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1 2015-01-21: Introduction
References:

• Milne’s notes on class field theory

• Lang, Algebraic Number Theory

• Neukirch, Algebraic Number Theory (very abstract)

Let k be a global field. Let K/k be a Galois extension of degree n with Galois group
G. Let f = dK/k be the relative discriminant. Let p be a prime ideal of Ok. We can factor
pOK = (P1 · · ·Pg)e, where efg = n; e is the ramification index, and f = [OK/Pi : Ok/p] is
the residue degree. We have e = 1 ⇐⇒ p - f, in which case we say p is unramified in K/k.

We have an Artin map Pi 7→ FrobPi ∈ Gal(K/k) such that FrobPi(x) ≡ xNp mod Pi for
all x ∈ OK−pi. Moreover, if σ ∈ Gal(K/k) such that σ(Pi) = Pj, then FrobPi = σ FrobPj σ

−1.
Special case: if Gal(K/k) is abelian, then FrobPi = FrobPj depends only on p, so we

denote it by Frobp.

Remark 1.1. From now on, we will deal only with abelian extensions unless otherwise speci-
fied.

Definition 1.2. Let I(f) denote the group of fractional ideals of Ok that are prime to f. This
is a free abelian group with respect to ideal multiplication.

The Artin map is thus a homomorphism p 7→ Frobp : I(f)→ GK/k.

Aside 1.3. Let DK/k denote the relative different, defined by

D−1
K/k =

{
x ∈ K

∣∣ trK/k(xy) ∈ Ok ∀y ∈ OK
}
.

Note that dK/k = NK/kDK/k, and the trace map trK/k is a nondegenerate symmetric bilinear
form.

Basic questions:

(1) What is the image of the Artin map? In fact, it’s surjective.

(2) What is the kernel of the Artin map? Denote

SplK/k =
{
p ∈ I(f)

∣∣ Frobp = 1
}

=
{
p
∣∣ p splits completely in K

}
.

Amazing fact: SplK/k determines K uniquely! More precisely, if SplK/k = SplL/k, then
K ∼= L as k-algebras.

3



(3) For which subgroups N of finite index in I(f) is I(f)/N ∼= Gal(K/k) for some abelian
extension K of k? (In other words, which subgroups of I(f) can be kernels of an Artin
map?)

(4) How can we construct the maximal abelian extension kab/k? This is wide open even
for real quadratic fields.

1.1 Quadratic reciprocity

Let k = Q and K = Q(
√
d), where d ∈ Z such that d ≡ 0, 1 (mod 4). Then OK = Z

[
d+
√
d

2

]
and f = dZ = d. Write Gal(K/k) = {1, σ}. The split primes are

SplK/k =
{
p prime

∣∣ x2 ≡ d (mod p) has 2 solutions
}
.

Example 1.4. Does p = 163 split in Q(
√
−3)? It’s not immediately clear how to efficiently

determine whether x2 ≡ −3 (mod 163) has two solutions.
Gauss solved this by proving the quadratic reciprocity law. Define the Legendre symbol

(
a

p

)
=


0 if a | p,
1 if x2 ≡ a (mod p) has two solutions,
−1 if x2 ≡ a (mod p) has no solutions.

Theorem 1.5 (Quadratic reciprocity). Let p and q be distinct odd primes. Then(
−1

p

)
= (−1)

p−1
2 ,

(
2

p

)
= (−1)

p2−1
8 ,

(
p

q

)
=

(
q

p

)
· (−1)

p−1
2
· q−1

2 .

Corollary 1.6. Whether p ∈ SplK/Q depends only on the class of p mod d. In fact, p ∈
SplK/k ⇐⇒

(
p
|d|

)
= 1.

Moreover, the kernel of the Artin map consists of all ideals aZ with a =
∏

i p
ei
i ·
∏

j q
fj
j ,

where the pi are split, qj are inert, and
∑

j fj is even.

1.2 Cyclotomic fields

Let K = Q(ζN), where N is odd or 4 | N . Then dK/Q = NZ, and we have an isomorphism
a 7→ σa : (Z/N)×

'−→ G, where σa(ζN) = ζaN .
What does the composition with the Artin map I(NZ) → Gal(K/Q) ∼= (Z/N)× look

like? We have Frobp = σp, so SplK/k = {p | p ≡ 1 mod N}. Hence, the kernel of the Artin
map is {αZ | α ≡ 1 mod N}.

Theorem 1.7 (Weber). Every abelian extension of Q is contained in some cyclotomic field
Q(ζN), i.e., Qab = Q(ζ∞) :=

⋃
N Q(ζN).

Exercise 1.8. Let (−1)∗ = −4, 2∗ = 8, and p∗ = (−1)
p−1
2 p if p is odd. For which N do we

have Q(
√
p∗) ⊆ Q(ζN)?
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2 2015-01-23: Class fields and reciprocity
Let K/k be an abelian Galois extension with Galois group G of order n, and let f = dK/k.
We want to study the Artin map I(f)� GK/k. What is the kernel?

Given an ideal m ⊂ Ok and a subgroup K of I(m) of finite index, is there an abelian field
extension K of k such that the Artin map induces an isomorphism I(m)/K '−→ GK/k? If so,
how many (up to k-isomorphism)?

2.1 Hilbert class fields

Recall the class group Cl(k) = I(Ok)/Pk, where Pk is the subgroup of all principal ideals.

Theorem 2.1 (Hilbert class field theorem). There is a unique (up to k-isomorphism) abelian
extension H of k, called the Hilbert class field of k, such that Art : Cl(k)

'−→ GH/k is an
isomorphism.

Corollary 2.2. (1) Every prime ideal of k is unramified in H.

(2) The primes that split in H/k are exactly the principal prime ideals of k.

(3) H is the maximal abelian extension of k such that every prime ideal of k is unramified.

Remark 2.3. H may not be the maximal extension of k such that every prime ideal of k
is unramified. For example, H might not have trivial class group, so we can take its class
group and get a nonabelian unramified extension of k. By the Golod–Shafarevich theorem,
iterating the class field construction can sometimes even result in an infinite tower.

Example 2.4. Let k = Q(
√
d), where d = p∗1p

∗
2 · · · p∗r, where 2∗ = 8, (−1)∗ = −4, p∗ = p

for p ≡ 1 (mod 4), and p∗ = −p for p ≡ −1 (mod 4). Then K = Q(
√
p∗1,
√
p∗2, . . . ,

√
p∗r)

is unramified over k, so K ⊂ H := Hil(k), giving a surjection Gal(H/k) � Gal(K/k) ∼=
(Z/2)r−1. This was studied by Gauss as genus theory .

2.2 Ray class fields

Given a number field k, we have real embeddings σ : k ↪→ R and conjugate pairs of complex
embeddings σ, σ : k ↪→ C, which we think of as “primes at infinity”. If σ is such an infinite
prime, then we get a completion k ↪→ kσ, where kσ is the usual completion of k with respect
to the topology |x|σ = |σ(x)|. (Similarly, if p is a finite prime, we get a completion k ↪→ kp,
the p-adic completion of k.)

A cycle of k is a formal product m = pe11 pe22 · · · perr σ
ε1
1 σ

ε2
2 · · ·σεss = mfm∞, where the σi are

real primes, ei ≥ 0, and ε1 ∈ {0, 1}. We denote

I(m) = {fractional ideals of k prime to m} = {fractions ideals of k prime to mf} ,
P (m) =

{
αOk

∣∣ α ≡ 1 (mod∗m), α prime to mf

}
,

where α ≡ 1 (mod∗m) means α ≡ 1 (mod m) for all i and σj(α) > 0 when εj = 1.

Fact 2.5. |I(m)/P (m)| <∞.
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Theorem 2.6. There is a unique abelian field extension Hm of k such that Art : I(m)/P (m)
'−→

Gal(Hm/k). Again,

SplHm/k =
{
αOk

∣∣ α ≡ 1 (mod∗m), ∀Ok prime
}
.

Example 2.7. (1) Let k = Q and m = N · ∞. Then

I(m)

P (m)
=

{nZ | (n,N) = 1}
{nZ | n > 0, n ≡ 1 (mod N)}

∼= (Z/N)×.

Thus, Hm = Q(ζN).

(2) Let m = N . Then I(m)/P (m) = (Z/N)×/ {±1}, so Hm = Q(ζN)+ = Q(ζN + ζ−1
N ).

2.3 Reciprocity law

Theorem 2.8 (Reciprocity law of class field theory). Let L/K be a finite abelian extension
of global fields, and let S be the set of primes of K ramified in L. Then there is a cycle m (the
modulus) in which the primes are exactly S, and a surjective map ArtL/K : I(m)→ Gal(L/K)
such that:

(1) ker(ArtL/K) ⊇ P (m), i.e., L ⊂ Hm;

(2) ker(ArtL/K) =
{
NL/KA | A is a fractional ideal of L prime to mfOL

}
.

Moreover, given a cycle m and a subgroup P (m) ⊂ K ⊂ I(m), there is a unique finite abelian
extension L of K giving an isomorphism ArtL/K : I(m)/K '−→ Gal(L/K).

Corollary 2.9 (Kronecker–Weber theory). Every finite abelian extension of Q is contained
in Q(ζN) for some N .

Question: How do we construct all Hm? Note that Kab =
⋃

mHm.

3 2015-01-26: Local class field theory
Last time, we defined the ray class field Hm of K. Moreover:

ker(ArtL/K) =
{
NL/Ka

∣∣ a ⊂ L
}
· P (m),

SplL/K =
{
NL/KP

∣∣ P ⊂ OL prime
}
,

P (m) =
{
αOK

∣∣ α ≡ 1 mod m
}
.

Note 3.1. We consider the extension C/R to be ramified.
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3.1 Local fields

Definition 3.2. A local field is a locally compact topological field with respect to a nontrivial
valuation |·| : K → R≥0 such that |1| = 1, |ab| = |a| · |b|, and |a+ b| ≤ |a|+ |b|.

Proposition 3.3. Every local field is one of the following:

(1) R or C (archimedean);

(2) a finite extension of Qp, which is a completion of a number field;

(3) a finite extension of Fp((x)), which is a completion of a global function field.

Hence, every local field arises from the following construction: Let K be a global field, let
p be a (finite or infinite) prime of K, and define vp(x) = a if xOK = pa · m with (m, p) = 1.
Then |x|p = q−vp(x) makes K into a valued field whose completion is a local field Kp.

Theorem 3.4. Let K be a nonarchimedean local field. For any n ≥ 1, there is a unique (up
to K-isomorphism) unramified extension Kn of degree n. The maximal unramified extension
of K is

Kun =
⋃
n≥1

Kn =
⋃
p-N

K(µN),

where µN = 〈ζN〉 is the group of N-th roots of unity in K. Moreover, denote the maximal
ideal of OK by mK = πOK (where π is a uniformizer of K, i.e., a prime element of OK),
and write k := OK/mK

∼= Fq. Then we have an isomorphism

Gal(Kun/K)
'−→ Gal(k/k) ∼= Gal(Fq/Fq) = 〈Frobq〉top ,

under which the topological generator Frobq ∈ Gal(Fq/Fq) corresponds to FrobK.

Remark 3.5. Hence, every unramified extension of a nonarchimedean local field is abelian!

3.2 Local reciprocity law

Theorem 3.6 (Local reciprocity). Let K be a nonarchimedean local field. There is a group
homomorphism, the local Artin map ϕK : K× → Gal(Kab/K) such that:

(1) For any unramified finite extension L/K and any uniformizer π of K,

ϕK(π)
∣∣
L = FrobL/K = FrobK .

(2) For any finite abelian extension L/K, NL/KL
× ⊂ ker(ϕK), and ϕK induces an isomor-

phism
ϕL/K : K×/NL/KL

× '−→ Gal(L/K).

In particular, we have a commutative diagram

K× Gal(Kab/K)

K×/NL/KL
× Gal(L/K).

ϕK

'
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Remark 3.7. However, for topological reasons, ϕK itself is not surjective.

