) is holomorphic
at z = 0, and f(0) = 0.

Since f is elliptic, f(z) = 0 for all z ∈ Λ. Since ℘ and ℘′ are holomorphic away from
points of Λ, so is f . Thus, f is everywhere holomorphic.

Let D be a fundamental parallelogram. On D, f is bounded. Since f is elliptic, it follows
that f is bounded everywhere. By Liouville’s theorem, f is constant. But f(0) = 0, so f is
identically zero, and the result follows from (II.2.1.1).
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II.2.2 Riemann surfaces

Let us make a brief aside on (connected) Riemann surfaces. A Riemann surface is a “union
of patches on C,” i.e., a surface X =

⋃
α Uα, where each Uα is homeomorphic to an open

subset Vα of C.
We additionally assume that all our Riemann surfaces are connected and Hausdorff.
Denote the homeomorphisms by

Uα
ϕα−−→ Vα.

We require that the transition functions ϕα ◦ ϕ−1
β be analytic where defined.

Example II.2.1. Our main examples of Riemann surfaces:

• The complex plane C

• The Riemann sphere C∞

• An elliptic curve C/Λ

• The upper half plane H

Morphisms between Riemann surfaces have corresponding maps between domains in C,
analytic where defined. These are called analytic maps .
Fact II.2.2 (Open mapping theorem). Suppose f : R → S is a nonconstant analytic map
between connected Riemann surfaces. Then f is open.

Corollary II.2.3. If R is compact, and f : R → S is a nonconstant analytic map, then
f(R) = S (and S is compact).

Proof. By the open mapping theorem, f(R) is open in S. Moreover, f(R) is compact and S
is Hausdorff, so f(R) is closed. Since S is connected, it follows that f(R) = S.

Corollary II.2.4 (Liouville’s theorem). There is no nonconstant analytic map f : C∞ → C.

Theorem II.2.5 (Degree of an analytic map). Suppose f : R→ S is a nonconstant analytic
map and R is compact. Then there is an integer k ≥ 1 such that for all w ∈ S, there are
exactly k solutions to f(z) = w (counted with multiplicity), i.e., f is a k-to-1 map from
R→ S. We write deg(f) := k.

Proof. Let

Sq =
{
w ∈ S

∣∣ f−1(w) has q preimages counting multiplicity
}
.

(Note: |f−1(w)| < ∞, since f−1(w) is discrete and R is compact.) Exercise: Show Sq is
open.

Note that if p 6= q, then Sp ∩ Sq = ∅. Since f is surjective,

S = S1 ∪ S2 ∪ S3 ∪ . . .

is an open cover. By compactness of S, there is a finite open subcover

S = S1 ∪ · · · ∪ Sn.

But S is connected, so S = Sk for some k.
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Example II.2.6. Let us find the degree of the Weierstrass ℘-function

C/Λ ℘Λ−−→ C∞.

We showed that ℘Λ has a double pole at any point in Λ, and no other poles. So ℘Λ is a
2-to-1 map.

Likewise, by looking at preimages at infinity, ℘′Λ : C/Λ→ C∞ is a 3-to-1 map.

II.2.3 Missing facts about our map

We’re still missing some facts about the map

C/Λ→ P2(C)

z 7→
(
℘(z) : ℘′(z) : 1

)
.

In particular:

(1) 4x3 − g2x− g3 has distinct roots.

(2) C/Λ→ E(C) is surjective.

(3) C/Λ→ E(C) is injective.

(4) C/Λ→ E(C) is an analytic isomorphism.

Let’s show these.

(1) 4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3), i.e.,

℘′(z)2 = 4
(
℘(z)− e1

)(
℘(z)− e2

)(
℘(z)− e3

)
.

Claim II.2.7. ei = ℘
(
ωi
2

)
, where ω3 = ω1 + ω2.

Proof. Observe that

℘′
(ωi

2

)
= −℘′

(
−ωi

2

)
since ℘′ is odd

= −℘′
(
ωi −

ωi
2

)
since ℘′ is elliptic

= −℘′
(ωi

2

)
.

Thus ℘′
(
ωi
2

)
= 0.

Are the ωi distinct? The equation ℘(z) = u has two solutions (up to multiplicity). Let

f(z) = ℘(z)− ℘
(ωi

2

)
.

This has a double zero at ωi
2
, and since f ′(z) = ℘′(z),

f ′
(ωi

2

)
= ℘′

(ωi
2

)
= 0.

Now if ℘
(ωj

2

)
= ℘

(
ωi
2

)
with j 6= i, then we get a contradiction, since ωj

2
is another

zero of f .
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(2) The point (0 : 1 : 0) is hit. Pick (a : b : 1) on y2 = 4x3− g2x− g3. We want z such that

℘(z) = a, ℘′(z) = b.

Say ℘(z0) = a. Then

℘′(z0)2 = 4℘(z0)3 − g2℘(z0)− g3 = 4a3 − g2a− g3 = b2,

so ℘′(z0) = ±b. If it is b, then we are done. If ℘′(z0) = −b, then

℘(−z0) = a, ℘′(−z0) = b,

proving surjectivity.

II.3 2013-09-23

II.3.1 Embedding elliptic curves, continued

Consider

ϕ : C/Λ→ P2(C)

z 7→
(
℘(z) : ℘′(z) : 1

)
.

Last time we showed that 4x3 − g2x− g3 has distinct roots, and that ϕ is surjective.

(3) ϕ is injective: Suppose ℘(z1) = ℘(z2) and ℘′(z1) = ℘′(z2). Then, up to Λ,

z1 = ±z2

since ℘ is 2-to-1 and even. If z1 = −z2, then

℘′(z1) = ℘′(−z2) = −℘′(z2).

So ℘′(z1) = 0, whence z1 = ωi
2
(up to Λ, for some i ∈ {1, 2, 3}). But then −z1 = z1 (up

to Λ), so z1 = z2.

(4) ϕ is an analytic isomorphism: In a neighborhood of a lattice point,(
℘(z) : ℘′(z) : 1

)
=

(
℘(z)

℘′(z)
: 1 :

1

℘′(z)

)
→ (0 : 1 : 0)

since ℘ is a double pole and ℘′ is a triple pole at lattice points.

Conversely, starting with an elliptic curve

y2 = 4x3 − g2x− g3 (g2, g3 ∈ C),

can we find a lattice Λ such that

g2 = 60G4(Λ),

g3 = 140G6(Λ)?

Yes, but we need some modular function theory.
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II.3.2 Examples

Let us first consider some examples.

Example II.3.1. Say Λ = Z[i]. Then g3(Λ) = 0 and g3(Λ) ∈ R×.

Proof. We have

G6(Λ) =
∑
ω∈Λ
ω 6=0

1

ω6
.

Consider the automorphism ϕ(ω) = iω of Λ:

ϕ(G6) = G6,

and
ϕ(ω6) = i6ω6 = −ω6 =⇒ ϕ(G6) = −G6,

whence G6 = 0, and so g3 = 0. Then g2 6= 0 (else we have a cusp). Hence

G4(Λ) =
∑
ω∈Λ
ω 6=0

1

ω4
,

and if σ is complex conjugation (an automorphism of Λ), then

σ(G4) = G4,

so G4 ∈ R, thus g2 ∈ R.

Example II.3.2. Say Λ = Z
[

1
2
(−1 +

√
−3)

]
. Play the same game: g2(Λ) = 0 and g3(Λ) ∈ R×.

Get
y2 = 4x3 − g3.

Example II.3.3. If c ∈ C×, let cΛ = {cω | ω ∈ Λ}. Show that

g2(cΛ) = c−4g2(Λ),

g3(cΛ) = c−6g3(Λ).

Then we can prove that every elliptic curve with g2 = 0 (resp. g3 = 0) is of the form C/Λ
with Λ = cZ

[
1
2
(−1 +

√
−3)

]
(resp. cZ[i]).

Proof. Suppose the curve is y2 = 4x3 − ax with a 6= 0. Say

g2(Z[i]) = t 6= 0.

Then
g2(cZ[i]) = c−4t.

Solve c−4t = a for c. (Note: g3(cZ[i]) = 0 as desired.)

Remark II.3.4. In particular, y2 = x3−x and x3 + y3 = 1 are produced (up to isomorphism)
by the above method.
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II.3.3 The j-invariant

To an elliptic curve
y2 = 4x3 − g2x− g3,

associate the j-invariant

j =
1728g3

2

g3
2 − 27g2

3

.

(This is the discriminant of the cubic.)
We’ll see that, if E,E ′ are isomorphic elliptic curves, then j(E) = j(E ′).

II.3.4 Aside: Uniformization of Riemann surfaces

Let R be a (Hausdorff, connected) Riemann surface. There exists a universal cover

R̃� R.

There are, up to isomorphism, only three universal covers: C, C∞, and the open unit disc
∆.

(1) C� C/Λ covers tori.

(2) C∞ has no proper quotient.

(3) ∆� lots. (A “generic” Riemann surface has universal cover ∆.)

The unit disc ∆ is conformally equivalent to

H =
{
z ∈ C

∣∣ Im z > 0
}
.

Let Λ ≤ SL2(R) be a subgroup. Consider the action(
a b
c d

)
z =

az + b

cz + d

of Λ on H. We can study H/Λ (Shimura, or modular curves). Consider the case of Λ =
SL2(Z).

II.3.5 Some modular function theory

Theorem II.3.5. Given a, b ∈ C and an elliptic curve

E : y2 = 4x3 − ax− b,

there exists a lattice Λ such that g2(Λ) = a and g3(Λ) = b.
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Proof. Define

j(E) =
1728a3

a3 − 27b2
.

If Λ is a lattice, define

jΛ = j(EΛ) =
1728g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
.

We saw

g2(cΛ) = c−4g2(Λ),

g3(cΛ) = c−6g3(Λ),

so jcΛ = jΛ.
If z ∈H , consider the lattice

Λ := 〈1, z〉 =
{
m+ nz

∣∣ m,n ∈ Z
}
.

Define j(z) := jΛ.

Note: if
(
a b
c d

)
∈ SL2(Z), then Λ = 〈az + b, cz + d〉. Thus,

j

(
az + b

cz + d

)
= j(z).

So j is invariant under the action of SL2(Z) on the upper half plane H .
We now have a map

H/ SL2(Z)
j−→ C.

[Later: give H/ SL2(Z) the structure of a Riemann surface such that j is an analytic map,
and such that H/ SL2(Z) has a 1-point compactification and j extends to

̂H/ SL2(Z)
j−→ C,

an analytic map.]
The image of the extended j is C∞. So there exists z ∈ H such that

j(z) =
1728a3

a3 − 27b2
.

Let Λ = 〈1, z〉. Pick c such that
a = c−4g2(Λ).

Plugging in j(E) = jΛ, we get
b2 = c−12g3(Λ)2,

so b = ±c−6g3(Λ). If b = c−6g3(Λ), we’re done. If b = −c−6g3(Λ), replace c by ci; this does
not change a, but replaces b by −b. Then

a = c−4g2(Λ) = g2(cΛ),

b = c−6g3(Λ) = g3(cΛ).
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II.4 2013-09-25

Note II.4.1. The galoisrepresentations blog has a link to a video game based on H/ SL2(Z).1

Last time:
H/ SL2(Z)

j
//

⊆

C� _

��̂H/ SL2(Z)
j

// C∞

II.4.1 Elliptic functions

Theorem II.4.2. The field of elliptic functions with respect to Λ is given by

C(℘, ℘′) = C(℘)
[√

4℘3 − g2℘− g3

]
Let f be elliptic w.r.t. Λ. Then, splitting into even and odd components,

f(z) =

(
f(z) + f(−z)

2

)
+ ℘′(z)

(
f(z)− f(−z)

2℘′(z)

)
.

So it’s enough to prove that, if f is even and elliptic, then f ∈ C(℘).
Idea: Come up with

g(z) =
∏
w

(
℘(z)− ℘(w)

)nw
having the same zeros and poles as f(z). Then f(z)

g(z)
is elliptic, no zeros and poles, so bounded

in the fundamental parallelogram, so bounded everywhere. By Liouville, it’s constant, so
f(z) = kg(z) ∈ C(℘).

The equation ℘(z)− ℘(w) = 0 has two solutions (since ℘ is 2-to-1), which we can write
w,−w (mod Λ) (also true if w = −w, since ℘′

(
ωi
2

)
= 0).

If w 6= −w, set nw = vf (w), the order of vanishing of f at w. Note that vf (w) = vf (−w)
since f is even and elliptic (take product over half the w’s).

What about if w = −w? (w = ω1

2
, ω2

2
, ω3

2
, 0)

Claim II.4.3. If 2w ∈ Λ, then vf (w) is even (set nw = 1
2
vf (w)).

Proof. To show this, differentiate f(z) = f(−z) repeatedly:

f (i)(z) = (−1)if (i)(−z).

So
f (i)(w) = (−1)if (i)(−w) = (−1)if (i)(w).

If i is odd, then f (i)(w) = 0. Hence, vf (w) = smallest i such that f (i)(w) 6= 0. So vf (w) is
even.

1https://galoisrepresentations.wordpress.com/2013/09/24/life-on-the-modular-curve/

https://galoisrepresentations.wordpress.com/2013/09/24/life-on-the-modular-curve/
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Since C/Λ ℘−→ C∞ is 2-to-1 and C/Λ ℘′−−→ C∞ is 3-to-1,

[C(Λ) : C(℘)] = 2,

[C(Λ) : C(℘′)] = 3.

Since (2, 3) = 1,
C(Λ) = C(℘, ℘′).

This completes the proof of Theorem II.4.2.

II.4.2 Aside: Big picture

Three perspectives:

(1) Analysis: compact Riemann surfaces, e.g., C/Λ.

(2) Algebra: algebraic function fields of 1 variable, e.g.,

C(℘)
[√

4℘3 − g2℘− g3

]
.

(3) Geometry: smooth irreducible projective curves, e.g.,

y2 = 4x3 − g2x− g3.

II.4.3 The addition law

We have a map

C/Λ φ−→ EΛ(C)

z 7→
(
℘(z) : ℘′(z) : 1

)
.

Theorem II.4.4. The following are equivalent:

(1) z1 + z2 + z3 ≡ 0 (mod Λ)

(2) φ(z1), φ(z2), φ(z3) are collinear.

Proof

Say

P1 = (x1, y1) = φ(z1),

P2 = (x2, y2) = φ(z2).

Suppose x1 6= x2. Let y = mx+ k be the line through P1 and P2. Consider

f(z) = ℘′(z)−m℘(z)− k.

This has zeros at z1 and z2. Moreover, f(z) is an elliptic function with a triple pole at z = 0
and no others.

Hence f is 3-to-1, so f has 3 zeros. Call the other zero z3.
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Claim II.4.5. If f is elliptic w.r.t. Λ, with zeros at a1, . . . , an and poles at b1, . . . , bn, then
n∑
i=1

ai −
n∑
j=1

bj ≡ 0 (mod Λ).

Proof of claim. Consider the function
zf ′(z)

f(z)
,

which has poles at both poles and zeros of f [e.g., if f(z) = (z − a1) . . . (z − an), then
f ′(z)

f(z)
=

1

z − a1

+ · · ·+ 1

z − an
,

which has the desired property]. The residue term of the Laurent expansion of this near
z = a is

avf (a)

z − a
.

Letting ∆ be the fundamental domain with vertices α, α+ ω1, α+ ω2, α+ ω1 + ω2, Cauchy’s
residue theorem yields

1

2πi

∮
∂∆

zf ′(z)

f(z)
dz =

n∑
i=1

ai −
n∑
j=1

bj.

Computing this integral,
1

2πi

[∫ α+ω1

α

zf ′(z)

f(z)
dz −

∫ α+ω1+ω2

α+ω2

zf ′(z)

f(z)
dz

]
=

1

2πi

[∫ α+ω1

α

zf ′(z)

f(z)
dz −

∫ α+ω1

α

(z + ω2)f ′(z)

f(z)
dz

]
=
−ω2

2πi

∫ α+ω1

α

f ′(z)

f(z)
dz w = f(z)

= −ω2
1

2πi

∫
loop

dw

w︸ ︷︷ ︸
integer

∈ Λ. dw = f ′(z) dz

So, performing a similar computation for the other edges,
1

2πi

∮
∂∆

zf ′(z)

f(z)
dz ∈ Λ.

Continuing with the proof of the theorem, recall that

f(z) = ℘′(z)−m℘(z)− k,
f has zeros at z1, z2, z3, and f has poles at 0, 0, 0 (mod Λ). So

z1 + z2 + z3 − 0− 0− 0 ≡ 0 (mod Λ).

Conversely, suppose z1 + z2 + z3 ≡ 0 (mod Λ), but φ(z1), φ(z2), φ(z4) are collinear. Then

z1 + z2 + z4 ≡ 0 (mod Λ),

whence z3 ≡ z4 (mod Λ), so φ(z4) = φ(z3).
We will finish with the case x1 = x2 next time.
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II.5 2013-09-27

II.5.1 Remarks

Note:

(1) va(f) should should be used rather than vf (a) (it’s a valuation).

(2) In the proof that C(Λ) = C(℘, ℘′), note that the poles are handled the same as the
zeros.
As for the behavior at 0, multiply g(z) by the right power of ℘(z) to make v0(g) = v0(f),
noting that v0(f) is even, as proven.

II.5.2 Addition law, continued

C/Λ φ−→ EΛ(C)

z 7→
(
℘(z) : ℘′(z) : 1

)
(z /∈ Λ)

z 7→ (0 : 1 : 0) (z ∈ Λ)

Theorem II.5.1. z1 + z2 + z3 ≡ 0 (mod Λ) ⇐⇒ φ(z1), φ(z2), φ(z3) collinear.

We already proved this for x1 6= x2. Take limits to get the general case.

II.5.3 Explicit group law

Suppose charK 6= 2, and consider an elliptic curve

E : y2 = f(x) = ax3 + bx2 + cx+ d.

Say (x1, y1) and (x2, y2) are points on E with coordinates in K. Say x1 6= x2. Let (x3, y3)
be the third point of intersection of the line joining P1, P2 and E. Call the line y = mx+ k.
Then

(mx+ k)2 = ax3 + bx2 + cx+ d

has roots x1, x2, x3. This yields

ax3 + (b−m2)x2 + · · · = 0,

whence
x1 + x2 + x2 =

m2 − b
a

.

So

x3 = −x1 − x2 −
b

a
+

(
y2 − y1

x2 − x1

)2
1

a
.

Solve
y3 − y1

x3 − x1

=
y2 − y1

x2 − x1

to get a.
If x1 = x2, there are two possibilities:
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(a) P1 = P2. Then if y2 = f(x), we have

2y
dy

dx
= f ′(x),

so

m =
f ′(x1)

2y1

=⇒ x3 = −2x1 −
b

a
+

(
f ′(x1)

2y1

)2
1

a
.

(b) If x1 = x2 and y1 = −y2, then the third point of intersection is the point at ∞.

Remark II.5.2. Note that the group law gives (x1, y1)⊕(x2, y2) as an expression in x1, x2, y1, y2

with coefficients a, b, c, d of E. We could check by brute force that this is a group.
Associativity follows from an identity involving x1, x2, y1, y2, a, b, c, d with integer coeffi-

cients. Since we already know this is a group, we know this identity holds.
If K ⊆ C, then E(K) ≤ E(C) (subgroup).

II.5.4 Division points

Say K = C, E = EΛ, and m is a positive integer. For P ∈ E(C), denote

[m]P
def
= P + · · ·+ P︸ ︷︷ ︸

m times

.

Let
E[m] =

{
P ∈ E(C)

∣∣ [m]P = point at ∞
}
.

This is a subgroup of E(C).
What are the points of order m in C/Λ? In general,

C/Λ ∼= S1 × S1,

so
E[m] ∼= Z/mZ× Z/mZ.

Moreover, E[m] ⊆ E(K) ⇐⇒ all roots of f lie in K.

Example II.5.3 (m = 2). Abstractly, E[2] ∼= Z/2Z× Z/2Z. More concretely,

E[2] =

{
φ(0), φ

(ω1

2

)
, φ
(ω2

2

)
, φ

(
ω1 + ω2

2

)}
=

{
∞,
(
℘
(ω1

2

)
, ℘′
(ω1

2

))
,
(
℘
(ω2

2

)
, ℘′
(ω2

2

))
,

(
℘

(
ω1 + ω2

2

)
, ℘′
(
ω1 + ω2

2

))}
= {∞} ∪

{
(a, 0)

∣∣ f(a) = 0
}
.

Example II.5.4 (m = 3). E[3] ∼= Z/3Z × Z/3Z is the Hesse configuration of 9 flex points:
3P =∞ ⇐⇒ P, P, P are collinear ⇐⇒ P is a flex point.
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Example II.5.5. Let E : y2 = x3 − x. Then

E[2] = {∞, (−1, 0), (0, 0), (1, 0)}
E[3] = ?

Solve 2P = −P . If P = (x, y) and 2P = (x3, y3), then

x3 = −2x+

(
f ′(x)

2y

)2

= −2x+
(3x2 − 1)2

4(x3 − x)
.

So we want to solve
−2x+

(3x2 − 1)2

4(x3 − x)
= x.

Clearing denominators,
3x4 − 6x2 − 1 = 0,

so

x2 =
6±
√

36 + 12

6
= 1± 2

√
3

3
,

and we get

x = ±

√
1 +

2
√

3

3
/∈ Q.

Remark II.5.6. The smallest extension field over which these roots are all defined is closely
related to the beginnings of non-abelian class field theory.
Example II.5.7. If we do this for

y2 = f(x) = x3 = ax+ b,

we get that the x-coordinates of a 3-torsion point (other than ∞) satisfy

g(x) = 3x4 + 6ax2 + 12bx− a2 = 0.

