Math 845 Notes Class field theory

Lectures by Tonghai Yang Notes by Daniel Hast

Spring 2015

Contents

1	2015-01-21: Introduction	3	
	1.1 Quadratic reciprocity	4	
	1.2 Cyclotomic fields	4	
2	2015-01-23: Class fields and reciprocity	5	
	2.1 Hilbert class fields	5	
	2.2 Ray class fields	5	
	2.3 Reciprocity law	6	
3	2015-01-26: Local class field theory	6	
	3.1 Local fields	7	
	3.2 Local reciprocity law	7	
4	4 2015-01-28: Existence and Lubin–Tate fields		
5	2015-01-30: Lubin–Tate theory	9	
	5.1 Lubin–Tate formal group laws	9	
6	2015-02-02: Formal groups	11	
	6.1 Morphisms of formal groups	11	
	6.2 Lubin–Tate formal group laws	11	
7	2015-02-04: Construction of Lubin–Tate extensions	12	
	7.1 Summary of last time	12	
	7.2 Proof of the "basic lemma"	13	
	7.3 Construction of "maximal" totally ramified abelian extension	13	
8	2015-02-06: Maximal totally ramified abelian extensions	14	
9	2015-02-09: Local Kronecker–Weber	15	

10	2015-02-11: The global Artin map 10.1 Global Kronecker–Weber theorem	16 17
	10.2 Global Artin map	17
11	2015-02-13: Higher ramification groups	18
	11.1 Lower ramification groups	18
	11.2 Upper ramification groups	19
	11.3 Main result	19
12	2015-02-16: Global class field theory	20
	12.1 Statement of global class field theory	20
	12.2 Hecke characters and Hecke <i>L</i> -functions	20
13	2015-02-18: L-functions of Hecke characters	21
14	2015-02-20: Character version of CFT	23
	14.1 Density theorems	23
	14.2 Higher-dimensional Galois representations	24
15	2015-02-23: Artin L-functions and adeles	24
	15.1 Artin <i>L</i> -functions	$24^{$
	15.2 Adelic language	25
16	2015-02-25: Adeles and ideles	25
	16.1 Ideles	26
17	2015-02-27: Adelic reciprocity law	27
18	2015-03-02: Idele class characters	28
19	2015-03-04: Reciprocity for idele class characters	29
	19.1 The Langlands correspondence	30
20	2015-03-06: Complex multiplication	31
21	2015-03-09: CM and the class group	32
22	2015-03-11: CM and Hilbert class fields	34
23	Several missing lectures	35
~ (
24	2015-04-13: Rank and modularity of elliptic curves	36
	24.1 Final project	37
25	2015-04-17: CM elliptic curves and Heegner points	37
	25.1 Class numbers	38
26	2015-04-24: Galois cohomology	38

26 2015-04-24:	Galois	cohomolog	y
----------------	--------	-----------	---

27	2015-04-27:	Galois homology	39
28	2015-05-06:	Brauer groups	40
29	2015-05-08:	Brauer groups of local fields	40

1 2015-01-21: Introduction

References:

- Milne's notes on class field theory
- Lang, Algebraic Number Theory
- Neukirch, Algebraic Number Theory (very abstract)

Let k be a global field. Let K/k be a Galois extension of degree n with Galois group G. Let $\mathfrak{f} = d_{K/k}$ be the relative discriminant. Let \mathfrak{p} be a prime ideal of \mathcal{O}_k . We can factor $\mathfrak{p}\mathcal{O}_K = (P_1 \cdots P_g)^e$, where efg = n; e is the ramification index, and $f = [\mathcal{O}_K/P_i : \mathcal{O}_k/\mathfrak{p}]$ is the residue degree. We have $e = 1 \iff \mathfrak{p} \nmid \mathfrak{f}$, in which case we say \mathfrak{p} is unramified in K/k.

We have an Artin map $P_i \mapsto \operatorname{Frob}_{P_i} \in \operatorname{Gal}(K/k)$ such that $\operatorname{Frob}_{P_i}(x) \equiv x^{N\mathfrak{p}} \mod P_i$ for all $x \in \mathcal{O}_K - \mathfrak{p}_i$. Moreover, if $\sigma \in \operatorname{Gal}(K/k)$ such that $\sigma(P_i) = P_j$, then $\operatorname{Frob}_{P_i} = \sigma \operatorname{Frob}_{P_j} \sigma^{-1}$.

Special case: if $\operatorname{Gal}(K/k)$ is abelian, then $\operatorname{Frob}_{P_i} = \operatorname{Frob}_{P_j}$ depends only on \mathfrak{p} , so we denote it by $\operatorname{Frob}_{\mathfrak{p}}$.

Remark 1.1. From now on, we will deal only with abelian extensions unless otherwise specified.

Definition 1.2. Let $I(\mathfrak{f})$ denote the group of fractional ideals of \mathcal{O}_k that are prime to \mathfrak{f} . This is a free abelian group with respect to ideal multiplication.

The Artin map is thus a homomorphism $\mathfrak{p} \mapsto \operatorname{Frob}_{\mathfrak{p}} : I(\mathfrak{f}) \to G_{K/k}$.

Aside 1.3. Let $\mathcal{D}_{K/k}$ denote the relative different, defined by

$$\mathcal{D}_{K/k}^{-1} = \left\{ x \in K \mid \operatorname{tr}_{K/k}(xy) \in \mathcal{O}_k \; \forall y \in \mathcal{O}_K \right\}.$$

Note that $d_{K/k} = N_{K/k} \mathcal{D}_{K/k}$, and the trace map $\operatorname{tr}_{K/k}$ is a nondegenerate symmetric bilinear form.

Basic questions:

- (1) What is the image of the Artin map? In fact, it's surjective.
- (2) What is the kernel of the Artin map? Denote

$$\operatorname{Spl}_{K/k} = \{ \mathfrak{p} \in I(\mathfrak{f}) \mid \operatorname{Frob}_{\mathfrak{p}} = 1 \} = \{ \mathfrak{p} \mid \mathfrak{p} \text{ splits completely in } K \}$$

Amazing fact: $\text{Spl}_{K/k}$ determines K uniquely! More precisely, if $\text{Spl}_{K/k} = \text{Spl}_{L/k}$, then $K \cong L$ as k-algebras.

- (3) For which subgroups N of finite index in $I(\mathfrak{f})$ is $I(\mathfrak{f})/N \cong \operatorname{Gal}(K/k)$ for some abelian extension K of k? (In other words, which subgroups of $I(\mathfrak{f})$ can be kernels of an Artin map?)
- (4) How can we construct the maximal abelian extension k^{ab}/k ? This is wide open even for real quadratic fields.

1.1 Quadratic reciprocity

Let $k = \mathbb{Q}$ and $K = \mathbb{Q}(\sqrt{d})$, where $d \in \mathbb{Z}$ such that $d \equiv 0, 1 \pmod{4}$. Then $\mathcal{O}_K = \mathbb{Z}\left[\frac{d+\sqrt{d}}{2}\right]$ and $\mathfrak{f} = d\mathbb{Z} = d$. Write $\operatorname{Gal}(K/k) = \{1, \sigma\}$. The split primes are

$$\operatorname{Spl}_{K/k} = \left\{ p \text{ prime } \mid x^2 \equiv d \pmod{p} \text{ has } 2 \text{ solutions} \right\}.$$

Example 1.4. Does p = 163 split in $\mathbb{Q}(\sqrt{-3})$? It's not immediately clear how to efficiently determine whether $x^2 \equiv -3 \pmod{163}$ has two solutions.

Gauss solved this by proving the quadratic reciprocity law. Define the Legendre symbol

$$\begin{pmatrix} a \\ p \end{pmatrix} = \begin{cases} 0 & \text{if } a \mid p, \\ 1 & \text{if } x^2 \equiv a \pmod{p} \text{ has two solutions,} \\ -1 & \text{if } x^2 \equiv a \pmod{p} \text{ has no solutions.} \end{cases}$$

Theorem 1.5 (Quadratic reciprocity). Let p and q be distinct odd primes. Then

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}, \qquad \left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}, \qquad \left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) \cdot (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

Corollary 1.6. Whether $p \in \operatorname{Spl}_{K/\mathbb{Q}}$ depends only on the class of $p \mod d$. In fact, $p \in \operatorname{Spl}_{K/k} \iff \left(\frac{p}{|d|}\right) = 1$.

Moreover, the kernel of the Artin map consists of all ideals $a\mathbb{Z}$ with $a = \prod_i p_i^{e_i} \cdot \prod_j q_j^{f_j}$, where the p_i are split, q_j are inert, and $\sum_j f_j$ is even.

1.2 Cyclotomic fields

Let $K = \mathbb{Q}(\zeta_N)$, where N is odd or $4 \mid N$. Then $d_{K/\mathbb{Q}} = N\mathbb{Z}$, and we have an isomorphism $a \mapsto \sigma_a : (\mathbb{Z}/N)^{\times} \xrightarrow{\simeq} G$, where $\sigma_a(\zeta_N) = \zeta_N^a$.

What does the composition with the Artin map $I(N\mathbb{Z}) \to \operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/N)^{\times}$ look like? We have $\operatorname{Frob}_p = \sigma_p$, so $\operatorname{Spl}_{K/k} = \{p \mid p \equiv 1 \mod N\}$. Hence, the kernel of the Artin map is $\{\alpha\mathbb{Z} \mid \alpha \equiv 1 \mod N\}$.

Theorem 1.7 (Weber). Every abelian extension of \mathbb{Q} is contained in some cyclotomic field $\mathbb{Q}(\zeta_N)$, i.e., $\mathbb{Q}^{ab} = \mathbb{Q}(\zeta_{\infty}) := \bigcup_N \mathbb{Q}(\zeta_N)$.

Exercise 1.8. Let $(-1)^* = -4$, $2^* = 8$, and $p^* = (-1)^{\frac{p-1}{2}}p$ if p is odd. For which N do we have $\mathbb{Q}(\sqrt{p^*}) \subseteq \mathbb{Q}(\zeta_N)$?

2 2015-01-23: Class fields and reciprocity

Let K/k be an abelian Galois extension with Galois group G of order n, and let $\mathfrak{f} = d_{K/k}$. We want to study the Artin map $I(\mathfrak{f}) \twoheadrightarrow G_{K/k}$. What is the kernel?

Given an ideal $\mathfrak{m} \subset \mathcal{O}_k$ and a subgroup \mathcal{K} of $I(\mathfrak{m})$ of finite index, is there an abelian field extension K of k such that the Artin map induces an isomorphism $I(\mathfrak{m})/\mathcal{K} \xrightarrow{\simeq} G_{K/k}$? If so, how many (up to k-isomorphism)?

2.1 Hilbert class fields

Recall the class group $\operatorname{Cl}(k) = I(\mathcal{O}_k)/P_k$, where P_k is the subgroup of all principal ideals.

Theorem 2.1 (Hilbert class field theorem). There is a unique (up to k-isomorphism) abelian extension H of k, called the Hilbert class field of k, such that $\operatorname{Art} : \operatorname{Cl}(k) \xrightarrow{\simeq} G_{H/k}$ is an isomorphism.

Corollary 2.2. (1) Every prime ideal of k is unramified in H.

- (2) The primes that split in H/k are exactly the principal prime ideals of k.
- (3) H is the maximal abelian extension of k such that every prime ideal of k is unramified.

Remark 2.3. H may not be the maximal extension of k such that every prime ideal of k is unramified. For example, H might not have trivial class group, so we can take its class group and get a nonabelian unramified extension of k. By the Golod–Shafarevich theorem, iterating the class field construction can sometimes even result in an infinite tower.

Example 2.4. Let $k = \mathbb{Q}(\sqrt{d})$, where $d = p_1^* p_2^* \cdots p_r^*$, where $2^* = 8$, $(-1)^* = -4$, $p^* = p$ for $p \equiv 1 \pmod{4}$, and $p^* = -p$ for $p \equiv -1 \pmod{4}$. Then $K = \mathbb{Q}(\sqrt{p_1^*}, \sqrt{p_2^*}, \dots, \sqrt{p_r^*})$ is unramified over k, so $K \subset H := \operatorname{Hil}(k)$, giving a surjection $\operatorname{Gal}(H/k) \twoheadrightarrow \operatorname{Gal}(K/k) \cong (\mathbb{Z}/2)^{r-1}$. This was studied by Gauss as genus theory.