Theorem 3.8 (Existence theorem). Let N ≤ K× be a subgroup. Then the following are
equivalent:

(1) There exists a finite abelian extension L/K such that NL/KL
× = N .

(2) [K× : N ] <∞ and N is open in K×.

Remark 3.9. If charK = 0, then [K× : N ] < ∞ implies N is open in K×. If charK > 0,
then the openness condition is an honest condition: there are non-open subgroups of finite
index in K×.

Corollary 3.10. Let K be a nonarchimedean local field with residue field k. If charK = 0
and char k 6= 2, then K has exactly 3 quadratic field extensions (up to isomorphism).

Proof. By the existence theorem, quadratic field extensions of K correspond to subgroups
N ≤ K× such that [K× : N ] = 2. Fix a uniformizer π; then K× = πZ · O×K , so

K×/(K×)2 ∼= 〈π〉 /
〈
π2
〉
×O×K/(O

×
K)2 ∼= (Z/2)×O×K/(O

×
K)2.

Note that O×K ∼= (OK/mK)× · (1 + πOK), so O×K/(O
×
K)2 ∼= (F×q )/(F×q )2 ∼= Z/2. Thus,

K×/(K×)2 ∼= (Z/2) × (Z/2), and quadratic field extensions of K correspond to elements
of order 2 in this group; there are three of these.

4 2015-01-28: Existence and Lubin–Tate fields
Exercise 4.1. (1) LetK be a nonarchimedean field. Then 1→ 1+mK → O×K → (OK/mK)× →

1 is exact. Is it split?

(2) When is K×/(K×)2 trivial in characteristic 2?

A residue character of K is a character of the residue field OK/mK .
Let us state the existence theorem more precisely:

Theorem 4.2. Finite abelian extensions of K correspond to open subgroups of K× of fi-
nite index, via L 7→ NL/KL

×, which is bijective. Moreover, if L1 ⊂ L2, then NL1/KL
×
1 ⊃

NL2/KL
×
2 , N(L×1 ∩ L×2 ) = NL1/KL

×
1 ·NL2/KL

×
2 , and N(L1L2) = NL1/KL

×
1 ∩NL2/KL

×
2 .

Here are two towers of abelian extensions. Note that K× = πZO×K = πZ(OK/mK)× · (1 +
mK). The first tower is Kun =

⋃
n≥1K

un
n , where Kun

n is the unique unramified extension of
K of degree n. This is associated to (πn)K × O×K . Hence, Kun corresponds to O×K ; more
precisely, ker(ϕK)|Kun = O×K .

Corollary 4.3. ϕK |Kun : K× → Gal(Kun/K) has kernel O×K; this map is given by π 7→
FrobK.
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The second tower depends on the choice of uniformizer π, and corresponds to the subgroup
πZ(1 + mn

K) < K×, which is an open finite index subgroup of K×. Class field theory gives a
unique field extension Kπ,n of K such that Gal(Kπ,n/K) ∼= K×/πZ(1 + mn

K). Since πZ(1 +
mn
K) = NKπ,nK

×
π,n, there exists a uniformizer πn of Kπ,n such that NKπ,nπn = π, so πOK =

πnnOKπ,n .

Corollary 4.4. The above construction gives a tower Kπ,0 ⊂ Kπ,1 ⊂ Kπ,2 ⊂ . . . of totally
ramified abelian extensions of K. Their union Kπ :=

⋃
nKπ,n corresponds to πZ and is a

maximal totally ramified abelian extension.

Remark 4.5. If u ∈ O×K , then Kπ might not be the same as Kπu. Our eventual theorem will
be that Kab = KπK

un.

We have a commutative diagram with exact rows

1 O×K K× Z 0

1 Gal(k/k) Gal(Kab/K) I 1

vp

ϕK

However, ϕK is surjective but not injective. One thing to do is to take a limit and get
1→ O×K → K̂ → Ẑ → 0. The second way is via Langlands idea.

The weight group is the inverse image of the discrete group generated by the Frobq, i.e.,
WK = IK FrobZ

K . Put a topology so that IK < W ab
K is open. Now, the one-dimensional

characters of WK are Hom(W ab
K ,C) ∼= Hom(K×,C×) = Hom(GL1(K),GL1(C)).

5 2015-01-30: Lubin–Tate theory
The local reciprocity law gives us a morphism ϕK : K× → Gal(Kab/K) such that:

(1) ϕ(π)
K |Kun = FrobK

(2) If L/K is a finite abelian extension, then ϕL/K : K× → Gal(L/K) is surjective, and
kerϕL/K = NL/KL

×.

Our goal for today: For a uniformizer π of K, construct its associated maximal totally
ramified abelian extension Kπ =

⋃
n≥1Kπ,n such that:

(1) Kπ,n ⊂ Kπ,n+1

(2) Kπ,n/K is totally ramified of degree [Kπ,n : K] = qn−1(q − 1), where q = |OK/mK |.

5.1 Lubin–Tate formal group laws

Let A be a commutative ring, and let A[[T ]] be the ring of formal power series over A. Given
f ∈ A[[T ]] and g ∈ TA[[T ]], the composition f ◦ g is well-defined. If g, h ∈ TA[[T ]], then
f ◦ (g ◦ h) = (f ◦ g) ◦ h. However, f ◦ (g + h) 6= f ◦ g + f ◦ h.
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Lemma 5.1. Let f =
∑∞

i=1 aiT
i ∈ TA[[T ]]. Then a1 ∈ A× ⇐⇒ there exists g ∈ TA[[T ]]

such that f ◦ g = T . In this case, g is unique and g ◦ f = T .

Definition 5.2. A one-parameter formal group law over A is a power series F (X, Y ) ∈
A[[X, Y ]] such that:

(1) F (X, Y ) = X + Y + (terms of degree ≥ 2).

(2) F (F (X, Y ), Z) = F (X,F (Y, Z)).

(3) F (X, Y ) = F (Y,X).

Proposition 5.3. (1) F (X, 0) = X and F (0, Y ) = Y .

(2) There exists iF (X) ∈ XA[[X]] such that F (X, iF (X)) = 0.

Proof. (1) Let f(X) = F (X, 0) = X + (terms of degree ≥ 2). By associativity,

f(f(X)) = F (F (X, 0), 0) = F (X,F (0, 0)) = F (X, 0) = f(x).

Since f(X) ∈ XA[[X]], there exists g ∈ XA[[X]] such that f ◦ g = X. Hence,

f = f ◦ (f ◦ g) = (f ◦ f) ◦ g = f ◦ g = X.

(2) Suppose G(X) =
∑

n≥1 bnX
n satisfies F (X,G(X)) = 0. Then

X +G(X) +
∑
i+j=2

aijX
iG(X)j = 0.

So b1 = −1. Proceeding inductively, we can construct iF (X).

Remark 5.4. For any formal group law F , we have F (X, Y ) = X + Y + XY F1(X, Y ) for
some power series F1(X, Y ).

Remark 5.5. If F is a formal group law over OK , for any finite extension L/K, we can define
a new addition on mL by a+F b = F (a, b). This makes (mL,+F ) into an abelian group.

Example 5.6. The power series F = X + Y is a formal group, called the additive formal
group. It satisfies (mK ,+F ) = (mK ,+).

Example 5.7. The power series F = X+Y +XY = (1+X)(1+Y )−1 is a formal group, called
the multiplicative formal group. There is an isomorphism a 7→ 1 + a : (mK ,+F ) ∼= (1 + m, ·).
Example 5.8. There is a formal group law associated to an elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We want to understand the local behavior near 0 = ∞. Note that y
x
is a uniformizer at 0.

Write x =
∑

i≥−2 cit
i and y =

∑
i≥−3 bit

i. Given P1 = (x(t1), y(t1)) and P2 = (x(t2), y(t2)),
we can write P1 + P2 = Ê(t1, t2) for some formal power series Ê. The abelian group axioms
for E imply the corresponding axioms for Ê, which is therefore a formal group law.
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6 2015-02-02: Formal groups

6.1 Morphisms of formal groups

Let F and G be formal groups over A. A morphism of formal groups f ∈ Hom(F,G) is a
power series f ∈ TA[[T ]] such that f(F (X, Y )) = G(f(X), f(Y )).

Fix a formal group F . For f, g ∈ TA[[T ]], define f +F g = F (f(X), g(X)) ∈ XA[[X]].

Lemma 6.1. (1) (TA[[T ]] ,+F ) is an additive group.

(2) (Hom(F,G),+G) is a subgroup of (TA[[T ]] ,+G).

(3) (End(F ),+F , ◦) is a ring.

6.2 Lubin–Tate formal group laws

Let K be a nonarchimedean local field with ring of integers OK and maximal ideal mK =
πOK . Let q = |OK/mK |. Define

Fπ =
{
f ∈ OK [[T ]]

∣∣ f(T ) = πT + (deg ≥ 2), f(T ) ≡ T q (mod π)
}
.

Example 6.2. f(X) = πX +Xq ∈ Fπ.
Example 6.3. Let K = Q. Then f(x) = (1 + x)p − 1 = px+

(
p
2

)
x2 + · · ·+ xp ∈ Fp.

Theorem 6.4 (Main theorem). (1) For each f ∈ Fπ, there is a unique formal group law
Ff such that f ∈ End(Ff ).

(2) Ff is an OK-module, i.e., the map a 7→ [a]f : OK → End(Ff ) is a ring morphism.

(3) For f, g ∈ Fπ, Hom(Ff , Fg) is also an OK-module via a map a 7→ [a]g,f : OK →
Hom(Ff , Fg) such that [a]g,f is an isomorphism ⇐⇒ a ∈ O×K. In particular, any two
Ff , Fg are isomorphic.

Lemma 6.5 (Basic lemma). Given f, g ∈ Fπ and a linear form φ1 =
∑n

i=1 aiXi with ai ∈ OK,
there is a unique φ ∈ OK [[X1, X2, . . . , Xn]] such that:

(1) φ = φ1 + (deg ≥ 2).

(2) f(φ(X1, . . . , Xn)) = φ(g(X1), . . . , g(Xn)), i.e., f ◦ φ = φ ◦ g.

This lemma implies the theorem. Indeed, take φ1 = X + Y and g = f . Then there is a
power series Ff ∈ OK [[X, Y ]] such that Ff (X, Y ) = X + Y + (deg ≥ 2) and f ◦ Ff = Ff ◦ f .
By uniqueness and the fact that φ1 is symmetric, Ff (Y,X) = Ff (X, Y ). Now we need to
check Ff (Ff (X, Y ), Z) = Ff (X,Ff (Y, Z)). Look at φ1 = X + Y + Z, g = f , and check that
both sides give φ in the lemma, e.g. for the left side,

Ff (Ff (X, Y, Z)) = Ff (X, Y ) + Z + (deg ≥ 2) = X + Y + Z + (deg ≥ 2)

and
f(Ff (Ff (X, Y ), Z)) = Ff (f(Ff (X, Y ), Z)) = Ff (Ff (f(X, Y )), Z).
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This proves part (1) of the theorem.
For part (3), given f, g ∈ Fπ and a ∈ OK , take φ1 = ax in the lemma. Then there is a

unique φ = [a]g,f ∈ OK [[X]] such that φ = aX + (deg ≥ 2) and f(φ(X)) = φ(g(X)).
We need to check that Ff ◦ φ = φ ◦ Fg. Take φ1 = aX + aY . Then Ff (φ(X), φ(Y )) =

φ(X) + φ(Y ) + (deg ≥ 2) = aX + aY + (deg ≥ 2), so

f(Ff (φ(X), φ(Y ))) = Ff (f ◦ φ(X), f ◦ φ(Y )) = Ff (φ ◦ g(X), φ ◦ g(Y )),

so φ satisfies the conditions of the lemma. Applying the same argument to φ ◦ Fg proves
Ff ◦ φ = φ ◦ Fg.

A similar approach using the basic lemma can be used to show [a+ b]g,f = [a]g,f + [b]g,f ,
[a]g,f ◦ [b]h,g = [ab]h,f , and X = [1]f = [aa−1]f,f = [a]g,f ◦ [a−1]f,g.