Note that
g′(x) = 12f(x).

WHY?

Theorem II.5.8. Suppose E is defined over K. If P ∈ E[m], then the coordinates of P lie
in K.

II.6 2013-09-30

II.6.1 Torsion points, continued

Let E be an elliptic curve over K, and let m be a positive integer. Recall that

E[m]
def
=
{
P ∈ E(C)

∣∣ mP = point at ∞
}
.
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Theorem II.6.1. If P ∈ E[m], then the coordinates of P are algebraic over K. In particular,

E[m] ≤ E(K).

Moreover, let L/K be a field extension, and let σ ∈ AutK(L). If P ∈ E(L) has order m,
then σ(P ) ∈ E(L) and has order m, where if P = (x, y), we say σ(P ) = (σ(x), σ(y)).

Remark II.6.2. We saw this for m = 2, 3. The idea of the proof is this: Assume E : y2 =
x3 + ax+ b with charK = 0. If P = (x, y), then

mP =

(
φm(P )

ψm(P )2
,
ωm(P )

ψm(P )3

)
,

where

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y
(
x6 + 5ax4 + . . .

)
,

...

(the m-division polynomials). Moreover,

mP =∞ ⇐⇒ ψm(P ) = 0.

For m odd, ψm is a polynomial in x, so the x-coordinates are algebraic over K, whence the
y-coordinates are as well.

For m even, either y = 0 (so P ∈ E[2]) or a polynomial in x is zero, so the x-coordinates
are again algebraic over K.

Proof of Theorem II.6.1. Apply σ to y2 = f(x):

σ(y)2 = σ
(
f(x)

)
= f

(
σ(x)

)
since f ∈ K[x]. The addition law has coefficients in K, so

σ(P1 + P2) = σ(P1) + σ(P2).

Thus σ(mP ) = mσ(P ).

II.6.2 Galois representations associated to elliptic curves

Say E is an elliptic curve over Q. Recall that

E[m] ∼= Z/mZ× Z/mZ.

We have a representation

ρm : Gal(Q/Q)→ Aut(E[m]) ∼= GL2(Z/mZ).
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Example II.6.3. Say m = 2 and E is in the form y2 = f(x). Then

E[2] = {∞} ∪
{

(α, 0)
∣∣ f(α) = 0

}
.

The representation
ρ2 : Gal(Q/Q)→ GL2(Z/2Z) ∼= S3

acts by permuting the roots of f . (It follows that every mod 2 representation of Gal(Q/Q)
comes from an elliptic curve.)

Remark II.6.4. The fixed field of ker ρm is Km (the m-division field), where

Km = extension of Q generated by the coordinates of E[m].

Furthermore, the image of ρm is

ρm
(
Gal(Q/Q)

) ∼= Gal(Km/Q).

This is the starting point of nonabelian class field theory .

II.6.3 Modular forms and modular curves

Consider the upper half plane

H =
{
z ∈ C

∣∣ Im(z) > 0
}
.

The group SL2(R) acts by

gz =
az + b

cz + d
, g =

(
a b
c d

)
∈ SL2(R).

Indeed, this acts on H :

Im(gz) =
Im(z)

|cz + d|2
.

Earlier, we considered the case Γ = SL2(Z) acting on H . Set

Γ̄ := PSL2(Z) = Γ/ {±I} .

We are interested in H /Γ and functions satisfying

f(z) = (cz + d)−kf

(
az + b

cz + d

)
∀
(
a b
c d

)
∈ Γ, z ∈H . (II.6.3.1)

Example II.6.5. For k = 0, the j-invariant is such a function.

Definition II.6.6. If f is meromorphic on H and satisfies (II.6.3.1), then f is called weakly
modular of weight k on Γ.



II.7. 2013-10-02 49

Fact II.6.7. The group Γ̄ is isomorphic to a free product

Γ̄ =
〈
S, T

∣∣ S2 = (ST )3 = I
〉 ∼= Z/2 ∗ Z/3,

where

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

Thus, condition (II.6.3.1) is equivalent to:

f(z) = z−kf

(
−1

z

)
,

f(z + 1) = f(z).

By the second condition, we can write

f(z) =
∞∑

n=−∞

anq
n, q = e2πiz.

Definition II.6.8. If an = 0 for all n < 0, we call f a modular form (of weight k for Γ). If
an = 0 for all n ≤ 0, we call f a cusp form (or cuspform).

II.7 2013-10-02

II.7.1 Modular forms, continued

Exercise II.7.1. If f, g are modular forms of weight k, k′, respectively, then fg is a modular
form of weight k + k′.
Exercise II.7.2. If f, g are modular forms of weight k, and c ∈ C is a constant, then f + g
and cf are modular forms of weight k. (In other words, the set of weight k modular forms
is a C-vector space.)

II.7.2 Example: Gk(z)

For z ∈H , let Λz = 〈1, z〉 = {m+ nz | m,n ∈ Z} (where z ∈H ), and write

Gk(z) = Gk(Λz) =
∑

(m,n)6=(0,0)

1

(m+ nz)k
.

We can check that Gk(z) is absolutely convergent, and uniformly convergent on compact
subsets. Thus, Gk(z) is holomorphic on H.

Moreover, Gk has the following properties:

Gk(z + 1) = Gk(z),

Gk

(
−1

z

)
=

∑
(m,n)6=(0,0)

1(
m+ n

(
−1
z

))k =
∑

(m,n)6=(0,0)

zk

(mz − n)k
= zkGk(z),

where the last step is given by a permutation of Λz.
So Gk(z) is weakly modular of weight k for Γ.
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Claim II.7.3. For k ≥ 4 even,

Gk(z) = 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

σk−1(n)qn

)
,

where ζ is the Riemann zeta function, Bk is the k-th Bernoulli number, and

σ`(n) =
∑
d|n

d`.

The claim implies that Gk(z) is a modular form, and is not a cusp form.

Proof. Use the identity

π cot(πz) =
1

z
+
∞∑
m=1

(
1

z +m
+

1

z −m

)
,

which converges uniformly on compact subsets. Let q = e2πiz, where Im z > 0, so |q| < 1.
Then

π cot(πz) =
π cos(πz)

sin(πz)
= πi

eiπz + e−iπz

eiπz − e−iπz

= iπ

(
q + 1

q − 1

)
= iπ − 2πi

1− q

= iπ − 2πi
∞∑
d=0

qd.

So
1

z
+
∞∑
m=1

(
1

z +m
+

1

z −m

)
= iπ − 2πi

∞∑
d=0

qd.

Now differentiate (k − 1) times:

(−1)k−1(k − 1)!
∞∑

m=−∞

1

(z +m)k
= −(2πi)k

∞∑
d=1

dk−1qd.

Thus,

Gk(z) =
∑
m6=0

1

mk
+
∑
n 6=0

∞∑
m=−∞

1

(nk +m)k

= 2ζ(k) + 2
∞∑
n=1

∞∑
m=−∞

1

(nz +m)k

= 2ζ(k) + 2
∞∑
n=1

(−1)k

(k − 1)!
(2π)k(−1)k/2

∞∑
d=1

dk−1qnd

= 2ζ(k) +
2(2π)k(−1)k/2

(k − 1)!

∞∑
n=1

∞∑
d=1

dk−1qnd.
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Now we need a formula for some special values of the ζ function: setting k = 2n, we have

ζ(2n) = (−1)n+1B2n22nπ2n

2(2n)!
= Bk

(2πi)k

(−2k)(k − 1)!
.

Hence,

Gk(z) = 2ζ(k) +
2(2π)k(−1)k/2

(k − 1)!

∞∑
n=1

∞∑
d=1

dk−1qnd

= 2ζ(k)− 2ζ(k)
2k

Bk

∞∑
n=1

(∑
d|n

dk−1
)
qn

= 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

σk−1(n)qn

)
.

II.7.3 The discriminant

Some special values of the ζ function:

ζ(4) =
π4

90
,

ζ(6) =
π6

33 · 5 · 7
.

Let
∆(z) = g2(z)3 − 27g3(z)2 =

(
60G4(z)

)3 − 27
(
140G6(z)

)2
.

So, using the claim,

G4(z) =
π4

45
+

(2π)4

3

(
q + 9q2 + . . .

)
,

G6(z) =
2π6

33 · 5 · 7
− (2π)6

60

(
q + 33q2 + . . .

)
.

Thus,
∆(z) = (2π)12

(
q − 24q2 + 252q3 + . . .

)
.

In fact,

∆(z) = (2π)12q
∞∏
n=1

(1− qn)24 .

(We omit the proof, due to Jacobi.)
It follows that G4, G6 are weight 4, 6 modular forms, respectively. Thus, g3

2 and g2
3 are

weight 12 modular forms. So ∆ is a weight 12 modular form for Γ, actually a cusp form.2

2In fact, there are no cusp forms of weight less than 12 for the whole modular group Γ.
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II.7.4 The j-invariant

Recall that
j(z) =

1728g3
2

g3
2 − 27g2

3

=
1

q
+ 744 + 196884q + . . .

The j-variant is weakly modular of weight 0.
Remark II.7.4 (Monstrous moonshine). If G is the monster simple group, the smallest n
such that G ↪→ GLn(C) is n = 196833. (The monstrous moonshine conjecture was proved
by Borcherds, who made a breakthrough on a bus in Tibet.)

II.8 2013-10-04

II.8.1 Fundamental domains in the upper half plane

(Knapp, p. 230)
A fundamental domain D for Γ in the upper half plane: see picture.

(a) Each point of H can be mapped into D by an element of Γ.

(b) The only points of D equivalent to each other under the action of Γ are z, z + 1 on
vertical sides and z − 1

2
on the circular arc.

(c) The only points fixed by γ 6= 1 in Γ̄ = Γ/ {±I} are z = i (stabilizer is {I, S}) and
z = ρ, ρ2 (stabilizers are {I, ST, (ST )2} and {I, TS, (TS)2}).

II.8.2 Homothety

Λ→H

Λ = 〈ω1, ω2〉 7→
ω1

ω2

or
ω2

ω1︸ ︷︷ ︸
exactly one in H

What if we pick another basis Λ = 〈ω′1, ω′2〉, i.e.,(
ω′1
ω′2

)
=

(
a b
c d

)(
ω1

ω2

)
,A =

(
a b
c d

)
∈ GL2(Z).

If detA = −1, then Im(ω1

ω2
) and Im(

ω′1
ω′2

) have different signs. If detA = 1, then Im(
ω′1
ω′2

) =

Im(ω1

ω2
).

Thus, we have a well-defined map

Lattices/Homothety→ H/Γ.

This map is clearly surjective. It is also injective: Λ1 and Λ2 have the same image ⇐⇒
Λ1 = aΛ2 for some a ∈ C×, i.e., Λ1 and Λ2 are homothetic. [In fact, C/Λ1 and C/Λ2 are
isomorphic elliptic curves ⇐⇒ Λ1 and Λ2 are homothetic.]

Thus, j : H/Γ→ C is the moduli space of elliptic curves.

H/Γ←→ {Lattices up to homothety} ←→ {Elliptic curves over C up to isomorphism}
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II.8.3 The modular curve

For N ∈ Z+, consider the finite-index subgroup

Γ0(N)
def
=

{(
a b
c d

)
∈ Γ

∣∣∣∣ c ≡ 0 (mod N)

}
≤ Γ.

A modular curve Y0(N) is given by

Y0(N) = H/Γ0(N) oo //

��

{(E,C) | E elliptic curve over C, C subgroup of order N}

��

H/Γ oo // {isomorphism classes of elliptic curves over C}

Let

H∗ = H ∪
cusps︷ ︸︸ ︷

Q ∪ {i∞} .

Extend the action of Γ by identifying Q ∪ {i∞} with P1(Q), giving a transitive action(
a b
c d

)
(x : y) = (ax+ by : cx+ dy).

A base of open neighborhoods of i∞ is given by

NC = {zst Im(z) > C} ∪ {i∞} , C →∞,

as shown by the map

z 7→ e2πiz = q,

H → punctured unit open disk,
i∞ 7→ origin

We likewise get a compact Riemann surface

X0(N) = H∗/Γ0(N).

Note II.8.1. With the given topology, H∗/Γ is compact. Look at j : H/Γ→ C holomorphic
(∆ = g3

2 − 27g2
3 6= 0). Extend j to a meromorphic function

j : H∗/Γ→ C∞,
j(i∞) =∞.

Note that j has a simple pole at ∞. So j is injective. Also, j is surjective, completing the
outstanding proof that given a, b with a3− 27b2 6= 0, there exists Λ such that g2(Λ) = a and
g2(Λ) = b.
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Chapter III

Elliptic Curves over Finite Fields

III.1 2013-10-04

III.1.1 Example over some finite fields

Consider the equation
E : x3 + y3 = z3.

This defines an elliptic curve over Fq iff 3 - q. (In characteristic 3, x3 + y3 = (x + y)3, so E
is a triple line.)

Note that E(Fq) ≤ E(Fq2), so |E(Fq)| | |E(Fq2)|.

q |E(Fq)| q |E(Fq)| q |E(Fq)|
2 3 3 4 5 6
2 9 9 10 25 36
8 9 27 28 25 36
16 9 81 82 125 126
64 81
128 129

III.1.2 Magma code for size of elliptic curves

f := function(q)
K := GF(q)_i
n := 0
for x in K do
for y in K do
for z in K do
if x^3 + y^3 eq z^3 then
n := n + 1;
end if;
end for; end for; end for;
return (n - 1)/(q - 1);
end function;

55
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III.2 2013-10-07

III.2.1 Counting points on elliptic curves

Definition III.2.1. Let E be an elliptic curve over Fq. We define

Nr
def
= |E(Fqr)| ,

Z(T )
def
= exp

(
∞∑
r=1

NrT
r

r

)
,

where Z(T ) is considered as a formal power series.

Lemma III.2.2.

Z(T ) =

∏
i(1− αiT )∏
j(1− βjT )

⇐⇒ Nr =
∑
j

βrj −
∑
i

αri ,

where i, j range over a finite set.

Proof. Observe that

exp

(
∞∑
r=1

NrT
r

r

)
= exp

(
∞∑
r=1

(∑
j

Br
jT

r

r
−
∑
i

αriT
r

r

))
= exp

(∑
j

(
− log(1− βjT )

)
−
∑
i

(
− log(1− αiT )

))
= exp

(
log

(
π(1− αiT )

π(1− βjT )

))
=
π(1− αiT )

π(1− βjT )
.

Example III.2.3. Let E : x3 + y3 = z3 and q = 2. Take β1 = 1, β2 = 2, α1 =
√
−2, and

α2 = −
√
−2. Then

β1 + β2 − α1 − α2 = 3,

β2
1 + β2

2 − α2
1 − α2

2 = 9,

and so on. So

Z(T ) =
(1−

√
−2T )(1 +

√
−2T )

(1− T )(1− 2T )
=

1 + 2T 2

(1− T )(1− 2T )
.

III.2.2 Hasse’s theorem

Theorem III.2.4 (Hasse, 1930s). For all elliptic curve over Fq,

Z(T ) =
1− aT + qT 2

(1− T )(1− qT )
,

where a ∈ Z, |a| ≤ 2
√
q.
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We will prove this theorem over the next couple of weeks.
Note III.2.5. N1 = β1 + β2 − α1 − α2 = 1 + q − a is the numerator evaluated at T = 1.

Proof. We have

(1− α1T )(1− α2T )

(1− β1T )(1− β2T )
=

1− (α1 + α2)T + α1α2T
2

(1− β1)(1− β2T )
=

1− aT + qT 2

(1− T )(1− qT )
,

so α1 + α2 = a, {β1, β2} = {1, q}.

Corollary III.2.6. (a) Z(T ) is determined by N1 (and hence N2, N3, . . . are determined by
N1).

(b) q + 1− 2
√
q ≤ |E(Fq)| ≤ q + 1 + 2

√
q.

We’ll show |α1| = |α2| =
√
q.

III.2.3 Weil conjectures

The bigger picture:

Theorem III.2.7 (Deligne, 1972). Let V be a smooth projective variety over Fq of dimension
m. Let Nr = |V (Fqr)|, and set

Z(T ) = exp

(
∞∑
r=1

NrT
r

r

)
.

Then
Z(T ) =

P1(T ) · . . . · P2m−1(T )

P0(T ) · P2(T ) · . . . · P2m(T )
,

where P0 = 1− T , P2m(T ) = 1− qmT ,

Pi(T ) =
∏
j

(1− αijT ) ∈ Z[T ]

with |αij| = qi/2,
degPi = i-th Betti number of V ,

and
Z

(
1

qmT

)
= ±qmE/2TEZ(T ),

where E is the Euler characteristic.

Remark III.2.8. The part stating that |αij| = qi/2 is known as the Riemann hypothesis for
finite fields . Here’s why: The zeros of

(1− α1T )(1− α2T )

(1− T )(1− qT )

occurs at T = α−1
i . If we set T = α−1

i = q−s, then |αi| =
√
q ⇐⇒ Re s = 1

2
.
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III.2.4 Another example

Consider the elliptic curve
E : y2 + y = x3 − x

in characteristic 2. We have

|E(F2)| = 5 = N1 = 1 + q − a,

so a = −2. Thus

Z(T ) =
1 + 2T + 2T 2

(1− T )(1− 2T )
.

III.2.5 Complex version of Hasse’s theorem

Theorem III.2.9 (Hasse). Let X = C/Λ be an elliptic curve over C. Let π : X → X be
a morphism (i.e., an analytic map of Riemann surfaces and a group homomorphism) with
kernel of finite order q > 1. Let

Nr = #fixed points of πr.

Then Nr <∞, and

exp

(
∞∑
r=1

NrT
r

r

)
=

Pπ(T )

(1− T )(1− qT )
,

where Pπ(T ) is a quadratic in Z[t], and its roots have absolute value q−1/2.

Remark III.2.10. What’s the connection between the theorems? In the finite field case, think
of X = E(Fq), and let

π : X → X

(x, y) 7→ (xq, yq)

be the Frobenius map. A point (x, y) is fixed under πr ⇐⇒ the coordinates satisfy xqr = x
and yqr = y ⇐⇒ x, y ∈ Fqr .
Remark III.2.11. The idea of the proof is to study End(X).

III.3 2013-10-09

III.3.1 Complex Hasse’s theorem

Theorem III.3.1 (Hasse). Let X = C/Λ. Let π : X → X be a morphism (i.e., an analytic
map of Riemann surfaces and a group homomorphism), with kernel of finite order q > 1.
Let Nr be the number of fixed points of πr. Then Nr <∞ and

exp

(
∞∑
r=1

NrT
r

r

)
=

Pπ(T )

(1− T )(1− qT )
,

where Pπ(T ) is a quadratic in Z[T ] with all roots of absolute value q−1/2.

Idea: Study End(X).
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III.3.2 Preparatory material

Given a ∈ C, define φa(x) = ax. If aΛ1 ⊆ Λ2, this defines a well-defined morphism

C/Λ1
φa−−→ C/Λ2,

so φa ∈ Hom(C/Λ1,C/Λ2).

Lemma III.3.2 (proved later). There is a bijection

Hom(C/Λ1,C/Λ2)←→
{
a ∈ C

∣∣ aΛ1 ⊆ Λ2

}
,

φa ←→ a.

So C/Λ1
∼= C/Λ2 ⇐⇒ ∃a ∈ C× such that aΛ1 = Λ2.

Hence we can assume without loss of generality that

Λ = 〈1, τ〉 =
{
m+ nτ

∣∣ m,n ∈ Z
}

for some τ ∈H .
Let X = C/Λ. Then we have a ring map

End(X) ↪→ C,
φa 7→ a

which is an injection by the lemma. Thus End(X) is a (commutative) integral domain.
If φa ∈ End(X), then 1 ∈ Λ =⇒ a ∈ Λ, so End(X) ↪→ Λ as abelian groups. So the

additive group of End(X) is free abelian of rank 1 or 2.

Definition III.3.3. If End(X) has rank 2, we say that X has complex multiplication.

Example III.3.4. Let Λ = Z[i]. Then End(X) = Z[i], and X has complex multiplication. We
can see this algebraically: g3(Λ) = 0, so we have

E : y2 = 4x3 − g2x.

Consider

θ : E(C)→ E(C),

(x, y) 7→ (−x, iy).

Then θ4 = id and θ2 6= id.

Definition III.3.5. Let a ∈ End(X), a 6= 0. The norm (degree) of a is

N(a) = |ker a| =
∣∣a−1Λ/Λ

∣∣ = [Λ : aΛ].

Set N(0) = 0.

Example III.3.6. If a ∈ Z, then N(a) = a2.
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III.3.3 Proof of complex Hasse’s theorem

Suppose a = m+ nτ (m,n ∈ Z) (since a ∈ Λ). Then aτ ∈ Λ, say aτ = m′ + n′τ . Thus

a 7→
(
m n
m′ n′

)
tells us the action of a on Λ. This correspondence yields a ring homomorphism

End(X)→M2(Z).

By Cayley–Hamilton, a must satisfy its characteristic polynomial. Thus, a is a root of

t2 − (m+ n′)t+ (mn′ − nm′) = 0.

Call the other root ā = m+ n′ − a. Then1

N(a) = det

(
m n
m′ n′

)
= mn′ − nm′ = aā = āa ∈ Z.

Hence the map a 7→ ā is an involution of End(X).
Therefore,

Nr := #fixed points of πr = |ker(1− πr)|
= N(1− πr) = (1− πr)(1− πr)
= (1− πr) (1− π̄r)
= 1− πr − π̄r + (ππ̄)r.

Since
|π|2 = ππ̄ = N(π) = |kerπ| = q,

we have |π| = √q. Thus

Z(T ) =
(1− πT )(1− π̄T )

(1− T )(1− ππ̄T )
=

Pπ(T )

(1− T )(1− qT )
,

where Pπ is a quadratic in Z[T ] and the zeros of Pπ have absolute value q−1/2.