2.2 Ray class fields

Given a number field k, we have real embeddings $\sigma : k \hookrightarrow \mathbb{R}$ and conjugate pairs of complex embeddings $\sigma, \overline{\sigma} : k \hookrightarrow \mathbb{C}$, which we think of as "primes at infinity". If σ is such an infinite prime, then we get a completion $k \hookrightarrow k_{\sigma}$, where k_{σ} is the usual completion of k with respect to the topology $|x|_{\sigma} = |\sigma(x)|$. (Similarly, if \mathfrak{p} is a finite prime, we get a completion $k \hookrightarrow k_{\mathfrak{p}}$, the \mathfrak{p} -adic completion of k.)

A cycle of k is a formal product $\mathfrak{m} = \mathfrak{p}_1^{e_1}\mathfrak{p}_2^{e_2}\cdots\mathfrak{p}_r^{e_r}\sigma_1^{\varepsilon_1}\sigma_2^{\varepsilon_2}\cdots\sigma_s^{\varepsilon_s} = \mathfrak{m}_f\mathfrak{m}_{\infty}$, where the σ_i are real primes, $e_i \geq 0$, and $\varepsilon_1 \in \{0, 1\}$. We denote

 $I(\mathfrak{m}) = \{ \text{fractional ideals of } k \text{ prime to } \mathfrak{m} \} = \{ \text{fractions ideals of } k \text{ prime to } \mathfrak{m}_f \},\$ $P(\mathfrak{m}) = \{ \alpha \mathcal{O}_k \mid \alpha \equiv 1 \pmod^* \mathfrak{m}, \alpha \text{ prime to } \mathfrak{m}_f \},\$

where $\alpha \equiv 1 \pmod{\mathfrak{m}}$ means $\alpha \equiv 1 \pmod{\mathfrak{m}}$ for all i and $\sigma_j(\alpha) > 0$ when $\varepsilon_j = 1$. Fact 2.5. $|I(\mathfrak{m})/P(\mathfrak{m})| < \infty$. **Theorem 2.6.** There is a unique abelian field extension $H_{\mathfrak{m}}$ of k such that $\operatorname{Art} : I(\mathfrak{m})/P(\mathfrak{m}) \xrightarrow{\simeq} \operatorname{Gal}(H_{\mathfrak{m}}/k)$. Again,

$$\operatorname{Spl}_{H_{\mathfrak{m}}/k} = \left\{ \alpha \mathcal{O}_k \mid \alpha \equiv 1 \pmod{\mathfrak{m}}, \ \forall \mathcal{O}_k \ prime \right\}.$$

Example 2.7. (1) Let $k = \mathbb{Q}$ and $\mathfrak{m} = N \cdot \infty$. Then

$$\frac{I(\mathfrak{m})}{P(\mathfrak{m})} = \frac{\{n\mathbb{Z} \mid (n, N) = 1\}}{\{n\mathbb{Z} \mid n > 0, \ n \equiv 1 \pmod{N}\}} \cong (\mathbb{Z}/N)^{\times}.$$

Thus, $H_{\mathfrak{m}} = \mathbb{Q}(\zeta_N)$.

(2) Let $\mathfrak{m} = N$. Then $I(\mathfrak{m})/P(\mathfrak{m}) = (\mathbb{Z}/N)^{\times}/\{\pm 1\}$, so $H_{\mathfrak{m}} = \mathbb{Q}(\zeta_N)^+ = \mathbb{Q}(\zeta_N + \zeta_N^{-1})$.

2.3 Reciprocity law

Theorem 2.8 (Reciprocity law of class field theory). Let L/K be a finite abelian extension of global fields, and let S be the set of primes of K ramified in L. Then there is a cycle \mathfrak{m} (the modulus) in which the primes are exactly S, and a surjective map $\operatorname{Art}_{L/K} : I(\mathfrak{m}) \to \operatorname{Gal}(L/K)$ such that:

- (1) $\operatorname{ker}(\operatorname{Art}_{L/K}) \supseteq P(\mathfrak{m}), \ i.e., \ L \subset H_{\mathfrak{m}};$
- (2) ker(Art_{L/K}) = { $N_{L/K}\mathcal{A} \mid \mathcal{A} \text{ is a fractional ideal of } L \text{ prime to } \mathfrak{m}_f \mathcal{O}_L$ }.

Moreover, given a cycle \mathfrak{m} and a subgroup $P(\mathfrak{m}) \subset \mathcal{K} \subset I(\mathfrak{m})$, there is a unique finite abelian extension L of K giving an isomorphism $\operatorname{Art}_{L/K} : I(\mathfrak{m})/\mathcal{K} \xrightarrow{\simeq} \operatorname{Gal}(L/K)$.

Corollary 2.9 (Kronecker–Weber theory). Every finite abelian extension of \mathbb{Q} is contained in $\mathbb{Q}(\zeta_N)$ for some N.

Question: How do we construct all $H_{\mathfrak{m}}$? Note that $K^{ab} = \bigcup_{\mathfrak{m}} H_{\mathfrak{m}}$.

3 2015-01-26: Local class field theory

Last time, we defined the ray class field $H_{\mathfrak{m}}$ of K. Moreover:

$$\operatorname{ker}(\operatorname{Art}_{L/K}) = \left\{ N_{L/K} \mathfrak{a} \mid \mathfrak{a} \subset L \right\} \cdot P(\mathfrak{m}),$$

$$\operatorname{Spl}_{L/K} = \left\{ N_{L/K} P \mid P \subset \mathcal{O}_L \text{ prime} \right\},$$

$$P(\mathfrak{m}) = \left\{ \alpha \mathcal{O}_K \mid \alpha \equiv 1 \mod \mathfrak{m} \right\}.$$

Note 3.1. We consider the extension \mathbb{C}/\mathbb{R} to be ramified.

3.1 Local fields

Definition 3.2. A *local field* is a locally compact topological field with respect to a nontrivial valuation $|\cdot|: K \to \mathbb{R}_{\geq 0}$ such that |1| = 1, $|ab| = |a| \cdot |b|$, and $|a + b| \leq |a| + |b|$.

Proposition 3.3. Every local field is one of the following:

- (1) \mathbb{R} or \mathbb{C} (archimedean);
- (2) a finite extension of \mathbb{Q}_p , which is a completion of a number field;
- (3) a finite extension of $\mathbb{F}_{p}((x))$, which is a completion of a global function field.

Hence, every local field arises from the following construction: Let K be a global field, let \mathfrak{p} be a (finite or infinite) prime of K, and define $v_{\mathfrak{p}}(x) = a$ if $x\mathcal{O}_K = \mathfrak{p}^a \cdot \mathfrak{m}$ with $(\mathfrak{m}, \mathfrak{p}) = 1$. Then $|x|_{\mathfrak{p}} = q^{-v_{\mathfrak{p}}(x)}$ makes K into a valued field whose completion is a local field $K_{\mathfrak{p}}$.

Theorem 3.4. Let K be a nonarchimedean local field. For any $n \ge 1$, there is a unique (up to K-isomorphism) unramified extension K_n of degree n. The maximal unramified extension of K is

$$K^{un} = \bigcup_{n \ge 1} K_n = \bigcup_{p \nmid N} K(\mu_N),$$

where $\mu_N = \langle \zeta_N \rangle$ is the group of N-th roots of unity in K. Moreover, denote the maximal ideal of \mathcal{O}_K by $\mathfrak{m}_K = \pi \mathcal{O}_K$ (where π is a uniformizer of K, i.e., a prime element of \mathcal{O}_K), and write $k := \mathcal{O}_K/\mathfrak{m}_K \cong \mathbb{F}_q$. Then we have an isomorphism

$$\operatorname{Gal}(K^{un}/K) \xrightarrow{\simeq} \operatorname{Gal}(\overline{k}/k) \cong \operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) = \langle \operatorname{Frob}_q \rangle^{top},$$

under which the topological generator $\operatorname{Frob}_q \in \operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ corresponds to Frob_K .

Remark 3.5. Hence, every unramified extension of a nonarchimedean local field is abelian!

3.2 Local reciprocity law

Theorem 3.6 (Local reciprocity). Let K be a nonarchimedean local field. There is a group homomorphism, the local Artin map $\varphi_K : K^{\times} \to \operatorname{Gal}(K^{ab}/K)$ such that:

(1) For any unramified finite extension L/K and any uniformizer π of K,

$$\varphi_K(\pi)|_L = \operatorname{Frob}_{L/K} = \operatorname{Frob}_K$$

(2) For any finite abelian extension L/K, $N_{L/K}L^{\times} \subset \ker(\varphi_K)$, and φ_K induces an isomorphism

 $\varphi_{L/K}: K^{\times}/N_{L/K}L^{\times} \xrightarrow{\simeq} \operatorname{Gal}(L/K).$

In particular, we have a commutative diagram

$$\begin{array}{ccc} K^{\times} & \xrightarrow{\varphi_{K}} & \operatorname{Gal}(K^{ab}/K) \\ & & \downarrow \\ & & \downarrow \\ K^{\times}/N_{L/K}L^{\times} & \xrightarrow{\simeq} & \operatorname{Gal}(L/K). \end{array}$$

Remark 3.7. However, for topological reasons, φ_K itself is not surjective.

Theorem 3.8 (Existence theorem). Let $N \leq K^{\times}$ be a subgroup. Then the following are equivalent:

- (1) There exists a finite abelian extension L/K such that $N_{L/K}L^{\times} = N$.
- (2) $[K^{\times}:N] < \infty$ and N is open in K^{\times} .

Remark 3.9. If char K = 0, then $[K^{\times} : N] < \infty$ implies N is open in K^{\times} . If char K > 0, then the openness condition is an honest condition: there are non-open subgroups of finite index in K^{\times} .

Corollary 3.10. Let K be a nonarchimedean local field with residue field k. If char K = 0 and char $k \neq 2$, then K has exactly 3 quadratic field extensions (up to isomorphism).

Proof. By the existence theorem, quadratic field extensions of K correspond to subgroups $N \leq K^{\times}$ such that $[K^{\times} : N] = 2$. Fix a uniformizer π ; then $K^{\times} = \pi^{\mathbb{Z}} \cdot \mathcal{O}_{K}^{\times}$, so

$$K^{\times}/(K^{\times})^2 \cong \langle \pi \rangle / \langle \pi^2 \rangle \times \mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^2 \cong (\mathbb{Z}/2) \times \mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^2.$$

Note that $\mathcal{O}_K^{\times} \cong (\mathcal{O}_K/\mathfrak{m}_K)^{\times} \cdot (1 + \pi \mathcal{O}_K)$, so $\mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^2 \cong (\mathbb{F}_q^{\times})/(\mathbb{F}_q^{\times})^2 \cong \mathbb{Z}/2$. Thus, $K^{\times}/(K^{\times})^2 \cong (\mathbb{Z}/2) \times (\mathbb{Z}/2)$, and quadratic field extensions of K correspond to elements of order 2 in this group; there are three of these.

4 2015-01-28: Existence and Lubin–Tate fields

Exercise 4.1. (1) Let K be a nonarchimedean field. Then $1 \to 1 + \mathfrak{m}_K \to \mathcal{O}_K^{\times} \to (\mathcal{O}_K/\mathfrak{m}_K)^{\times} \to 1$ is exact. Is it split?

(2) When is $K^{\times}/(K^{\times})^2$ trivial in characteristic 2?