7 2015-02-04: Construction of Lubin–Tate extensions

7.1 Summary of last time

Last time, we proved the following theorem:

Theorem 7.1 (Main theorem). (1) For each f ∈ Fπ, there is a unique formal group law
Ff such that f ∈ End(Ff ).

(2) For a ∈ OK and f, g ∈ Fπ, there is a unique [a]g,f ∈ OK [[X]] such that [a]g,f =
ax + (deg ≥ 2) and [a]g,f ◦ f = g ◦ [a]g,f . Moreover, this gives an additive group
homomorphism

(OK ,+)→ (Hom(Ff , Fg),+Fg),

a 7→ [a]g,f .

Moreover, [a]h,g ◦ [b]g,f = [ab]h,f , so [a]g,f is an isomorphism ⇐⇒ a ∈ O×K. In
particular, any two Ff , Fg are isomorphic.

(3) The map

(OK ,+, ·)→ (EndEf ,+Ff , ◦),
a 7→ [a]f = [a]f,f

is a ring homomorphism, making Ff into a formal OK-module.

Example 7.2. [1]f = T , [π]f = f .

Our proof was conditional on the following lemma:

Lemma 7.3 (Basic lemma). Let f, g ∈ Fπ, and let φ1 =
∑

i aiXi be a linear form. There is
a unique φ ∈ OK [[X1, . . . , Xn]] such that φ = φ1 + (deg ≥ 2) and φ ◦ f = g ◦ φ.

Example 7.4. [a+ b]g,f = [a]g,f +Fg [b]g,f .

12



7.2 Proof of the “basic lemma”

Now let us prove the lemma. By induction, we’ll prove that for r ≥ 1, there is a unique
polynomial φr of degree ≤ r such that φr = φ1+(deg ≥ 2) and φr(f(X)) = g(φr(X))+(deg ≥
r + 1).

For r = 1, this is trivial with the original φ1. Suppose we have a unique such φr.
Then φr+1 = φr + ψ, where ψ is a homogeneous polynomial of degree r + 1 such that
φr+1 ◦ f = g ◦ φr+1 + (deg ≥ r + 2). So

φr ◦ f + ψ ◦ f = (φr + ψ) ◦ f = g ◦ (φr + ψ) + (deg ≥ r + 2).

Since f(X) and g(X) are both of the form πX + (deg ≥ 2),

g(φr(X) + ψ(X)) = g(φr(X)) + πψ(X) + (deg ≥ r + 2)

and ψ(f(X)) = πr+1ψ(X) + (deg ≥ r + 2). So we must solve

φr(f(X)) + πr+1ψ(X) = g(φr(X)) + πψ(X) + (deg ≥ r + 2).

Hence,

ψ(X) =
g(φr(X))− φr(f(X))

π(πr − 1)
+ (deg ≥ r + 2).

Note that πr − 1 ∈ O×K . Since g(φr(X)) ≡ φr(X)q and φr(f(X)) ≡ φr(X
q) mod π, we have

g(φr(X))− φr(f(X)) ≡ φr(X)q − φr(Xq) ≡ 0 (mod π), we can divide by π, giving us φr+1.
Take φ = limr→∞ φr = φ1 +

∑∞
r=2(φr − φr−1) ∈ OK [[X]].

7.3 Construction of “maximal” totally ramified abelian extension

We construct a totally ramified abelian extension Kπ of K associated to a uniformizer π. Let
K be the algebraic closure of K. Let x 7→ |x| = q− ordπ x : K× → R>0 be the absolute value
on K. The image of the absolute value is qZ.

The absolute value extends uniquely to an absolute value |·| : K× → R>0 whose image is
qQ. Define

OK =
{
x ∈ K : |x| ≤ 1

}
,

mK =
{
x ∈ K : |x| < 1

}
.

Then mK is the maximal ideal of the local ring OK .
A formal group f ∈ Fπ gives us a formal group Ff , which yields an OK-module Λ =

Λf = (mK ,+Ff ). Since all the Ff are isomorphic, this is independent of f , so we’ll choose
f = πX +Xq for convenience.

Definition 7.5. Define the n-torsion of Λ = Λf by

Λn
def
= ker[πn]f = ker[π]nf ,

where we denote f (1) = f and f (n) = f◦f (n−1). Note that [π]f = f and [πn]f = [π]f◦. . .◦[π]f =
f (n).
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Proposition 7.6. Λn is an OK-module give by Λn =
{
x ∈ mK : f (n)(X) = 0

}
.

If we take f = πX +Xq, then f (n) ≡ Xqn (mod π). The theory of Newton polygons tells
us all roots of f (n) have absolute value < 1.

Theorem 7.7. Kπ =
⋃
n≥1K(Λn).

We’ll prove this next time.

8 2015-02-06: Maximal totally ramified abelian exten-
sions

Exercise 8.1. Let K be a local field and L/K a finite unramified extension. Then NL/KO×L =
O×K .

Today, we construct a totally ramified extension of K associated to π such that Kab =
KπK

un. In particular, we will show there exists a unique map ϕK : K× → Gal(Kab/K) such
that:

(1) ϕ(π)
K |Kun = FrobK for any uniformizer of K, and ϕK(a)|Kun = 1 if a ∈ O×K .

(2) If L/K is a finite abelian extension, then ϕL/K = ϕK |L : K× � Gal(L/K) satisfies
kerϕL/K = NL/KL

×.

Given a uniformizer π, we obtain Fπ, which gives an isomorphism class Fπ = {Ff} of
formal OK-modules. Last time, we constructed from this a genuine OK-module Λ = Λf =
(mK ,+Ff ) with submodules

Λn = ker([πn]f : Λ→ Λ) =
{
x ∈ mK : f (n)(x) = 0

}
.

Lemma 8.2. If f = πX + · · ·+Xq, then Λn =
{
x ∈ K : f (n)(x) = 0

}
.

This follows from the theory of Newton polygons: given f(x) = a0 + a1X + · · · + anX
n

with ai ∈ OK , we construct the polygon with vertices Pi = (i, ordπ ai). The Newton polygon
of f is the convex hull of these points. Each segment PiPj tells us there are j − i roots α of
f with ordπ α = − slope(PiPj).

If f = πX+ · · ·+Xq, then the Newton polygon of f(X)
X

= π+ · · ·+Xq−1 has only a single
edge from (0, 1) to (q− 1, 0), so f has q− 1 roots α1, . . . , αq−1 of order 1

q−1
. Hence, K(αi)/K

is totally ramified for each i.

Lemma 8.3. Λn = OK/πn as OK-modules. In particular, AutOK (Λn) ∼= (OK/πn)×.

Proof. See Milne’s notes.

Theorem 8.4. Let Kπ,n = K(Λn) and Kπ =
⋃
n≥1Kπ,n.

(1) Kπ,n/K is a totally ramified abelian extension of degree (q − 1)qn−1.
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(2) There are isomorphisms ϕπ,n : (OK/πn)×
'−→ AutOK (Λn)

'−→ Gal(Kπ,n/K) defined by
ϕπ,n(a)(λ) = [a]f (λ) for λ ∈ Λn.

(3) π ∈ NKπ,n/KK
×
π,n.

Remark 8.5. The kernel of ϕπ,n : K× → Gal(Kπ,n/K) is πZ × (1 + πnOK). How do we know
kerϕπ,n = NKπ,n/KK

×
π,n? (Exercise: Prove this without class field theory.)

Let f(X) = πX + · · · + Xq as before. Choose a nonzero root π1 such that f(π1) = 0.
Now choose π2 such that f(π2) = π1. Continuing, choose πn such that f(πn) = πn−1. Then
we obtain a tower K ⊂ K(π1) ⊂ K(π2) ⊂ · · · ⊂ K(πn) such that [K(π1) : K] = q − 1 and
[K(πi+1) : K(πi)] = q for all i ≥ 1. Moreover, πi ∈ Λn, so K(πi) ⊂ K(Λi) for each i.

The Galois group Gal(Kπ,n/K) acts on Λn and commutes with the OK-action, giving an
embedding Gal(Kπ,n/K) ↪→ AutOK (Λn) = (OK/πn)×. But (OK/πn)× has (q−1)qn elements,
hence so does Gal(Kπ,n/K). This proves Kπ,n = K(Λn) = K(πn) for all n, proving (1) and
(2) of the theorem.

For part (3), write f [n](x) = f
X
◦f (n−1)(X) = π+ · · ·+(f (n−1)(X))q = π+ · · ·+X(q−1)qn−1 .

Then f [n](πn) = 0, so by a degree argument, f [n](x) is the minimal polynomial of πn. Thus,
NKπ,n/K(πn) = (−1)(q−1)qn−1

π = π unless q is even and n = 1. In the latter case, consider
instead NKπ,1/K(−π1).

For each π, we have constructed a totally ramified abelian extension Kπ =
⋃
n≥1Kπ,n and

a map

ϕπ : K× → Gal(Kπ/K),

π 7→ 1,

u 7→ [u−1]f ∀u ∈ O×K .

From this, it is clear that Kπ ∩ Kun = K, and we can extend to a map ϕπ : K× →
Gal(KπK

un/K) such that ϕπ|Kun is as before, and ϕπ|Kπ is what we just defined.
Here’s what we still need to show:

(1) KπK
un = Kab.

(2) ϕ = ϕπ does not depend on π.

(3) ϕ|L : K× → Gal(L/K) has kernel NL/KL
×.

9 2015-02-09: Local Kronecker–Weber
Note that the map ϕπ mentioned last time factors asK× ∼= πZ×O×K � O

×
K → Gal(KπK

un/K).
Hence, for a = πn · u with u ∈ O×K ,

(1) ϕπ(a)|Kun = (FrobK)n;

(2) ϕπ(a)|Kπ = ϕK(u)|Kπ , where ϕK(u)(λ) = [u−1]f (λ) for λ ∈ Λf =
⋃
n≥1 Λn.

Recall the statement of local class field theory: ϕK : K× → Gal(Kab/K) is a map such
that:
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(1) ϕK(a)|Kun = (FrobK)ordπ a.

(2) For L/K finite abelian, ϕL/K = ϕK |L : K× → Gal(L/K) is surjective with kerϕL/K =
NL/KL

×.

Proposition 9.1. Neither KπK
un nor ϕπ depends on the choice of π.

Proof. See Milne’s notes. The idea is to show that, given $ = πu with u ∈ O×K , for any
f ∈ Fπ and g ∈ F$, there is an isomorphism Ff ∼= Fg of formal groups over OK̂un .

Theorem 9.2 (Local Kronecker–Weber). Kab = KπK
un.

Example 9.3. Qab
p = Qp(ζp∞) ·Qp(ζn : (n, p) = 1).

Caution 9.4. We don’t have this sort of theorem for global fields, not even for finite abelian
extensions.

Our proof of the theorem will proceed as follows:

(I) If Kπ ⊂ L ⊂ Kab with L/Kπ totally ramified, then L = Kπ.

(II) If Kπ ⊂ L ⊂ Kab with L/Kπ unramified, then L ⊂ KπK
un.

(III) If Kπ ⊂ L ⊂ Kab with L/Kπ finite of degree m, then there is a totally ramified
extension Lt of Kπ such that L ⊂ LtK

un
m = LKun

m .

Granting these, if L/K is a finite abelian extension, then LKπ ⊂ LtK
un
m = LKun

m for Lt/Kπ

totally ramified, so Lt = Kπ. Thus, L ⊂ LKπ ⊂ KπK
un
m ⊂ KπK

un.
To see (II), suppose L = Kπ(α). Descend to finite level: L′/Kπ,m with L = KπL

′ and
L′ = Kπ,m(α). Then L′/K factors into L′/L′′/K with L′′/K unramified and L′/L′′ totally
ramified. Hence, L′ = Kπ,mL

′′, so L = KπL
′′ ⊂ KπK

un.
For (III), Gal(LKun

m /Kπ)� Gal(KπK
un
m /Kπ) = Gal(Kun

m /K) corresponds to
⊕

Z/mi �
Z/m, where mi | m. This map splits, i.e., Gal(LKun

m /Kπ) = 〈τ〉 ×H. Take Lt = (LKun
m )〈τ〉.