III.3.4 Proof of lemma

Lemma III.3.7. The map{
a ∈ C

∣∣ aΛ1 ⊆ Λ2

}
→
{
φ : C/Λ1 → C/Λ2

∣∣ φ analytic, φ(0) = 0
}
,

a 7→ φa

is a bijection.
1Exercise: If Λ = 〈1, τ〉, then the volume of the fundamental parallelogram of 〈m+ nτ,m′ + n′τ〉 is

det

(
m n
m′ n′

)
· volume(fundamental parallelogram of Λ).
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Remark III.3.8. In fact, we’ll see this implies that φ is a group homomorphism, so the above
map is actually a ring isomorphism.

Proof. Injectivity: Say φa = φb. Then az = bz (mod Λ2) for all z ∈ C, and so z 7→ (a− b)z
is a map C→ Λ2. The image is discrete, so the map is constant, implying a = b.

Surjectivity: C is simply connected, so we can lift any φ ∈ Hom(C/Λ1,C/Λ2) to a
commutative diagram

C //

π1

��

C
π2

��

C/Λ1
φ
// C/Λ2,

where f is analytic and f(0) = 0. For any ω ∈ Λ1 and z ∈ C,

f(z + ω)− f(z) ∈ Λ2,

so f(z + ω)− f(z) has to be constant. Thus f ′(z + ω) = f ′(z) for all z ∈ C, ω ∈ Λ1. Hence
f ′ is elliptic with respect to Λ1, whence f ′ is constant. Therefore, f ′(z) = a for some a ∈ C.
So f(z) = az + b for some a, b ∈ C, but b = 0 because f(0) = 0.

III.4 2013-10-11

III.4.1 Isogenies

Definition III.4.1. Suppose E1, E2 are elliptic curves over K. Say that φ : E1 → E2 is an
isogeny if φ is a rational map and φ(0) = 0 (where “0” denotes the identity elements).

Example III.4.2 (American Mathematical Monthly). Consider the elliptic curves

C : y2 = x3 + 2,

J : w2 = z3 − 120z + 506.

The map

π : C → J,

(x, y) 7→
(
x+

24(x+ 1)

(x+ 2)2
, y − 24xy

(x+ 2)3

)
is an isogeny. Moreover, |kerπ| = 3, and if p > 3, then |C(Fp)| = |J(Fp)|.

Claim III.4.3. Every analytic group homomorphism is an isogeny.

C/Λ1
φa //

(℘Λ1
:℘′Λ1

:1)

��

C/Λ2

(℘Λ2
:℘′Λ2

:1)

��

E1
ψa // E2
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The map (
℘λ1(z) : ℘′Λ1

(z) : 1
)
7→
(
℘Λ2(az) : ℘′Λ2

(az) : 1
)

(0 : 1 : 0) 7→ (0 : 1 : 0)

makes the above diagram commute.
We need to show that ℘Λ2(az), ℘′Λ2

(az) are rational functions in ℘Λ1(z), ℘′Λ1
(z), i.e., that

they are in
C
(
℘Λ1(z), ℘′Λ1

(z)
)

= C(Λ1),

where C(Λ1) is the field of elliptic functions with respect to Λ1. So we just have to show
that ℘Λ2(az), ℘′Λ2

(az) are elliptic with respect to Λ1.
Indeed, if ω ∈ Λ1, then

℘′Λ2
(a(z + ω)) = ℘′Λ2

(az + aω) = ℘′Λ2
(az)

since aω ∈ Λ2.

Definition III.4.4. Denote

End(E)
def
= {isogenies E → E defined over K} .

In case K = C and E = C/Λ,

End(E) = {analytic group homomorphisms C/Λ→ C/Λ} ←→
{
a ∈ C

∣∣ aΛ ⊆ Λ
}
.

III.4.2 Rosati involutions

Definition III.4.5. A ring R is called a ring with Rosati involution provided that

(1) R is a (possibly noncommutative) ring with 1 with characteristic 0, and

(2) R is equipped with an involution

R→ R,

a 7→ a

such that:

• a = a,

• (ab) = ba,

• (a+ b) = a+ b,

• for all n ∈ Z, n = n,

• aa = aa ∈ Z, and
• aa > 0 if a 6= 0.

Definition III.4.6. Define deg : R→ Z by deg(a) = aa.
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Example III.4.7. Let E be an elliptic curve over C. Then End(E) is a ring with Rosati
involution.

Corollary III.4.8. Let R be any ring with Rosati involution. Then:

(1) deg(0) = 00 = 0.

(2) deg(a) ≥ 0, with deg(a) > 0 if a 6= 0.

(3) deg(ab) = (ab)(ab) = abba = a(deg b)a = aa(deg b) = (deg a)(deg b).

(4) If n ∈ Z, then deg(n) = nn = n2.

Proposition III.4.9. R has no zero-divisors.

Proof. Suppose ab = 0. Then deg(a) deg(b) = deg(ab) = 0. So deg a = 0 or deg b = 0,
whence a = 0 or b = 0.

Definition III.4.10. tr(a) = a+ a.

Proposition III.4.11. For all a ∈ R, tr(a) ∈ Z.

Proof. We have

deg(1 + a) = (1 + a)(1 + a) = (1 + a)(1 + a) = 1 + a+ a+ aa.

Since deg(1 + a), 1, aa ∈ Z, it follows that a+ a ∈ Z.

Definition III.4.12. For all a ∈ R, define

Pa(T ) = T 2 − (tr a)T + (deg a) ∈ Z[T ].

III.4.3 Hasse’s theorem via involutions

Proposition III.4.13 (Hasse’s theorem). |tr(a)| ≤ 2
√

deg(a).

Proof. For all m,n ∈ Z,

0 ≤ deg(m+ na)

= (m+ na)(m+ na)

= (m+ na)(m+ na)

= m2 +mn tr(a) + n2 deg(a)

= n2Pa

(
−m
n

)
.

So Pa(t) ≥ 0 for all t ∈ Q. Thus, the discriminant of Pa(T ) is negative or zero, i.e.,

(tr a)2 − 4 deg(a) ≤ 0.

So |tr a| ≤ 2
√

deg(a).
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Theorem III.4.14. Let π ∈ R be such that deg(π) = q. Let Nr = deg(1− πr). Then

exp

(
∞∑
r=1

NrT
r

r

)
=

1− (trπ)T + qT 2

(1− T )(1− qT )
.

Proof. We have

Nr = (1− πr)(1− πr)
= (1− πr)(1− πr)
= 1− πr − πr + (ππ)r.

Thus, by Lemma III.2.2,

exp

(
∞∑
r=1

NrT
r

r

)
=

(1− πT )(1− πT )

(1− T )(1− ππT )
.

III.4.4 Dual isogenies

Tasks:

(1) An elliptic curve E over K yields End(E), a ring with Rosati involution.

(2) When K = Fq, show that

deg(1− πr) = |ker(1− πr)| ,

where π is the Frobenius map (x, y) 7→ (xq, yq). (This amounts to showing separability
of 1− πr.)

Theorem III.4.15. If R is a ring with Rosati involution, let K = R⊗Z Q. Then K is one
of the following: Q, an imaginary quadratic field, or a quaternion algebra.

III.5 2013-10-14

III.5.1 Preliminaries

Last time: let R be a ring with Rosati involution, π ∈ R, deg π = q, and Nr = deg(1− πr).
Then

exp

(
∞∑
r=1

NrT
r

r

)
=

1− (tr π)T + qT 2

1− T

and |trπ| ≤ 2
√
q.

This will be enough to prove Hasse’s theorem once we show the following:

(a) If E is an elliptic curve over a field K, then End(E) is a ring with Rosati involution.



III.5. 2013-10-14 65

(b) If K = Fq and π is the Frobenius endomorphism (x, y) 7→ (xq, yq), then

|ker(1− πr)| = deg(1− πr).

Remark III.5.1. The fixed points of 1− πr are E(Fqr). In particular,

N1 = deg(1− π)

= (1− π)(1− π)

= (1− π)(1− π)

= 1− (π + π) + ππ

= 1− (trπ) + q.

Since |trπ| ≤ 2
√
q, it follows that

1 + q − 2
√
q ≤ N1 ≤ 1 + q + 2

√
q.

III.5.2 Classification of rings with Rosati involution

Theorem III.5.2. If R is a ring with Rosati involution, let K = R ⊗Z Q. Then K is one
of the following:

(a) Q

(b) an imaginary quadratic field

(c) a quaternion algebra over Q, i.e.,

K = Q + Qα + Qβ + Qαβ,

where α2, β2 ∈ Q, α2, β2 < 0, and βα = −αβ.

Remark III.5.3. We shall see (time permitting) that, if E is an elliptic curve over L, then:

(1) if charL = 0, then (c) does not arise (we saw this for L = C); moreover,

• case (a) occurs ⇐⇒ E does not have complex multiplication, and

• case (b) occurs ⇐⇒ E has complex multiplication.

(2) if L is a finite field, then (a) does not arise (since Frobenius /∈ Z). We say that

• case (b) ⇐⇒ E is ordinary , and

• case (c) ⇐⇒ E is supersingular .

Proof of Theorem III.5.2. Extend a 7→ a to K by

a⊗ q = a⊗ q (a ∈ R, q ∈ Q),
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and define as usual

deg : K → Q, tr : K → Q,
deg(a) = aa, tr(a) = a+ a.

Observe that K is a division algebra since, if a ∈ K \ {0}, then

deg(a) = aa ∈ Q>0,

and deg(a) = 0 ⇐⇒ a = 0, whence

a−1 =

(
1

deg a

)
a.

Note that

0 = (a− a)(a− a) = a2 − (a+ a)a+ aa = a2 − (tr a)a+ (deg a).

Hence, a is a root of T 2 − (tr a)T + (deg a) ∈ Q[T ]. So [Q(a) : Q] ≤ 2 for all a ∈ K.
Let b = a− 1

2
tr(a). Then tr(b) = 0 and Q(b) = Q(a), and b2−0b+deg b = 0, so b2 ∈ Q≤0.

Result on classification of division algebras: If K is finite-dimensional over its center F ,
and M is a maximal subfield, then [K : M ] = [M : F ].
Note III.5.4 (Bergman). If a division algebra is infinite-dimensional over its center F , then
it contains an infinite-dimensional subfield.

In our case, sinceQ is perfect, every extension ofQ is simple, so by the above, [M : Q] ≤ 2.
So the possibilities are:

(1) If F = Q, then [K : Q] = 1 or 4.

(2) If F > Q, then F is quadratic, so M = F , whence n = 1 and K = F , and K is
therefore an imaginary quadratic field.

IfK = Q, we are done. If [K : Q] = 4, pick b ∈ K−Q such that tr(b) = 0. Pick c ∈ K−Q(b).
Then

[Q(b, c) : Q(b)] = [Q(b) : Q] = 2.

Let
d = c− 1

2
tr(c)− 1

2

(
tr(bc)

b2

)
b.

We can check that
tr(b) = tr(d) = tr(bd) = 0.

So b = −b, d = −d, and bd = −(bd) = −db = −db. Moreover,

b2 = − deg(b) ∈ Q<0,

d2 = − deg(d) ∈ Q<0,

and b, d /∈ Q. Set α = b and β = d. Thus, K is a quaternion algebra over Q.

Remark III.5.5. The key fact driving this theorem is that [Q(a) : Q] ≤ 2 for all a ∈ K. This
is analogous to the classification of real division algebras.
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III.5.3 Dual isogeny

Look at K = C. Say a : C/Λ1 → C/Λ2 such that aΛ1 ⊆ Λ2 is an analytic group homomor-
phism. We have

N(a) = [Λ2 : aΛ1] = |ker a| .

Hence, Λ2/aΛ1 is a group of order N(a). So N(a)Λ2 ⊆ aΛ1, whence

N(a)

a
Λ2 ⊆ Λ1.

Set ā = N(a)
a

. Then āΛ2 ⊆ Λ1. So ā defines an analytic group homomorphism

ā : C/Λ2 → C/Λ1.

This is the dual isogeny to a.

III.6 2013-10-16

References:

• Lorenzini, An Invitation to Arithmetic Geometry.

• Stichtenoth, Algebraic Function Fields and Codes.

Let E : y2 = f(x) be an elliptic curve over K. Then

K(E) = K(x)[
√
f(x)].

III.6.1 Function fields of projective curves

We can study smooth projective curves over a fieldK via function fields. There is a dictionary
between maps of curves

C1
φ−→ C2

and maps of the corresponding function fields

K(C2)
φ∗

↪→ K(C1).

The map from curve maps to function field maps is easy. The map in the other direction
recovers the curve as the “places, valuations, or primes” of the function field.

Note III.6.1. The map of curves is either constant or surjective. (This is an analogue of what
we saw for compact Riemann surfaces.)

We can decompose the map of function fields into

K(C2) ↪→ K(C2)sep ↪→ K(C1),
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where the first map is separable of degree [K(C1) : K(C2)]sep and the second is purely
inseparable of degree [K(C1) : K(C2)]insep.

Hence, there is another curve C3 such that φ : C1 → C2 factors as

C3

ψ

!!

C1

ξ
>>

φ
// C2,

where ψ is a separable map, and χ = (Frob)e is a purely inseparable map. (The terms for
field extensions are translated to the terms for curves.)

Remark III.6.2 (Algebraic number theory). We have the usual relation

r∑
i=1

eifi = n.

Since K is algebraically closed, fi = 1. So

r∑
i=1

ei = n,

and φ is a (degs φ)-to-1 map.

III.6.2 Examples of maps of curves

Example III.6.3. Let K = Fq, and consider the map

P1 φ−→ P1

t 7→ tq.

Let c ∈ K. How many preimages are there? For some a ∈ K,

tq − c = (t− a)q,

so |φ−1(c)| = 1. Note that t is a root of xq − tq = 0. Thus,

K(tq) ↪→ K(t)

is purely inseparable of degree q = deg φ.

Example III.6.4. Let E be an elliptic curve over K, and suppose charK = p > 0. For E(p),
replace each coefficient ai by api : for example,

E : y2 = x3 + ax+ b,

E(p) : y2 = x3 + apx+ bp.
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(If K = Fp, then E(p) = E.) Consider the map

E
φ−→ E(p),

(x : y : 1) 7→ (xp : yp : 1),

(0 : 1 : 0) 7→ (0 : 1 : 0).

Then |φ−1(P )| = 1 for all P ∈ E(p).
Observe that

∆(E(p)) = ∆(E)p 6= 0,

so E(p) is an elliptic curve. Moreover,

K(E)p =
{
fp
∣∣ f ∈ K(E)

}
= K(E(p))

φ∗

↪→ K(E).

In fact, if y2, yp ∈ K(E)p(x), then y ∈ K(E)p(x) (assuming p is odd). So

K(E) = K(E)p ∗ (x),

whence deg φ∗ = p.

Example III.6.5. Let E : y2 = f(x) be an elliptic curve, and consider the map of curves

E
2−→ P1

(x, y) 7→ x.

This is degree 2. The map of function fields is

K(P1) ↪→ K(E)

K(x)
2
↪→ K(x)[

√
f(x)].

III.6.3 Additivity of isogenies

Theorem III.6.6. If φ : E1 → E2 is an isogeny, then for all P,Q ∈ E1,

φ(P +Q) = φ(P ) + φ(Q).

Preliminaries:

Definition III.6.7 (Divisors). The group of divisors on E is

Div(E) = free abelian group on points of E =

{∑
P∈E

nPP

∣∣∣∣ nP = 0 for all but finitely many P

}
.

This contains the group of degree zero divisors,

Div0(E) =
{
D ∈ Div(E)

∣∣ ∑nP = 0
}
.
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This in turn contains the group of principal divisors

Div1(E) = “principal divisors” =
{

div(f)
∣∣ f ∈ K(E)∗

}
∪ {0} ,

where
div(f) =

∑
P∈E

ordP (f)P,

where ordP (f) is the order of vanishing of f at P .

We have an exact sequence

1→ K
∗ → K(E)∗ → Div0(E)→ Div0(E)/Div1(E)→ 1

f 7→ div(f)

Remark III.6.8. The group

Pic0(E)
def
= Div0(E)/Div1(E)

is important!

Fact III.6.9. By Riemann–Roch, the map

E → Pic0(E),

P 7→ (P )− (0) (mod Div1(E))

is bijective. We will see later that this induces the same group structure on E. In other
words, this is an isomorphism of groups.

Given a map φ : E1 → E2, we get maps

φ∗ : Div(E1)→ Div(E2), φ∗ : Div(E2)→ Div(E1),

P 7→ φ(P ), P 7→
∑

Q∈φ−1(P )

eφ(P )Q.

One can check that φ∗ and φ∗ send degree zero divisors to degree zero divisors, and send
principal divisors to principal divisors.

Thus, we get an induced map

E2
'−→ Pic0(E2)

φ∗−−→ Pic0(E1)
'−→ E1.

This is the dual isogeny. (We will fill in more details next time.)

III.7 2013-10-18

III.7.1 Results still not proved

Monday (IOU’s):
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(1) Centrality of Z ↪→ End(E)

(2) p is inseparable in characteristic p

(3) Z ↪→ End(E)

(4) E '−→ Pic0(E)

(5) φ+ ψ = φ+ ψ

(6) φ : C1 → C2 constant or surjective, and |φ−1(Q)| = degs φ

III.7.2 Additivity of isogenies

We will prove the theorem from last time:

Theorem III.7.1. If φ : E1 → E2 is an isogeny, then for all P,Q ∈ E1,

φ(P +Q) = φ(P ) + φ(Q).

Proof. The following diagram commutes:

E1
' //

φ

��

Pic0(E1)

��

E2
// Pic0(E2),

where the map E1
'−→ Pic0(E) is given by

P 7→ (P )− (0),

and the map Pic0(E1)→ Pic0(E2) is induced by

Div(E1)→ Div(E2),

(P ) 7→
(
φ(P )

)
.

Since the above map is a group homomorphism, so is φ.

Corollary III.7.2. If φ : E1 → E2 is a nonzero isogeny, then

kerφ = φ−1(0)

is a finite subgroup of E1.

Proof. |kerφ| ≤ deg φ, which is finite.
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III.7.3 Degree and kernel of isogenies

Recall: to show Hasse’s theorem, we need End(E) to be a ring with Rosati involution, and

Nr = |ker(1− πr)| = deg(1− πr),

where π is the Frobenius endomorphism.

Theorem III.7.3. Let φ : E1 → E2 be a nonzero isogeny.

(a) For every Q ∈ E2, |φ−1(Q)| = degs(φ).

(b) There is an isomorphism

kerφ→ Gal
(
K(E1)/K(E2)

)
T 7→ τ ∗T ,

where τT : E1 → E1 is translation by T .

(c) Suppose φ is separable. Then for all Q ∈ E2,∣∣φ−1(Q)
∣∣ = deg φ,

so φ is “unramified”.

Proof. (a) We know this for all but finitely many Q. Given Q′, pick R such that φ(R) =
Q′ −Q. For all P ∈ φ−1(P ),

φ(P +R) = φ(P ) + φ(R) = Q+Q′ −Q = Q′.

Hence, we have a bijection

φ−1(Q)→ φ−1(Q′),

P 7→ P +R.

(b) [Exercise.]

Remark III.7.4. In particular, taking Q = 0,

|kerφ| = deg φ.

The isogeny φ : E1 → E2 induces a homomorphism

K(E2)
φ∗

↪→ K(E1).

We have ∣∣Gal
(
K(E1)/K(E2)

)∣∣ = |kerφ| = deg φ =
[
K(E1) : K(E2)

]
,

so K(E1)/K(E2) is Galois.
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Theorem III.7.5. Suppose φ : E1 → E2 and ψ : E1 → E3 are nonzero isogenies, φ is
separable, and kerφ ⊆ kerψ. Then there is a unique isogeny λ : E2 → E3 such that ψ = λφ.

E1

φ

~~

ψ

!!

E2 λ

∃! // E3.

Proof. Since kerφ ⊆ kerψ, every element of Gal(K(E1)/K(E2)) fixes ψ∗(K(E3)). Thus, we
get an injection K(E3) ↪→ K(E2), which corresponds to an isogeny λ : E2 → E3.
Theorem III.7.6. Let φ : E1 → E2 be a nonzero isogeny of degree m.
(a) There is a unique isogeny φ : E2 → E1 such that φφ = m.

(b) φ is the composition

E2
'−→ Pic0(E2)→ Pic0(E1)

'−→ E1,

(P ) 7→ (degi φ)(Q1 + · · ·+Qr),

where φ−1(P ) = {Q1, . . . , Qr}.
Proof. (a) Uniqueness: Say ψφ = mχφ. Then (ψ−χ)φ = 0. But φ is surjective, so ψ−χ = 0,

hence ψ = χ.
Existence: By the dictionary between isogenies and function field homomorphisms, φ =
ψ Frobe, where ψ is separable. Suppose we have proven existence for φ : E1 → E2 and
ψ : E2 → E3. So we have φ : E2 → E1 such that φφ = deg φ, and ψ : E3 → E2 such that
ψψ = degψ. Then

(φψ)ψφ = φ(degψ)φ = (deg φ)(degψ) = deg(φψ),

whence ψφ = φψ. We are now reduced to showing the separable and the Frobenius
cases.
If φ is separable, we proceed à la C: m = deg φ = |kerφ|, so kerφ ⊆ E[m] = kerm,
whence m = φφ for some φ.
For the Frobenius case, write φ = ψφe, where φ is the Frobenius. We have deg φ = p =
(ψφe−1)φ, so ψφe−1 = φ.

(b) Check the given composition φ̂ satisfies φ̂φ = m.