A residue character of K is a character of the residue field $\mathcal{O}_K/\mathfrak{m}_K$. Let us state the existence theorem more precisely:

Theorem 4.2. Finite abelian extensions of K correspond to open subgroups of K^{\times} of finite index, via $L \mapsto N_{L/K}L^{\times}$, which is bijective. Moreover, if $L_1 \subset L_2$, then $N_{L_1/K}L_1^{\times} \supset N_{L_2/K}L_2^{\times}$, $N(L_1^{\times} \cap L_2^{\times}) = N_{L_1/K}L_1^{\times} \cdot N_{L_2/K}L_2^{\times}$, and $N(L_1L_2) = N_{L_1/K}L_1^{\times} \cap N_{L_2/K}L_2^{\times}$.

Here are two towers of abelian extensions. Note that $K^{\times} = \pi^{\mathbb{Z}} \mathcal{O}_{K}^{\times} = \pi^{\mathbb{Z}} (\mathcal{O}_{K}/\mathfrak{m}_{K})^{\times} \cdot (1 + \mathfrak{m}_{K})$. The first tower is $K^{un} = \bigcup_{n \geq 1} K_{n}^{un}$, where K_{n}^{un} is the unique unramified extension of K of degree n. This is associated to $(\pi^{n})^{K} \times \mathcal{O}_{K}^{\times}$. Hence, K^{un} corresponds to \mathcal{O}_{K}^{\times} ; more precisely, $\ker(\varphi_{K})|_{K^{un}} = \mathcal{O}_{K}^{\times}$.

Corollary 4.3. $\varphi_K|_{K^{un}} : K^{\times} \to \operatorname{Gal}(K^{un}/K)$ has kernel \mathcal{O}_K^{\times} ; this map is given by $\pi \mapsto \operatorname{Frob}_K$.

The second tower depends on the choice of uniformizer π , and corresponds to the subgroup $\pi^{\mathbb{Z}}(1 + \mathfrak{m}_{K}^{n}) < K^{\times}$, which is an open finite index subgroup of K^{\times} . Class field theory gives a unique field extension $K_{\pi,n}$ of K such that $\operatorname{Gal}(K_{\pi,n}/K) \cong K^{\times}/\pi^{\mathbb{Z}}(1 + \mathfrak{m}_{K}^{n})$. Since $\pi^{\mathbb{Z}}(1 + \mathfrak{m}_{K}^{n}) = N_{K_{\pi,n}}K_{\pi,n}^{\times}$, there exists a uniformizer π_{n} of $K_{\pi,n}$ such that $N_{K_{\pi,n}}\pi_{n} = \pi$, so $\pi\mathcal{O}_{K} = \pi_{n}^{n}\mathcal{O}_{K_{\pi,n}}$.

Corollary 4.4. The above construction gives a tower $K_{\pi,0} \subset K_{\pi,1} \subset K_{\pi,2} \subset \ldots$ of totally ramified abelian extensions of K. Their union $K_{\pi} := \bigcup_n K_{\pi,n}$ corresponds to $\pi^{\mathbb{Z}}$ and is a maximal totally ramified abelian extension.

Remark 4.5. If $u \in \mathcal{O}_K^{\times}$, then K_{π} might not be the same as $K_{\pi u}$. Our eventual theorem will be that $K^{ab} = K_{\pi} K^{un}$.

We have a commutative diagram with exact rows

However, φ_K is surjective but not injective. One thing to do is to take a limit and get $1 \to \mathcal{O}_K^{\times} \to \widehat{K} \to \widehat{Z} \to 0$. The second way is via Langlands idea.

The weight group is the inverse image of the discrete group generated by the Frob_q , i.e., $W_K = I_K \operatorname{Frob}_K^{\mathbb{Z}}$. Put a topology so that $I_K < W_K^{ab}$ is open. Now, the one-dimensional characters of W_K are $\operatorname{Hom}(W_K^{ab}, \mathbb{C}) \cong \operatorname{Hom}(K^{\times}, \mathbb{C}^{\times}) = \operatorname{Hom}(\operatorname{GL}_1(K), \operatorname{GL}_1(\mathbb{C})).$

5 2015-01-30: Lubin–Tate theory

The local reciprocity law gives us a morphism $\varphi_K : K^{\times} \to \operatorname{Gal}(K^{ab}/K)$ such that:

- (1) $\varphi_K^{(\pi)}|_{K^{un}} = \operatorname{Frob}_K$
- (2) If L/K is a finite abelian extension, then $\varphi_{L/K} : K^{\times} \to \operatorname{Gal}(L/K)$ is surjective, and $\ker \varphi_{L/K} = N_{L/K}L^{\times}$.

Our goal for today: For a uniformizer π of K, construct its associated maximal totally ramified abelian extension $K_{\pi} = \bigcup_{n>1} K_{\pi,n}$ such that:

- (1) $K_{\pi,n} \subset K_{\pi,n+1}$
- (2) $K_{\pi,n}/K$ is totally ramified of degree $[K_{\pi,n}:K] = q^{n-1}(q-1)$, where $q = |\mathcal{O}_K/\mathfrak{m}_K|$.

5.1 Lubin–Tate formal group laws

Let A be a commutative ring, and let A[[T]] be the ring of formal power series over A. Given $f \in A[[T]]$ and $g \in TA[[T]]$, the composition $f \circ g$ is well-defined. If $g, h \in TA[[T]]$, then $f \circ (g \circ h) = (f \circ g) \circ h$. However, $f \circ (g + h) \neq f \circ g + f \circ h$.

Lemma 5.1. Let $f = \sum_{i=1}^{\infty} a_i T^i \in TA[[T]]$. Then $a_1 \in A^{\times} \iff$ there exists $g \in TA[[T]]$ such that $f \circ g = T$. In this case, g is unique and $g \circ f = T$.

Definition 5.2. A one-parameter formal group law over A is a power series $F(X, Y) \in A[[X, Y]]$ such that:

- (1) $F(X,Y) = X + Y + (\text{terms of degree} \ge 2).$
- (2) F(F(X,Y),Z) = F(X,F(Y,Z)).
- (3) F(X,Y) = F(Y,X).

Proposition 5.3. (1) F(X, 0) = X and F(0, Y) = Y.

(2) There exists $i_F(X) \in XA[X]$ such that $F(X, i_F(X)) = 0$.

Proof. (1) Let $f(X) = F(X, 0) = X + (\text{terms of degree} \ge 2)$. By associativity,

$$f(f(X)) = F(F(X,0),0) = F(X,F(0,0)) = F(X,0) = f(x).$$

Since $f(X) \in XA[X]$, there exists $g \in XA[X]$ such that $f \circ g = X$. Hence,

$$f = f \circ (f \circ g) = (f \circ f) \circ g = f \circ g = X.$$

(2) Suppose $G(X) = \sum_{n \ge 1} b_n X^n$ satisfies F(X, G(X)) = 0. Then

$$X + G(X) + \sum_{i+j=2} a_{ij} X^i G(X)^j = 0.$$

So $b_1 = -1$. Proceeding inductively, we can construct $i_F(X)$.

Remark 5.4. For any formal group law F, we have $F(X,Y) = X + Y + XYF_1(X,Y)$ for some power series $F_1(X,Y)$.

Remark 5.5. If F is a formal group law over \mathcal{O}_K , for any finite extension L/K, we can define a new addition on \mathfrak{m}_L by $a +_F b = F(a, b)$. This makes $(\mathfrak{m}_L, +_F)$ into an abelian group.

Example 5.6. The power series F = X + Y is a formal group, called the *additive formal group*. It satisfies $(\mathfrak{m}_K, +_F) = (\mathfrak{m}_K, +)$.

Example 5.7. The power series F = X + Y + XY = (1+X)(1+Y) - 1 is a formal group, called the *multiplicative formal group*. There is an isomorphism $a \mapsto 1 + a : (\mathfrak{m}_K, +_F) \cong (1 + \mathfrak{m}, \cdot)$. Example 5.8. There is a formal group law associated to an elliptic curve

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

We want to understand the local behavior near $0 = \infty$. Note that $\frac{y}{x}$ is a uniformizer at 0. Write $x = \sum_{i \ge -2} c_i t^i$ and $y = \sum_{i \ge -3} b_i t^i$. Given $P_1 = (x(t_1), y(t_1))$ and $P_2 = (x(t_2), y(t_2))$, we can write $P_1 + P_2 = \hat{E}(t_1, t_2)$ for some formal power series \hat{E} . The abelian group axioms for E imply the corresponding axioms for \hat{E} , which is therefore a formal group law.

6 2015-02-02: Formal groups

6.1 Morphisms of formal groups

Let F and G be formal groups over A. A morphism of formal groups $f \in \text{Hom}(F,G)$ is a power series $f \in TA[[T]]$ such that f(F(X,Y)) = G(f(X), f(Y)). Fix a formal group F. For $f, g \in TA[[T]]$, define $f +_F g = F(f(X), g(X)) \in XA[[X]]$.

Lemma 6.1. (1) $(TA[[T]], +_F)$ is an additive group.

- (2) $(\operatorname{Hom}(F,G),+_G)$ is a subgroup of $(TA[[T]],+_G)$.
- (3) $(\operatorname{End}(F), +_F, \circ)$ is a ring.

6.2 Lubin–Tate formal group laws

Let K be a nonarchimedean local field with ring of integers \mathcal{O}_K and maximal ideal $\mathfrak{m}_K = \pi \mathcal{O}_K$. Let $q = |\mathcal{O}_K/\mathfrak{m}_K|$. Define

$$\mathcal{F}_{\pi} = \left\{ f \in \mathcal{O}_K[[T]] \mid f(T) = \pi T + (\deg \ge 2), \ f(T) \equiv T^q \pmod{\pi} \right\}.$$

Example 6.2. $f(X) = \pi X + X^q \in \mathcal{F}_{\pi}$.

Example 6.3. Let $K = \mathbb{Q}$. Then $f(x) = (1+x)^p - 1 = px + {p \choose 2}x^2 + \dots + x^p \in \mathcal{F}_p$.

- **Theorem 6.4** (Main theorem). (1) For each $f \in \mathcal{F}_{\pi}$, there is a unique formal group law F_f such that $f \in \text{End}(F_f)$.
 - (2) F_f is an \mathcal{O}_K -module, i.e., the map $a \mapsto [a]_f : \mathcal{O}_K \to \text{End}(F_f)$ is a ring morphism.
 - (3) For $f, g \in \mathcal{F}_{\pi}$, $\operatorname{Hom}(F_f, F_g)$ is also an \mathcal{O}_K -module via a map $a \mapsto [a]_{g,f} : \mathcal{O}_K \to \operatorname{Hom}(F_f, F_g)$ such that $[a]_{g,f}$ is an isomorphism $\iff a \in \mathcal{O}_K^{\times}$. In particular, any two F_f, F_g are isomorphic.

Lemma 6.5 (Basic lemma). Given $f, g \in \mathcal{F}_{\pi}$ and a linear form $\phi_1 = \sum_{i=1}^n a_i X_i$ with $a_i \in \mathcal{O}_K$, there is a unique $\phi \in \mathcal{O}_K[[X_1, X_2, \dots, X_n]]$ such that:

- (1) $\phi = \phi_1 + (\deg \ge 2).$
- (2) $f(\phi(X_1, ..., X_n)) = \phi(g(X_1), ..., g(X_n)), i.e., f \circ \phi = \phi \circ g.$

This lemma implies the theorem. Indeed, take $\phi_1 = X + Y$ and g = f. Then there is a power series $F_f \in \mathcal{O}_K[[X, Y]]$ such that $F_f(X, Y) = X + Y + (\deg \ge 2)$ and $f \circ F_f = F_f \circ f$. By uniqueness and the fact that ϕ_1 is symmetric, $F_f(Y, X) = F_f(X, Y)$. Now we need to check $F_f(F_f(X, Y), Z) = F_f(X, F_f(Y, Z))$. Look at $\phi_1 = X + Y + Z$, g = f, and check that both sides give ϕ in the lemma, e.g. for the left side,

$$F_f(F_f(X, Y, Z)) = F_f(X, Y) + Z + (\deg \ge 2) = X + Y + Z + (\deg \ge 2)$$

and

$$f(F_f(F_f(X,Y),Z)) = F_f(f(F_f(X,Y),Z)) = F_f(F_f(f(X,Y)),Z).$$

This proves part (1) of the theorem.