Then Gal(LKun
m /Lt) = Gal(KπK

un
m /Kπ) = 〈τ〉.

For (I), see Milne’s notes (Lemma 4.9) or the sections on higher ramification in Serre’s
Local Fields. We’ll discuss this more next time.

10 2015-02-11: The global Artin map
Last time, we determined that we need the following lemma:

Lemma 10.1. If Kπ ⊂ L ⊂ Kab with L/Kπ totally ramified, then L = Kπ, i.e., Kπ is the
maximal totally ramified abelian extension of K.

Using higher ramification groups with the upper numbering, |Gn/Gn+1| ≤ q = |OK/mK |.
Example 10.2. Let K = Qp and π = p. Choose f(x) = (1 + x)p − 1 ∈ Fp. Then f (n)(x) =
(1 + x)p

n − 1, and

Λf,n =
{
x ∈ mQp : f (n)(x) = 0

}
=
{
x ∈ Qp : (x+ 1)p

n

= 1
}
,

(Qp)π,n = Qp(Λf,n) = Qp(µpn).

Since Qun
p =

⋃
p-nQp(µn), we obtain Qab

p = Qp(µ∞) :=
⋃
n≥1 Qp(µn).
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Theorem 10.3. Every finite abelian extension of Qp is contained in a local cyclotomic field
Qp(µn) for some n.

10.1 Global Kronecker–Weber theorem

This has a global analogue:

Theorem 10.4 (Global Kronecker–Weber). Every finite abelian extension of Q is contained
in Q(µn) for some n, i.e., Qab = Q(µ∞).

First, we prove a lemma.

Lemma 10.5. Let L/Q be a finite Galois extension, let G = Gal(L/K), and let S be the set
of prime ideals of L that are ramified in L/Q, i.e., S = {p ∈ SpecOL : p | dL}. For p ∈ S,
let I(p) be its inertia group. Then G = 〈I(p) : p ∈ S〉.
Proof. Let H = 〈I(p) : p ∈ S〉. Let M = LH . Then every prime ideal of M is unramified in
M/Q. But we know any prime dividing the discriminant dM is ramified, hence |dM | = 1, i.e.,
M = Q.

Moving on to the proof of the theorem, let L/Q be a finite abelian extension. Then
Dp = Dp′ if p∩Q = p′∩Q. Since G = Gal(L/Q) = 〈I(p) : p | dL〉, we have Lp ⊂ Qp(ζpSp , ζn).

Let K = Q(ζpSp : p | dL) and L′ = KL. Our goal is to show L′ = K, which implies
L ⊂ K. First notice L′pri′ ⊂ Q(ζpSp , ζn) if p′ ∩ L = p. So we can assume L ⊃ K by replacing
L with L′. It remains to show L = K.

Since K ⊂ L, we have |G| = [L : Q] ≥ [K : Q] =
∏

p|dL ϕ(pSp). On the other hand,
G = 〈I(p) : p | dL〉, so G ≤

∏
p |I(p)| ≤

∏
p ϕ(pSp). Thus, |G| =

∏
p ϕ(pSp) and L = K.

10.2 Global Artin map

Let L/K be a finite abelian extension of global fields. There is a cycle m and a map

ϕm : IK(m)� Gal(L/K),

ϕm(p) = (Frobp)
∣∣
L = (p, L/K) =

(
L/K

p

)
,

satisfying the following conditions:

(1) PK(m) = {αOK : α ≡ 1 (mod∗m)}.

(2) ϕm is surjective.

(3) kerϕm = PK(m) ·NL/KIL(m).

Example 10.6. Let us describe the reciprocity law for Q. Given a finite abelian extension
L/Q, by Kronecker–Weber, L ⊂ Q(ζm) for some m. (Note that Q(ζm) is the ray class field
of m.) Take

ϕm : IQ(m)→ Gal(L/Q),

p 7→
(
L/Q
p

)
.
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Let σ ∈ Gal(L/Q). Take τ ∈ Gal(Q(ζm)/Q) such that τ |L = σ. Then τ = τa : ζm 7→ ζam
for some a ∈ (Z/m)×. By Dirichlet, there are infinitely many primes p such that p ≡ a
(mod m). So

ϕm(p) =

(
Q(ζm)/Q

p

)
= τp = τa.

11 2015-02-13: Higher ramification groups
Guest lecture by Vlad Matei. A reference for higher ramification group is [S, ch. IV].

Our goal for today is to prove that, if L/Kπ is totally ramified, then L = Kπ.

11.1 Lower ramification groups

Definition 11.1 (Lower ramification groups). Let K be a nonarchimedean local field and
L/K a finite Galois extension. For n ≥ −1, define

Gi =
{
σ ∈ G : σ(x) ≡ x (mod πn+1

L ) ∀x ∈ OL
}
.

Note that G−1 = G is the whole Galois group, G0 = I is the inertia group, and Gn ⊇ Gn+1

for all n. We can also characterize these as

Gn = ker(G→ Aut(OL/πn+1OL)),

which makes it clear that Gn is a normal subgroup of G.

Proposition 11.2. With notation as above,

(1) Gn = {σ ∈ G : v(σ(πL)− πL) > n}.

(2)
⋂
nGn = {1}.

(3) G0/G1 ↪→ k×L , and for n ≥ 1, Gn/Gn+1
∼= (kL,+), where kL is the residue field of L.

Proof. (1) Reduce to L/K totally ramified. Then OL = OK [πL] for πL a uniformizer. If
σ(πL) ≡ πL (mod πn+1

L ), then it follows for polynomials in πL.

(2) If σ 6= 1, then σ(πL) 6= πL, so v(σ(πL) − πL) is finite. Hence, σ /∈ Gn for sufficiently
large n.

(3) See [S, IV.2.6].

What happens for L = Kπ,m? We have an isomorphism O×K/(1 + mn)
'−→ G sending

(1 + mi)/(1 + mn) onto Gqi−1.
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11.2 Upper ramification groups

Define ϕ(u) =
∫ u

0
dt

(G0:Gt)
. This is continuous, piecewise linear, concave, strictly increasing,

and satisfies ϕ(0) = 0 and ϕ′(u) = 1
(G0:Gu)

when ϕ is linear at u.
From the above, ϕ has an inverse map ψ, which is continuous, piecewise linear, convex,

strictly increasing, and satisfies ψ(0) = 0 and ψ′(u) = (G0 : Gu) when ψ is linear at u.
Moreover, if v is an integer, so is ψ(v).

Definition 11.3 (Upper ramification groups). Define Gv = Gψ(v), so that Gϕ(u) = u for all
u ≥ −1.

Proposition 11.4 ([S, IV.3.14]). Let H be a normal subgroup of G. Then (G/H)v =
GvH/H.

Note 11.5. For Kπ,n, we have Gk = Gqk−1 for all integers k ≥ 1, where q is the cardinality of
the residue field.

The upper ramification groups of Kπ are limits of higher ramification groups for Kπ,n.
A jump in the filtration of G by upper ramification groups is an index j such that Gj 6=

Gj+ε for every ε > 0.

Theorem 11.6 (Hasse–Arf). For G abelian, jumps are integers. (This can fail for G non-
abelian.)

11.3 Main result

Let G = Gal(L/K) and H = Gal(L/Kπ), so G/H = Gal(Kπ/K). We have an exact
commutative diagram

1 1 1

1 Gn+1 ∩H Gn+1 (G/H)n+1 1

1 Gn ∩H Gn (G/H)n 1

1 Gn∩H
Gn+1∩H Gn/Gn+1 (G/H)n

(G/H)n+1 1

Looking at cardinalities of the bottom row, we obtain the result.
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12 2015-02-16: Global class field theory

12.1 Statement of global class field theory

Today, we begin our study of global class field theory. Let K be a global field (i.e., a finite
extension of Q or Fq(x)). For a modulus m, recall that

IK(m) = {fractional ideals of K prime to m} ,
PK(m) = {αOK : α ≡ 1 (mod∗m)} ⊂ IK(m),

where α ≡ 1 (mod∗m) means that ordp(α− 1) ≥ 1 if p | mf and σ(α) > 0 for all σ : K ↪→ R,
σ ∈ m∞.

Theorem 12.1 (Global class field theory). Let L/K be a finite abelian extension. There
exists a modulus m = mf ·m∞ such that:

(1) The Artin map ϕL,m : IK(m) → Gal(L/K) is surjective, and kerϕL,m = PK(m) ·
NL/KIL(m).

(2) For every subgroup H of IK(m) of finite index and containing PK(m), there is a finite
abelian extension L/K such that H = PK(m) ·NL/KIL(m).

Fact 12.2. Suppose n ⊂ m. If the theorem works for m, then it also works for n. The biggest
ideal m which works for L/K is called the conductor of L/K, denoted fL/K .

12.2 Hecke characters and Hecke L-functions

Definition 12.3. A Hecke character of K of modulus m is a group homomorphism χ :
IK(m)→ C× such that there is a continuous character

χ∞ : K×∞ =
∏

σ:K↪→R

K×σ ×
∏

σ,σ:K↪→C

K×σ → C×

satisfying χ(αOK) = χ∞(α)−1 for αOK ∈ PK(m). (When we work with adeles later on, we
will see the reason for the inverse here.)

If n ⊂ m, then any Hecke character of K of modulus m is also a Hecke character of
modulus n. The biggest modulus for which χ is a Hecke character is called the conductor of
χ, denoted fχ. A Hecke character χ of modulus m is called primitive if m = fχ.

For a Hecke character χ, define the Hecke L-function for Re s� 0 by

L(s, χ) =
∑

06=aCOK
(a,fχ)=1

χ(a)

(Na)s
=
∏
p-fχ

(
1− χ(p)(Np)−s

)−1
.

Theorem 12.4 (Hecke). L(s, χ) has meromorphic continuation to the complex plane with at
most a simple pole at s = 1, which happens exactly when χ is the trivial character. Moreover,
there exists N ∈ C and a product of Γ-functions L∞(s, χ) such that the completed L-function
Λ(s, χ) = N s/2L∞(s, χ)L(s, χ) satisfies the functional equation

Λ(s, χ) = w(χ)Λ(1− s, χ−1),

where w(χ) ∈ C is the root number of χ and satisfies |w(χ)| = 1.
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Example 12.5. Let χ = 1 be the trivial character a 7→ 1 : IK → C×. Then

L(s,1) =
∑

06=aCOK

1

(Na)s
= χK(s).

Example 12.6. Let χ : (Z/N)× → C× be a Dirichlet character. This extends to χ̃ : IQ(N)→
C×, defined by nZ 7→ χ(n). We define χ∞(−1) = χ(−1). If χ(−1) = 1, we can take the
modulus m = NZ; otherwise, if χ(−1) = −1, we must use the modulus m = (NZ) · ∞.

Now let us reformulate global class field theory in terms of Hecke characters. Let L/K
be a finite abelian extension, and let ϕL/K,m : IK(m) � Gal(L/K) be the Artin map. If
ρ : Gal(L/K)→ C× is a Galois character, then

χ = ρ ◦ ϕL/K,m : IK(m)→ C×

is a group homomorphism satisfying χ(αOK) = 1 for α ≡ 1 (mod∗m). Hence, χ is a Hecke
character of K of finite order.

Theorem 12.7 (Hecke). The above construction induces a bijection{
Hecke characters of
K of finite order

}
←→

{
Galois characters
of Gal(K/K)

}
=

{
1-dim. rep’n of

Gal(K/K)

}
.

13 2015-02-18: L-functions of Hecke characters
Last time, we stated the connection between Hecke characters and 1-dimensional Galois
representations. Today, we explore this further.

Theorem 13.1. Let χ be a Hecke character of finite order. Let

L(s, χ) =
∏

p finite

(
1− χ(p)(Np)−s

)−1
,

where we define χ(p) = 0 if p | fχ. Then:

(1) L(s, χ) is absolutely convergent for Re s > 1.