III.7.4 Rosati involution of isogenies

We’re getting a ring with Rosati involution.
Take E1 = E2 = E3 = E. If φ = 0, set φ = 0. So far, we have φ ∈ End(E) with

φφ = deg φ. Also,

(φφ)φ = φ(deg φ) = (deg φ)φ =⇒ (φφ− deg φ)φ = 0,

so since φ is surjective, φφ = deg φ.
Likewise, φ = φ, deg φ = deg φ, and φψ = ψφ.
The hard part is (5). Given (5), 1 = 1, so m = m for all m ∈ Z. We will finish this on

Monday.
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III.8 2013-10-21

III.8.1 Historical note

Let C be a smooth, projective curve over Fq. Before Hasse, various results showed that

||C(Fq)| − (q + 1)| ≤ Kqα,

where K is independent of α, and 1
2
< α < 1.

In 1932, Hasse observed that Artin’s “Riemann hypothesis” for finite fields implies that
α = 1

2
should be possible.

In 1934, Hasse proved this for g = 1, using an analogue of complex multiplication theory
for elliptic functions. He and Deuring observed that g ≥ 2 would require more algebraic
geometry.

III.8.2 IOUs from previous classes

(1) Centrality of Z→ End(E)

(2) p is inseparable in characteristic p

(3) Z ↪→ End(E)

(4) E '−→ Pic0(E)

(5) φ+ ψ = φ+ ψ

(6) Nonconstant φ : C1 → C2 is surjective, and counting multiplicity, |φ−1(Q)| = degs φ.

Let’s start proving these:

(1) Since φ is a homomorphism, φ(2P ) = 2φ(P ), so φ(mP ) = mφ(P ) by induction. Hence,
the image of Z in End(E) is contained in the center.

III.8.3 The invariant differential

Let us make a brief aside about the invariant differential. Assume E has Weierstrass form.
Then the invariant differential of E is

ω =
dx

2y + a1x+ a3

.

Define (φ∗ω)(P ) = ω(φ(P )), so, for instance,

(τ ∗Qω)(P ) = ω(τQ(P )) = ω(P +Q).

Claim III.8.1. If Q ∈ E, then τ ∗Qω = ω.

In other words,

dx(P +Q)

2y(P +Q) + a1x(P +Q) + a3

=
dx(P )

2y(P ) + a1x(P ) + a3

.

This can be checked by brute force. (Silverman proves this claim in detail.)
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III.8.4 Inseparability in characteristic p

We now prove (2).

Claim III.8.2. If φ, ψ : E → E are isogenies, then

(φ+ ψ)∗ω = φ∗ω + ψ∗ω.

Proof outline. Set (x3, y3) = (x1, y1) + (x2, y2). A painful calculation (again, details in Sil-
verman) implies that

ω(x3, y3) = ω(x1, y1) + ω(x2, y2).

Let (x, y) ∈ E. Set (x1, y1) = φ(x, y), (x2, y2) = ψ(x, y), and (x3, y3) = (φ + ψ)(x, y).
Then it follows that

ω ◦ (φ+ ψ) = ω ◦ φ+ ω ◦ ψ,
i.e.,

(φ+ ψ)∗ω = φ∗ω + ψ∗ω.

Corollary III.8.3. Since 1∗ω = ω, by the last claim, m∗ω = mω.

Corollary III.8.4. If charK = p > 0, then p∗ω = pω = 0.

Now we need a general result:

Proposition III.8.5 ([Sil], p. 35). ψ is separable ⇐⇒ ψ∗ω 6= 0.

It follows that multiplication by p is inseparable in characteristic p > 0.

III.8.5 Injectivity of Z ↪→ End(E)

In this section, for clarity of notation, we denote the multiplication-by-m isogeny by [m].
Given an integer m 6= 0, there exists P ∈ E such that [m]P 6= 0. We divide the proof

into cases:

(i) m = 2: Suppose 2P = 0. Then P satisfies

4x3 + b2x
2 + 2b4x+ b6 = 0,

where b2, b4, b6 are expressions in a1, a2, a3, a4, a6. If charK 6= 2, this has at most 3
roots. If charK = 2, then we’re fine unless b2 = 0 = b6, but this would imply ∆ = 0.

(ii) m > 2: Factor m as m = 2r13r2 · . . . . If the isogeny [m] is zero, then the isogeny [p]
is zero for some prime factor p of m. (Indeed, if [mn] = 0, then deg([m]) deg([n]) =
deg([mn]) = 0, so one of the isogenies [m], [n] is zero.)

So we are reduced to the case where m is an odd prime. We divide this into subcases:

charK 6= 2 There exists Q ∈ E such that Q 6= 0 and 2Q = 0. So if [m] = 0, then
mQ = 0, implying Q = 0, a contradiction.

charK = 2 We have [m]∗ω = mω 6= 0, so [m] 6= 0.

This proves that Z→ End(E) is injective.
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III.8.6 Isomorphism with the Picard group

For each D ∈ Div(E), denote

L(D) =
{
f ∈ K(E)∗

∣∣ div(f) ≥ −D
}
∪ {0} ,

where div(f) =
∑

P∈E ordP (f) · (P ).
By the Riemann–Roch theorem, if deg(D) = 0, then dim(L(D + (0))) = 1.

Claim III.8.6. If D ∈ Div0(E), then there is a unique point P ∈ E such that D ∼ (P )−(0).

Proof. Say f 6= 0 lies in L(D + (0)). This is equivalent to

div(f) ≥ −D − (0).

But div(f) has degree 0, and −D − (0) has degree −1. Thus, there exists P ∈ E such that

div(f) = −D − (0) + (P ),

so D ∼ (P )− (0). This proves existence.
To show uniqueness, suppose D ∼ (P ′) − (0). Then (P ′) ∼ (P ), so there exists f such

that
div(f) = (P )− (P ′).

Hence div(f) ≥ −(P ′), so f ∈ L((P ′)), which has dimension 1 by Riemann–Roch.
But constant functions are in L((P ′)), so L((P ′)) consists only of constant functions.

Thus f is constant, which implies that

(P )− (P ′) = div(f) = 0.

Therefore, P = P ′.

Define a map

σ : Div0(E)→ E

D 7→ unique P.

This is surjective, since (P )− (0) 7→ P . We will finish the proof next time.

III.9 2013-10-23

[Note: I missed class this day. These notes are from Vladimir Sotirov. —Daniel]



III.9. 2013-10-23 77

III.9.1 Isomorphism with the Picard group, continued

Let P,Q ∈ E. If
x(P +Q) = λ2 + λ− a2 − x1 − x2,

where λ =
y2 − y1

x2 − x1

, then to obtain dx(P + Q), we differentiate with respect to x0 (hold Q

fixed, vary P ).
Last time: we showed that if D ∈ Div0(E), then there exists a unique P ∈ E such that

D ∼ (P )− (0) mod Div1(E).

(This was done using the fact that if L(D) =
{
f ∈ K(E)∗ | div(f) ≥ −D

}
∪ {0} and

deg(D) = 1, then dimK L(D) = 1.)
We have σ : Div0(E) → E sending D 7→ P (where P is from the last claim). Suppose

σ(D1) = σ(D2). Then

D1 ∼ (σ(D1))− (0) = (σ(D2))− (0) ∼ D2.

So D1 ∼ D2, and conversely. So we get a bijection Pic0(E)→ E.
Why is this an isomorphism? Let f(X, Y, Z) = αX + βY + γZ = 0 be the line in P2

through P and Q, and let R be the third point of intersection. Let f ′(X, Y, Z) = α′X +
β′Y + γ′Z = 0 be the line in P2 through R and 0. Then the third point of intersection is
equal to P +Q. Then

div(f/Z) = (P ) + (Q) + (R)− 3(0),

div(f ′/Z) = (R) + (P +Q) + (0)− 3(0).

So we get

div(f ′/f) = div(f ′/Z)− div(f/Z) = (P +Q)− (P )− (Q) + (0).

So (P +Q)− (P )− (Q) + (0) ∈ Div1(E), which implies that

(P +Q)− (0) ∼ (P )− (0) + (Q)− (0).

Thus, we have an isomorphism.

III.9.2 Last couple facts

We still have two more facts to show:

(5) φ+ ψ = φ+ ψ for isogenies φ, ψ : E1 → E2.

Proof. Let

D =
(
(φ+ ψ)(x1, y1)

)
−
(
φ(x1, y1)

)
−
(
ψ(x1, y1)

)
+ (0) ∈ Div0(E2).

Then σ(D) = 0, so D is principal, so D = div(f), where f ∈ K(x1, y1)(E2). Hence,
f ∈ K(x1, y1, x2, y2), where x1, y1 are constants, but x2, y2 are variables.

Now we switch perspective and consider x1, y1 as variables and x2, y2 as constants, and
compute div(f) on E1.
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(6) φ : C1 → C2 is surjective, and |φ−1(Q)| = degs φ.

Proof. [Sha], chapter I, §5, theorem 4.

III.9.3 Proof of the Riemann hypothesis for elliptic curves over fi-
nite fields

It remains to prove that
Nr := |E(Fqr)| = deg(1− πr),

where π is the Frobenius map (x, y) 7→ (xq, yq). Let φ be the p-th Frobenius map (x, y) 7→
(xp, yp). If q = pk, then π = φk. We need to show that 1− πr is separable (then the degree
is equal to the size of the kernel).

Say 1− φrk = ψφe (where ψ is separable). We want to show e = 0. If e ≥ 1, then

(φrk−1 + ψφe−1︸ ︷︷ ︸
θ

)φ = 1.

But then 1 = deg(1) = deg(θφ) = (deg θ)(deg φ) = (deg θ) · p, which is a contradiction.
So, deg(1− πr) = (1− πr)(1− πr) = 1− πr − πr + (ππ)r. Then

Z(T ) =
(1− πT )(1− πT )

(1− T )(1− ππT )
=

1− (trπ)T + qT 2

(1− T )(1− qT )
.

We showed |trπ| ≤ 2
√
q.

III.9.4 Torsion points and separability

Theorem III.9.1. Suppose charK - m, and let E be an elliptic curve over K. Then

E[m] ∼= Z/m× Z/m.

Proof. We write the isogeny [m] = ψφe, where ψ is separable. Then

m2 = degm = (degψ)(deg φ)e = (degψ)pe.

Since p - m, this implies e = 0, so m is separable and degsm = degm = m2. For all d | m,
we have |E[d]| = d2, so E[m] ∼= Z/m× Z/m (see homework).

Suppose charK = p > 0 and K is perfect (so x 7→ xp is surjective). If E is an elliptic
curve over K, what is E[p]? Well, the isogeny [p] is inseparable, which implies [p] = ψφe.
Taking degrees, we get p2 = (degψ)pe, so e ≤ 2.

The situation can be summed up as follows:

Theorem III.9.2. The following are equivalent:
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e = 2 e = 1
the isogeny [p] is purely inseparable [p] is inseparable, not purely

φ = −φ φ is separable
φ2 = −p φn /∈ Z for any n > 0
trφ = 0 trφ 6= 0
E[p] = 0 E[p] ∼= Z/p

End(E)⊗Z Q is a quaternion algebra End(E)⊗Z Q is an imaginary quadratic field
E is supersingular E is ordinary

Example III.9.3. Consider the elliptic curve x3 + y3 = z3. It has an automorphism of order
3:

[x : y : z]→ [ωx : y : z],

where ω is a third root of unity. So E considered as an elliptic curve over Q has complex
multiplication (by Z[ω]).

Now consider it as an elliptic curve over Fp for p 6= 3. If p ≡ 2 (mod 3), then x 7→ x3

is a bijection, so counting solutions to x3 + y3 = z3 is the same as counting solutions to
u+ v = w. Thus,

|E(Fp)| = p+ 1.

Since |E(Fp)| = p+ 1− trφ, it follows that E is supersingular at every p ≡ 2 (mod 3).
If p ≡ 1 (mod 3), Gauss proved that

|E(Fp)| = p+ 1− A,

where A is the unique integer such that A ≡ −1 (mod 3) and 4p = A2 + 27B2. Hence, E is
ordinary at p ≡ 1 (mod 3).

III.10 2013-10-25

III.10.1 Supersingular curves

Theorem III.10.1. Suppose K is a perfect field, charK = p > 0, and E is an elliptic curve
over K. The following are equivalent:

(1) E[p] = 0.

(2) [p] is a purely inseparable isogeny, and j(E) ∈ Fp2.

(3) φ is a purely inseparable isogeny.

(4) End(E)⊗Z Q is a quaternion algebra.

(5) trφ ≡ 0 (mod p), where φ is given by

E
φ−→ E(p),

(x, y) 7→ (xp, yp).
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In this case, we call E supersingular, else E is ordinary.

Proof. We know already that φ is a purely inseparable isogeny of degree p. Write [p] = φφ,
where φ : E(p) → E. Any isogeny can be factored as ψφe (where ψ is separable).

(a) ⇐⇒ (c) |E[p]| = |ker[p]| = degs p = (degs φ)(degs φ) = degs φ since φ is purely insep-
arable. Hence,

p = deg φ = (degs φ)(degi φ).

Two possibilities:

(i) degi φ = p, degs φ = 1 ⇐⇒ φ is purely inseparable.

(ii) degi φ = 1, degs φ = p ⇐⇒ φ is separable.

In case (i), |E[p]| = 1 ⇐⇒ E[p] = 0. In case (ii), |E[p]| = p ⇐⇒ E[p] ∼= Z/p.

(c) ⇐⇒ (b) p = φφ, φ purely inseparable implies that p is purely inseparable ⇐⇒ φ is
purely inseparable. Consider the diagram

E(p) φ
//

φ ##

E

E(p2)

ψ

==

In case (b), φ = ψφd for some d. Since φ is purely inseparable, d ≥ 1. So

p = deg φ = (degψ)(deg φ)d = (degψ)pd,

hence d = 1 and degψ = 1, so ψ is an isomorphism. Finally,

j(E) = j(E(p2)) = j(E)p
2

,

thus j(E) ∈ Fp2 .

(c) ⇐⇒ (e) trφ = φ + φ, so φ = trφ − φ. Recall that ψ is separable ⇐⇒ ψ∗ω 6= 0
(where ω is the invariant differential). So φ is inseparable iff

0 = φ
∗
ω = −φ∗ω + (trφ)∗ω = (trφ)∗ω = (trφ)ω

iff trφ ≡ 0 (mod p). (Recall that [m]∗ω = mω for m ∈ Z.)

The proof of equivalence of (d) is omitted.
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III.10.2 Examples of supersingular curves

Suppose E is an elliptic curve over Fp (p prime). We have

|E(Fp)| = p+ 1− trφ,

so E is supersingular ⇐⇒ |E(Fp)| ≡ 1 (mod p).
By Hasse’s theorem, |trφ| ≤ 2

√
p. So if p ≥ 5, then trφ ≡ 0 (mod p) ⇐⇒ trφ0. Hence,

for p ≥ 5, E is supersingular ⇐⇒ |E(Fp) = p+ 1|.
Example III.10.2. Last time, we considered E : x3 + y3 = z3 for p 6= 3.

• If p ≡ 2 (mod 3), then |E(Fp)| = p+ 1, so E is supersingular over Fp.

• If p ≡ 1 (mod 3), then |E(Fp)| 6= p+ 1, so E is ordinary over Fp.

Example III.10.3. The curve E : y2 = x3 − x has CM by Z[i], so

(x, y)
φ7−→ (−x, iy)

has order 4. Also, E is an elliptic curve over Fp, so long as p 6= 2.

• If p ≡ 3 (mod 4), then |E(Fp)| = p+ 1, so E is supersingular over Fp.

• If p ≡ 1 (mod 4), then |E(Fp)| = p + 1− 2 Re J(χ, χ2) 6= p + 1, so E is ordinary over
Fp.

Remark III.10.4. In each of the preceding two examples, p is insert in the CM field in the
supersingular case, and split in the CM field in the ordinary case. These examples are shown
in detail in [IR].

What about y2 + y = x3 − x? We find it’s supersingular for

p = 2, 3, 17, 19, 257, 311, 577, . . .

Theorem III.10.5 (Elkies, PhD thesis, 1987). Every elliptic curve over Q has infinitely
many supersingular primes.

Serre, earlier, had shown that the set of supersingular primes has density 0 if the curve
does not have CM.

Conjecture III.10.6 (Lang–Trotter). Say E is an elliptic curve over Q without CM. Then

∣∣{p < x
∣∣ E supersingular at p

}∣∣ ∼ cE
√
x

log x
.

Remark III.10.7 (How to prove that y2 + y = x3 − x has no CM). Idea: End(E) acts as
endomorphisms of E[m], and GQ = Gal(Q/Q) acts on E[m]. Let K be a CM field of E
(assuming it exists).

Claim. φσ = σφ for all φ ∈ End(E) and σ ∈ Gal(Q/K).
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Example III.10.8. Consider E : y2 = x3 − x, and let σ ∈ Gal(Q/K). Then

φ(x, y) = (−x, iy)

σφ(x, y) =
(
−σ(x), σ(iy)

)
=
(
−σ(x), iσ(y)

)
= φ(σx, σy) = φσ(x, y).

Key point: Isogenies are defined over the CM field. ([Shi], p. 114)
Strategy: let φ̃ ∈ End(E[3]) be induced by φ, and σ̃ ∈ GL2(Z/3) = Aut(E[3]) the image

of σ. Then σ̃φ̃ = φ̃σ̃.
If we show the image in GL2(Z/3) of Gal(Q/K) is large, then φ̃ is scalar, a contradiction.



Chapter IV

L-functions of Elliptic Curves over Q

IV.1 2013-10-28

IV.1.1 Curves without CM

To show a curve E/Q does not have CM: φ ∈ End(E) and σ ∈ GQ both act on E[m].
Suppose K is the CM field of E.

Claim IV.1.1. If σ ∈ Gal(Q/K), then φσ = σφ ∈ End(E[m]).

Upshot: if the image of Gal(Q/K) in GL2(Z/m) is “large”, then the action of φ is scalar,
a contradiction.

We have representations associated to E (an elliptic curve over Q):

ρm : GQ → Aut(E[m]) ∼= GL2(Z/m)

(since E[m] ∼= Z/m× Z/m).

Fact IV.1.2. If E has CM by K, then the image of Gal(Q/K) = GK is abelian (contained
in a Cartan subgroup).

Hence, the image of GQ has an abelian subgroup of index 1 or 2 (contained in the
normalizer of a Cartan subgroup).

Remark IV.1.3 (Cartan subgroups). There are two types of Cartan subgroups:

(1) split Cartan, order (p− 1)2: {(
∗ 0
0 ∗

)}
(2) nonsplit Cartan, order p2 − 1:

F×p2 ↪→ GL2(Fp)

Aside IV.1.4 (Kronecker’s Jugendtraum). What about other K? We want to describe finite
abelian extensions L/K. In the case K = Q, the Kronecker–Weber theorem yields L ≤
Q(ζm). CM elliptic curves do this for imaginary quadratic K.

83
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IV.1.2 Frequency of certain types of elliptic curves

A few remarks:

(1) If j(E) ∈ Fp2 for E supersingular in characteristic p, then there are only finitely many
supersingular elliptic curves in characteristic p up to isomorphism over K.

(2) CM curves over Q are rare, corresponding to only 13 j-invariants. If E/Q has CM,
then j(E) ∈ Z.

(3) For a density 1 collection of A,B ∈ Z, the curve E : y2 = x3 +Ax+B has ρm surjective
for all m.

IV.1.3 Reduction of curves

Be careful about reduction!

Example IV.1.5. The curve y2 = x3 + 16 has discriminant ∆ = −212 · 33. It does not define
an elliptic curve mod 2 and mod 3, but it does mod p for all p > 3.

But, let us make some substitutions: x = 4x′ and y = 8y′ + 4. This gives us an elliptic
curve

E ′ : (y′)2 + y′ = (x′)3,

which has discriminant ∆ = −33. This does define an elliptic curve mod 2.
We say that E has good reduction at 2, since E ∼= E ′ over Q, and E ′ has good reduction

at 2. (The model has bad reduction at 2, but the curve intrinsically has good reduction at
2.)

We should suspect this might happen by considering the change of variables x = u2x′

and y = u3y′ + c, which changes the discriminant by u12.

Definition IV.1.6. We say that E/Q has good reduction at a prime p if there exists E ′ ∼= E
over Q such that E ′ (mod p) is an elliptic curve. Otherwise, we say E has bad reduction.

We will soon develop this theory more formally via minimal models.

IV.1.4 L-functions of elliptic curves over Q
Let E be an elliptic curve over Q, and let p be a prime of good reduction.

Look at E/Fp. It has the zeta function

Z(T ) =
1− apT + pT 2

(1− T )(1− pT )
,

where |E(Fp)| = p+ 1− ap, and |ap| ≤ 2
√
p.

Definition IV.1.7. Define the L-series of E by

L(E, s) =
∏
p good

1

(1− app−s + pp−2s)

∏
p bad

1

(1− app−s)
=
∞∑
n=1

cn
ns
,
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where for p bad,

ap =


1 if E/Fp has a node with tangent slopes ∈ Fp,
−1 if E/Fp has a node with tangent slopes /∈ Fp,
0 if E/Fp has a cusp.

Note IV.1.8. (1) The term coming from p of good reduction comes from T 7→ p−s in the
zeta function.

(2) For p prime, cp = ap. Moreover, c1 = 1.

IV.1.5 Examples of L-series

Example IV.1.9. Consider E : y2 = x3 − x = x(x + 1)(x − 1). This has good reduction at
every p > 2.