For part (3), given $f, g \in \mathcal{F}_{\pi}$ and $a \in \mathcal{O}_K$, take $\phi_1 = ax$ in the lemma. Then there is a unique $\phi = [a]_{g,f} \in \mathcal{O}_K[[X]]$ such that $\phi = aX + (\deg \ge 2)$ and $f(\phi(X)) = \phi(g(X))$.

We need to check that $F_f \circ \phi = \phi \circ F_g$. Take $\phi_1 = aX + aY$. Then $F_f(\phi(X), \phi(Y)) = \phi(X) + \phi(Y) + (\deg \ge 2) = aX + aY + (\deg \ge 2)$, so

$$f(F_f(\phi(X),\phi(Y))) = F_f(f \circ \phi(X), f \circ \phi(Y)) = F_f(\phi \circ g(X), \phi \circ g(Y)),$$

so ϕ satisfies the conditions of the lemma. Applying the same argument to $\phi \circ F_g$ proves $F_f \circ \phi = \phi \circ F_g$.

A similar approach using the basic lemma can be used to show $[a+b]_{g,f} = [a]_{g,f} + [b]_{g,f}$, $[a]_{g,f} \circ [b]_{h,g} = [ab]_{h,f}$, and $X = [1]_f = [aa^{-1}]_{f,f} = [a]_{g,f} \circ [a^{-1}]_{f,g}$.

7 2015-02-04: Construction of Lubin–Tate extensions

7.1 Summary of last time

Last time, we proved the following theorem:

- **Theorem 7.1** (Main theorem). (1) For each $f \in \mathcal{F}_{\pi}$, there is a unique formal group law F_f such that $f \in \text{End}(F_f)$.
 - (2) For $a \in \mathcal{O}_K$ and $f, g \in \mathcal{F}_{\pi}$, there is a unique $[a]_{g,f} \in \mathcal{O}_K[[X]]$ such that $[a]_{g,f} = ax + (\deg \geq 2)$ and $[a]_{g,f} \circ f = g \circ [a]_{g,f}$. Moreover, this gives an additive group homomorphism

$$(\mathcal{O}_K, +) \to (\operatorname{Hom}(F_f, F_g), +_{F_g}),$$

 $a \mapsto [a]_{g,f}.$

Moreover, $[a]_{h,g} \circ [b]_{g,f} = [ab]_{h,f}$, so $[a]_{g,f}$ is an isomorphism $\iff a \in \mathcal{O}_K^{\times}$. In particular, any two F_f, F_g are isomorphic.

(3) The map

$$(\mathcal{O}_K, +, \cdot) \to (\operatorname{End} E_f, +_{F_f}, \circ),$$

 $a \mapsto [a]_f = [a]_{f,f}$

is a ring homomorphism, making F_f into a formal \mathcal{O}_K -module.

Example 7.2. $[1]_f = T, [\pi]_f = f.$

Our proof was conditional on the following lemma:

Lemma 7.3 (Basic lemma). Let $f, g \in \mathcal{F}_{\pi}$, and let $\phi_1 = \sum_i a_i X_i$ be a linear form. There is a unique $\phi \in \mathcal{O}_K[[X_1, \ldots, X_n]]$ such that $\phi = \phi_1 + (\deg \ge 2)$ and $\phi \circ f = g \circ \phi$.

Example 7.4. $[a+b]_{g,f} = [a]_{g,f} +_{F_g} [b]_{g,f}$.

7.2 Proof of the "basic lemma"

Now let us prove the lemma. By induction, we'll prove that for $r \ge 1$, there is a unique polynomial ϕ_r of degree $\le r$ such that $\phi_r = \phi_1 + (\deg \ge 2)$ and $\phi_r(f(X)) = g(\phi_r(X)) + (\deg \ge r+1)$.

For r = 1, this is trivial with the original ϕ_1 . Suppose we have a unique such ϕ_r . Then $\phi_{r+1} = \phi_r + \psi$, where ψ is a homogeneous polynomial of degree r + 1 such that $\phi_{r+1} \circ f = g \circ \phi_{r+1} + (\deg \ge r+2)$. So

$$\phi_r \circ f + \psi \circ f = (\phi_r + \psi) \circ f = g \circ (\phi_r + \psi) + (\deg \ge r + 2).$$

Since f(X) and g(X) are both of the form $\pi X + (\deg \ge 2)$,

$$g(\phi_r(X) + \psi(X)) = g(\phi_r(X)) + \pi\psi(X) + (\deg \ge r+2)$$

and $\psi(f(X)) = \pi^{r+1}\psi(X) + (\deg \ge r+2)$. So we must solve

$$\phi_r(f(X)) + \pi^{r+1}\psi(X) = g(\phi_r(X)) + \pi\psi(X) + (\deg \ge r+2).$$

Hence,

$$\psi(X) = \frac{g(\phi_r(X)) - \phi_r(f(X))}{\pi(\pi^r - 1)} + (\deg \ge r + 2).$$

Note that $\pi^r - 1 \in \mathcal{O}_K^{\times}$. Since $g(\phi_r(X)) \equiv \phi_r(X)^q$ and $\phi_r(f(X)) \equiv \phi_r(X^q) \mod \pi$, we have $g(\phi_r(X)) - \phi_r(f(X)) \equiv \phi_r(X)^q - \phi_r(X^q) \equiv 0 \pmod{\pi}$, we can divide by π , giving us ϕ_{r+1} . Take $\phi = \lim_{r \to \infty} \phi_r = \phi_1 + \sum_{r=2}^{\infty} (\phi_r - \phi_{r-1}) \in \mathcal{O}_K[[X]]$.

7.3 Construction of "maximal" totally ramified abelian extension

We construct a totally ramified abelian extension K_{π} of K associated to a uniformizer π . Let \overline{K} be the algebraic closure of K. Let $x \mapsto |x| = q^{-\operatorname{ord}_{\pi} x} : K^{\times} \to \mathbb{R}_{>0}$ be the absolute value on K. The image of the absolute value is $q^{\mathbb{Z}}$.

The absolute value extends uniquely to an absolute value $|\cdot|: \overline{K}^{\times} \to \mathbb{R}_{>0}$ whose image is $q^{\mathbb{Q}}$. Define

$$\mathcal{O}_{\overline{K}} = \left\{ x \in \overline{K} : |x| \le 1 \right\},$$
$$\mathfrak{m}_{\overline{K}} = \left\{ x \in \overline{K} : |x| < 1 \right\}.$$

Then $\mathfrak{m}_{\overline{K}}$ is the maximal ideal of the local ring $\mathcal{O}_{\overline{K}}$.

A formal group $f \in \mathcal{F}_{\pi}$ gives us a formal group F_f , which yields an \mathcal{O}_K -module $\Lambda = \Lambda_f = (\mathfrak{m}_{\overline{K}}, +_{F_f})$. Since all the F_f are isomorphic, this is independent of f, so we'll choose $f = \pi X + X^q$ for convenience.

Definition 7.5. Define the *n*-torsion of $\Lambda = \Lambda_f$ by

$$\Lambda_n \stackrel{\text{def}}{=} \ker[\pi^n]_f = \ker[\pi]_f^n,$$

where we denote $f^{(1)} = f$ and $f^{(n)} = f \circ f^{(n-1)}$. Note that $[\pi]_f = f$ and $[\pi^n]_f = [\pi]_f \circ ... \circ [\pi]_f = f^{(n)}$.

Proposition 7.6. Λ_n is an \mathcal{O}_K -module give by $\Lambda_n = \{x \in \mathfrak{m}_{\overline{K}} : f^{(n)}(X) = 0\}.$

If we take $f = \pi X + X^q$, then $f^{(n)} \equiv X^{q^n} \pmod{\pi}$. The theory of Newton polygons tells us all roots of $f^{(n)}$ have absolute value < 1.

Theorem 7.7. $K_{\pi} = \bigcup_{n>1} K(\Lambda_n).$

We'll prove this next time.

8 2015-02-06: Maximal totally ramified abelian extensions

Exercise 8.1. Let K be a local field and L/K a finite unramified extension. Then $N_{L/K}\mathcal{O}_L^{\times} = \mathcal{O}_K^{\times}$.

Today, we construct a totally ramified extension of K associated to π such that $K^{ab} = K_{\pi}K^{un}$. In particular, we will show there exists a unique map $\varphi_K : K^{\times} \to \text{Gal}(K^{ab}/K)$ such that:

- (1) $\varphi_K^{(\pi)}|_{K^{un}} = \operatorname{Frob}_K$ for any uniformizer of K, and $\varphi_K(a)|_{K^{un}} = 1$ if $a \in \mathcal{O}_K^{\times}$.
- (2) If L/K is a finite abelian extension, then $\varphi_{L/K} = \varphi_K|_L : K^{\times} \twoheadrightarrow \text{Gal}(L/K)$ satisfies $\ker \varphi_{L/K} = N_{L/K}L^{\times}$.

Given a uniformizer π , we obtain \mathcal{F}_{π} , which gives an isomorphism class $F_{\pi} = \{F_f\}$ of formal \mathcal{O}_K -modules. Last time, we constructed from this a genuine \mathcal{O}_K -module $\Lambda = \Lambda_f = (\mathfrak{m}_{\overline{K}}, +_{F_f})$ with submodules

$$\Lambda_n = \ker([\pi^n]_f : \Lambda \to \Lambda) = \left\{ x \in \mathfrak{m}_{\overline{K}} : f^{(n)}(x) = 0 \right\}.$$

Lemma 8.2. If $f = \pi X + \dots + X^q$, then $\Lambda_n = \{x \in \overline{K} : f^{(n)}(x) = 0\}$.

This follows from the theory of Newton polygons: given $f(x) = a_0 + a_1 X + \cdots + a_n X^n$ with $a_i \in \mathcal{O}_K$, we construct the polygon with vertices $P_i = (i, \operatorname{ord}_{\pi} a_i)$. The Newton polygon of f is the convex hull of these points. Each segment $P_i P_j$ tells us there are j - i roots α of f with $\operatorname{ord}_{\pi} \alpha = -\operatorname{slope}(P_i P_j)$.

If $f = \pi X + \cdots + X^q$, then the Newton polygon of $\frac{f(X)}{X} = \pi + \cdots + X^{q-1}$ has only a single edge from (0, 1) to (q - 1, 0), so f has q - 1 roots $\alpha_1, \ldots, \alpha_{q-1}$ of order $\frac{1}{q-1}$. Hence, $K(\alpha_i)/K$ is totally ramified for each i.

Lemma 8.3. $\Lambda_n = \mathcal{O}_K/\pi^n$ as \mathcal{O}_K -modules. In particular, $\operatorname{Aut}_{\mathcal{O}_K}(\Lambda_n) \cong (\mathcal{O}_K/\pi^n)^{\times}$.

Proof. See Milne's notes.

Theorem 8.4. Let $K_{\pi,n} = K(\Lambda_n)$ and $K_{\pi} = \bigcup_{n>1} K_{\pi,n}$.

(1) $K_{\pi,n}/K$ is a totally ramified abelian extension of degree $(q-1)q^{n-1}$.

- (2) There are isomorphisms $\varphi_{\pi,n} : (\mathcal{O}_K/\pi^n)^{\times} \xrightarrow{\simeq} \operatorname{Aut}_{\mathcal{O}_K}(\Lambda_n) \xrightarrow{\simeq} \operatorname{Gal}(K_{\pi,n}/K)$ defined by $\varphi_{\pi,n}(a)(\lambda) = [a]_f(\lambda)$ for $\lambda \in \Lambda_n$.
- (3) $\pi \in N_{K_{\pi,n}/K}K_{\pi,n}^{\times}$.

Remark 8.5. The kernel of $\varphi_{\pi,n} : K^{\times} \to \operatorname{Gal}(K_{\pi,n}/K)$ is $\pi^{\mathbb{Z}} \times (1 + \pi^n \mathcal{O}_K)$. How do we know $\ker \varphi_{\pi,n} = N_{K_{\pi,n}/K} K_{\pi,n}^{\times}$? (Exercise: Prove this without class field theory.)