(2) L(s, χ) has analytic continuation to the complex plane, with a simple pole at s = 1 if
and only if χ = 1 is the trivial character, in which case

Res
s=1

L(s,1) = Res
s=1

ζK(s) =
2r1(2π)r2hKRK

wK
√
|dK |

,

where r1 is the number of real places, r2 is the number of conjugate pairs of complex
places, hK is the class number, RK is the regulator, wK is the root number, and dK is
the discriminant.

(3) L(s, χ) satisfies the functional equation

L(s, χ) = w(χ) · (Γ-factors) · L(1− s, χ).
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(4) L(1, χ) 6= 0.

Remark 13.2. One can check explicitly that L(1, χ) 6= 0 by studying logL(s, χ).

Definition 13.3 (Dirichlet density). Let A be a set of prime ideals of K. The Dirichlet
density of A is

d(A) = lim
s→1+

=
log
∏

p∈A(1− (Np)−s)−1

log ζK(s)
.

Theorem 13.4 (Chebotarev density theorem). Let L/K be a finite Galois extension. Then

SplL/K =
{
p ∈M f

K : p splits completely in L
}

has Dirichlet density [L : K]−1. In particular, SplL/K is infinite.

Proof. Observe that

log ζL(s) =
∑
P

∑
m

1

m(NP)ms
=
∑
P

1

(NP)s
+ O(1)

=
∑
p

∑
fP/p=1

1

(Np)s
+
∑
p

∑
f=fP/p≥2

1

(Np)fs
+ O(1)

= [L : K]
∑
p

fP/p=1

1

(Np)s
+ O(1)

= [L : K]
∑

p∈SplL/K

1

(Np)s
+ O(1).

Thus,

d(SplL/K) = lim
s→1+

∑
p∈SplL/K

(Np)−s

log ζK(s)
=

1

[L : K]
lim
s→1+

log ζL(s)

log ζK(s)
=

1

[L : K]
.

Corollary 13.5. Let L/K and M/K be two finite Galois extensions of global fields. If
SplL/K = SplM/K, then L = M .

Proof. Apply the Chebotarev density theorem to LM .

Theorem 13.6. Let L/K be a finite abelian extension with Galois group G. Then

ζL(s) =
∏
χ∈Ĝ

L(s, χ),

where Ĝ = Hom(G,C×) is the group of characters of G.

Corollary 13.7. ζL(s)/ζK(s) is holomorphic and is neither 0 nor ∞ at s = 1.

Proof. Observe that
ζL(s)

ζK(s)
=
∏
χ∈Ĝ
χ 6=1

L(s, χ), which has the desired properties.
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Theorem 13.8 (Dirichlet density theorem). For σ ∈ Gal(L/K), define

A(σ) =
{
p ∈M f

K : eL/K(p) = 1, ϕL/K(p) = σ
}
.

Then d(A(σ)) = [L : K]−1.

Example 13.9. Let L = Q(ζm), K = Q, and σ = σa : ζm 7→ ζam. Then we recover the original
Dirichlet density theorem:

log
∏

p∈A(σ)

(1−Np)−s =
∑

p∈A(σ)

(Np)−s + O(1) =
1

n

∑
p

∑
χ∈Ĝ

χ−1(σ)χ(p)(Np)−s

=
1

n

∑
χ∈Ĝ

χ−1(σ)
∑
p

χ(p)

(Np)s
=

1

n

∑
χ∈Ĝ

χ−1(σ) logL(s, χ)

=
1

n
log ζK(s) +

1

n

∑
16=χ∈Ĝ

χ−1(σ) logL(s, χ).

14 2015-02-20: Character version of CFT
Recall the classical statement of class field theory:

Theorem 14.1 (Global class field theory). For each finite abelian Galois extension L/K of
number fields, there is a cycle m of K such that

ϕL/K,m : IK(m)→ Gal(L/K),

p 7→ Frobp,L/K

is surjective and has kernel PK(m) ·NL/KIL(m), where PK(m) = {αOK : α ≡ 1 (mod∗m)}.

We reformulate this in the language of Hecke characters. There is a bijective correspon-
dence {Hecke characters of

K of finite order

}
←→

{
1-dim. representations

of Gal(K/K)

}
,

χ←→ ρ,

χ(p) = ρ(Frobp,L/K).

Theorem 14.2. We have ζL(s) =
∏

χ∈Gal(L/K)∧

L(s, χ). Hence, ζL(s)/ζK(s) is holomorphic on

C.

14.1 Density theorems

Theorem 14.3. Let L/K be a finite abelian Galois extension, and let σ ∈ Gal(L/K). Then

A(σ) =
{
p ∈M f

K : Frobp,L/K = σ
}

has Dirichlet density [L : K]−1.
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More generally:

Theorem 14.4 (Chebotarev density theorem). Let L/K be a finite Galois extension with
G = Gal(L/K). Let C be a conjugacy class in G. Then

A(C) =
{
p ∈M f

K : Frobp,L/K = C
}

has Dirichlet density |C||G| .

Proof. See [M, VIII.7.4].

14.2 Higher-dimensional Galois representations

To understand a group, we should study its representations. In particular, we can study
Galois representations ρ : Gal(K/K) → GL(V ) = GLn(C), where V is a finite-dimensional
C-vector space. For topological reasons, such representations factor through a finite quotient
Gal(L/K), so we can study representations ρ : Gal(L/K)→ GL(V ).

Let B be a prime of L unramified over a prime p of K. We obtain a conjugacy class
FrobB/p, and ρ(FrobB/p is a linear operator on V . Define

Lp(s, ρ) = det
(
1− (Np)−sρ(FrobB/p)

)−1
.

This depends only on p. In general, to account for ramification, let I = IB/p be the inertia
group. Then define

Lp(s, ρ) = det
(
1− (Np)−sρ(FrobB/p)

∣∣
V I
)−1

.

Multiplying these local factors, we obtain the Artin L-function

L(s, ρ) =
∏
p

Lp(s, ρ).

15 2015-02-23: Artin L-functions and adeles

15.1 Artin L-functions

Last time, we defined the L-function L(s, ρ) associated to an n-dimensional Galois represen-
tation ρ : Gal(K/K)→ GL(V ).

Theorem 15.1 (Artin). L(s, ρ) has meromorphic continuation to the whole complex plane
and satisfies a functional equation L(s, ρ) = (Γ-factor) · L(1− s, ρ).

Conjecture 15.2 (Artin). IF ρ is irreducible and nontrivial, then L(s, ρ) is holomorphic.

Conjecture 15.3 (Langlands correspondence). There exists an irreducible cuspidal auto-
morphic representation π of GLn(K) such that L(s, ρ) = L(s, π).

Remark 15.4. Galois representations for which Langlands’ conjecture is true are called mod-
ular . Modularity is known for representations ρ : Gal(Q/Q)→ GL2(C).
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15.2 Adelic language

Let K be a global field, and let MK be the set of primes (finite or infinite) of K. For
v ∈MK , let Kv be the completion of K at v. More explicitly, each prime v is associated with
an absolute value:

• If σ : K ↪→ R is a real prime, then |x|σ = |σ(x)|.

• If σ, σ : K ↪→ C is a complex prime, then |x|σ = |σ(x)|2.

• If p is a finite prime, then |x|p = (Np)− ordp x.

Proposition 15.5 (Product formula).
∏
v∈MK

|x|v = 1 for all x ∈ K×.

Definition 15.6 (Restricted products). Let (Ri)i∈I be a family of rings, and for each i ∈ I, let
ORi be a subring of Ri. The restricted product

∐∏
i∈I(Ri,ORi) is the ring of all (xi)i ∈

∏
i∈I Ri

such that xi ∈ ORi for all but finitely many i ∈ I.
If each Ri is a topological ring, then we give the restricted product the topology generated

by the open basis of sets of the form U =
∏

i Ui, where Ui ⊂ Ri is open and Ui = ORi for
almost all i.

Definition 15.7. The ring of adeles of K is the restricted product

AK =
∐∏
v

(Kv,OKv).

Fact 15.8. K ↪→ AK is discrete, and AK = K + ÔK + K∞ (or K · ÔK ·K∞), where K∞ =∏
v|∞Kv, ÔK =

∏
v-∞OKv , and Kf = AK,f =

∐∏
v-∞Kv.

Moreover, AK is locally compact, and admits a Haar measure dx =
∏

v dxv, where dxv =
|dx| on R, dxv = |dz ∧ dz| on C, and

∫
OKp

dxp = 1 on Kp.

Definition 15.9. The group of ideles of K is A×K , the group of units of AK . We give A×K
the topology induced by the open basis of U =

∏
v Uv with Uv ⊂ K×v open and Uv = O×v for

almost all v.

16 2015-02-25: Adeles and ideles
Recall that K embeds into AK as a discrete subspace. Moreover, the quotient K\AK is
compact.

Theorem 16.1. Let ψ : K\AK → C1 be a nontrivial additive character. Then

Hom(K\AK ,C×) = {ψa : a ∈ K} ,

where ψa(x) = ψ(ax).
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16.1 Ideles

We defined the group of ideles to be A×K , the group of units of AK . We equip this with a
Haar measure d×x =

∏
v d
×xv, where

d×xv =

{
(1− (Npv)

−1) dxv
|xv |v

if v -∞,
dxv
|xv |v

if v | ∞.

Hence, we have vol(O×v , d×xv) = 1.
If OK is the ring of integers in AK , then O×K is the maximal compact open subgroup of

(A×K)f = K×f .

Lemma 16.2. Let A1
K =

{
x = (xv) ∈ A×K : |x|A =

∏
v |xv|v = 1

}
. Then K× ↪→ A1

K is dis-
crete and K×\A1

K is compact. Moreover, we have an exact sequence

1→ K×\A1
K → K×\A×K → R>0 → 1.

Definition 16.3. The group K×\A×K is called the idele class group. It is a locally compact
abelian group, so we can do Fourier analysis on K×\A×K .

We have a map

A×K → IK = {fractional ideals of K} ,

x = (xv) 7→ (x) = xOK = xfÔK ∩K =
∏
v-∞

pordv xv
v

which restricts to x 7→ (x) = xOK : K× → PK .

Proposition 16.4. The above maps induce an isomorphism K×\A×K/Ô
×
KK

×
∞

'−→ Cl(K),
where Cl(K) is the ideal class group of K.

Theorem 16.5. Let m be a cycle of K. Then we have a natural isomorphism

K×\A×K/Um,fUm,∞
'−→ ClK(m) = IK(m)/PK(m),

where

Um,f =
∏
v-∞

(1 + mv) ∩ O×v =
∏
v-m

O×v
∏
v|mf

(1 + p
ordv mf
v ),

Um,∞ =
∏
v|m∞

(K×v )+
∏
v-m∞
v|∞

K×v ,

where (K×v )+ denotes the connected component of 1 ∈ K×v (i.e., R>0 for real places and C×
for complex places).

Define λv : K×v → ClK(m) for v - m by λv(xv) = pordv xv
v for v - ∞, and λv(xv) = OK for

v | ∞.
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Fact 16.6 (Approximation theorem). Let S be a finite set of primes and K×S =
∏

v∈SK
×
v .

Then K× ↪→ K×S is dense. In particular, for any open subgroup US of K×S , K
×US = K×S .

Consequently, A×K = K×US
∐∏

v/∈SK
×
v = (AS

K)×.
Returning to the theorem, take S = {v : v | m}, and denote Sf = {v ∈ S : v -∞} and

S∞ = {v ∈ S : v | ∞}. Then

US := (Um,fUm,∞ ∩K×S =
∏
v∈Sf

(1 + p
ordv mf
v )

∏
v∈S∞

(K×v )+.

Hence, A×K = K×US
∐∏

v/∈SK
×
v . Define λ : A×K → ClK(m) to satisfy λ|K×US = 1 and λ|K×v =

λv. One can check that this is well-defined, after which bijectivity is clear.

17 2015-02-27: Adelic reciprocity law
Recall that K× ↪→ A×K is discrete. The approximation theorem tells us that, for any finite
set of primes S and any open compact subgroup U of K×S , A

×
K = K×U(AS

K)×, where AS
K =∐∏

v/∈SKV .