What if p = 2? We have a3 = 0, a5 = −2, a7 = 0, a11 = 0, a13 = 16, . . . . (We can see
that ap = 0 for p ≡ 3 (mod 4) because E has CM by Q(i).) In projective coordinates, the
curve is

y2z = x3 − xz2,

which has a singularity at (1 : 0 : 1) in characteristic 2.
Translate the singularity to (0 : 0 : 1). Set u = x− 1. Then

y2 = (u+ 1)3 − (u+ 1) = u3 + u2.

To see whether this has a node or a cusp, look at the leading quadratic factors. It has a
node ⇐⇒ the quadratic has distinct factors. But, since we are in characteristic 2,

y2 − u2 = (y − u)(y + u) = (y + u)2.

So E/F2 has a cusp, and a2 = 0. Hence

L(E, s) =

(
1

1− 0 · 2−s

)(
1

1− 0 · 3−s + 3 · 3−2s

)(
1

1 + 2 · 5−s + 5 · 5−2s

)
· . . .

= 1− 2

5s
− 3

9s
+

6

13s
+ . . .

Example IV.1.10. Consider y2 + y = x3 − x2. Then

L(E, s) =
∞∑
n=1

cn
ns
,

where
∞∑
n=1

cnq
n = q

∞∏
n=1

(1− qn)2 (1− q11n
)2
.

This, as we will see later, is a modular form.
Remark IV.1.11. We will later show a deep result: Every elliptic curve has bad reduction at
some prime.
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IV.2 2013-10-30
Let E be an elliptic curve over Q.

IV.2.1 L-series

Last time, we defined an L-series

L(E, s) =
∏
p good

1

(1− app−s + p1−2s)

∏
p bad

1

(1− app−s)
=
∞∑
n=1

cn
ns
,

where cp = ap for p prime, c1 = 1, and

ap =


p+ 1− |E(Fp)| , p good,
1, node with tangent slopes in Fp,
−1, node with tangent slopes not in Fp,
0, cusp.

Moreover, if (m,n) = 1, then cmn = cmcn.
Example IV.2.1. For E : y2 + y = x3 − x2, we have

L(E, s) =
∞∑
n=1

cn
ns
,

where
∞∑
n=1

cnq
n = q

∞∏
n=1

(1− qn)2 (1− q11n
)2
.

IV.2.2 The Taniyama–Shimura conjecture

If f is a cuspform, say f =
∑∞

n=1 cnq
n, set

L(f, s) =
∞∑
n=1

cn
ns
.

Conjecture IV.2.2 (Taniyama–Shimura). If E is an elliptic curve over Q, then there exists
a cuspform of weight 2 and level N such that L(f, s) = L(E, s). (Here, N is the conductor
of E.)

This is now a theorem by Breuil, Conrad, Diamond, Taylor, Wiles, et al.
So far, we’ve met level 1 cuspforms (on the whole of SL2(Z)). Level N cuspforms trans-

form nicely under

γ ∈ Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}
.

For a summary of different forms of the Taniyama–Shimura conjecture, see [Maz].
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IV.2.3 Weak Birch–Swinnerton-Dyer conjecture

Set
Λ(E, s) = N s/2(2π)−sΓ(s)L(E, s).

Theorem IV.2.3. Λ(E, s) has an analytic continuation to the whole s-plane such that

Λ(E, s) = wΛ(E, 2− s),

where w = ±1 is the root number.

This is now known by Taniyama–Shimura.

Conjecture IV.2.4 (Weak Birch–Swinnerton-Dyer). L(E, s) has a zero at s = 1 of order
r, where r = rank(E(Q)).

Remark IV.2.5. By the Mordell theorem, which we shall see later in this course, E(Q) is
finitely generated.

Remark IV.2.6. The Birch–Swinnerton-Dyer conjecture is a sophisticated “local-to-global”
principle. (The strong form of the conjecture also gives information about the leading terms
of the Taylor expansion.)

IV.2.4 Minimal Weierstrass models

Let E be an elliptic curve over K.

Definition IV.2.7. An admissible change of variables in a Weierstrass equation is given by

x = u2x′ + r,

y = u3y′ + su2x′ + t,

where u, r, s, t ∈ K and u 6= 0.

One can check that ∆′ = u−12∆.

Proposition IV.2.8. E ∼= E ′ ⇐⇒ j(E) = j(E ′).

If E ∼= E ′, then we can show j(E) = j(E ′) by brute force calculation. The converse is
also a painful calculation, which we illustrate by example:

Example IV.2.9. Consider two elliptic curves

E : y2 = x3 + Ax+B,

E ′ : y2 = x3 + A′x+B′.

The j-invariant is of the form

j(E) = c · 4A3

4A3 + 27B2

for some constant c (probably involving 1728). We need to find u such that A′ = Au4 and
B′ = Bu6.
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Now we can define the minimal Weierstrass form. To avoid difficulties with fields of class
number > 1, let us work over Q. Assume the coefficients are integers. Then ∆ ∈ Z.
Definition IV.2.10. Call the equation minimal at prime p if the power of p dividing ∆
cannot be decreased by an admissible change of variables. (Hence, if the exponent of p in ∆
is < 12, then the equation is minimal at p.)

Call the Weierstrass equation (globally) minimal if it is minimal at all primes.

IV.2.5 Convergence of L(E, s)

Is the power series L(E, s) convergent? By Hasse,

|ap| ≤ 2
√
p =⇒ |cn| � O(n1/2+ε).

Hence, L(E, s) converges for Re(s) > 3
2
.

IV.2.6 Birch–Swinnerton-Dyer conjecture

Let Lp(E, s) be the p-th factor of L(E, s). If p is good, then

Lp(E, 1) =
1

1− app−1 + p−1
=

p

p+ 1− ap
=

p

|E(Fp)|
.

If p is bad, then we study the group of nonsingular points Ens(Fp), which has order p− ap:
cusp Ens(Fp) ∼= F+

p , which has order p.

node, split Ens(Fp) ∼= F×p , which has order p− 1.

node, nonsplit Ens(Fp) ∼= ker(N : F×p2 → F×p ), which has order p+ 1.
So

Lp(E, 1) =
1

1− app−1
=

p

p− ap
=

p

|Ens(Fp)|
.

The Birch–Swinnerton-Dyer heuristic states, roughly, that

rank(E(Q)) > 0 ⇐⇒ |E(Fp)| large on average ⇐⇒ p

|E(Fp)|
small of average ⇐⇒ L(E, 1) = 0.

IV.3 2013-11-01

IV.3.1 Convergence of L-series

Let E be an elliptic curve over Q. We can bound the terms of the L-series (recall that
|αp| =

√
p):(

1− app−s + p1−2s
)−1

=
(
1− αpp−s

)−1 (
1− αpp−s

)−1

=
(
1 + αpp

−s + α2
pp
−2s + . . .

) (
1 + αpp

−s + αp
2p−2s + . . .

)
= 1 + (αp + αp)p

−s + (α2
p + αpαp + αp

2)p−2s

+ · · ·+ (αkp + αk−1
p αp + · · ·+ αp

k)︸ ︷︷ ︸
c
pk

p−ks + . . .
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So
∣∣cpk∣∣ ≤ (k + 1)(

√
p)k = d(pk)

√
pk.

If (m,n) = 1, then cmn = cmcn. So for all n,

|cn| ≤ d(n)
√
pk.

So |cn| � O(n1/2+ε), whence ∣∣∣ cn
ns

∣∣∣� O(n−s+1/2+ε).

If Re(s) > 3
2
, choose ε > 0 such that −s+ 1

2
+ ε < k < −1. Compare

∑∞
n=1

cn
ns

with
∑∞

n=1 n
k.

So L(E, s) converges absolutely for Re(s) > 3
2
.

Conjecture IV.3.1 (Hasse). L(E, s) has an analytic continuation to C.

Deuring (1941) proved this for elliptic curves with CM; the general case follows from
Taniyama–Shimura.

IV.3.2 Birch–Swinnerton-Dyer conjecture

Conjecture IV.3.2 (Weak BSD). L(E, s) has a zero of order rE := rank(E(Q)) at s = 1.

Conjecture IV.3.3 (Strong BSD).

lim
s→1

(s− 1)−rEL(E, s) = |X| det 〈Pi, Pj〉
[E(Q) : B]2

c∞
∏

p prime

cp,

where:

• X is the Tate–Shafarevich group (conjectured to be finite);

• 〈Pi, Pj〉 is the “regulator”;

• c∞ is a small multiple of the period; and

• cp is the p-th Tanagawa number.

Progress:

Theorem IV.3.4 (Coates–Wiles, 1977). Suppose E has CM. Then rE ≥ 1 implies analytic
rank ran ≥ 1 (that is, L(E, 1) = 0).

Theorem IV.3.5 (Gross–Vagier, 1986). Suppose E is modular (i.e., L(E, s) = L(f, s) for
some f). Then ran = 1 implies rE ≥ 1.

Theorem IV.3.6 (Rubin, 1987). Suppose E has CM. Then ran = 0 implies rE = 0, X is
finite, and BSD holds for E.

Theorem IV.3.7 (Kolyragin, 1988). Suppose E is modular (which, by the modularity the-
orem, is always true). Then ran = 0 implies rE = 0 and X is finite, and ran = 1 implies
rE = 1 and X is finite.
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IV.3.3 The conductor and semistability

Definition IV.3.8. The conductor of E is the integer N =
∏

p p
fp , where

fp =


0 if p is good,
1 if p is bad, multiplicative (node) reduction,
≥ 2 if p is bad, additive (cusp) reduction.

(If p ≥ 5, replace the last case with fp = 2.)
The conductor is the smallest N such that L(E, s) = L(f, s) for f a cuspform of weight

2, level N (transforms under Γ0(N)).

Definition IV.3.9. If N is squarefree (fp = 1 for all bad p), then call E semistable.

IV.3.4 The functional equation

Recall the completed L-series

Λ(E, s)
def
= N s/2(2p)−sΓ(s)︸ ︷︷ ︸

L∞(E,s)

L(E, s).

We have the functional equation

Λ(E, 2− s) = wEΛ(E, s),

where w = ±1 is the root number.
How does this follow from Taniyama–Shimura?
Let f(z) =

∑∞
n=1 anq

n (where q = e2πiz) be a cuspform, weight k, for SL2(Z). In partic-
ular, f(−1

z
) = zkf(z). Set

g(s) =

∫ ∞
0

zs−1f(iz) dz.

This is the Mellin transform of f .

Claim IV.3.10. |an| = O(nk/2) (proven next).

Suppose Re s > k
2

+ 1. Set t = 2πnz, dt = 2πn dz. Then

g(s) =

∫ ∞
0

zs−1
( ∞∑
n=1

ane
−2πnz

)
dz

=
∞∑
n=1

an

∫ ∞
0

zs−1e−2πnz dz

=
∞∑
n=1

an

∫ ∞
0

(
t

2πn

)s−1

e−t
dt

2πn

=
∞∑
n=1

an
(2πn)s

Γ(s) = (2π)−sΓ(s)L(f, s) = Λ(f, s),

where L(f, s) =
∑∞

n=1
an
ns
.
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Theorem IV.3.11. Λ(f, k − s) = (−1)k/2Λ(f, s).

Proof. We have f(−1
2
) = zkf(z). Set z = iu: then

f

(
i

u

)
= (−1)k/2ukf(iu).

Thus, setting z = 1
u
, dz = − 1

u2 du,

Λ(f, s) =

∫ ∞
0

zs−1f(iz) dz

=

∫ ∞
1

zs−1f(iz) dz +

∫ 1

∞

(
1

u

)s−1

f

(
i

u

)(
− 1

u2

)
du

=

∫ ∞
1

zs−1f(iz) dz +

∫ ∞
1

1

us+1
(−1)k/2ukf(iu) du

=

∫ ∞
1

[
zs−1f(iz) + (−1)k/2zk−1−sf(iz)

]
dz.

The above is invariant under replacing s with k − s if k
2
is even, and swaps the sign if k

2
is

odd.

Proof of Claim IV.3.10 (Hecke). As q → 0,

f(z) =
∞∑
n=1

= O(q) = O(e−2πy).

Set φ(z) = |f(z)| yk/2. This is invariant under SL2(Z) and continuous on the fundamental
domain. Also, φ → 0 as y → ∞, hence φ is bounded on H . Thus, |f(z)| ≤ My−k/2 for
some M . Fixing y and letting 0 ≤ x ≤ 1, q follows a circle C of radius e−2πy. If we write
z = x+ iy, then

q = e2πiz = e2πixe−2πy.

Applying Cauchy’s integral formula,

an =
1

2πi

∫
C

f(z)q−n−1 dq

=
1

2πi

∫ 1

0

f(z)q−n−12πiq dz dx

=

∫ 1

0

f(z)q−n dx.

Hence |an| ≤My−k/2e2πny. Set y = 1
n
. Then

|an| ≤M

(
1

n

)−k/2
e2π = (const) · nk/2.



92 CHAPTER IV. L-FUNCTIONS OF ELLIPTIC CURVES OVER Q

IV.4 2013-11-04

IV.4.1 Modular functions of weight k

[Thanks to Vladimir Sotirov for the first half of today’s notes. —Daniel]
We had that if f(z) =

∑∞
n=1 anq

n is a cuspform for SL2(Z) (level 1) of weight k, and

Λ(f, s) = (2π)−sΓ(s)L(f, s),

where L(f, s) =
∑∞

n=1
an
ns
, then we have the following:

Theorem IV.4.1 (Hecke). Λ(f, k − s) = (−1)k/2Λ(f, s).

We want to generalize this. Let

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣ c ≡ 0 (mod N)

}
,

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣ c ≡ 0, d ≡ 1 (mod N)

}
.

Define
f | [γ]k(z) = (cz + d)−kf(γz),

where γz =
az + b

cz + d
if γ =

(
a b
c d

)
.

Definition IV.4.2. A modular function of weight k for Γ is a meromorphic function satis-
fying f | [γ]k = f for all γ ∈ Γ. We say “level N ” if Γ = Γ0(N).

Suppose
(

1 1
0 1

)
∈ Γ, so then f(z + 1) = f(z). For each γ ∈ SL2(Z), expand f | [γ]k as∑

anq
n. This is a modular form if an = 0 for all n < 0 (and all γ), and is a cusp form if

an = 0 for all n ≤ 0 (and all γ).
Let f(z) be such a cusp form,

∑∞
n=1 anq

n, for Γ0(N). Let

L(f, s) =
∞∑
n=1

an
ns
,

Λ(f, s) = N s/2(2π)−sΓ(s)L(f, s).

Then (similarly to last time — Koblitz, p. 140)

Λ(f, k − s) = wfΛ(f, s),

where wf = ±1.
In particular, if E is an elliptic curve over Q that is modular, i.e., L(E, s) = L(f, s) for

some cuspform f of weight 2 and level N , then L(E, s) extends to an entire function, and

Λ(E, 2− s) = wEΛ(E, s),

where wE = ±1.
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IV.4.2 Examples

(1) y2 = x3 − x has bad reduction only at p = 2. The conduction is N = 25.

(2) x3 + y3 = z3 has bad reduction only at p = 3. The conduction is N = 33.

(3) Consider E : y2 + y = x3 − x. The only prime of bad reduction is p = 37; the point
(−5, 18) is singular (mod 37).
Let u = x+5 and v = y−18. Then the equation becomes v2 = u3−15u2. The leading
quadratic terms are

v2 + 15u2 =
(
v +
√
−15u

) (
v −
√
−15u

)
.

These are different, so the singularity is a node.
Is it split or nonsplit, i.e., is

√
−15 ∈ F37? By quadratic reciprocity, no. So E has

nonsplit multiplicative reduction, and so a37 = −1; we get that N = 37. Compute
a2 = −2, a3 = −3, . . .

L(E, s) =

(
1

1 + 37−s

)(
1

1 + 2 · 2−s + 21−2s

)(
1

1 + 3 · 3−s + 31−2s

)
. . .

= 1− 2

2s
− 3

3s
+

2

4s
− 2

5s
+

6

6s
+ . . .

There is a cuspform of weight 2, level 37,

f = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 + . . .

In fact, L(E, s) = L(f, s).

IV.4.3 A curve with CM by Z[i]

As we saw before, E : y2 = x3 − x has CM by the Gaussian integers Z[i]. A prime p factors
in Z[i] as

pZ[i] =


p2 if p = 2,

pp′ if p ≡ 1 (mod 4),

pZ[i] if p ≡ 3 (mod 4).

Define a map χ : {nonzero ideals of Z[i]} → C as follows:

• If p | 2 (p lies over 2), set χ(p) = 0.

• If p = pZ[i] is prime (i.e., p ≡ 3 (mod 4)), set χ(p) = −p.

• If pZ[i] = pp′ (i.e., p ≡ 1 (mod 4)), then since Z[i] is a PID,

p = 〈a+ bi〉 , p′ = 〈a− bi〉 .

Pick a, b such that a+ bi ≡ 1 (mod 2 + 2i). (We can do so for a unique a, b.) Then set

χ(p) = a+ bi,

χ(p′) = a− bi.
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Extend to all nonzero ideals of Z[i] multiplicatively.
If p ≡ 3 (mod 4), then E is supersingular at p, and ap = 0. So

1− app−s + p1−2s = 1 + pp−2s = 1− χ(p)(Np)−s,

where Np = |Z[i]/p|.
If p ≡ 1 (mod 4), then [IR] p is ordinary for E, and so ap = 2a = π + π, where ππ = p.

So

1− app−s + p1−2s =
(
1− πp−s

) (
1− πp−s

)
=
(
1− χ(p)(Np)−s

) (
1− χ(p′)N(p′)−s

)
.

So
L(E, s) =

∏
p6=0

(
1− χ(p)(Np)−s

)−1
=
∑
I 6=0

χ(I)

(NI)s
= L(χ, s),

where the product is over nonzero prime ideals of Z[i], and the sum is over nonzero ideals of
Z[i].

If E has CM, then L(E, s) = L(χ, s) for some χ. (Hecke)



Chapter V

The Mordell–Weil Theorem

V.1 2013-11-06

[I missed class this day; thanks again to Vladimir Sotirov for these notes. —Daniel]

V.1.1 Remarks

Last time we saw an example of the fact that if E has CM, then there is a Hecke character
χ so that

L(E, s) = L(χ, s) =
∑
I

χ(I)

(NI)s
,

where I ranges over the non-zero ideals of the CM ring.
Shimura published in Crelle (in the 1950s) a computation that for E : y2 + y = x3 − x2,

∞∑
n=1

anq
n = q

∞∏
n=1

(1− qn)2 (1− q11n
)2

up to a hundred or so terms.
Suppose for each prime p we have ρp : GQ → GL2(Z/p) such that there is a finite set S for

which ρp is unramified outside S ∪{p}. Suppose for ` /∈ S ∪{p}, ρp(Frob`) has characteristic
polynomial independent of p (for an elliptic curve E: 1 − a` + `T 2). This is a compatible
system of p-adic representations, to which we can associate an L-function∏

` good

1

(char. poly) · (`)−s
∏
`∈S

· · · .

V.1.2 The Mordell–Weil theorem

Theorem V.1.1 (Mordell–Weil). If K is a number field and E an elliptic curve over K,
then E(K) is a finitely generated abelian group.

The proof will last three weeks (for K = Q).

95
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Definition V.1.2. A height function h on an abelian group A is a function h : A → R
satisfying:

(1) h(P ) ≥ 0 for all P ∈ A.

(2) h(mP ) = |m|h(P ) for all m ∈ Z.

(3) h(P +Q) ≤ h(P ) + h(Q) for all P,Q ∈ A.

(4) For all r ∈ R, {P : h(P ) ≤ r} is finite.

Corollary V.1.3.

(1) If h(0) = 0, set m = 0 in (2).

(2) If P is torsion, then h(P ) = 0. In particular, if A has a height function, then Tor(A)
is finite.

(3) If A1, A2 have height functions, set

h(P1, P2) = h(P1) + h(P2)

to get a function on A1 ⊕ A2.

Theorem V.1.4. A is a finitely generated abelian group if and only if |A/mA| < ∞ for
some integer m > 1 and A has a finite function.

Proof. If A ∼= (finite abelian group)⊕Zr, then A/mA ∼= (finite abelian group)⊕ (Z/m)r, so
A/mA is finite.

Now, Z has a height function, namely h(P ). Finite groups have finite functions, namely
h(P ) = 0 for all P . So A has a height function.

In the reverse direction, let n = |A/mA|. Let Q1, . . . , Qn ∈ A be a transversal. Let
C = max1≤i≤n h(Qi) + 1. We let X = {P ∈ A : h(P ) ≤ c}. Then |X| < ∞. Let G be the
subgroup of A generated by X. We claim that G = A.

Indeed, we know the Qi are in G (since Qi ∈ X). Suppose there was P ∈ A\G, of minimal
height (h(P ) > c). Then P +mA ∈ A/mA, so there exists an i so that Qi +mA = P +mA.
That implies that P −Qi ∈ mA, say P −Qi = mR (for m > 1) with R ∈ A. Then

2h(R) ≤ mh(R) = h(mR) = h(P −Qi) ≤ h(P ) + h(−Qi) < h(P ) + c.

So 2h(R) < h(P )+c < 2h(P ). Thus, h(R) < h(P ), and so R ∈ G. But then P = Qi+mR ∈
G, which is a contradiction.

V.1.3 Height functions on elliptic curves

Goals: for E an elliptic curve over Q, we want to show that:

(1) |E(Q)/2E(Q)| <∞.

(2) E(Q) has a height function.
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We will take care of (2) first; this will take a few days.

Definition V.1.5. Define h : Pn(Q)→ R as follows. If x = (x0 : · · · : xn) ∈ Pn(Q), write it
so that all xi ∈ Z and gcd(x1, . . . , xn) = 1 (i.e., multiply by the lcm of the denominators).
Set

H(x) = max
0≤i≤n

|xi| ,

and set h(x) = logH(x).