Let $f(X) = \pi X + \cdots + X^q$ as before. Choose a nonzero root π_1 such that $f(\pi_1) = 0$. Now choose π_2 such that $f(\pi_2) = \pi_1$. Continuing, choose π_n such that $f(\pi_n) = \pi_{n-1}$. Then we obtain a tower $K \subset K(\pi_1) \subset K(\pi_2) \subset \cdots \subset K(\pi_n)$ such that $[K(\pi_1) : K] = q - 1$ and $[K(\pi_{i+1}) : K(\pi_i)] = q$ for all $i \ge 1$. Moreover, $\pi_i \in \Lambda_n$, so $K(\pi_i) \subset K(\Lambda_i)$ for each i.

The Galois group $\operatorname{Gal}(K_{\pi,n}/K)$ acts on Λ_n and commutes with the \mathcal{O}_K -action, giving an embedding $\operatorname{Gal}(K_{\pi,n}/K) \hookrightarrow \operatorname{Aut}_{\mathcal{O}_K}(\Lambda_n) = (\mathcal{O}_K/\pi^n)^{\times}$. But $(\mathcal{O}_K/\pi^n)^{\times}$ has $(q-1)q^n$ elements, hence so does $\operatorname{Gal}(K_{\pi,n}/K)$. This proves $K_{\pi,n} = K(\Lambda_n) = K(\pi_n)$ for all n, proving (1) and (2) of the theorem.

For part (3), write $f^{[n]}(x) = \frac{f}{X} \circ f^{(n-1)}(X) = \pi + \dots + (f^{(n-1)}(X))^q = \pi + \dots + X^{(q-1)q^{n-1}}$. Then $f^{[n]}(\pi_n) = 0$, so by a degree argument, $f^{[n]}(x)$ is the minimal polynomial of π_n . Thus, $N_{K\pi,n/K}(\pi_n) = (-1)^{(q-1)q^{n-1}}\pi = \pi$ unless q is even and n = 1. In the latter case, consider instead $N_{K\pi,1/K}(-\pi_1)$.

For each π , we have constructed a totally ramified abelian extension $K_{\pi} = \bigcup_{n \ge 1} K_{\pi,n}$ and a map

$$\varphi_{\pi}: K^{\times} \to \operatorname{Gal}(K_{\pi}/K),$$
$$\pi \mapsto 1,$$
$$u \mapsto [u^{-1}]_{f} \quad \forall u \in \mathcal{O}_{K}^{\times}$$

From this, it is clear that $K_{\pi} \cap K^{un} = K$, and we can extend to a map $\varphi_{\pi} : K^{\times} \to \operatorname{Gal}(K_{\pi}K^{un}/K)$ such that $\varphi_{\pi}|_{K^{un}}$ is as before, and $\varphi_{\pi}|_{K_{\pi}}$ is what we just defined.

Here's what we still need to show:

- (1) $K_{\pi}K^{un} = K^{ab}$.
- (2) $\varphi = \varphi_{\pi}$ does not depend on π .
- (3) $\varphi|_L : K^{\times} \to \operatorname{Gal}(L/K)$ has kernel $N_{L/K}L^{\times}$.

9 2015-02-09: Local Kronecker–Weber

Note that the map φ_{π} mentioned last time factors as $K^{\times} \cong \pi^{\mathbb{Z}} \times \mathcal{O}_{K}^{\times} \twoheadrightarrow \mathcal{O}_{K}^{\times} \to \operatorname{Gal}(K_{\pi}K^{un}/K)$. Hence, for $a = \pi^{n} \cdot u$ with $u \in \mathcal{O}_{K}^{\times}$,

(1) $\varphi_{\pi}(a)|_{K^{un}} = (\operatorname{Frob}_K)^n;$

(2) $\varphi_{\pi}(a)|_{K_{\pi}} = \varphi_{K}(u)|_{K_{\pi}}$, where $\varphi_{K}(u)(\lambda) = [u^{-1}]_{f}(\lambda)$ for $\lambda \in \Lambda_{f} = \bigcup_{n \ge 1} \Lambda_{n}$.

Recall the statement of local class field theory: $\varphi_K : K^{\times} \to \operatorname{Gal}(K^{ab}/K)$ is a map such that:

- (1) $\varphi_K(a)|_{K^{un}} = (\operatorname{Frob}_K)^{\operatorname{ord}_{\pi} a}$.
- (2) For L/K finite abelian, $\varphi_{L/K} = \varphi_K|_L : K^{\times} \to \operatorname{Gal}(L/K)$ is surjective with ker $\varphi_{L/K} = N_{L/K}L^{\times}$.

Proposition 9.1. Neither $K_{\pi}K^{un}$ nor φ_{π} depends on the choice of π .

Proof. See Milne's notes. The idea is to show that, given $\varpi = \pi u$ with $u \in \mathcal{O}_K^{\times}$, for any $f \in \mathcal{F}_{\pi}$ and $g \in \mathcal{F}_{\varpi}$, there is an isomorphism $F_f \cong F_g$ of formal groups over $\mathcal{O}_{\widehat{K^{un}}}$.

Theorem 9.2 (Local Kronecker–Weber). $K^{ab} = K_{\pi}K^{un}$.

Example 9.3. $\mathbb{Q}_p^{ab} = \mathbb{Q}_p(\zeta_{p^{\infty}}) \cdot \mathbb{Q}_p(\zeta_n : (n, p) = 1).$

Caution 9.4. We don't have this sort of theorem for global fields, not even for finite abelian extensions.

Our proof of the theorem will proceed as follows:

- (I) If $K_{\pi} \subset L \subset K^{ab}$ with L/K_{π} totally ramified, then $L = K_{\pi}$.
- (II) If $K_{\pi} \subset L \subset K^{ab}$ with L/K_{π} unramified, then $L \subset K_{\pi}K^{un}$.
- (III) If $K_{\pi} \subset L \subset K^{ab}$ with L/K_{π} finite of degree m, then there is a totally ramified extension L_t of K_{π} such that $L \subset L_t K_m^{un} = L K_m^{un}$.

Granting these, if L/K is a finite abelian extension, then $LK_{\pi} \subset L_t K_m^{un} = LK_m^{un}$ for L_t/K_{π} totally ramified, so $L_t = K_{\pi}$. Thus, $L \subset LK_{\pi} \subset K_{\pi}K_m^{un} \subset K_{\pi}K^{un}$.

To see (II), suppose $L = K_{\pi}(\alpha)$. Descend to finite level: $L'/K_{\pi,m}$ with $L = K_{\pi}L'$ and $L' = K_{\pi,m}(\alpha)$. Then L'/K factors into L'/L''/K with L''/K unramified and L'/L'' totally ramified. Hence, $L' = K_{\pi,m}L''$, so $L = K_{\pi}L'' \subset K_{\pi}K^{un}$.

For (III), $\operatorname{Gal}(LK_m^{un}/K_{\pi}) \twoheadrightarrow \operatorname{Gal}(K_{\pi}K_m^{un}/K_{\pi}) = \operatorname{Gal}(K_m^{un}/K)$ corresponds to $\bigoplus \mathbb{Z}/m_i \twoheadrightarrow \mathbb{Z}/m$, where $m_i \mid m$. This map splits, i.e., $\operatorname{Gal}(LK_m^{un}/K_{\pi}) = \langle \tau \rangle \times H$. Take $L_t = (LK_m^{un})^{\langle \tau \rangle}$. Then $\operatorname{Gal}(LK_m^{un}/L_t) = \operatorname{Gal}(K_{\pi}K_m^{un}/K_{\pi}) = \langle \tau \rangle$.

For (I), see Milne's notes (Lemma 4.9) or the sections on higher ramification in Serre's *Local Fields*. We'll discuss this more next time.

10 2015-02-11: The global Artin map

Last time, we determined that we need the following lemma:

Lemma 10.1. If $K_{\pi} \subset L \subset K^{ab}$ with L/K_{π} totally ramified, then $L = K_{\pi}$, i.e., K_{π} is the maximal totally ramified abelian extension of K.

Using higher ramification groups with the upper numbering, $|G^n/G^{n+1}| \leq q = |\mathcal{O}_K/\mathfrak{m}_K|$. *Example* 10.2. Let $K = \mathbb{Q}_p$ and $\pi = p$. Choose $f(x) = (1+x)^p - 1 \in \mathcal{F}_p$. Then $f^{(n)}(x) = (1+x)^{p^n} - 1$, and

$$\Lambda_{f,n} = \left\{ x \in \mathfrak{m}_{\overline{\mathbb{Q}_p}} : f^{(n)}(x) = 0 \right\} = \left\{ x \in \overline{\mathbb{Q}_p} : (x+1)^{p^n} = 1 \right\},$$
$$(\mathbb{Q}_p)_{\pi,n} = \mathbb{Q}_p(\Lambda_{f,n}) = \mathbb{Q}_p(\mu_{p^n}).$$

Since $\mathbb{Q}_p^{un} = \bigcup_{p \nmid n} \mathbb{Q}_p(\mu_n)$, we obtain $\mathbb{Q}_p^{ab} = \mathbb{Q}_p(\mu_\infty) := \bigcup_{n \ge 1} \mathbb{Q}_p(\mu_n)$.

Theorem 10.3. Every finite abelian extension of \mathbb{Q}_p is contained in a local cyclotomic field $\mathbb{Q}_p(\mu_n)$ for some n.

10.1 Global Kronecker–Weber theorem

This has a global analogue:

Theorem 10.4 (Global Kronecker–Weber). Every finite abelian extension of \mathbb{Q} is contained in $\mathbb{Q}(\mu_n)$ for some n, i.e., $\mathbb{Q}^{ab} = \mathbb{Q}(\mu_\infty)$.

First, we prove a lemma.

Lemma 10.5. Let L/\mathbb{Q} be a finite Galois extension, let G = Gal(L/K), and let S be the set of prime ideals of L that are ramified in L/\mathbb{Q} , i.e., $S = \{\mathfrak{p} \in \text{Spec } \mathcal{O}_L : \mathfrak{p} \mid d_L\}$. For $\mathfrak{p} \in S$, let $I(\mathfrak{p})$ be its inertia group. Then $G = \langle I(\mathfrak{p}) : \mathfrak{p} \in S \rangle$.

Proof. Let $H = \langle I(\mathfrak{p}) : \mathfrak{p} \in S \rangle$. Let $M = L^H$. Then every prime ideal of M is unramified in M/\mathbb{Q} . But we know any prime dividing the discriminant d_M is ramified, hence $|d_M| = 1$, i.e., $M = \mathbb{Q}$.

Moving on to the *proof* of the theorem, let L/\mathbb{Q} be a finite abelian extension. Then $D_{\mathfrak{p}} = D_{\mathfrak{p}'}$ if $\mathfrak{p} \cap \mathbb{Q} = \mathfrak{p}' \cap \mathbb{Q}$. Since $G = \operatorname{Gal}(L/\mathbb{Q}) = \langle I(\mathfrak{p}) : \mathfrak{p} \mid d_L \rangle$, we have $L_{\mathfrak{p}} \subset \mathbb{Q}_p(\zeta_{p^{S_p}}, \zeta_n)$. Let $K = \mathbb{Q}(\zeta_{p^{S_p}} : p \mid d_L)$ and L' = KL. Our goal is to show L' = K, which implies

Let $K = \mathbb{Q}(\zeta_p s_p : p \mid a_L)$ and L = KL. Our goal is to show L = K, which implies $L \subset K$. First notice $L'_{pri'} \subset \mathbb{Q}(\zeta_p s_p, \zeta_n)$ if $\mathfrak{p}' \cap L = \mathfrak{p}$. So we can assume $L \supset K$ by replacing L with L'. It remains to show L = K.