Proposition 17.1 (Strong approximation). For any prime v0, the map K× ↪→ (A(v0)
K )× :=∐∏

v 6=v0 K
×
v is discrete. However, for any set of at least two primes S, the map K× ↪→ (AS

K)×

is dense.

Last time, we asserted that the map

λ : K×\A×K/Um
'−→ ClK(m) = IK(m)/PK(m)

is an isomorphism. The map is constructed as follows:

(1) Construct the map λv : K×v → IK(m)/PK(m) for unramified primes v - m.

(2) Use the approximation theorem to extend the map to K×\A×K .

(3) Define the map λ : A×K → K×\A×K → IK(m)/PK(m).

(4) Define λv : K×v → IK(m)/PK(m) for all v (not just unramified primes).

Theorem 17.2 (Adelic version of the reciprocity law). Let K be a global field. There exists
a unique continuous group homomorphism ϕK : A×K → Gal(Kab/K) such that:

(1) kerϕK = K× · (K×∞)0 ⊃ K×.

(2) For any finite abelian extension L/K, the composition

ϕL/K : A×K
ϕK−−→ Gal(Kab/K)� Gal(L/K)

is surjective, and kerϕL/K = K× ·NL/KA×L .

(3) If p is unramified in L/K, then ϕL/K(πp) = Frobp,L/K for any local uniformizer πp of
Kp.
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Remark 17.3 (Open subgroups). For v -∞, K×v has a basis near 1 of compact open subgroups

O×Kv ⊃ 1 + pv ⊃ 1 + p2
v ⊃ . . . .

If πv is a uniformizer for O×Kv , we have pv = πvOKv .
For v | ∞, this is not the case: R× has only two open subgroups, R× and R>0, while C×

has no proper open subgroups.

Theorem 17.4 (Adelic existence theorem). Let Uf be a compact open subgroup of A×f of finite
index. Let U∞ be an open subgroup of K×∞. There is a unique finite abelian extension L/K

such that K× ·Uf ·U∞ = K× ·NL/KA×L , i.e., ϕL/K gives an isomorphism K×\A×K/UfU∞
'−→

Gal(L/K).

To recover the classical formulation of global class field theory, observe that we have a
commutative diagram

K×\A×K Gal(Kab/K) lim
m

Gal(HK(m)/K)

IK(m)/PK(m) Gal(HK(m)/K)

IK(n)/PK(n) Gal(HK(n)/K)

ϕK=limm ϕK,m

ϕK,m

πm,n

ϕK,n

The connection between global and local class field theory is expressed by commutativity of

K×v Gal(Kab
v /Kv)

A×K Gal(Kab/K),

ϕKv

ϕK

where v is a prime of K, the vertical arrows are the natural injections, and ϕKv and ϕK are
the maps given by the reciprocity laws.

18 2015-03-02: Idele class characters
We have formulated global class field in three equivalent ways: the classical version, the
adelic version, and as an equivalence between Hecke characters and 1-dimensional Galois
representations.

Now let us discuss an adelic version of the formulation via Hecke characters. An idele
class character of a global field K is a continuous group homomorphism χ : K×\A×K → C×,
i.e., a continuous group homomorphism χ =

∏
χv : A×K → C× such that:

(1) There is a compact open subgroup U of A×f =
∐∏

v-∞K
×
v such that χ(gu) = χ(g) for all

u ∈ U .
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(2) χ∞ =
∏

v|∞ χv is continuous (and hence real-analytic).

(3) χ(K×) = 1.

Condition (1) is equivalent to both of the following being true:

(a) Each χv is continuous, i.e., there is a compact open subgroup Uv = 1 + πnvv Ov of K×v
such that χv|Uv = 1.

(b) For almost all v, χv|O×v = 1 (i.e., χv is unramified).

Here is what condition (2) means: When v is real, χv : R× → C× must be given by
χv(x) = (signx)ε |x|s0 for some ε ∈ {0, 1} and s0 ∈ C. When v is complex, χv : C× → C×
must be given by z 7→ zn |z|s0 for some n ∈ N and s0 ∈ C.

Theorem 18.1. There is a natural bijective correspondence

{Hecke characters of K} ←→ {idele class characters of K} .

For any idele class character χ =
∏
χv : A×K → C×, let mf =

∏
v(1 + πnvv Ov) ∩ Ov so that

χ(gu) = χ(g) for all u ∈ mf . Then the corresponding Hecke character χc : IK(mf ) → C× is
given by χc(a) = χ(

∏
πordv a
v ) =

∏
v-mf χv(π

ordv a
v ) for any ideal a ∈ IK(mf ).

Conversely, given a Hecke character χc : IK(m) → C×, the corresponding idele class
character χA =

∏
v χ̃v is characterized by the following properties:

(1) For v - mf∞, χ̃v(πv) = χ(pv), where pv is the prime ideal associated to v and πv is any
uniformizer of K. In particular, χ̃v(O×v ) = 1.

(2) For v real, χ̃v|R>0 = χv|R>0.

(3) For v complex, χ̃v = χv.

(4) For v | mf , let nv = ordpv mf . Then χ̃v|1+πnvv Ov = 1.

Since χv(O×v ) = 1 for all v - mf∞, the Hecke character χc is well-defined. It remains to
check χc(αOK) = 1 for any α ≡ 1 (mod∗m). Take m = mf ·

∏
v real mv. Since αv = πordv α

v uv
for some uv ∈ O×v , we have χv(αv) = χv(π

ordv α
v χv(uv). But χv(uv) = 1 for all v - mf∞, so

1 = χ(α) =
∏
v

χv(αv) =
∏
v-mf∞

χv(αv) ·
∏
v|mf

χv(αv) ·
∏
v|∞

χv(αv) = χc(αOK) ·
∏
v|∞

χv(αv).

So χc(αOK) =
∏

v|∞ χv(αv)
−1 = χ∞(α)−1.

19 2015-03-04: Reciprocity for idele class characters
Continuing from last time, we want to construct an idele class character χA from a Hecke
character χ of K.

(1) For v -∞m, define χ̃v : K×v → C× by χ̃v(O×v ) = 1 and χ̃v(πv) = χ(pv).

29



(2) For v | ∞ and v - m∞, define χ̃v = χv.

(3) For v | m∞, define χ̃v|(K×v )+ = χv.

(4) χA(K× · Umf ) = 1.

To check this is well-defined, it suffices to show that a ∈ K× ∩ UmfUm∞
∏

v-∞mK
×
v , we have

a ≡ 1 (mod∗m). Indeed,

χA(a) = 1 ·
∏
v|∞

χv(av) ·
∏
v-∞m

χv(av) = χ∞(a)χ(aOK) = χ∞(a)χ−1
∞ (α) = 1.

Example 19.1. A Hecke character of Q of finite order is a Dirichlet character χ : (Z/N)× →
C×. The corresponding idele class character χA =

∏
p≤∞ χ̃p : A×Q → C× is defined by

(1) χ̃p : Q×p → C× for p unramified is defined by χ̃p(p) = χ(p).

(2) χ̃∞ : R× → C× is defined by χ̃∞(a) = 1 for all a > 0, and χ̃∞(−1) = χ(−1).

Proposition 19.2. For p | N , the character χ̃p : Q×p ∼= pZ × Z×p → C× is defined by
χ̃p(a) = χp(a), and factors through Z×p /(1 + peZp)→ (Zp/pe)×

χp−−→ C×. Moreover, χ̃pi(pi) =∏
j 6=i χ

−1
pj

(pi).

Remark 19.3. What could go wrong if we replace Q by an arbitrary number field? First,
Dirichlet characters are defined on elements, but Hecke characters are defined on ideals; this
only works because Z is a PID. Second, if there are several real primes, how do we determine
the values at −1 ∈ R?

Now we state yet another version of the reciprocity law, this time in terms of idele class
characters.

Theorem 19.4 (Global reciprocity law). There is a natural bijective correspondence{
idele class characters
of K of finite order

}
←→

{
1-dim. representations

of Gal(K/K)

}
.

More generally, there is a group called the Weil group of K such that{
idele class characters

of K

}
←→

{
1-dim. representations

of Weil group

}
.

19.1 The Langlands correspondence

It is natural to ask what happens when we look at higher-dimensional representations of
Gal(K/K). Langlands conjectured:

Conjecture 19.5. There are natural bijective correspondences{ Automorphic representations of
GLn(K)\GLn(AK) of some

special algebraic type

}
←→

{ n-dimensional
representations of

Gal(K/K)

}
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and {
Automorphic representations of

GLn(K)\GLn(AK)

}
←→

{ n-dimensional
representations of

some Langlands group

}
.

More generally, if G is a reductive algebraic group over Q, then there is a similar correspon-
dence involving automorphic representations of G.

There is also a local Langlands correspondence, which has been proved for GLn.

20 2015-03-06: Complex multiplication
Now we begin our study of complex multiplication. For a reference, see [Sil].

Definition 20.1. Let F be a field. An elliptic curve over F is a smooth projective curve
over F of genus 1 with a fixed F -point O.

By Riemann–Roch, any elliptic curve over F is isomorphic to one of the form E : y2 +
a1xy+a3y = x3 +ax+b. If charF 6= 2, 3, we may take a1 = a3 = 0 without loss of generality,
and such a curve E is smooth if and only if ∆4a3 − 27b2 6= 0.

Given such a realization as a plane curve, define an addition law on E by P +Q+R = 0,
where P,Q,R are collinear points on E. This is independent of the embedding, and can also
be defined intrinsically in terms of the Picard group.

Over C, smooth projective curves correspond to smooth compact Riemann surfaces of
the same genus, so complex elliptic curves are complex tori. Any elliptic curve over C
corresponds to to EΛ = C/Λ for some lattice Λ = Zω1 + Zω2, and the group structure is
induced by addition in C.

Definition 20.2. Morphisms Hom(E1, E2) of elliptic curves are defined to be group homo-
morphisms which are also regular maps. A morphism f ∈ Hom(E1, E2) is called an isogeny
provided that ker f and coker f are both finite.

Let End(E) be the ring of endomorphisms E → E which are either isogenies or zero.
Note that Z ⊂ End(E): for n > 0, the map P 7→ [n]P = P + · · ·+ P : E 7→ E is an isogeny,
as is P 7→ [−1]P = −P .

We study the situation over C, which will be representative of the characteristic zero
case in general. Given a map f̃ = fα : C → C given by z 7→ αz, we may descend to
f : C/Λ1 → C/Λ2 if f̃(z) = αz ∈ Λ2 for all z ∈ Λ1, where Λ1 and Λ2 are free Z-lattices of
rank 2.

Lemma 20.3. Hom(EΛ1 , EΛ2) = {α ∈ C : αΛ1 ⊂ Λ2}.

Lemma 20.4. Let Λ = Zω1 + Zω2 = ω1(Z + Zω2

ω1
) be a lattice with τ := ω2

ω1
∈ H =

{z ∈ C : Im z > 0}. Then EΛ
∼= Eτ := C/Λτ , where Λτ = Z + Zτ . This gives a surjec-

tion τ 7→ Eτ : H� {elliptic curves over C} /∼=.
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When is α ∈ Hom(Eτ1 , Eτ2) an isomorphism? Choose α ∈ C such that αΛτ1 = Λτ2 . Let
a, b, c, d ∈ Z such that

α

(
τ1

1

)
=

(
a b
c d

)(
τ2

1

)
.

Then α is an isomorphism if and only if γ :=

(
a b
c d

)
∈ GL2(Z). In fact, since τ1, τ2 ∈ H, we

have γ ∈ GL2(Z) if and only if γ ∈ SL2(Z). To summarize:

Proposition 20.5. Let α ∈ C and τ1, τ2 ∈ H.

(1) α ∈ Hom(Eτ1 , Eτ2) ⇐⇒ α

(
τ1

1

)
=

(
a b
c d

)(
τ2

1

)
.

(2) α is an isomorphism ⇐⇒
(
a b
c d

)
∈ SL2(Z).