Now, we have E(Q)
x−→ P1(Q) given by P 7→ (1 : x(P )) (and ∞ 7→ (0 : 1)).

Definition V.1.6. We define H(P ) = H(x(P )) and h(P ) = h(x(P )); this is the naive height
on E.

Idea: we want to define T : P2(Q)→ P2(Q) so that the diagram

A× A (P,Q)7→(P+Q,P−Q)
//

��

A× A

��

P1(Q)× P1(Q)

σ

��

P1(Q)× P1(Q)

σ

��

P2(Q) T // P2(Q)

commutes, where σ : (a : b)× (c : d) 7→ (ac : bc+ ad : bd).
The canonical height (due to Tate) is

ĥ(P ) = lim
n→∞

h(2nP )

4n
.

V.2 2013-11-08
Aims: To show

(1) |E(Q)/2E(Q)| <∞.

(2) E(Q) has a height function.

V.2.1 Height function on E

We’re starting with (2). Idea:

(a) Define h : E(Q)→ R.

(b) Show h(P +Q) + h(P −Q) = 2h(P ) + h(Q) + O(1).

(c) Let ĥ(P ) = limn→∞
1

4n
h(2nP ). Show

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).
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(d) Show P 7→
√
ĥ(P ) is a height function on E(Q).

We did (a) on Wednesday by defining

h(P ) = logH(x(P )) = log(max {|a| , |b|})

for x(P ) = (a : b) ∈ P1(Q), where a, b ∈ Z with gcd(a, b) = 1.
Denote A = E(Q). To prove (b), we must find T such that the following diagram

commutes:
A× A (P,Q)7→(P+Q,P−Q)

//

��

A× A

��

P1(Q)× P1(Q)

σ

��

P1(Q)× P1(Q)

σ

��

P2(Q) T // P2(Q)

Recall that σ is defined by

P1(Q)× P1(Q)
σ−→ P2(Q),(

(a : b), (c : d)
)
7→ (ac : ad+ bc : bd).

Write P = (x1, y1), Q = (x2, y2), P + Q = (x3, y3), P −Q = (x4, y4). Writing E : y2 =
x3 + ax+ b, a computation shows that

x3 + x4 =
2(x1 + x2)(a+ x1x2) + 4b

(x1 − x2)2
,

x3x4 =
(x1x2 − a)2 − 4b(x1 + x2)

(x1 − x2)2
.

We need
T
(
(1 : x1 + x2 : x1x2)

)
= (1 : x3 + x4 : x3x4).

Let s = x1 + x2 and p = x1x2, i.e.,

T
(
(1 : s : p)

)
=

(
1 :

2s(a+ p) + 4b

s2 − 4p
:

(p− a)24bs

s2 − 4p

)
,

T
(
(t : s : p)

)
=
(
s2 − 4pt : 2s(at+ p) + 4bt2 : (p− at)2 − 4bst

)
.

We have
T
(
σ(x(P ), x(Q))

)
= σ

(
x(P +Q), x(P −Q)

)
,

and T is a degree 2 map P2(Q)→ P2(Q).

Lemma V.2.1.

(1) If T : Pn(Q)→ Pn(Q) has degree d, then

h(T (α))− dh(α) = O(1).
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(2) h(σ(x(P ), x(Q))) = h(P ) + h(Q) + O(1).

This lemma implies (b):

2h(P ) + 2h(Q) + O(1) = 2h
(
σ(x(P ), x(Q))

)
+ O(1) by (2)

= h
(
T (σ(x(P ), x(Q)))

)
by (1)

= h
(
σ(x(P +Q), x(P −Q))

)
= h(P +Q) + h(P −Q) + O(1) by (2).

V.2.2 Proof of Lemma V.2.1

Let α ∈ Pn(Q). We show
c1H(α)d ≤ H(T (α)) ≤ c2H(α)d.

Say T : α = (α0 : · · · : αn) 7→ (T0(α) : · · · : Tn(α)), where Ti ∈ Z[x0, . . . , xn]. Write
Ti =

∑
j βijmj (where mj are monomials). Suppose the ai are integers with no common

divisor. Then

|Ti(α)| ≤
∑
j

|βij| |mj(α)| ≤
(∑

j

|βij|
)

(max
k
|αk|)d = c(Ti)H(α)d,

where c(Ti) is a constant depending on Ti. So, setting c2 = maxi c(Ti),

H(T (α)) =
maxi(|Ti(α)|)

gcd(Ti(α)
≤ max

i
(|Ti(α)|) ≤ c2H(α)d. (V.2.2.1)

Now we need the projective Nullstellensatz. The Ti have no common zero in Q. Hence,
there exist gij ∈ Q[x0, . . . , xn] and m ∈ Z+ such that

xm+d
i =

n∑
j=0

gijTj.

Clear the denominators, and get some e ∈ Z 6=0 and hij ∈ Z[x0, . . . , xn] such that

exm+d
i =

n∑
j=0

hijTj.

Evaluate at α:

|e|
∣∣αm+d

i

∣∣ =

∣∣∣∣∣
n∑
j=0

hij(α)Tj(α)

∣∣∣∣∣ ≤
n∑
j=0

|hij(α)| |Tj(α)|

≤
n∑
j=0

c(hij)H(α)m max
j
|Tj(α)|

≤ (n+ 1) max
j
c(hij)H(α)m max

j
|Tj(α)| .
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Claim V.2.2. maxj |Tj(α)| ≤ |e|H(T (α)).

Proof. Suppose pr | Tj(α) for all j. Then pr | eαm+d for all i. But gcd(αi) = 1, so p - αi for
some i. Thus, pr | e, so gcd(Tj(α)) | e. Use (V.2.2.1).

Thus, for all i,
|e| |αi|m+d ≤ kH(α)m |e|H(T (α)),

where k is a constant not depending on α. Take the maximum over i:

|e|H(α)m+d ≤ kH(α)m |e|H(T (α)),

whence H(T (α)) ≥ c1H(α)d. This completes the proof of part (1) of Lemma V.2.1.
Now we prove part (2) of the lemma. Suppose x1 = (a : b) and x2 = (c : d). Then

σ(x1, x2) = (ac : ad+ bc : bd).

We want to show

h
(
(ac : ad+ bc : bd)

)
= h

(
(a : b)

)
+ h
(
(c : d)

)
+ O(1).

Let M = max(|a| , |b|), M ′ = max(|c| , |d|), and M ′′ = max(|ac| , |ad+ bc| , |bd|). Show (case
by case) that 1

2
MM ′ ≤M ′′ ≤ 2MM ′. So

logM + logM ′ − log 2 ≤ logM ′′ ≤ logM + logM ′ + log 2,

whence
|logM ′′ − logM − logM ′| ≤ log 2,

and we are done.

V.3 2013-11-11

V.3.1 Heights, continued

Let E be an elliptic curve defined over Q.
Goals:

(a) Define h : E(Q)→ R.

(b) Show h(P +Q) + h(P −Q) = 2h(P ) + 2h(Q) + O(1).

(c) Set

ĥ(P ) = lim
n→∞

h(2nP )

4n
.

Show ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).

(d) Show that P 7→
√
ĥ(P ) is a height function on E(Q).
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V.3.2 A theorem of Tate

Theorem V.3.1 (Tate). Suppose S is a set, T : S → S, h : S → R, d > 1 is an integer,
and

h(T (α))− dh(α) = O(1)

for all α ∈ S. Then there is a unique ĥ : S → R satisfying

(1) ĥ(α)− h(α) = O(1) (ĥ is boundedly different from h), and

(2) ĥ(T (α)) = dĥ(α) for all α ∈ S.

Proof. Uniqueness Suppose ĥ1, ĥ2 both satisfy. Then for all α ∈ S,

ĥ1(T (α))− ĥ2(T (α)) = d
(
ĥ1(α)− ĥ(α)

)
.

Note that j(α) := ĥ1(α)− ĥ2(α) is bounded by a constant, call it C. Thus

C ≥ |j(T (α))| = d |j(α)| ,

so |j(α)| ≤ C
d
. Rinse and repeat, replacing C by C

d
. Since d > 1, it follows that

j(α) = 0 for all α ∈ S, whence ĥ1(α) = ĥ2(α).

Existence Let
ĥ(α) = lim

n→∞

1

dn
h(T nα).

Say |h(T (α))− dh(α)| ≤ C ′ for all α. Use Cauchy’s criterion:∣∣∣∣ 1

dn+1
h(T n+1α)− 1

dn
h(T nα)

∣∣∣∣ =
1

dn+1

∣∣h(T (T nα)
)
− dh(T nα)

∣∣ ≤ C ′

dn+1
.

Thus, ∣∣∣∣ 1

dn+1
h(T n+1α)− 1

dn
h(T nα)

∣∣∣∣ ≤ C ′

dn+1
· 1(

1− 1
d

) .
Hence the limit exists and satisfies ĥ(α) − h(α) = O(1) (take n = 0 in the above
estimate). Furthermore,

ĥ(T (α)) = lim
n→∞

1

dn
h(T n+1(α)) = lim

n→∞

1

dn+1
dh(T n+1(α)) = dĥ(α).

V.3.3 Behavior of heights under doubling

Let us find T to make this diagram commute:

E(Q) 2 //

x
��

E(Q)

x
��

P1(Q) T // P1(Q)
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Suppose E : y2 = x3 + ax+ b. Recall the duplication formula:

T (1 : x) =

(
1 :

x4 + · · ·+ a2

4(x3 + ax+ b)

)
T
(
(u : v)

)
=
(
4(v3u+ avu3 + bu4) : v4 + · · ·+ a2u4

)
.

In particular, T has degree 4. Define

ĥ(P ) = lim
n→∞

h(2nP )

4n
.

Remark V.3.2. So we have ĥ(2P ) = 4ĥ(P ). In fact, we’ll later see that ĥ(nP ) = n2ĥ(P ) in
general.

V.3.4 The parallelogram law

We want to show that

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).

Indeed,

LHS− RHS = lim
n→∞

1

4n
(
h(2n(P +Q)) + h(2n(P −Q))− 2h(2nP )− 2h(2nQ)

)︸ ︷︷ ︸
by (b), |this| ≤ C′ for all P,Q

= 0.

This proves (c).

V.3.5 The height function

For (d), define |P | =
√
ĥ(P ). We’ll show this is a height function.

Recall the properties of a height function:

(1) |P | ≥ 0 for all P .

(2) |mP | = |m| |P | for all m ∈ Z and all P ∈ E(Q).

(3) |P +Q| ≤ |P |+ |Q|.

(4) {P : |P | ≤ r} is finite.
We prove these in order:

(1) For all P , h(P ) ≥ 0, so ĥ(P ) ≥ 0, whence (1).

(2) Note that P and −P have the same x-coordinate. So h(−P ) = h(P ), hence (2) is true
for m = 0, 1,−1, and it’s enough to show (2) for m ≥ 1. We proceed by induction,
setting P = (m− 1)Q in (c). Then

ĥ([m− 1]Q+Q) + ĥ([m− 1]Q−Q) = 2ĥ([m− 1]Q) + 2ĥ(Q)

ĥ(mQ) + (m− 2)2ĥ(Q) = 2(m− 1)2ĥ(Q) + 2ĥ(Q)

ĥ(mQ) =
[
2(m− 1)2 − (m− 2)2 + 2

]
ĥ(Q) = m2ĥ(Q).

Thus, |mQ| = |m| |Q|, proving (2).
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(3) Define the height pairing

〈P,Q〉 =
ĥ(P +Q)− ĥ(P )− ĥ(Q)

2
.

So, for example, 〈P, P 〉 = 1
2
(ĥ(2P )− 2ĥ(P )) = ĥ(P ).

Claim. 〈P +R,Q〉 = 〈P,Q〉+ 〈R,Q〉.

Indeed,

2 (〈P +R,Q〉 − 〈P,Q〉 − 〈R,Q〉) = ĥ(P +R +Q)− ĥ(P +R)− ĥ(Q)

− ĥ(P +Q) + ĥ(P ) + ĥ(Q)

− ĥ(R +Q) + ĥ(R) + ĥ(Q).

We use the following four facts, which follow from (c):

(I) ĥ(P +R +Q) + ĥ(P +R−Q)− 2ĥ(P +R)− 2ĥ(Q) = 0

(II) ĥ(P −R +Q) + ĥ(P −Q+R)− 2ĥ(P )− 2ĥ(R−Q) = 0

(III) ĥ(P −R +Q) + ĥ(P +R +Q)− 2ĥ(P +Q)− 2ĥ(R) = 0

(IV) 2
(
ĥ(Q+R) + ĥ(R−Q)− 2ĥ(R)− 2ĥ(Q)

)
= 0

The claim then follows by looking at I− II + III− IV:

4(LHS− RHS) = 0.

We’ll finish this next time.

V.4 2013-11-13

V.4.1 Height function, continued

From last time, ĥ(nP ) = n2ĥ(P ) and h(nP ) ≈ n2h(P ). Recall the height pairing

〈P,Q〉 =
ĥ(P +Q)− ĥ(P )− ĥ(Q)

2
.

We have |P | =
√
ĥ(P ) =

√
〈P, P 〉. Properties:

〈P, P 〉 = ĥ(P ) ≥ 0

〈P,Q〉 = 〈Q,P 〉
〈P +R,Q〉 = 〈P,Q〉+ 〈R,Q〉 (just saw this)
〈P,Q+R〉 = 〈P,Q〉+ 〈P,R〉 (by symmetry)
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For λ, µ ∈ Z and P,Q,

0 ≤ 〈λP − µQ, λP − µQ〉 = λ2 〈P, P 〉 − 2λµ 〈P,Q〉+ µ2 〈Q,Q〉 .

This is true for all λ, µ, so

(2 〈P,Q〉)2 − 4 〈P, P 〉 〈Q,Q〉 ≤ 0

〈P,Q〉2 ≤ 〈P, P 〉 〈Q,Q〉
|〈P,Q〉| ≤ |P | |Q| .

Hence

|P +Q|2 = 〈P +Q,P +Q〉
= 〈P, P 〉+ 2 〈P,Q〉+ 〈Q,Q〉
≤ |P |2 + |Q|2 + 2 |P | |Q|
= (|P |+ |Q|)2 .

So we get (3): |P +Q| ≤ |P |+ |Q|.
To finish proving that P 7→ |P | is a height function on E(Q), we now prove (4):

|P : |P | ≤ r| is finite (for given r). Indeed, since bounding |P | bounds H(x(P )) with co-
ordinates of x(P ) integers, this bounds coordinates of x(P ).

Aside V.4.1. 〈·, ·〉 is positive semi-definite. In particular, 〈P, P 〉 = 0 ⇐⇒ P is torsion. (We
already proved ⇐= . For the other direction, if P has infinite order, this contradicts (4).)

The elliptic regulator |det 〈Pi, Pj〉| appeared in the strong Birch–Swinnerton-Dyer con-
jecture. Here {Pi} is a basis of E(Q) mod torsion.

V.4.2 Remarks on torsion

Suppose we’ve shown E(Q) ∼= ZrE ⊕ (Tors). In practice, rE is the hard one to find, and
Tors(E(Q)) is easy to find.

Facts:

(1) Tors(E(Q)) ↪→ E(Fp) for all odd primes p of good reduction. (If p = 2 has good
reduction, then |kernel| ≤ 2.)

(2) (Lutz–Nagell) If y2 = f(x), f ∈ Z[x], then (u, v) torsion =⇒ u, v ∈ Z and v = 0 or
v2 | Disc(f).

(3) (Mazur, 1977) |Tors| ≤ 16.

(4) (Doud) The torsion subgroup can be computed by analytic methods.
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V.4.3 Finiteness of 2-torsion

Aim: Show |E(Q)/2E(Q)| is finite.
Remark V.4.2 (Strategy/idea). Suppose E : y2 = f(x), where f(x) ∈ Z[x] is completely
factorizable:

f(x) = (x− α1)(x− α2)(x− α3) (αi ∈ Z).

We can define a map

E(Q)/2E(Q)→ Q×/Q×2 ×Q×/Q×2

P 7→
(
x− α1

(
mod×Q×2)

, x− α2

(
mod×Q×2))

,

where x = x(P ). Can do this and get an injective homomorphism. All we have to do is to
characterize the image.

Note V.4.3. Q×/Q×2 is an abelian group of exponent 2 (basis −1, 2, 3, 5, 7, 11, . . . ).

Suppose E has a point of order 2, say (0, 0). Say E = E[a, b] : y2 = x3 = ax2 +bx. Define

E(Q)
φ−→ E ′(Q),

(x, y) 7→
(
y2

x2
, y

(
1− b

x2

))
, (0, 0) 7→ point at ∞,

where E ′ = E[−2a, a2 − 4b].
We’ll define α : E ′(Q)→ Q×/Q×2 such that

E(|Q)
φ−→ E ′(Q)

α−→ Q×/Q×2

is exact, i.e., E ′(Q)/ Im(φ) = E ′(Q)/ ker(α) ∼= Im(α).
Why? If we show Im(α) is finite, then E ′(Q)/φE(Q) is finite. Show likewise that

E(Q)/φE ′(Q) is finite. But 2 = φφ since φ has degree 2, so E(Q)/2E(Q) is finite.
Define α as follows:

E[c, d]
α−→ Q×/Q×2

point at ∞ 7→ 1

(x, y) 7→ x
(
mod×Q×2)

(0, 0) 7→ d.

Need to check:

• α is a homomorphism;

• ker(α) = Im(α);

• Im(α) ⊆ {±
∏
peii | p | d, ei = 0 or 1}. (This implies Im(α) is finite.)
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V.5 2013-11-15

V.5.1 Finiteness of 2-torsion, continued

Let α be as defined last time.

Lemma V.5.1. For (x, y) ∈ E(Q), where E is defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

there exist m,n, e ∈ Z with (m, e) = (n, e) = 1 such that x = m
e2

and y = n
e3
.

Proof. Say x = m
r
, y = n

s
with (m, r) = 1 = (n, s). For p a prime, set a = ordp(r),

b = ordp(s). Then a > 0 if and only if b > 0. The exact power of p in the denominator of
the right-hand side of the defining equation is p3a, whereas on the left-hand side it is ≤ p2a

if a ≥ b, and for b > a it is p2b. So 2b = 3a, so set a = 2dp and b = 3dp, and e =
∏

p p
dp .

Recall that E[a, b] : y2 = x3 + ax2 + bx has a point of order 2, namely (0, 0).

Definition V.5.2. We define a map

E[c, d]
α−→ Q×/Q×2

,

∞ 7→ 1,

(x, y) 7→ x
(
mod×Q×2) if x 6= 0,

(0, 0) 7→ d.

We want to check α is a group homomorphism, kerα = Imφ, and Imα is finite. We
will prove the first in greater generality in a moment. We easily have the second since
kerα = Imφ, so the composite

E(Q)
φ−→ E ′(Q)

φ−→ E(Q)

is multiplication by 2. We prove the third.

Claim V.5.3. Im(α) ⊆ {±
∏
peii | pi | d, ei = 0 or 1}Q×/Q×2.

[We will see later that if rE = rank(E(Q)), then 2rE = 1
4
|ImαE| |ImαE′|.]

We prove the claim. Let (x, y) ∈ E[c, d](Q). Then x = m
e2
, y = n

e3
, where (m, e) = 1 =

(n, e), whence

y2 = x3 + cx2 + dx

n2

e6
=
m3

e6
+ c

m2

e4
+ d

m

e2

n2 = m3 + cm2e2 + dme4 = m
(
m2 + cme2 + de4

)
.

Case 1 Factors on RHS are relatively prime. Then m = ± square, which implies x = ±
square, so

α
(
(x, y)

)
= x = 1

(
mod×Q×2)

.

Case 2 gcd(m,m2 + cme2 + de4) = g 6= 1. Then g | de4, so (m, e) = 1 implies g | d. But
m = ±(square)g, so α((x, y)) = ±g.
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V.5.2 General case

Let E : y2 = (x− α1)(x− α2)(x− α3) with α1, α2, α3 ∈ R, where R is a UFD with fraction
field K. Let

P (E) =
{
irreducibles (up to associates) p

∣∣ p | αi − αj for some i 6= j
}
,

A(E) =
{
a ∈ K×/K×2 ∣∣ ordp(a) even ∀p /∈ P (E)

}
.

Note that P (E) is a finite set.
Define

θi : E(K)→ K×/K×
2

point at ∞ 7→ 1

(x, y) 7→ x− αi
(
mod×K×

2) (if x 6= αi)
(αi, 0) 7→ (αj − αi)(αk − αi) where {i, j, k} = {1, 2, 3} .

Claim V.5.4.

(1) Im θi ⊆ A(E).

(2) θi is a group homomorphism.

(3)
⋂3
i=1 ker(θi) ⊆ 2E(K).

(4) A(E) is finite if R×/R×2 is finite (where R× = U(R) is the unit group of R).

Corollary V.5.5. Let θ = (θ1, θ2, θ3) : E(K)→ A(E)3. Then E(K)/ ker θ � E(K)/2E(K)
is a surjection by (3), and E(K)/ ker θ ∼= Im θ ⊆ A(E)3 is finite, so E(K)/2E(K) is finite.

V.5.3 Proof of claims

(1) We need to show that if (x, y) ∈ E(K), then ordp(x − αi) is even for all p /∈ P (E).
Recall that

ordp(a+ b) ≥ min
(
ordp(a), ordp(b)

)
with equality if ordp(a) 6= ordp(b).

Case (i): Suppose ordp(x− αi) < 0 for at least one i. Then ordp(αi) ≥ 0 for αi ∈ R,
and ordp(αi − αj) = 0 for p /∈ P (E), so

ordp(x− αi) = ordp(x) = ordp(αi).

Since y2 = (x− α1)(x− α2)(x− α3),

2 ordp(y) =
3∑
i=1

ordp(x− αi) = 3 ordp(x).