Since $K \subset L$, we have $|G| = [L : \mathbb{Q}] \ge [K : \mathbb{Q}] = \prod_{p \mid d_L} \varphi(p^{S_p})$. On the other hand, $G = \langle I(p) : p \mid d_L \rangle$, so $G \le \prod_p |I(p)| \le \prod_p \varphi(p^{S_p})$. Thus, $|G| = \prod_p \varphi(p^{S_p})$ and L = K. \Box

10.2 Global Artin map

Let L/K be a finite abelian extension of global fields. There is a cycle \mathfrak{m} and a map

$$\varphi_{\mathfrak{m}} : I_{K}(\mathfrak{m}) \twoheadrightarrow \operatorname{Gal}(L/K),$$

$$\varphi_{\mathfrak{m}}(\mathfrak{p}) = (\operatorname{Frob}_{\mathfrak{p}})|_{L} = (\mathfrak{p}, L/K) = \left(\frac{L/K}{\mathfrak{p}}\right),$$

satisfying the following conditions:

- (1) $P_K(\mathfrak{m}) = \{ \alpha \mathcal{O}_K : \alpha \equiv 1 \pmod{\mathfrak{m}} \}.$
- (2) $\varphi_{\mathfrak{m}}$ is surjective.
- (3) ker $\varphi_{\mathfrak{m}} = P_K(\mathfrak{m}) \cdot N_{L/K} I_L(\mathfrak{m}).$

Example 10.6. Let us describe the reciprocity law for \mathbb{Q} . Given a finite abelian extension L/\mathbb{Q} , by Kronecker–Weber, $L \subset \mathbb{Q}(\zeta_m)$ for some m. (Note that $\mathbb{Q}(\zeta_m)$ is the ray class field of m.) Take

$$\varphi_m : I_{\mathbb{Q}}(m) \to \operatorname{Gal}(L/\mathbb{Q}),$$

 $p \mapsto \left(\frac{L/\mathbb{Q}}{p}\right).$

Let $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$. Take $\tau \in \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$ such that $\tau|_L = \sigma$. Then $\tau = \tau_a : \zeta_m \mapsto \zeta_m^a$ for some $a \in (\mathbb{Z}/m)^{\times}$. By Dirichlet, there are infinitely many primes p such that $p \equiv a \pmod{m}$. So

$$\varphi_m(p) = \left(\frac{\mathbb{Q}(\zeta_m)/\mathbb{Q}}{p}\right) = \tau_p = \tau_a.$$

11 2015-02-13: Higher ramification groups

Guest lecture by Vlad Matei. A reference for higher ramification group is [S, ch. IV].

Our goal for today is to prove that, if L/K_{π} is totally ramified, then $L = K_{\pi}$.

11.1 Lower ramification groups

Definition 11.1 (Lower ramification groups). Let K be a nonarchimedean local field and L/K a finite Galois extension. For $n \ge -1$, define

$$G_i = \left\{ \sigma \in G : \sigma(x) \equiv x \pmod{\pi_L^{n+1}} \ \forall x \in \mathcal{O}_L \right\}.$$

Note that $G_{-1} = G$ is the whole Galois group, $G_0 = I$ is the inertia group, and $G_n \supseteq G_{n+1}$ for all n. We can also characterize these as

$$G_n = \ker(G \to \operatorname{Aut}(\mathcal{O}_L/\pi^{n+1}\mathcal{O}_L)),$$

which makes it clear that G_n is a normal subgroup of G.

Proposition 11.2. With notation as above,

(1) $G_n = \{ \sigma \in G : v(\sigma(\pi_L) - \pi_L) > n \}.$

- (2) $\bigcap_n G_n = \{1\}.$
- (3) $G_0/G_1 \hookrightarrow k_L^{\times}$, and for $n \ge 1$, $G_n/G_{n+1} \cong (k_L, +)$, where k_L is the residue field of L.
- *Proof.* (1) Reduce to L/K totally ramified. Then $\mathcal{O}_L = \mathcal{O}_K[\pi_L]$ for π_L a uniformizer. If $\sigma(\pi_L) \equiv \pi_L \pmod{\pi_L^{n+1}}$, then it follows for polynomials in π_L .
 - (2) If $\sigma \neq 1$, then $\sigma(\pi_L) \neq \pi_L$, so $v(\sigma(\pi_L) \pi_L)$ is finite. Hence, $\sigma \notin G_n$ for sufficiently large n.

(3) See [S, IV.2.6].

What happens for $L = K_{\pi,m}$? We have an isomorphism $\mathcal{O}_K^{\times}/(1 + \mathfrak{m}^n) \xrightarrow{\simeq} G$ sending $(1 + \mathfrak{m}^i)/(1 + \mathfrak{m}^n)$ onto G_{q^i-1} .

11.2 Upper ramification groups

Define $\varphi(u) = \int_0^u \frac{dt}{(G_0:G_t)}$. This is continuous, piecewise linear, concave, strictly increasing, and satisfies $\varphi(0) = 0$ and $\varphi'(u) = \frac{1}{(G_0:G_u)}$ when φ is linear at u.

From the above, φ has an inverse map ψ , which is continuous, piecewise linear, convex, strictly increasing, and satisfies $\psi(0) = 0$ and $\psi'(u) = (G_0 : G_u)$ when ψ is linear at u. Moreover, if v is an integer, so is $\psi(v)$.

Definition 11.3 (Upper ramification groups). Define $G^v = G_{\psi(v)}$, so that $G^{\varphi(u)} = u$ for all $u \ge -1$.

Proposition 11.4 ([S, IV.3.14]). Let H be a normal subgroup of G. Then $(G/H)^v = G^v H/H$.

Note 11.5. For $K_{\pi,n}$, we have $G^k = G_{q^k-1}$ for all integers $k \ge 1$, where q is the cardinality of the residue field.

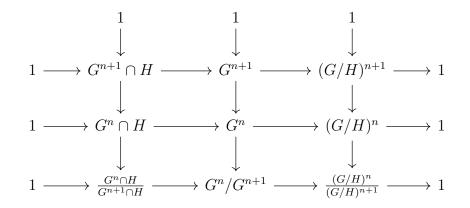
The upper ramification groups of K_{π} are limits of higher ramification groups for $K_{\pi,n}$.

A jump in the filtration of G by upper ramification groups is an index j such that $G^{j} \neq G^{j+\varepsilon}$ for every $\varepsilon > 0$.

Theorem 11.6 (Hasse–Arf). For G abelian, jumps are integers. (This can fail for G nonabelian.)

11.3 Main result

Let $G = \operatorname{Gal}(L/K)$ and $H = \operatorname{Gal}(L/K_{\pi})$, so $G/H = \operatorname{Gal}(K_{\pi}/K)$. We have an exact commutative diagram



Looking at cardinalities of the bottom row, we obtain the result.

12 2015-02-16: Global class field theory

12.1 Statement of global class field theory

Today, we begin our study of global class field theory. Let K be a global field (i.e., a finite extension of \mathbb{Q} or $\mathbb{F}_q(x)$). For a modulus \mathfrak{m} , recall that

$$I_K(\mathfrak{m}) = \{ \text{fractional ideals of } K \text{ prime to } \mathfrak{m} \},\$$

$$P_K(\mathfrak{m}) = \{ \alpha \mathcal{O}_K : \alpha \equiv 1 \pmod{\mathfrak{m}} \} \subset I_K(\mathfrak{m}),\$$

where $\alpha \equiv 1 \pmod{\mathfrak{m}}$ means that $\operatorname{ord}_p(\alpha - 1) \geq 1$ if $\mathfrak{p} \mid \mathfrak{m}_f$ and $\sigma(\alpha) > 0$ for all $\sigma : K \hookrightarrow \mathbb{R}$, $\sigma \in \mathfrak{m}_{\infty}$.

Theorem 12.1 (Global class field theory). Let L/K be a finite abelian extension. There exists a modulus $\mathfrak{m} = \mathfrak{m}_f \cdot \mathfrak{m}_{\infty}$ such that:

- (1) The Artin map $\varphi_{L,\mathfrak{m}} : I_K(\mathfrak{m}) \to \operatorname{Gal}(L/K)$ is surjective, and $\ker \varphi_{L,\mathfrak{m}} = P_K(\mathfrak{m}) \cdot N_{L/K} I_L(\mathfrak{m}).$
- (2) For every subgroup H of $I_K(\mathfrak{m})$ of finite index and containing $P_K(\mathfrak{m})$, there is a finite abelian extension L/K such that $H = P_K(\mathfrak{m}) \cdot N_{L/K}I_L(\mathfrak{m})$.

Fact 12.2. Suppose $\mathfrak{n} \subset \mathfrak{m}$. If the theorem works for \mathfrak{m} , then it also works for \mathfrak{n} . The biggest ideal \mathfrak{m} which works for L/K is called the *conductor* of L/K, denoted $\mathfrak{f}_{L/K}$.

12.2 Hecke characters and Hecke *L*-functions

Definition 12.3. A *Hecke character* of K of modulus \mathfrak{m} is a group homomorphism $\chi : I_K(\mathfrak{m}) \to \mathbb{C}^{\times}$ such that there is a continuous character

$$\chi_{\infty}: K_{\infty}^{\times} = \prod_{\sigma: K \hookrightarrow \mathbb{R}} K_{\sigma}^{\times} \times \prod_{\sigma, \overline{\sigma}: K \hookrightarrow \mathbb{C}} K_{\sigma}^{\times} \to \mathbb{C}^{\times}$$

satisfying $\chi(\alpha \mathcal{O}_K) = \chi_{\infty}(\alpha)^{-1}$ for $\alpha \mathcal{O}_K \in P_K(\mathfrak{m})$. (When we work with adeles later on, we will see the reason for the inverse here.)

If $\mathfrak{n} \subset \mathfrak{m}$, then any Hecke character of K of modulus \mathfrak{m} is also a Hecke character of modulus \mathfrak{n} . The biggest modulus for which χ is a Hecke character is called the *conductor* of χ , denoted f_{χ} . A Hecke character χ of modulus \mathfrak{m} is called *primitive* if $\mathfrak{m} = f_{\chi}$.

For a Hecke character χ , define the *Hecke L-function* for $\operatorname{Re} s \gg 0$ by

$$L(s,\chi) = \sum_{\substack{0 \neq \mathfrak{a} \triangleleft \mathcal{O}_K \\ (\mathfrak{a},\mathfrak{f}_{\chi})=1}} \frac{\chi(\mathfrak{a})}{(N\mathfrak{a})^s} = \prod_{\mathfrak{p} \nmid \mathfrak{f}_{\chi}} \left(1 - \chi(\mathfrak{p})(N\mathfrak{p})^{-s}\right)^{-1}.$$

Theorem 12.4 (Hecke). $L(s, \chi)$ has meromorphic continuation to the complex plane with at most a simple pole at s = 1, which happens exactly when χ is the trivial character. Moreover, there exists $N \in \mathbb{C}$ and a product of Γ -functions $L_{\infty}(s, \chi)$ such that the completed L-function $\Lambda(s, \chi) = N^{s/2}L_{\infty}(s, \chi)L(s, \chi)$ satisfies the functional equation

$$\Lambda(s,\chi) = w(\chi)\Lambda(1-s,\chi^{-1}),$$

where $w(\chi) \in \mathbb{C}$ is the root number of χ and satisfies $|w(\chi)| = 1$.

Example 12.5. Let $\chi = \mathbb{1}$ be the trivial character $\mathfrak{a} \mapsto 1 : I_K \to \mathbb{C}^{\times}$. Then

$$L(s, \mathbb{1}) = \sum_{0 \neq \mathfrak{a} \triangleleft \mathcal{O}_K} \frac{1}{(N\mathfrak{a})^s} = \chi_K(s).$$

Example 12.6. Let $\chi : (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character. This extends to $\tilde{\chi} : I_{\mathbb{Q}}(N) \to \mathbb{C}^{\times}$, defined by $n\mathbb{Z} \mapsto \chi(n)$. We define $\chi_{\infty}(-1) = \chi(-1)$. If $\chi(-1) = 1$, we can take the modulus $\mathfrak{m} = N\mathbb{Z}$; otherwise, if $\chi(-1) = -1$, we must use the modulus $\mathfrak{m} = (N\mathbb{Z}) \cdot \infty$.