Theorem 20.6. This yields a bijective correspondence between SL2(Z)\H and isomorphism
classes of elliptic curves over C.

Thus, we refer to SL2(Z)\H as a moduli space of elliptic curves . More generally, let
X(K) be the moduli space of (isomorphism classes of) elliptic curves over a field K. This is
a “scheme” (actually a stack) over Q.

Definition 20.7. We say an element [τ ] ∈ SL2(Z)\H is defined over F ⊂ C if Eτ can be
defined over F .

Theorem 20.8. Let τ ∈ H ∩ Q. Then [τ ] is defined over Q if and only if τ is imaginary
quadratic.

Proposition 20.9. Let τ ∈ H. Then

End(Eτ ) =

{
an order in Q(τ) if τ is imaginary quadratic,
Z otherwise.

Proof. Let α ∈ End(Eτ ). Then α ∈ C such that α = cτ + d and ατ = aτ + b. If α ∈ Q(τ),
then (cτ + d)τ = aτ + b, so cτ 2 + (d− a)τ − b = 0, so τ is imaginary quadratic.

Conversely, if τ is imaginary quadratic, write k = Q(τ). We have α ∈ End(Eτ ) if and
only if αΛτ = Λτ , and Oτ = {α ∈ k : αΛτ ⊂ Λτ} is always an order of k.

21 2015-03-09: CM and the class group
The j-invariant

j(τ) = j(Eτ ) = 1728
E3

4

∆(τ)

gives a bijection between SL2(Z)\H and the set of isomorphism classes of elliptic curves over
C. Here, for even k ≥ 4,

Ek(τ) =
∑

γ∈Γ∞\SL2(Z)

(cτ + d)−k,
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where Γ∞ =

{
±
(

1 n
0 1

)
: n ∈ Z

}
, is a modular form of weight k for SL2(Z). Also,

∆(τ) =
1

1728
(E3

4 − E2
6) = q

∞∏
n=1

(1− qn)24

is the unique weight 12 cusp form for SL2(Z).

Theorem 21.1. Eτ can be defined over F if and only if j(τ) ∈ F , in which case we write
[τ ] ∈ F .

Let E be an elliptic curve over C. Recall from last time that End(E) is either Z or an order
O of an imaginary quadratic field. In the latter case, we say E has complex multiplication
(CM) by O.

Let k = Q(
√
d) be the field of fractions of O = Ok, and denote

E``(k) = {elliptic curves E/C with CM by Ok, up to C-isomorphism} .

Proposition 21.2. The map [a] 7→ Ea = C/a induces a bijection Cl(k)→ E``(k).

The group Aut(C) acts on elliptic curves over C as follows:

Eσ E

SpecC SpecCσ

In coordinates, E : y2 = x3 + ax+ b is sent to Eσ : y2 = x3 + σ(a)x+ σ(b).

Lemma 21.3. This induces an isomorphism f 7→ fσ : End(E)
'−→ End(Eσ), where fσ(pσ) =

f(p)σ. (If p ∈ E(C), then pσ ∈ Eσ(C).)

Corollary 21.4. If E ∈ E``(k), then Eσ ∈ E``(k). In particular, Aut(C) acts on E``(k).

Hence, there exists a number field F ⊂ Q ⊂ C such that Aut(C/F ) acts trivially on
E``(k) and [F : Q] | hk = # E``(k).

Proposition 21.5. For each E ∈ E``(k), we have j(Eσ) = j(E)σ and [Q(j(E)) : Q] ≤ hk.

Example 21.6. The elliptic curve E : y2 = x3 + x has an endomorphism f : (x, y) 7→ (−x, iy)
of order 4. This gives an inclusion i 7→ f : Z[i] ⊂ End(E), so End(E) = Z[i]. Thus,
E has CM by OQ(i) = Z[i]. Since Z[i] is a PID, E``(Q(i)) = {Ei}, so Ei ∼= E. Thus,
j(i) = j(Ei) = j(z) = 1728.

Example 21.7. The elliptic curve E : y2 = x3 + 1 has an endomorphism (x, y) 7→ (ζ3x, y),
where ζ3 = −1+

√
−3

2
. Thus, E has CM by Z[ζ3], which is a PID, so E = Eζ3 and j(ζ3) =

j(E) = 0.

Theorem 21.8. Let E ∈ E``(k). Let H = k(j(E)) and L = k(j(z), Etor), where Etor =⋃
m≥1E[m] is the set of torsion C-points of E. Then Gal(L/H) is abelian.
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Proof. Define a map σ 7→ ρ(σ) : Gal(L/H) → Aut(Etor), where ρ(σ)P = P σ. This is
well-defined as Eσ = E since j(z) ∈ H is fixed by σ and E is defined over H.

Let Lm = H(E[m]). Then ρ induces an injection Gal(Lm/H) ↪→ Aut(E[m]). Notice
that E[m] is actually an Ok-module. So Im ρ ⊂ AutOk E[m], which is abelian as E[m] is
Ok-principal.

This is analogous to the construction of totally ramified abelian extensions in local class
field theory.

22 2015-03-11: CM and Hilbert class fields
Recall from last time that we have the space of CM elliptic curves E``(k) ∼= Cl(k) with an
action of Aut(C).

Lemma 22.1. Fix i : K ↪→ C and E ∈ E``(k). There exists a unique ι : OK
'−→ End(E)

such that ι(a)∗ω = i(a)ω for all ω ∈ ΩE/C.

Today, we give a proof of the theorem from last time.

Theorem 22.2. Let E ∈ E``(k), HE = K(j(E)), and L = K(j(z), Etor). Then L is abelian
over HE.

Definition 22.3. If E ∈ E``(k) and a ⊂ OK is an ideal, the group of a-torsion points of E
is

E[a] = {P ∈ E(C) : ι(α)P = 0 ∀α ∈ a} .

Lemma 22.4. Let E ∈ E``(k). Then E[a] is an OK-module and E[a] ∼= OK/a.

Proof. Since E ∈ E``(k), E ∼= Eb for some fractional ideal b of k. So

E[a] = {[z] ∈ C/b : αz ∈ b ∀α ∈ a} = a−1b/b ∼= OK/a.

Proof of the theorem. We have L =
⋃
m≥1 Lm, where Lm = HE(E[m]). Define a homomor-

phism ρ : Gal(Lm/HE) ↪→ Aut(E[m]) by ρ(σ)·P := P σ. One can check that ρ(σ) isOK-linear
for all σ ∈ Gal(Lm/HE), and hence lands in AutOK (E[m]), which by the lemma is isomorphic
to AutOK (OK/m) = (OK/m)×, an abelian group.

Example 22.5. We have Qab = Q(Gm,tor) = Q(ζ∞) and Gm(C) = C×, with Z acting on C×
by n · z = zn.

Recall our setup from local class field theory: Let K be a local field, and let π be a
uniformizer of K. Choosing f = πX + Xq, let Ff be the corresponding formal group law
over OK . Then Λn = {x ∈ mK : [πn]f · x = 0} is also an OK-module, and we proved:

(1) Kπ = K(
⋃
n≥1 Λn) is a maximal totally ramified abelian extension of K.

(2) Kab = KπK
un = Kπ ·K(µn : p - n).
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We have a similar picture for HE = K(j(E)):

(1) HE is independent of E ∈ E``(k) and is the Hilbert class field of K: every prime of K
is unramified in H = HE, and Gal(HE/K) ∼= Cl(K).

(2) kab = k(j(E), h(Etor)), where if we write E : y2 = x3 + ax + b (with a, b ∈ H) and
P = (x, y) ∈ E(C), then

h(P ) =


x if ab 6= 0,

x2 if b = 0 (when j(E) = 1728),
x3 if a = 0 (when j(E) = 0).

We have defined two actions on E``(k):

(1) Gal(K/K) 	 E``(k) ∼= Cl(k)

(2) Cl(k) 	 E``(k) simply-transitively by [a] ∗ EΛ = Ea−1Λ.

Definition 22.6. Fix E ∈ E``(k). Define a map

F = FE : Gal(K/K)→ Cl(k),

σ 7→ F (σ),

where F (σ) is defined by F (σ) ∗ E = Eσ.

Proposition 22.7. (1) FE is independent of the choice of E.

(2) F = FE is a group homomorphism.

Proof. Choose another E1 ∈ E``(k). Since Cl(k) acts simply-transitively on E``(k), there
exists [b] ∈ Cl(k) such that E1 = [b] ∗ E. Write FE1(σ) = [a1] and FE(σ) = [a]. Then
Eσ

1 = [a1] ∗ E1, so

[a1b] ∗ E = [a1] ∗ [b] ∗ E = ([b] ∗ E)σ = [b] ∗ Eσ = [b] ∗ [a] ∗ E = [ba] ∗ E.

(We should check ([b] ∗ E)σ = [b] ∗ Eσ.) This implies [a1b] = [ba], so [a1] = [a].

We’ll finish the proof of the theorem next time. As a final remark, note that the following
diagram commutes:

Gal(K/K) Cl(K)

Gal(K/K) Gal(H/K),

F

'

where the right arrow is the isomorphism given by class field theory.

23 Several missing lectures
[I don’t have notes for a few weeks of lectures at this point. See [Sil, chapter 2] for an
exposition of the theory of complex multiplication, the subject of these lectures.]
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24 2015-04-13: Rank and modularity of elliptic curves
Theorem 24.1 (Mordell–Weil). Let L be a number field. Let E : y2 = x3 + ax + b be an
elliptic curve over L, where a, b ∈ OL. Then E(L) is a finitely-generated abelian group.

Remark 24.2. Due to work of Mazur, the torsion part of E(L) is known to be one of a finite
list of possibilities. The rank r(E(L)) of E(L) is called the Mordell–Weil rank of E, and is
more mysterious.

Let p be a prime of L such that E has good reduction modulo p. Let qp = |kp|, where
kp = |OL/p|. Let ap be the trace of σp on H1(Ẽ). Then ap = qp + 1−

∣∣∣Ẽ(kp)
∣∣∣.

Define the local L-factor

Lp(s, E) =
(
1− apq−sp + q1−2s

p

)−1
.

The global L-function of E is defined by

L(s, E) =
∏
p

Lp(s, E)

(note: the definition of Lp at bad primes is slightly different), which is absolutely convergent
if Re s > 3

2
. Also, by the Weil bound, |ap| ≤ 2

√
qp.

Conjecture 24.3. L(s, E) has holomorphic continuation to the whole complex s-plane and
has functional equation

N sL(s, E)L∞(s, E) = wEN
2−sL(2− s, E)L∞(2− s, E),

where wE = ±1. (The most interesting part is for s = 1.)

Conjecture 24.4 (Birch–Swinnerton-Dyer). The algebraic rank and analytic rank are equal:
r(E(L)) = ords=1 L(s, E). Moreover,

L(1)(1, E)

r!
=
|X(E)|RE/L

|E(L)tor|2
.

Theorem 24.5 (Wiles, Taylor–Wiles). If L = Q, then L(s, E) has holomorphic continuation
and functional equation as conjectured above. Moreover, L(s, E) = L(s, f) for some modular
form f of weight 2.

Theorem 24.6 (Deuring). Suppose E has CM by OK.

(1) If K ⊂ L, then
L(s, E/L) = L(s, χE/L) · L(s, χE/L).

(2) If K 6⊂ L, write L′ = KL. Then

L(s, E/L) = L(s, χE/L′).

In particular, holomorphic continuation and the functional equation hold for E/L.
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24.1 Final project

Take your favorite imaginary quadratic field k. (Easy choice: class number one.) Choose a
CM elliptic curve E/H. Find χE/H and L(s, E/H).

25 2015-04-17: CM elliptic curves and Heegner points
Let H be the upper half plane, and define Y0(N)(C) = Γ0(N)\H, the moduli space of degree-
N cyclic isogenies ϕ : E → E ′ of elliptic curves up to isomorphism. The variety Y0(N) is
defined over Q. For any number field F ,

Y0(N)(F ) =
{
E

ϕ−→ E ′ : E,E ′, ϕ defined over F
}
/(F -isomorphism).