So for all i, if ordp(x) is even, then ordp(x− αi) is even.
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Case (ii): Say ordp(x−αi), ordp(x−αj) > 0. This can’t happen since ordp(αi−αj) =
0.

Case (iii): Suppose exactly one x− αi has ordp(x− αi) > 0, say i = 1. Then the rest
have ordp = 0, so

2 ordp(y) =
3∑
i=1

ordp(x− αi) = ordp(x− α1),

hence ordp(x− α1) is even.

(2) Suppose P1, P2, P3 are collinear in E(K). We need to show θi(P1)θi(P2)θi(P3) = 1.

We will finish this next time.

V.6 2013-11-18

V.6.1 Finiteness of 2-torsion, continued

Recall our setup: R is a UFD with fraction field K, and E : y2 = (x− α1)(x− α2)(x− α3)
an elliptic curve. We defined

P (E) =
{
irreducibles (up to associates) p

∣∣ αi − αj for some i 6= j
}
,

A(E) =
{
a ∈ K×/K×2 ∣∣ ordp(a) even ∀p /∈ P (E)

}
.

Define

θi : E(K)→ K×/K×
2
,

point at ∞ 7→ 1

(x, y) 7→ x− αi (x 6= αi)

(αi, 0) 7→ (αj − αi)(αk − αi).

Claims:

(1) Im(θi) ⊆ A(E).

(2) θi is a group homomorphism.

(3)
⋂3
i=1 ker(θi) ⊆ 2E(K).

(4) A(E) is finite if U(R)/U(R)2 is finite.

Together, these imply that E/2E(K) is finite.
Last time, we showed claim (1), and we were in the process of showing (2).
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V.6.2 Proof of claim (2)

Suppose P1, P2, P3 are collinear in E(K). We need to show that θi(P1)θi(P2)θi(P3) ∈ K×2.

Case (i): Suppose P1 = ∞, P2 = (x, y), P3 = (x,−y). Then θi(P1) = 1, θi(P2) = x − αi,
and θi(P3) = x− αi, so

θi(P1)θi(P2)θi(P3) = (x− αi)2 ∈ K×2
.

Case (ii): Suppose Pi = (αi, 0). Then θ1(P1) = (α2 − α1)(α3 − α1), θ1(P2) = α2 − α1, and
θ1(P3) = α3 − α1, so the product is a square.

Case (iii): Suppose no Pi is of the form (αi, 0). Let Pi = (xi, yi). Then θi(Pj) = xj − αi.
Let y = λx+ µ be the line joining them. Then x1, x2, x3 are the roots of

(x− α1)(x− α2)(x− α3) = (λx+ µ)2.

Then x1 − αi, x2 − αi, x3 − αi are the roots of

(x+ αi − α1)(x+ αi − α2)(x+ αi − α3)−
(
λ(x+ αi) + µ

)2
= 0. (V.6.2.1)

Expand this out:

x3 + ax2 + bx− λ2x2 − 2λ(λαi + µ)x− (λαi + µ)2 = 0. (V.6.2.2)

The constant term is

−(λαi + µ)2 = −(x1 − α1)(x2 − αi)(x3 − αi) = −θi(P1)θi(P2)θi(P3),

so θi(P1)θi(P2)θi(P3) ∈ K×2.

Case (iv): Suppose exactly one point is on the x-axis; say P1 = (α1, 0). For i = 2, 3, as in
the previous case, θi(P1)θi(P2)θi(P3) = (x1 − αi)(x2 − αi)(x3 − αi) ∈ K×2.

What about i = 1? Plug x = α1 in (V.6.2.1) to get λα1 + µ = 0. So (V.6.2.2)
gives

LHS = x3 + (a− λ2)x2 + bx.

This has roots 0, x2 − α1, x3 − α1. We get b = (x2 − α1)(x3 − α1). But also

x(x+ α1 − α2)(x+ α1 − α3) = x3 + ax2 + bx.

So b = (α1 − α2)(α1 − α3). Thus,

θ1(P1)θ1(P2)θ1(P3) = b2 ∈ K×2
.

This completes the proof of claim (2).
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V.6.3 Proof of claim (3)

Lemma V.6.1. Let (x′, y′) ∈ E(K). Then (x′, y′) ∈ 2E(K) iff x′ − αi is a square in K for
all i.

This lemma implies claim (3). Indeed, suppose (x′, y′) ∈
⋂3
i=1 ker(θi). Say x′ 6= αi for

any i. Then x′ − αi is a square for all i, so by the lemma, (x′, y′) ∈ 2E(K). On the other
hand, if x′ = α1, then x′ − α1 = 0 is a square, and since we are in the kernel of each θi,
x′ − α2 and x′ − α3 are also squares, whence by the lemma, (x′, y′) ∈ 2E(K).

Now we prove the lemma. Suppose P = (x′, y′) ∈ 2E(K). Then Q has coordinates in K.
Let Q = (u, v) and y = λx+ µ be tangent at Q. Then

(x− α1)(x− α2)(x− α3)− (λx+ µ)2 = (x− u)2(x− x′).

Set x = α1. Then −(λα1 + µ)2 = (α1 − u)2(α1 − x′). So x′ − α1 is a square, and likewise for
i = 2, 3.

Conversely, we get Q and need to show u, v ∈ K. Suppose x′ − αi = β2
i , where βi ∈ K.

Then u satisfies
(λα1 + µ)2 = (α1 − u)2β2

1 ,

where λ, µ depend on u, v, e.g., λ is the tangent slope at (u, v). Observe that

y2 =
3∏
i=1

(x− αi),

2y
dy

dx
=
∑
j 6=i

(x− αi)(x− αj),

so 2vλ = n, where n =
∑

j 6=i(u− αi)(u− αj).
Hence, v = λu+ µ since Q is on its tangent, so µ = v − λu, whence

±β1(α1 − u) = λα1 + µ =
n

2v
α1 +

(
v − n

2v
u
)
,

±2vβ1(α1 − u) = n(α1 − u) + 2v2,

which is a cubic in u that vanishes at u = α1. Divide by α1 − u:

±2vβ1 = n− 2(u− α1)(u− α3),

which is quadratic in u. Likewise,

±2vβ2 = n− 2(u− α1)(u− α3).

Eliminate v to get a quadratic in u. Solve for u by the quadratic formula. The discriminant
turns out to be 4(α2−α1)2β2

3 , which is a square. Hence u ∈ K, so v ∈ K and P ∈ 2E(K).
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V.7 2013-11-20

V.7.1 Proof of claim (4)

Continuing from before, it remains to prove:

(4) A(E) is finite if U(R)/U(R)2 is finite.

[Here E : y2 = (x− α1)(x− α2)(x− α3), αi ∈ R UFD, field of fractions K.]
Once (4) is done, assuming U(R)/U(R)2 is finite, we have E(K)/2E(K) is finite.

Proof of (4). Let a ∈ K× with image ā ∈ A(E). Since R is a UFD, a = u
∏s

i=1 p
ki
i for some

unit u ∈ R×, ki even if pi /∈ P (E). So

ā = ū
s∏
i=1

pk̄ii
(
mod×K×

2)
,

where k̄i ∈ {0, 1} = ki (mod 2). Since P (E) and U(R)/U(R)2 are finite, there are finitely
many possibilities and we can omit any primes not in P (E).

V.7.2 Finiteness of 2-torsion

We assume E is an elliptic curve over Q, defined by

y2 = (x− α1)(x− α2)(x− α3),

where αi ∈ Q. Let K = Q(α1, α2, α3). This is a Galois extension of Q.
Let O be the ring of integers of K. The ring O might not be a UFD. So, for any finite

set S of prime ideals of O, let OS =
⋂

p/∈S Op, where Op is the localization at p.

Fact V.7.1 (Tate, “Stark’s Conjecture”, p. 22). There exists S such that OS is a PID, hence
a UFD. (This follows from the finiteness of the ideal class group of O.)

Fact V.7.2. The group of units U(OS) is finitely generated (Dirichlet’s unit theorem), so
U(OS)/U(OS)2 is finite.

Taking R = OS, we can now conclude that E(K)/2E(K) is finite.

V.7.3 Mordell’s theorem

Theorem V.7.3. If L/K is a finite Galois extension such that E(L)/mE(L) is finite, then
E(K)/mE(K) is finite.

Corollary V.7.4. E(Q)/2E(Q) is finite for any elliptic curve E over Q.

Corollary V.7.5 (Mordell). E(Q) is a finitely generated abelian group for any elliptic curve
E over Q.
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Proof of Theorem V.7.3. Let K ↪→ L be a finite Galois extension. Let

Φ = ker
(
E(K)/mE(K)→ E(L)/mE(L)

)
=
E(K) ∩mE(L)

mE(K)
.

Let P ∈ E(K) ∩mE(L), and let QP ∈ E(L) such that P = mQP . Define a map

λP : Gal(L/K)→ E[m]

σ 7→ σ(QP )−QP .

(This is a 1-cocycle.) This is indeed well-defined: since P ∈ E(K),

m
(
σ(QP )−QP

)
= σ(P )− P = 0.

Suppose λP = λP ′ . Then, for all σ,

σ(QP )−QP = σ(QP ′)−QP ′ ,

σ(QP −QP ′) = QP −QP ′ ,

so QP −QP ′ ∈ E(K). Thus P − P ′ = mQP −mQP ′ ∈ mE(K), so

Φ→ HomSet(Gal(L/K), E[m])

P 7→ λP

is injective. Since Gal(L/K) and E[m] are finite, so is Φ. Hence, we have an exact sequence

0→ Φ→ E(K)/mE(K)→ E(L)/mE(L),

and since E(L)/mE(L) is finite by assumption, it follows that E(K)/mE(K) is finite.

So E(Q) ∼= ZrE⊕Tors(E(Q)), where rE is finite and Tors(E(Q)) is a finite abelian group.

V.7.4 Descent by 2-isogeny

Recall the isogeny

E = E[a, b]
φ−→ E[−2a, a2 − 4b] = E ′,

(x, y) 7→
(
y2

x2
,
y(x2 − b)

x2

)
.

We also have a map

αE : E(Q)→ Q×/Q×2
,

(x, y) 7→ x
(
mod×Q×2)

.

Earlier, we saw that Imφ = kerαE, and

ImαE ⊆
{
±
∏

pεii
∣∣ pi factor of b, εi ∈ {0, 1}} .
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How to find ImαE? Go back to the method:

x =
m

e2
, y =

n

e3
,

where (m, e) = (n, e) = 1. Plug into the equation for E:

n2 = m
(
m2ame2 + be4

)
.

Let d = gcd(m,m2+ame2+be4). Then d | be4, so d | b. Writem = M2d andm2+ame2+be4 =
N2d for some M,N . So,

x =
dM2

e2
=⇒ αE(x, y) = d

(
mod×Q×2)

.

Which divisors d of b actually arise? Say b = dd′, and ask if d ∈ ImαE. We want to solve

m = M2d,

m2 + ame2 + be4 = N2d.

Plug the first into the second:

M4d2 + aM2de2 + be4 = N2d

N4d+ aM2e2 + d′e4 = N2.

Question: Does this have rational points (M,N) on it? (Check for each dd′ = b.)
In fact, this is a genus 1 curve which is isomorphic over Q to the original curve E. This

is called a homogeneous space for E.

Example V.7.6. Take y2 = x3 + 4x (a = 0, b = 4). Then Cd is given by M4d + d′e4 = N2.
Possible d: ±1,±2.
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Chapter VI

Computing Rank and Torsion

VI.1 2013-11-22

Continuing from last time, we have αE : E(Q) → Q×/Q×2, where E = E[a, b] : y2 =
x3 + ax2 + bx. Recall that

ImαE ⊆
{
±
∏

peii
∣∣ pi prime factors of b, ei ∈ {0, 1}

}
.

Which factors of b arise? Say d | b, and write b = dd′. We reduced the question to: Does

Cd : M4d+ aM2e2 + d′e4 = N2

have rational points?

VI.1.1 Homogeneous spaces example

Consider y2 = x3 + 4x, b = 4. Consider d = ±1,±2:

d Cd points? (M,N, e)
1 M4 + 4e4 = N2 (0, 2, 1)
2 2M4 + 2e4 = N2 (1, 2, 1)
−1 −M4 − 4e4 = N2 No (no solutions over R)
−2 −2M4 − 2e4 = N2 No (no solutions over R)

So |ImαE| = 2. In particular, ImαE = {1, 2}.
Let E ′ = E[−2a, a2 − 4b], so E ′ : y2 = x3 − 16x. What about αE′? Possible d:

±1,±2,±4,±8,±16, but we can rule out ±4,±8,±16.

d Cd (M,N, e)?
1 M4 − 16e4 = N2 (2, 0, 1)
2 2M4 − 8e4 = N2 No solutions (argue mod 2k)
−1 −M4 + 16e4 = N2 (2, 0, 1)
−2 −2M4 + 8e4 = N2 No solutions (argue mod 2k)

115
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(If n is even, then 4 | N2 =⇒ 2 | M =⇒ 32 | 2M4 =⇒ 8 | N2 =⇒ 16 | N2 =⇒ 2 | e, a
contradiction by reason of infinite descent.) So |ImαE′ | = 2.

Coming soon:

2rE =
1

4
|ImαE| |ImαE′| ,

so for this E, 2rE = 1
4
2 · 2 = 1, so rE = 0.

Remark VI.1.1. This proves Fermat’s Last Theorem for n = 4: If y2 = x3 + 4x, set x =
2(u+1)
v2 , y = 4(u+1)

v3 , so u2 = 1− v4. IF a4 + b4 = c4, then((a
c

)2
)2

= 1−
(
b

c

)4

.

VI.1.2 Tate–Shafarevich group

Each elliptic curve over Q has a Tate–Shafarevich group X:

X(E)
def
= ker

(
H1
(
GQ, E(Q)

)
→
∏
p≤∞

H1
(
GQp , E(Qp)

))
.

Theorem VI.1.2 (Rubin, 1987). For y2 = x3 + 4x, X = {1}.

Conjecture VI.1.3. X is always finite.

[Several cases proven by Rubin, Kolyvagin.]

Example VI.1.4. Consider

E : y2 = x3 + 17x,

E ′ : y2 = x3 − 68x.

Cd for E ′ (d = 2) is: 2M4 − 34e4 = N2. This has local solutions in every completion of Q,
but no global solutions.

Set u = M
e
, v = N

2e2
. Then 2u4e4 − 32e4 = 4e4v2, so u4 − 17 = 2v2 (Lind 1940, Reichardt

1942).

Example VI.1.5 (Selmer). 3x3 + 4y3 = 5z3 has no global, but everywhere local solutions.
[This is a homogeneous space for x3 + y3 = 60.]

VI.1.3 Systematic computation of αE
Consider E : y2 = x3 +Dx, where D is a prime. The image ImαE contains possibly ±1,±D.

d Cd (M,N, e)?
1 M4 +De4 = N2 (1, 1, 0)
D DM4 + e4 = N2 (0, 1, 1)
−1 −M4 −De4 = N2 None over R
−D −DM4 − e4 = N2 None over R
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So |ImαE| = 2.
What aboutE ′ : y2 = x3−4Dx? SupposeD ≡ 5 (mod 8). We can rule out 2, 2D,−2,−2D

by 2-adic or D-adic arguments.

d Cd (M,N, e)?
1
D
−1
−D

So |Imαe′| ≤ 4. If it is equal to 4, then 2rE = 1
4
|ImαE| |ImαE′ | = 2, so rE = 1.

So, in general, rE = 0 or 1, but rE = 0 should never happen here. In fact, for D ≡ 5
(mod 8), L(E, s) has odd analytic rank since Λ(E, s) = −Λ(E, 2− s).
Example VI.1.6 (Cassels–Bremner). For D = 877, CD is given by

e = 4612160965,

M = 8547136197,

N = 61277608318794736811.

VI.2 2013-11-25

VI.2.1 Rank and torsion, continued

If D is a positive prime ≡ 5 (mod 8), then E : y2 = x3 +Dx has rE = 0 or 1, by looking at
homogeneous spaces Cd.
Fact VI.2.1. Λ(E, 2− s) = −Λ(E, s), so the analytic rank is odd.

Then by the weak BSD conjecture, rE = 1 for the above curve E.
Greenberg showed that E has CM and L(E, s) has a zero of odd order at s = 1. Thus,

rE ≥ 1 or X is monstrous. So whenever Rubin shows X is finite, then rE = 1. (Conse-
quently, E(Q) ∼= Z/2 ⊕ Z, and n2 = DM2 − 4e4 has an integer solution with e 6= 0.) (cf.
Pell’s equation x2 +Dy2 = 1)

Theorem VI.2.2. If E = E[a, b] and E ′ = E[−2a, a2 − 4b], then 2rE = 1
4
|ImαE| |ImαE′|.

Proof. Calculate [E(Q) : 2E(Q)] in two ways:

(1) E(Q) ∼= Tors⊕ZrE , so E(Q)/2E(Q) ∼= Tors /2 Tors⊕(Z/2)rE , and so

|E(Q)/2E(Q)| = 2t+1+rE .

Indeed, consider points in E if order 2: We have at least one point, (0, 0). Writing
y2 = x(x2 +ax+ b), we have more points of order 2 if x2 +ax+ b factors over Q, which
happens ⇐⇒ a2 − 4b is a square. Thus,

2t+1 = # {points in E(Q) of order 1 or 2} =

{
2 if a2 − 4b 6= � (t = 0),

4 if a2 − 4b = � (t = 1).
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(2) We have a filtration E(Q) ⊇ φE ′(Q) ⊇ φφE(Q) = 2E(Q), and exact sequences

E ′(Q)
φ−→ E(Q)

αE−−→ Q×/Q×2
,

E(Q)
φ−→ E ′(Q)

αE′−−−→ Q×/Q×2
.

So
∣∣E(Q)/φE ′(Q)

∣∣ = |E(Q)/ kerαE| = |ImαE|. We have

E ′(Q)
φ
//

11
φE ′(Q) // φE ′(Q)/φφE(Q),

and P is in the kernel ⇐⇒ P ∈ φE(Q) + kerφ. So

[
φE ′(Q) : φE ′(Q)/φφE(Q)

]
=

{
[E ′(Q) : φE(Q)] if (0, 0) ∈ φE(Q),
1
2
[E ′(Q) : φE(Q)] if (0, 0) /∈ φE(Q).

But (0, 0) ∈ Imφ ⇐⇒ (0, 0) ∈ kerαE′ ⇐⇒ a2− 4b = αE′((0, 0)) = � ⇐⇒ t = 1, so

[E(Q) : 2E(Q)] = |ImαE| · 2t−1 |ImαE′| .

Equating the two expressions for [E(Q) : 2E(Q)] and dividing by 2t+1 yields the result.

VI.2.2 Complete 2-descent

Consider E : y2 = (x− e1)(x− e2)(x− e3) with ei ∈ R, where R is a UFD with fraction field
K. Recall the maps

θi : E(K)→ K×/K×
2

(x, y) 7→ x− ei (x 6= ei)

As before,

Im(θi) ⊆ A(E) =
{
a ∈ K×/K×2 ∣∣ ordp(a) even ∀p ∈ P (E)

}
,

P (E) = {primes (up to associates) dividing ei − ej for some i 6= j} .

We used the map (θ1, θ2, θ3) : E(K) → A(E)3 and the fact that (x, y) ∈ 2E(K) =⋂3
i=1 ker θi = ker θ1 ∩ ker θ2 if and only if x− ei is a square for all i.
In fact, we only need θ1, θ2 since if x− e1, x− e2 are squares, then so is x− e3. Let

θ = (θ1, θ2) : E(K)/2E(K) ↪→ A(E)2.

When is (a, b) ∈ Im θ? (Suppose for now that (a, b) 6= image of ∞, (e1, 0), (e2, 0).)
Suppose (a, b) ∈ Im θ. Then there exists (x, y) ∈ E(K) satisfying

x− e1 = au2, x− e2 = bv2, x− e3 = abw2.
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Hence, the equations
au2 − bv2 = e2 − e1,

au2 − abw2 = e3 − e1

(VI.2.2.1)

have solutions (u, v, w) ∈ K× ×K× ×K×. Conversely, if such a solution exists, then

x = au2 + e1, y = abuvw

is a point on E(K) mapping to (a, b).
In fact, the equations (VI.2.2.1) define a homogeneous space for E, which is an elliptic

curve if it has a point. Let

S2 =
{

(a, b) ∈ A(E)2
∣∣ (VI.2.2.1) has a solution (u, v, w) locally everywhere

}
.

We “hope” that for any (a, b) ∈ S2, a global solution exists. We have a commutative diagram
with exact rows

1 // E(K)/2E(K) θ // S2
//X[2] // 1

1 // E(K)/2mE(K)

OO

// S2m

βm

OO

//X[2m]

[2m−1]

OO

// 1

This yields an exact sequence

E(K)→ Im βm → 2m−1X[2m]→ 1.

VI.3 2013-11-27

VI.3.1 2-descent, continued

As before, consider E : y2 = (x− e1)(x− e2)(x− e3) with e1, e2, e3 ∈ K. We have a map

θ = (θ1, θ2) : E(K)/2E(K) ↪→ A(E)2

and the group

S2 =

{
(a, b) ∈ A(E)2

∣∣∣∣ au2 − bv2 = e2 − e1

au2 − abw2 = e3 − e1

has a solution locally everywhere

}
.

Find Im θ = {. . . has a solution globally everywhere} ⊆ S2.
Example VI.3.1 ([Sil]). Let K = Q and E : y2 = x(x − 2)(x − 10), so that e1 = 0, e2 =
2, e3 = 10. Then P (E) = {2, 5} and

Q×/Q×2 ≥ A(E) = {±1,±2,±5,±10} = 〈−1, 2, 5〉 .