Now let us reformulate global class field theory in terms of Hecke characters. Let L/K be a finite abelian extension, and let $\varphi_{L/K,\mathfrak{m}} : I_K(\mathfrak{m}) \twoheadrightarrow \operatorname{Gal}(L/K)$ be the Artin map. If $\rho : \operatorname{Gal}(L/K) \to \mathbb{C}^{\times}$ is a Galois character, then

$$\chi = \rho \circ \varphi_{L/K,\mathfrak{m}} : I_K(\mathfrak{m}) \to \mathbb{C}^{\times}$$

is a group homomorphism satisfying $\chi(\alpha \mathcal{O}_K) = 1$ for $\alpha \equiv 1 \pmod{\mathfrak{m}}$. Hence, χ is a Hecke character of K of finite order.

Theorem 12.7 (Hecke). The above construction induces a bijection

$$\begin{cases} Hecke \ characters \ of \\ K \ of \ finite \ order \end{cases} \longleftrightarrow \begin{cases} Galois \ characters \\ of \ Gal(\overline{K}/K) \end{cases} = \begin{cases} 1-dim. \ rep \ n \ of \\ Gal(\overline{K}/K) \end{cases}$$

13 2015-02-18: *L*-functions of Hecke characters

Last time, we stated the connection between Hecke characters and 1-dimensional Galois representations. Today, we explore this further.

Theorem 13.1. Let χ be a Hecke character of finite order. Let

$$L(s,\chi) = \prod_{\mathfrak{p} \text{ finite}} \left(1 - \chi(\mathfrak{p})(N\mathfrak{p})^{-s}\right)^{-1},$$

where we define $\chi(\mathfrak{p}) = 0$ if $\mathfrak{p} \mid \mathfrak{f}_{\chi}$. Then:

- (1) $L(s, \chi)$ is absolutely convergent for $\operatorname{Re} s > 1$.
- (2) $L(s, \chi)$ has analytic continuation to the complex plane, with a simple pole at s = 1 if and only if $\chi = 1$ is the trivial character, in which case

$$\operatorname{Res}_{s=1} L(s, 1) = \operatorname{Res}_{s=1} \zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

where r_1 is the number of real places, r_2 is the number of conjugate pairs of complex places, h_K is the class number, R_K is the regulator, w_K is the root number, and d_K is the discriminant.

(3) $L(s, \chi)$ satisfies the functional equation

$$L(s,\chi) = w(\chi) \cdot (\Gamma$$
-factors) $\cdot L(1-s,\chi).$

(4) $L(1,\chi) \neq 0.$

Remark 13.2. One can check explicitly that $L(1,\chi) \neq 0$ by studying $\log L(s,\chi)$.

Definition 13.3 (Dirichlet density). Let A be a set of prime ideals of K. The *Dirichlet density* of A is

$$d(A) = \lim_{s \to 1^+} = \frac{\log \prod_{\mathfrak{p} \in A} (1 - (N\mathfrak{p})^{-s})^{-1}}{\log \zeta_K(s)}$$

Theorem 13.4 (Chebotarev density theorem). Let L/K be a finite Galois extension. Then

$$\operatorname{Spl}_{L/K} = \left\{ \mathfrak{p} \in M_K^f : \mathfrak{p} \text{ splits completely in } L \right\}$$

has Dirichlet density $[L:K]^{-1}$. In particular, $\operatorname{Spl}_{L/K}$ is infinite.

Proof. Observe that

$$\log \zeta_L(s) = \sum_{\mathfrak{P}} \sum_m \frac{1}{m(N\mathfrak{P})^{ms}} = \sum_{\mathfrak{P}} \frac{1}{(N\mathfrak{P})^s} + \mathcal{O}(1)$$
$$= \sum_{\mathfrak{P}} \sum_{f_{\mathfrak{P}/\mathfrak{P}}=1} \frac{1}{(N\mathfrak{p})^s} + \sum_{\mathfrak{P}} \sum_{f=f_{\mathfrak{P}/\mathfrak{P}}\geq 2} \frac{1}{(N\mathfrak{p})^{fs}} + \mathcal{O}(1)$$
$$= [L:K] \sum_{\substack{\mathfrak{P}\\f_{\mathfrak{P}/\mathfrak{P}}=1}} \frac{1}{(N\mathfrak{P})^s} + \mathcal{O}(1)$$
$$= [L:K] \sum_{\mathfrak{P}\in\mathrm{Spl}_{L/K}} \frac{1}{(N\mathfrak{P})^s} + \mathcal{O}(1).$$

Thus,

$$d(\operatorname{Spl}_{L/K}) = \lim_{s \to 1^+} \frac{\sum_{\mathfrak{p} \in \operatorname{Spl}_{L/K}} (N\mathfrak{p})^{-s}}{\log \zeta_K(s)} = \frac{1}{[L:K]} \lim_{s \to 1^+} \frac{\log \zeta_L(s)}{\log \zeta_K(s)} = \frac{1}{[L:K]}.$$

Corollary 13.5. Let L/K and M/K be two finite Galois extensions of global fields. If $\operatorname{Spl}_{L/K} = \operatorname{Spl}_{M/K}$, then L = M.

Proof. Apply the Chebotarev density theorem to LM.

Theorem 13.6. Let L/K be a finite abelian extension with Galois group G. Then

$$\zeta_L(s) = \prod_{\chi \in \hat{G}} L(s, \chi),$$

where $\hat{G} = \operatorname{Hom}(G, \mathbb{C}^{\times})$ is the group of characters of G.

Corollary 13.7. $\zeta_L(s)/\zeta_K(s)$ is holomorphic and is neither 0 nor ∞ at s = 1.

Proof. Observe that
$$\frac{\zeta_L(s)}{\zeta_K(s)} = \prod_{\substack{\chi \in \hat{G} \\ \chi \neq 1}} L(s, \chi)$$
, which has the desired properties. \Box

Theorem 13.8 (Dirichlet density theorem). For $\sigma \in \text{Gal}(L/K)$, define

$$A(\sigma) = \left\{ \mathfrak{p} \in M_K^f : e_{L/K}(\mathfrak{p}) = 1, \ \varphi_{L/K}(\mathfrak{p}) = \sigma \right\}.$$

Then $d(A(\sigma)) = [L:K]^{-1}$.

Example 13.9. Let $L = \mathbb{Q}(\zeta_m)$, $K = \mathbb{Q}$, and $\sigma = \sigma_a : \zeta_m \mapsto \zeta_m^a$. Then we recover the original Dirichlet density theorem:

$$\log \prod_{\mathfrak{p}\in A(\sigma)} (1-N\mathfrak{p})^{-s} = \sum_{\mathfrak{p}\in A(\sigma)} (N\mathfrak{p})^{-s} + \mathcal{O}(1) = \frac{1}{n} \sum_{\mathfrak{p}} \sum_{\chi\in\hat{G}} \chi^{-1}(\sigma)\chi(\mathfrak{p})(N\mathfrak{p})^{-s}$$
$$= \frac{1}{n} \sum_{\chi\in\hat{G}} \chi^{-1}(\sigma) \sum_{\mathfrak{p}} \frac{\chi(\mathfrak{p})}{(N\mathfrak{p})^s} = \frac{1}{n} \sum_{\chi\in\hat{G}} \chi^{-1}(\sigma) \log L(s,\chi)$$
$$= \frac{1}{n} \log \zeta_K(s) + \frac{1}{n} \sum_{\mathfrak{l}\neq\chi\in\hat{G}} \chi^{-1}(\sigma) \log L(s,\chi).$$

14 2015-02-20: Character version of CFT

Recall the classical statement of class field theory:

Theorem 14.1 (Global class field theory). For each finite abelian Galois extension L/K of number fields, there is a cycle \mathfrak{m} of K such that

$$\varphi_{L/K,\mathfrak{m}}: I_K(\mathfrak{m}) \to \operatorname{Gal}(L/K),$$

 $\mathfrak{p} \mapsto \operatorname{Frob}_{\mathfrak{p}, L/K}$

is surjective and has kernel $P_K(\mathfrak{m}) \cdot N_{L/K}I_L(\mathfrak{m})$, where $P_K(\mathfrak{m}) = \{\alpha \mathcal{O}_K : \alpha \equiv 1 \pmod{\mathfrak{m}}\}.$

We reformulate this in the language of Hecke characters. There is a bijective correspondence

$$\begin{cases} \text{Hecke characters of} \\ K \text{ of finite order} \end{cases} \longleftrightarrow \begin{cases} 1\text{-dim. representations} \\ \text{ of } \text{Gal}(\overline{K}/K) \end{cases} , \\ \chi \longleftrightarrow \rho, \\ \chi(\mathfrak{p}) = \rho(\text{Frob}_{\mathfrak{p},L/K}). \end{cases}$$

Theorem 14.2. We have $\zeta_L(s) = \prod_{\chi \in \text{Gal}(L/K)^{\wedge}} L(s,\chi)$. Hence, $\zeta_L(s)/\zeta_K(s)$ is holomorphic on

$\mathbb{C}.$

14.1 Density theorems

Theorem 14.3. Let L/K be a finite abelian Galois extension, and let $\sigma \in \text{Gal}(L/K)$. Then

$$A(\sigma) = \left\{ \mathfrak{p} \in M_K^f : \operatorname{Frob}_{\mathfrak{p}, L/K} = \sigma \right\}$$

has Dirichlet density $[L:K]^{-1}$.

More generally:

Theorem 14.4 (Chebotarev density theorem). Let L/K be a finite Galois extension with G = Gal(L/K). Let C be a conjugacy class in G. Then

$$A(C) = \left\{ \mathfrak{p} \in M_K^f : \operatorname{Frob}_{\mathfrak{p}, L/K} = C \right\}$$

has Dirichlet density $\frac{|C|}{|G|}$.

Proof. See [M, VIII.7.4].

14.2 Higher-dimensional Galois representations

To understand a group, we should study its representations. In particular, we can study Galois representations ρ : $\operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}(V) = \operatorname{GL}_n(\mathbb{C})$, where V is a finite-dimensional \mathbb{C} -vector space. For topological reasons, such representations factor through a finite quotient $\operatorname{Gal}(L/K)$, so we can study representations ρ : $\operatorname{Gal}(L/K) \to \operatorname{GL}(V)$.

Let \mathfrak{B} be a prime of L unramified over a prime \mathfrak{p} of K. We obtain a conjugacy class $\operatorname{Frob}_{\mathfrak{B}/\mathfrak{p}}$, and $\rho(\operatorname{Frob}_{\mathfrak{B}/\mathfrak{p}})$ is a linear operator on V. Define

$$L_{\mathfrak{p}}(s,\rho) = \det \left(1 - (N\mathfrak{p})^{-s}\rho(\operatorname{Frob}_{\mathfrak{B}/\mathfrak{p}}) \right)^{-1}.$$

This depends only on \mathfrak{p} . In general, to account for ramification, let $I = I_{\mathfrak{B}/\mathfrak{p}}$ be the inertia group. Then define

$$L_{\mathfrak{p}}(s,\rho) = \det \left(1 - (N\mathfrak{p})^{-s} \rho(\operatorname{Frob}_{\mathfrak{B}/\mathfrak{p}}) \Big|_{V^{I}} \right)^{-1}.$$

Multiplying these local factors, we obtain the Artin L-function

$$L(s,\rho) = \prod_{\mathfrak{p}} L_{\mathfrak{p}}(s,\rho).$$

15 2015-02-23: Artin *L*-functions and adeles

15.1 Artin *L*-functions

Last time, we defined the *L*-function $L(s, \rho)$ associated to an *n*-dimensional Galois representation $\rho : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}(V)$.

Theorem 15.1 (Artin). $L(s, \rho)$ has meromorphic continuation to the whole complex plane and satisfies a functional equation $L(s, \rho) = (\Gamma \text{-}factor) \cdot L(1 - s, \rho)$.

Conjecture 15.2 (Artin). IF ρ is irreducible and nontrivial, then $L(s, \rho)$ is holomorphic.

Conjecture 15.3 (Langlands correspondence). There exists an irreducible cuspidal automorphic representation π of $\operatorname{GL}_n(K)$ such that $L(s, \rho) = L(s, \pi)$.