Take k = Q(
√
d) such that every p | N splits in k (the Heegner condition). Write

NOk = n · n. For each fraction ideal a, define

Pa =

(
Ea = C/a ϕ−→ C/n−1a = En−1a

[z] 7→ [z]

)
.

The kernel kerPa = n−1a/a is cyclic of order N . Let H be the Hilbert class field of k.
Define the compactification X(N) by

X(N)(C) = Y0(N) ∪ {cusps} = Γ0(N)\(H ∪Q ∪ {∞}).

This is a compact C-curve, and X0(N)/Q is a projective smooth curve.

Theorem 25.1 (Wiles, Taylor–Wiles). For every elliptic curve E/Q with conductor N , there
is a surjective map

X0(N)
π−→ E

P[a] 7→ π(P[a]) ∈ E(H).

Moreover, L(s, E/k) = L(s, E/Q) · L(s, Ed/Q), where E : y2 = x3 + ax + b and Ed : dy2 =
x3 + ax+ b and k = Q(

√
d).

The Heegner condition also implies that the functional equation takes the form

L(s, E/k) = −(Γ-factors)L(2− s, E/k)

since wE,k = −1. Hence, L(1, E/k) = 0.

Theorem 25.2 (Gross–Zagier formula). Let yk =
∑

[a]∈Cl(k) π(P[a]) ∈ E(k). Then

L′(1, E/k) = C 〈yk, yk〉NT

for some C > 0, where

〈·, ·〉NT : E(F )/E(F )tor × E(F )/E(F )tor → R≥0

is the Neron–Tate height, which is bilinear, symmetric, and positive-definite.
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Corollary 25.3. L′(1, E/k) 6= 0 ⇐⇒ yk ∈ E(k) has infinite order, in which case
rankE(k) ≥ 1.

Kolyvagin developed the notion of Euler system to prove:

Theorem 25.4 (Kolyvagin). If yk ∈ E(k) has infinite order, then rankE(k) = 1.

(If yk has finite order, nothing is known; the BSD conjecture implies rankE(k) ≥ 3.)

Theorem 25.5 (Gross–Zagier, Kolyvagin). If L′(1, E/k) 6= 0, then rankE(k) = 1 and
rankE(Q) = ords=1 L(s, E/Q).

25.1 Class numbers

Let k = Q(
√
d) and hd = |Cl(k)|.

Theorem 25.6 (Siegel). We have

|d|1/2

log |d|
� hd � |d|1/2 log |d| .

This is not effective, but can be made effective if we assume the Riemann hypothesis.

Theorem 25.7 (Goldfeld 1979). If there is an elliptic curve E/Q such that ords=1 L(s, E) ≥
3, then

hd ≥ κ(ε) |d|
1
2
−ε

for every ε > 0, where κ(ε) is an explicit constant.

Example 25.8. Consider the elliptic curve E : −139y2 = x3 + 10x2 − 20x + 8. Then yk is
torsion, so L′(1, E/k) = 0, which implies ords=1 L(s, E) ≥ 3. This proves the hypothesis of
Goldfeld’s theorem.

26 2015-04-24: Galois cohomology
Theorem 26.1. Let L/K be a finite Galois extension of fields with G = Gal(L/K). Then
H1(G,L×) = 0.

Corollary 26.2 (Hilbert 90). IF G = 〈σ〉 is cyclic and NL/Kx = 1, then x = σy
y

for some y.

Theorem 26.3. Let M be a G-module and ϕ ∈ Z2(G,M). Then ϕ gives rise to a group
extension

0→M → E
π−→ G→ 1

such that:

(1) The G-moduleM associated to the above short exact sequence coincides with the original
G-module structure on M .

(2) The 2-cocycle associated to the sequence is equivalent to ϕ.
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27 2015-04-27: Galois homology
Let G be a group and M a G-module. Define Hr(G,M) := TorGr (Z,M). Equivalently,
Hr(G,−) is the derived functor of the coinvariants functor M 7→ MG, where MG is the
maximal quotient on which M acts trivially.

Theorem 27.1. H1(G,Z) = Gab.

Let IG be the augmentation ideal of the group algebra Z[G].

Lemma 27.2. Z⊗GM = Z[G]/IG ⊗Z[G] M = M/IGM , which is by definition MG.

Lemma 27.3. M if G-flat iff Hr(G,M) = 0 for all r > 0.

Proposition 27.4. H1(G,Z) = IG/I
2
G.

Proof. Taking coinvariants of the short exact sequence

0→ IG → Z[G]→ Z→ 0

yields a long exact sequence

H1(Z[G])→ H1(Z)→ H0(IG)→ H0(Z[G])→ H0(Z)→ 0.

Since H1(Z[G]) = 0 and H0(Z[G]) = H0(Z) = Z, we obtain an isomorphism H1(Z[G]) ∼=
H0(IG) = IG/I

2
G.

Lemma 27.5. IG/I2
G
∼= Gab = G/[G,G].

Tate defined a “very long” exact sequence that glues together both homology and coho-
mology. Define a norm map

NG : M →MG

m 7→ NG(m) =
∑
g∈G

gm.

Lemma 27.6. IGM ⊂ kerNG and imNG ⊂MG.

Definition 27.7. For r ∈ Z, define

Hr
T (G,M) =


Hr(G,M), r ≥ 1,

MG/(imNG), r = 0,

(kerNG)/IGM, r = −1,

H−r+1, r ≤ −2.

Proposition 27.8 (Tate). Given a short exact sequence

0→M1 →M2 →M3 → 0,

we obtain a doubly-infinite long exact sequence

· · · → Hr
T (G,M1)→ Hr

T (G,M2)→ Hr
T (G,M3)→ Hr+1

T (G,M1)→ . . .

Theorem 27.9. Let L/K be a finite Galois extension of fields. Then Hr
T (G,Z)

'−→ Hr+2
T (G,L×)

for all r, and the isomorphism is “canonical”, depending only on a choice of generator of
H2
T (G,L×), which is cyclic of order |G|.
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28 2015-05-06: Brauer groups
The Brauer group of a field is the group of central division algebras over K with the operation
of tensor product.

Proposition 28.1. Let K be any field. Then Br(K) ∼= H2(GK , K
×

).

29 2015-05-08: Brauer groups of local fields
Today, we will prove that the Brauer group of a nonarchimedean local field is Q/Z, which
implies local class field theory.

Let x 7→ |x| = q− ordK x : K → R>0 be the valuation of K. Let OK be the ring of integers,
p = πOK ⊂ OK the maximal ideal with a uniformizer π, and k = OK/p the residue field of
order q.

Let D be a central division algebra over K of index [D : K] = n2. Then there is a unique
norm |·| : D → R>0 such that |xy| = |x| |y| and |x+ y| ≤ max {|x| , |y|} for all x, y ∈ D.

The subring OD = {x ∈ D : |x| ≤ 1} is the unique maximal order in D. This ring has
unique maximal ideal mD = {x ∈ D : |x| < 1}. The quotient ` = OD/mD is a finite field
extension of k of index f = [` : k] ≤ n. Moreover, pOD = me

D.

Lemma 29.1. e = f = n.

Corollary 29.2. Let D be a central division algebra over K of rank n2. Let L = Kun
n be the

unique unramified extension of K of degree n. Then Kun
n ↪→ D, and Kun

n splits D in the sense
that D ⊗K Kun

n
∼= Mn(Kun

n ). In other words, [D] ∈ Br(Kun
n /K), i.e., [D] = 1 ∈ Br(Kun

n ).

Theorem 29.3. Let K be a nonarchimedean local field. Then Br(K) ∼= Q/Z.

Proof. Let Kun be the maximal unramified extension of K. We have an exact sequence

1→ Br(Kun/K)→ Br(K)→ Br(Kun).

AssumeD is a central divisionKun-algebra of degree n2. There is a finite unramified extension
K ′/K such that D = D′ ⊗K′ Kun. By the corollary, D′ ⊗K′ L ∼= Mn(L), where L is the
unramified extension of K ′ of degree n. So

D = D′ ⊗K′ Kun = (D′ ⊗K′ L)⊗L Kun ∼= Mn(Kun).

Thus, Br(Kun) = 0. Hence,

Br(K) ∼= Br(Kun/K) ∼= H2(Gal(Kun/K), Kun×) ∼= H2(Gal(Kun/K),Z)
∼= H1(Gal(Kun/K),Q/Z) ∼= Hom(Gal(Kun/K),Q/Z) ∼= Q/Z.

Let us explicitly construct the isomorphism InvK : Br(K) → Q/Z. Let D be a central
division K-algebra of rank n2. Let σKun

n /K be the Frobenius automorphism, which generates
Gal(Kun

n /K). There exists e ∈ D× such that σKun
n /K(x) = exe−1. Then InvK([D]) = ordK e

(mod Z).

Theorem 29.4. Every quadratic extension of K is inside the unique quaternion division
algebra D.

40



References
[CF] Cassels and Fröhlich, Algebraic Number Theory.

[L] S. Lang, Algebraic Number Theory.

[M] J. Milne, Class Field Theory, online notes.

[N] J. Neukirch, Algebraic Number Theory.

[S] J.P. Serre, Local Fields.

[Sil] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves.

41



Index
additive formal group, 10
adele, 25
Artin L-function, 24
Artin map, 3

Brauer group, 40

completed L-function, 20
complex multiplication, 33
conductor, 20

of a Hecke character, 20
cycle, 5

Dirichlet density, 22

elliptic curve, 31
Euler system, 38

formal group law, 10

Gauss’s genus theory, 5

Hecke L-function, 20
Hecke character, 20
Heegner condition, 37
Hilbert class field, 5

idele, 25
idele class character, 28
idele class group, 26
isogeny, 31

jump, 19

Legendre symbol, 4
local Artin map, 7
local field, 7

modular, 24
moduli space of elliptic curves, 32
modulus, 6
Mordell–Weil rank, 36
multiplicative formal group, 10

primitive, 20

residue character, 8
restricted product, 25

42


	2015-01-21: Introduction
	Quadratic reciprocity
	Cyclotomic fields

	2015-01-23: Class fields and reciprocity
	Hilbert class fields
	Ray class fields
	Reciprocity law

	2015-01-26: Local class field theory
	Local fields
	Local reciprocity law

	2015-01-28: Existence and Lubin–Tate fields
	2015-01-30: Lubin–Tate theory
	Lubin–Tate formal group laws

	2015-02-02: Formal groups
	Morphisms of formal groups
	Lubin–Tate formal group laws

	2015-02-04: Construction of Lubin–Tate extensions
	Summary of last time
	Proof of the ``basic lemma''
	Construction of ``maximal'' totally ramified abelian extension

	2015-02-06: Maximal totally ramified abelian extensions
	2015-02-09: Local Kronecker–Weber
	2015-02-11: The global Artin map
	Global Kronecker–Weber theorem
	Global Artin map

	2015-02-13: Higher ramification groups
	Lower ramification groups
	Upper ramification groups
	Main result

	2015-02-16: Global class field theory
	Statement of global class field theory
	Hecke characters and Hecke L-functions

	2015-02-18: L-functions of Hecke characters
	2015-02-20: Character version of CFT
	Density theorems
	Higher-dimensional Galois representations

	2015-02-23: Artin L-functions and adeles
	Artin L-functions
	Adelic language

	2015-02-25: Adeles and ideles
	Ideles

	2015-02-27: Adelic reciprocity law
	2015-03-02: Idele class characters
	2015-03-04: Reciprocity for idele class characters
	The Langlands correspondence

	2015-03-06: Complex multiplication
	2015-03-09: CM and the class group
	2015-03-11: CM and Hilbert class fields
	Several missing lectures
	2015-04-13: Rank and modularity of elliptic curves
	Final project

	2015-04-17: CM elliptic curves and Heegner points
	Class numbers

	2015-04-24: Galois cohomology
	2015-04-27: Galois homology
	2015-05-06: Brauer groups
	2015-05-08: Brauer groups of local fields