The equations under consideration are:

au2 − bv2 = 2, au2 − abw2 = 10.

If a < 0 and b > 0 (resp., b < 0), then the first equation (resp., the second equation) has no
solutions in R, so none in Q. A computation yields the following table:
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1 2 5 10
1 X X X X
2 X X X X
5 X X X X
10 X X X X
−1 X X X X
−2 X X X X
−5 X X X X
−10 X X X X

θ(∞) = (1, 1)

θ((0, 0)) = (20,−2) = (5,−2)

θ((2, 0)) = (2,−16) = (2,−1)

θ((10, 0)) = (10, 8) = (10, 2)

Let (a, b) = (1,−1). The equations u2 +v2 = 2, u2 +w2 = 10 have a solution (1, 1, 3), giving
a point (au2 = e1, abuvw) = (1,−3). So (1,−1) ∈ Im θ, whence (5, 2), (2, 1), (10,−2) ∈ Im θ.

• Case: 5 - a, 5 | b. Let u = U
e
, v = V

e
, w = W

e
, where U, V,W, e are integers. The

equations become:

aU2 − bV 2 = 2e2,

aU2 − abW 2 = 10e2.

So 5 | aU2, hence 5 | U , so 5 | 2e2, so 5 | e. Set U = 5U ′ and e = 5e′. Then

25a(U ′)2 − bV 2 = 50(e′)2,

whence 5 | V . Likewise, 5 | W . But by infinite descent, this is a contradiction.

• Next case: Multiply by (5, 2).

• Case: (a, b) = (1, 2). Equations:

u2 − 2v2 = 2, u2 − 2w2 = 10.

Note that 2 is not a square mod 5, so u2 ≡ 2w2 (mod 5), so u2 − 2w2 ≡ 0 (mod 25).
But 10 6≡ 0 (mod 25). Exclude it 5-adically.

Conclusion: |E(Q)/2E(Q)| = 8. Moreover, |S2| = 8, so |X[2]| = 1 (no local-to-global
problems).
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VI.3.2 Computation of E(Q)

What is E(Q)? Need to know Tors(E(Q)) ↪→ E(Fp), where p is an odd prime of good
reduction. Here, p = 3 works. We have

E(F3) = {∞, (0, 0), (2, 0), (1, 0)} ∼= Z/2⊕ Z/2.

But Tors(E(Q)) has order at least 4, because ∞, (0, 0), (2, 0), (10, 0) ∈ Tors(E(Q)). Hence
Tors(E(Q)) ∼= Z/2⊕ Z/2. But

E(Q)/2E(Q) ∼= Tors /(2 Tors)⊕ (Z/2)rE ,

so rE = 1. Thus,
E(Q) ∼= Z/2⊕ Z/2⊕ Z.

We’d also like to know the generators of the above decomposition. We know the genera-
tors of each Z/2, and can find a generator of the Z-component using height estimations.

VI.3.3 Rank and congruence

Theorem VI.3.2. Let p be an odd prime. Let E : y2 = x3 − p2x = x(x− p)(x+ p). Then:

(1) rE = 0 if p ≡ 3 (mod 8),

(2) rE ≤ 1 if p ≡ 5 or 7 (mod 8),

(3) rE ≤ 2 if p ≡ 1 (mod 8).

Remark VI.3.3. Recall that p is congruent ⇐⇒ rE = 1. So the above theorem implies there
are infinitely many non-congruent primes.

VI.4 2013-12-02

VI.4.1 Rank and congruence

We now prove the theorem from last time:

Theorem VI.4.1. Let p be an odd prime. Let E : y2 = x3 − p2x = x(x− p)(x+ p). Then:

(1) rE = 0 if p ≡ 3 (mod 8),

(2) rE ≤ 1 if p ≡ 5 or 7 (mod 8),

(3) rE ≤ 2 if p ≡ 1 (mod 8).

Observe that P (E) = {2, p} and

A(E) = {±1,±2,±p,±2p} = 〈−1, 2, p〉 ≤ Q×/Q×2
,

an F2-vector space written multiplicatively.
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Remark VI.4.2. Recall that if r = rank(E(Q)), then

E(Q)/2E(Q) ∼= (Z/2)r ⊕ (Tors /2 Tors)︸ ︷︷ ︸
order 4

.

We can write E : y2 = (x − p)x(x + p), so e1 = −p, e2 = 0, and e3 = p. We have
corresponding maps θ1, θ2, θ3 (in general, θi(x, y) = x− ei).

Map Image of (−p, 0) −1 2 p
θ1 2p2 0 1 0
θ2 −p 1 0 1
θ3 −2p 1 1 1

Map Image of (0, 0) −1 2 p
θ1 p 0 0 1
θ2 −p2 1 0 0
θ3 −p 1 0 1

Map Image of (p, 0) −1 2 p
θ1 2p 0 1 1
θ2 p 0 0 1
θ3 2p2 0 1 0

Map Image of (x, y) (y 6= 0) −1 2 p
θ1 x+ p 0, 0 0, 1 0, 0, 1, 1
θ2 x 0, 1 0, 0 0, 1, 0, 1
θ3 x− p 0, 1 0, 1 0, 1, 1, 0

(In the last column of the last table above, all three nontrivial possibilities arise in the last
columns of (ei, 0).)

To find the image of θ, by adding a 2-torsion point to P , we can assume that θ(P ) has
last column 0, 0, 0 (for generic P ). So there are now 4 possibilities for θ(P ), whence rE ≤ 2.

Let us consider which of these cases can actually arise:

• The trivial possibility can always arise.

•

−1 2 p
0 0 0
1 0 0
1 0 0

=⇒ x + p = �, x = −�, x − p = −�, so p = � + �. Hence, p ≡ 1

(mod 4).

•

−1 2 p
0 1 0
0 0 0
0 1 0

=⇒ x+p = 2�, x = �, x−p = 2�, so p = 2�−�, so 2 ≡ � (mod p).

By quadratic reciprocity, p ≡ ±1 (mod 8).
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•

−1 2 p
0 1 0
1 0 0
1 1 0

=⇒ x+p = 2�, x = −�, x−p = −2�, so p = 2�+� and p = 2�−�.

Hence, 2,−2 are both squares mod p, so by quadratic reciprocity, p ≡ 1 (mod 8).

The theorem follows.

VI.4.2 Root numbers and congruence

If p ≡ 5 or 7 (mod 8), then the root number of L(E, s) is −1, i.e.,

Λ(E, 2− s) = −Λ(E, s).

Hence, the order of vanishing of L(E, s) at s = 1 is odd. The weak BSD conjecture then
implies r = 1 (so p is congruent).

If p ≡ 1 or 3 (mod 8), then the root number of L(E, s) is +1. In this case, weak BSD
implies r is even. For p ≡ 1 (mod 8), there are examples with r = 0 and r = 2.
Remark VI.4.3. Say p ≡ 5 (mod 8). Then weak BSD implies rE = 1. Our analysis says
rE = 1 if and only if

x+ p = a2,

x = −b2,

x− p = −c2

for some a, b, c ∈ Q. Thus, a2 = c2 − 2b2. Diophantus’s method finds all rational points on
1 = u2 − 2v2, yielding

(a, b, c) =
(
(2s2 − r2)λ, 2rsλ, (2s2 + r2)λ

)
for some λ ∈ Q. In fact, we can take λ = 1

n
for some n.

VI.4.3 Remarks on 3-descent

Suppose we want to study rational points on E : x3 + y3 = dz3 (Mazur–Rubin). The
associated homogeneous spaces are of the form

ax3 + by3 = cz3 (VI.4.3.1)

with abc = d. A rational solution of (VI.4.3.1) leads to a rational solution of X3 +Y 3 = dZ3

with Z 6= 0 (but not conversely1). Euler found

X + Y = −9abcx3y3z3,

X − Y =
(
ax3 − by3

) (
by3 − cz3

) (
cz3 − ax3

)
,

Z = 3
(
abx3y3 + bcy3z3 + caz3x3

)
xyz.

1Consider, for example, Selmer’s example 3x3 + 4y3 = 5z3 of a curve with solutions everywhere locally
but not globally (X[3] 6= 0 for X3 + Y 3 = 60Z3).
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VI.5 2013-12-04 [missing]

VI.6 2013-12-06 [missing]

VI.7 2013-12-09

VI.7.1 Integer points on a curve

Consider E : y2 + y = x3 − x. Observe:

P = (0, 0) 5P =

(
1

4
,−5

8

)
2P = (1, 0) 6P = (6, 14)

3P = (−1,−1) 7P =

(
−5

9
,

8

27

)
4P = (2,−3) 8P =

(
21

25
,− 69

125

)
Claim VI.7.1.

(1) E(Z) = {±P,±2P,±3P,±4P,±6P}.

(2) E(Q) = 〈P 〉.

We will return to this example later and prove the claim.

VI.7.2 Torsion over Q
Proposition VI.7.2 (Lutz–Nagell). Let E : y2 = x3 + Ax+B with A,B ∈ Z. Then:

(1) Suppose P = (x, y) and 2P have integer coordinates. Then either y = 0 or y2 | Disc(E).

(2) If P is torsion, then P has integer coordinates.

If 2P =∞, then y = 0. So assume 2P 6=∞. Let

φ(X) = X4 − 2AX2 − 8BX + A2,

ψ(X) = X3 + AX +B.

Recall the duplication formula:

x(2P ) =
φ(x(P ))

4ψ(x(P ))
.

But f(x)φ(x)−g(x)ψ(x) = 4A3 +27B2, where f(x) = 3x2 +4A and g(x) = 3x3−5Ax−27B.
Since x = x(P ) and y(P )2 = ψ(x(P )), we have

f(x(P ))x(2P )4y(P )2 − g(x(P ))y(P )2 = 4A3 + 27B2,
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we obtain y(P )2 | 4A3 + 27B2. This completes the proof of (1).
Now we prove (2). Suppose (x, y) ∈ E(Q), and p is a prime dividing the denominator of

x (i.e., ordp(x) < 0). Recall x = m
e2

and y = n
e3

(lowest terms), so

ordp(x) =
3

2
ordp(y).

Define a filtration E(Q) ⊇ E1(Q) ⊇ E2(Q) ⊇ . . . by

Ek(Q) = {∞} ∪
{

(x, y) ∈ E(Q)
∣∣ ordp(x) ≤ −2k, ordp(y) ≤ −3k

}
for k ≥ 1. This is a subgroup: Let t = x

y
and s = 1

y
(so y = 1

s
and x = t

s
). In the (t, s)-plane,

we get all points except where y = 0. The point at∞ corresponds to (0, 0) in the (t, s)-plane.
Let

R = Z(p) = {0} ∪
{
x ∈ Q×

∣∣ ordp(x) ≥ 0
}
.

This is a DVR with unique nonzero prime ideal pR. One can check that (x, y) ∈ Ek(Q) if
and only if t ∈ pkR and s ∈ p3kR. (Assume a1 = 0.) Furthermore, if P1, P2 ∈ Ek(Q), then
t(P1)+t(P2)−t(P1 +P2) ∈ p3k, so Ek(Q) is indeed a subgroup. We also get a homomorphism

Ek(Q)
t−→ pkR/p3kR

with kernel E3k(Q), giving an injective homomorphism

Ek(Q)/E3k(Q) ↪→ pkR/p3kR ∼= Z/p2kZ.

So Ek(Q)/E3k(Q) is cyclic of order pm, where 0 ≤ m ≤ 2k.

Lemma VI.7.3. E1(Q) contains no points of finite order (other than the point at ∞).

Proof. Say the order of P ∈ E1(Q) is m 6= 1. Then P ∈ Ek(Q) and P /∈ Ek+1(Q) for some
k ≥ 1.

Case 1: If p - m, then t(mP ) ≡ mt(P ) (mod p3kR), so mP = ∞, whence mt(P ) ≡ 0, and
so t(P ) ≡ 0 (mod p3kR). But then P ∈ E3k(Q), a contradiction since 3k ≥ k + 1.

Case 2: If p | m, write m = pn and P ′ = nP . Then P ′ has order p, and P ∈ E1(Q), so
P ′ ∈ E1(Q). Say P ′ ∈ Ek(Q) \ Ek+1(Q). Then

0 ≡ pt(P ′) (mod p3kR),

whence t(P ′) ∈ p3k−1R. But 3k − 1 ≥ k + 1, contradiction.

Now we finish the proof of (2). If P ∈ Tors(E(Q)), then P /∈ E1(Q) for any prime p.
Thus, the denominators of x and y are not divisible by any prime p, whence x, y ∈ Z.

Example VI.7.4. The curve E : y2 = x3 + 3 has discriminant −35. By Lutz–Nagell, look at
y ∈ {0,±1,±3,±9}; none work. Thus |E(F5)| = 6 and |E(F7)| = 13, so Tors(E(Q)) = {∞}.
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VI.8 2013-12-11

VI.8.1 Integer points on a curve, continued

Let us return to the example E : y2 + y = x3 − x from the beginning of last class. Recall:

P = (0, 0) 5P =

(
1

4
,−5

8

)
2P = (1, 0) 6P = (6, 14)

3P = (−1,−1) 7P =

(
−5

9
,

8

27

)
4P = (2,−3) 8P =

(
21

25
,− 69

125

)
Moreover,

|E(F2)| = 5, |E(F3)| = 7, |E(F5)| = 8.

Theorem VI.8.1.

(1) The only integer-valued points on E are ±P,±2P,±3P,±4P,±6P .

(2) E(Q) = 〈P 〉.

Remark VI.8.2. E0(R), the connected component of identity, is a subgroup of E(R) of index
2.

Proof of theorem. If p is odd and of good reduction, then we have an injection Tors(E(Q)) ↪→
E(Fp). Thus, |Tors(E(Q))| = 1.

Suppose for now that rank(E(Q)) = 1. (We’ll prove this in a moment.) Then E(Q) ∼= Z;
let Q be a generator. Then Q is on the “egg” (the connected component of E(R) not con-
taining the identity) (else E(Q) ≤ E0(R)). If Q has p in the denominator of its coordinates,
then so does any multiple of Q, so every point in E(Q) would. So Q has integer coordinates.

The egg is bounded, so by compactness, there are only finitely many points on the egg
with integer coordinates. Check them: ±P,±3P . So Q = ±Q, whence E(Q) = 〈P 〉.

Next, suppose mP has integer coordinates (where m ≥ 1 is an integer). Say m = m02r

(with m0 odd). Then m0P is on the egg, so m0 ∈ {1, 3}.

Claim. r ≤ 2.

Indeed, look at 8P . The image in E(F5) is the point at ∞. If 8 | m, then the same is
true for mP , which has 5 in the denominator. Thus 8P has non-5-integer coordinates, so
m | 12.
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VI.8.2 Rank of the curve

Now we show that rank(E(Q)) = 1.
It’s enough to prove |E(Q)/2E(Q)| = 2, hence enough to show E0(R) ∩ E(Q) ⊆ 2E(Q)

since [E(Q) : E0(R) ∩ E(Q)] = 2. Let α be a root of x3 − 4x + 2. Then α
2
is a root of

x3 − x+ 1
4
, so (

y +
1

2

)2

= x3 − x+
1

4
= NK/Q

(
x− α

2

)
,

where K = Q(α). (Note that K/Q is a cubic extension.) We have the homomorphism

E(Q)
θ−→ K×/K×

2
,

(x, y) 7→ x− α

2
.

Claim. ker θ = 2E(Q).

Indeed, x − α
2
is a square in Q(α) ⇐⇒ x − σ(α)

2
is a square in Q(σ(α)), where σ is a

permutation of {α, β, γ}, where α, β, γ are the roots of x3 − 4x+ 2, proving the claim.
So E(Q)/2E(Q)

θ
↪→ K×/K×

2.

Claim. Im θ ⊆ B/K×
2, where B is the subgroup of K× of elements with norm in Q×2.

Say (x, y) ∈ E(Q). Then (x, y) ∈ E0(R) ⇐⇒ x − α
2
, x − β

2
, x − γ

2
are all positive

⇐⇒ x− α
2
is totally positive.2

It’s enough to prove that, if x ∈ Q has NK/Q
(
x− α

2

)
∈ Q×2 and x− α

2
is totally positive,

then x− α
2
is a square in K.

Claim. (i) K has class number 1, so OK = Z[α] is a PID.

(ii) The totally positive units of K are all squares.

Proof. (i) If α ∈ OK , then Z[α] ⊆ OK . Let f(x) = x3 − 4x + 2 (Eisenstein at 2). Then
Disc(f) = 148 = 22 · 37, and Disc(OK) | Disc(Z[α]) with quotient a square. Thus
Disc(OK) = 37 or 148. But if Disc(OK) = 37, then 2 is unramified, which contradicts
f Eisenstein because (2) = (α)3. So OK = Z[α].

By the Minkowski bound, every ideal class contains an integral ideal with norm <
3!
33

√
148 < 3. Since (2) = (α)3 is principal, it follows that OK is a PID.

(ii) Note that f(−2) = 2, f(1) = −1, and f(2) = 2. So α < −2 < β < 1 < γ < 2. By
Dirichlet’s unit theorem,

O×K = UK ∼= Z2 ⊕ {±1} .

What are the fundamental units? Set ε = 2+α
2−α and η = 1 − α. Note that N(2 + α) =

N(2− α) = 2 and N(1− α) = 1, so ε and η are units. We have

UK = 〈ε, η〉 ⊕ {±1} ,
2This means that every embedding in the reals is positive.
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so all units are of the form ±εiηj. Let U+
K denote the set of totally positive units. Then

U2
K ⊆ U+

K ⊆ UK ,

and the index [UK : U2
K ] is 8. Since all sign possibilities are, the index [UK : U+

K ] is also
8. Hence, U2

K = U+
K .

Now we return to prove that, if x ∈ Q has NK/Q
(
x− α

2

)
∈ Q×2 and x − α

2
is totally

positive, then x− α
2
∈ K×2, i.e., that ordp

(
x− α

2

)
is even ∀p.

VI.9 2013-12-13

VI.9.1 Rank of the curve, continued

Recall: K = Q(α), where α is a root of x3 − 4x+ 2 = 0. It’s enough to prove: If x ∈ Q has
NK/Q

(
x− α

2

)
∈ Q×2 and x− α

2
is totally positive, then x− α

2
is a square in K.

We showed that U2
K = U+

K . Since K is a PID, it remains to show ordp
(
x− α

2

)
is even

∀p. Let p ∈ SpecOK be a prime over p.
Suppose p - 2, 37 (the bad primes). The minimal polynomial of α

2
is

g(x) = x3 − x+
1

4
=
(
x− α

2

)3

+B
(
x− α

2

)2

+ C
(
x− α

2

)
= NK/Q

(
x− α

2

)
,

where B,C are p-integral for p - 2. Set ordp(B) = b ≥ 0, ordp(C) = c ≥ 0, and
ordp

(
x− α

2

)
= m. (We’re trying to show m is even.) We know ordp

(
NK/Q

(
x− α

2

))
is

a square, and
ordp

(
NK/Q

(
x− α

2

))
≥ min(3m, 3m+ b,m+ c).

If m = 0, then m is even. If m < 0, then the above is equal to 3m, so m is even. If m > 0
and c = 0, then the above is equal to m+ c = m, so m is even.

The only remaining case is m > 0 and c > 0. Let C = g′
(
α
2

)
be the different . If p | C,

then p | N(C) = Disc g(x), so p = 2 or 37.
With a little more number theory (748 Fall), we can do cases p = 2, 37.

VI.9.2 The curve from homework 9

The problem is to find the integer solutions of
u

v
+
v

w
+
w

u
= n.

Make a substitution u = −x, v = −y/x, w = 1:

x2

y
− y

x
− 1

x
= n

x3 − y2 − y = nxy

En : y2 + nxy + y = x3 (∗)

To study 2-torsion and rank, put this in the form y2 = f(x), so that 2y + a1x + a3 = 0.
Our case: 2y + nx+ a3 = 0 (plug back in (∗)).
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Example VI.9.1. If n = 6, then y = −3x− 1
2
, so we get x3 + 9x2 + 3x+ 1

4
= 0, which has α

2

as a root. The x-coordinates of 2-torsion points are roots of this polynomial. Search n = 6:
u = 2, v = 12, w = 9, corresponding to the rational point

(
−2

9
, 8

27

)
.

Let α be a root of f(x) = x3 + 18x2 + 12x + 2. This is irreducible, Eisenstein at 2, has
all real roots, etc. So, let K = Q(α). In fact, OK = Z[α] is a PID, UK ∼= Z2 ⊕ {±1} and
U+
K = U2

K has index 8 in UK . The map

E(Q)
θ−→ K×/K×

2

(x, y) 7→ x− α

2

has kernel 2E(Q), and E(Q)/2E(Q)
θ
↪→ K×/K×

2. Moreover, Im(B) ⊆ B/K×
2, where B is

the set of totally positive elements of K× with square norm.
By the methods of last time, rankE(Q) = 1. In particular,

E(Q) ∼= Z/3⊕ Z,

where Z is generated by P =
(
−2

9
, 8

27

)
.

Extra credit: We want u, v > 0, i.e., x < 0 and y > 0. If you graph E6(R), it looks like it
has a node; however, zooming in shows that there’s actually a small gap between the “egg”
and the other component. Since there are two components, P must lie on the egg. So the
points with x < 0 and y > 0 are exactly the points on the egg, i.e., nP for n odd.

The next solution is (u, v, w) = (17415354473, 90655886250, 19286662788).
How can we compute things like this in general? Recall that |h(P )− ĥ(P )| is bounded;

find an explicit bound. Say P = mQ for m > 1. Since

ĥ(Q) =
1

m2
ĥ(P ) ≤ 1

4
ĥ(P ),

we get a bound on h(Q) = log(max coordinate).
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