Remark 15.4. Galois representations for which Langlands' conjecture is true are called *mod*ular. Modularity is known for representations $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{C})$.

15.2 Adelic language

Let K be a global field, and let M_K be the set of primes (finite or infinite) of K. For $v \in M_K$, let K_v be the completion of K at v. More explicitly, each prime v is associated with an absolute value:

- If $\sigma: K \hookrightarrow \mathbb{R}$ is a real prime, then $|x|_{\sigma} = |\sigma(x)|$.
- If $\sigma, \overline{\sigma}: K \hookrightarrow \mathbb{C}$ is a complex prime, then $|x|_{\sigma} = |\sigma(x)|^2$.
- If \mathfrak{p} is a finite prime, then $|x|_{\mathfrak{p}} = (N\mathfrak{p})^{-\operatorname{ord}_{\mathfrak{p}} x}$.

Proposition 15.5 (Product formula). $\prod_{v \in M_K} |x|_v = 1 \text{ for all } x \in K^{\times}.$

Definition 15.6 (Restricted products). Let $(R_i)_{i \in I}$ be a family of rings, and for each $i \in I$, let \mathcal{O}_{R_i} be a subring of R_i . The restricted product $\coprod_{i \in I} (R_i, \mathcal{O}_{R_i})$ is the ring of all $(x_i)_i \in \prod_{i \in I} R_i$ such that $x_i \in \mathcal{O}_{R_i}$ for all but finitely many $i \in I$.

If each R_i is a topological ring, then we give the restricted product the topology generated by the open basis of sets of the form $U = \prod_i U_i$, where $U_i \subset R_i$ is open and $U_i = \mathcal{O}_{R_i}$ for almost all *i*.

Definition 15.7. The *ring of adeles* of K is the restricted product

$$\mathbb{A}_K = \prod_v (K_v, \mathcal{O}_{K_v})$$

Fact 15.8. $K \hookrightarrow \mathbb{A}_K$ is discrete, and $\mathbb{A}_K = K + \widehat{\mathcal{O}}_K + K_\infty$ (or $K \cdot \widehat{\mathcal{O}}_K \cdot K_\infty$), where $K_\infty = \prod_{v \nmid \infty} K_v$, $\widehat{\mathcal{O}}_K = \prod_{v \nmid \infty} \mathcal{O}_{K_v}$, and $K_f = \mathbb{A}_{K,f} = \prod_{v \nmid \infty} K_v$.

Moreover, \mathbb{A}_K is locally compact, and admits a Haar measure $dx = \prod_v dx_v$, where $dx_v = |dx|$ on \mathbb{R} , $dx_v = |dz \wedge d\overline{z}|$ on \mathbb{C} , and $\int_{\mathcal{O}_{K_p}} dx_p = 1$ on K_p .

Definition 15.9. The group of ideles of K is \mathbb{A}_{K}^{\times} , the group of units of \mathbb{A}_{K} . We give \mathbb{A}_{K}^{\times} the topology induced by the open basis of $U = \prod_{v} U_{v}$ with $U_{v} \subset K_{v}^{\times}$ open and $U_{v} = \mathcal{O}_{v}^{\times}$ for almost all v.

16 2015-02-25: Adeles and ideles

Recall that K embeds into \mathbb{A}_K as a discrete subspace. Moreover, the quotient $K \setminus \mathbb{A}_K$ is compact.

Theorem 16.1. Let $\psi : K \setminus \mathbb{A}_K \to \mathbb{C}^1$ be a nontrivial additive character. Then

$$\operatorname{Hom}(K \setminus \mathbb{A}_K, \mathbb{C}^{\times}) = \{\psi_a : a \in K\},\$$

where $\psi_a(x) = \psi(ax)$.

16.1 Ideles

We defined the group of ideles to be \mathbb{A}_{K}^{\times} , the group of units of \mathbb{A}_{K} . We equip this with a Haar measure $d^{\times}x = \prod_{v} d^{\times}x_{v}$, where

$$d^{\times}x_{v} = \begin{cases} \left(1 - (N\mathfrak{p}_{v})^{-1}\right) \frac{dx_{v}}{|x_{v}|_{v}} & \text{if } v \nmid \infty, \\ \frac{dx_{v}}{|x_{v}|_{v}} & \text{if } v \mid \infty. \end{cases}$$

Hence, we have $\operatorname{vol}(\mathcal{O}_v^{\times}, d^{\times} x_v) = 1$.

If \mathcal{O}_K is the ring of integers in \mathbb{A}_K , then \mathcal{O}_K^{\times} is the maximal compact open subgroup of $(\mathbb{A}_K^{\times})_f = K_f^{\times}$.

Lemma 16.2. Let $\mathbb{A}_K^1 = \{x = (x_v) \in \mathbb{A}_K^{\times} : |x|_{\mathbb{A}} = \prod_v |x_v|_v = 1\}$. Then $K^{\times} \hookrightarrow \mathbb{A}_K^1$ is discrete and $K^{\times} \setminus \mathbb{A}_K^1$ is compact. Moreover, we have an exact sequence

$$1 \to K^{\times} \backslash \mathbb{A}^1_K \to K^{\times} \backslash \mathbb{A}^{\times}_K \to \mathbb{R}_{>0} \to 1.$$

Definition 16.3. The group $K^{\times} \setminus \mathbb{A}_{K}^{\times}$ is called the *idele class group*. It is a locally compact abelian group, so we can do Fourier analysis on $K^{\times} \setminus \mathbb{A}_{K}^{\times}$.

We have a map

$$\mathbb{A}_{K}^{\times} \to I_{K} = \{ \text{fractional ideals of } K \} ,$$
$$x = (x_{v}) \mapsto (x) = x\mathcal{O}_{K} = x_{f}\widehat{\mathcal{O}}_{K} \cap K = \prod_{v \nmid \infty} \mathfrak{p}_{v}^{\text{ord}_{v} x_{v}}$$

which restricts to $x \mapsto (x) = x\mathcal{O}_K : K^{\times} \to P_K$.

Proposition 16.4. The above maps induce an isomorphism $K^{\times} \setminus \mathbb{A}_{K}^{\times} / \widehat{\mathcal{O}}_{K}^{\times} K_{\infty}^{\times} \xrightarrow{\simeq} \operatorname{Cl}(K)$, where $\operatorname{Cl}(K)$ is the ideal class group of K.

Theorem 16.5. Let \mathfrak{m} be a cycle of K. Then we have a natural isomorphism

$$K^{\times} \setminus \mathbb{A}_{K}^{\times} / \mathcal{U}_{\mathfrak{m}, f} \mathcal{U}_{\mathfrak{m}, \infty} \xrightarrow{\simeq} \operatorname{Cl}_{K}(\mathfrak{m}) = I_{K}(\mathfrak{m}) / P_{K}(\mathfrak{m}),$$

where

$$\begin{split} \mathcal{U}_{\mathfrak{m},f} &= \prod_{v \nmid \infty} (1 + \mathfrak{m}_v) \cap \mathcal{O}_v^{\times} = \prod_{v \nmid \mathfrak{m}} \mathcal{O}_v^{\times} \prod_{v \mid \mathfrak{m}_f} (1 + \mathfrak{p}_v^{\operatorname{ord}_v \mathfrak{m}_f}), \\ \mathcal{U}_{\mathfrak{m},\infty} &= \prod_{v \mid \mathfrak{m}_\infty} (K_v^{\times})^+ \prod_{\substack{v \nmid \mathfrak{m}_\infty \\ v \mid \infty}} K_v^{\times}, \end{split}$$

where $(K_v^{\times})^+$ denotes the connected component of $1 \in K_v^{\times}$ (i.e., $\mathbb{R}_{>0}$ for real places and \mathbb{C}^{\times} for complex places).

Define $\lambda_v : K_v^{\times} \to \operatorname{Cl}_K(\mathfrak{m})$ for $v \nmid \mathfrak{m}$ by $\lambda_v(x_v) = \mathfrak{p}_v^{\operatorname{ord}_v x_v}$ for $v \nmid \infty$, and $\lambda_v(x_v) = \mathcal{O}_K$ for $v \mid \infty$.

Fact 16.6 (Approximation theorem). Let S be a finite set of primes and $K_S^{\times} = \prod_{v \in S} K_v^{\times}$. Then $K^{\times} \hookrightarrow K_S^{\times}$ is dense. In particular, for any open subgroup U_S of K_S^{\times} , $K^{\times}U_S = K_S^{\times}$. Consequently, $\mathbb{A}_K^{\times} = K^{\times}U_S \prod_{v \notin S} K_v^{\times} = (\mathbb{A}_K^S)^{\times}$.

Returning to the theorem, take $S = \{v : v \mid \mathfrak{m}\}$, and denote $S_f = \{v \in S : v \nmid \infty\}$ and $S_{\infty} = \{v \in S : v \mid \infty\}$. Then

$$\mathcal{U}_S := (\mathcal{U}_{\mathfrak{m},f}\mathcal{U}_{\mathfrak{m},\infty} \cap K_S^{\times} = \prod_{v \in S_f} (1 + \mathfrak{p}_v^{\operatorname{ord}_v \mathfrak{m}_f}) \prod_{v \in S_{\infty}} (K_v^{\times})^+$$

Hence, $\mathbb{A}_{K}^{\times} = K^{\times} \mathcal{U}_{S} \prod_{v \notin S} K_{v}^{\times}$. Define $\lambda : \mathbb{A}_{K}^{\times} \to \operatorname{Cl}_{K}(\mathfrak{m})$ to satisfy $\lambda|_{K^{\times} \mathcal{U}_{S}} = 1$ and $\lambda|_{K_{v}^{\times}} = \lambda_{v}$. One can check that this is well-defined, after which bijectivity is clear.

17 2015-02-27: Adelic reciprocity law

Recall that $K^{\times} \hookrightarrow \mathbb{A}_{K}^{\times}$ is discrete. The approximation theorem tells us that, for any finite set of primes S and any open compact subgroup U of K_{S}^{\times} , $\mathbb{A}_{K}^{\times} = K^{\times}U(\mathbb{A}_{K}^{S})^{\times}$, where $\mathbb{A}_{K}^{S} = \prod_{v \notin S} K_{V}$.

Proposition 17.1 (Strong approximation). For any prime v_0 , the map $K^{\times} \hookrightarrow (\mathbb{A}_K^{(v_0)})^{\times} := \prod_{v \neq v_0} K_v^{\times}$ is discrete. However, for any set of at least two primes S, the map $K^{\times} \hookrightarrow (\mathbb{A}_K^S)^{\times}$ is dense.

Last time, we asserted that the map

$$\lambda: K^{\times} \backslash \mathbb{A}_{K}^{\times} / \mathcal{U}_{\mathfrak{m}} \xrightarrow{\simeq} \operatorname{Cl}_{K}(\mathfrak{m}) = I_{K}(\mathfrak{m}) / P_{K}(\mathfrak{m})$$

is an isomorphism. The map is constructed as follows:

- (1) Construct the map $\lambda_v: K_v^{\times} \to I_K(\mathfrak{m})/P_K(\mathfrak{m})$ for unramified primes $v \nmid \mathfrak{m}$.
- (2) Use the approximation theorem to extend the map to $K^{\times} \setminus \mathbb{A}_{K}^{\times}$.
- (3) Define the map $\lambda : \mathbb{A}_K^{\times} \to K^{\times} \setminus \mathbb{A}_K^{\times} \to I_K(\mathfrak{m})/P_K(\mathfrak{m}).$
- (4) Define $\lambda_v : K_v^{\times} \to I_K(\mathfrak{m})/P_K(\mathfrak{m})$ for all v (not just unramified primes).

Theorem 17.2 (Adelic version of the reciprocity law). Let K be a global field. There exists a unique continuous group homomorphism $\varphi_K : \mathbb{A}_K^{\times} \to \operatorname{Gal}(K^{ab}/K)$ such that:

- (1) ker $\varphi_K = \overline{K^{\times} \cdot (K_{\infty}^{\times})^0} \supset K^{\times}.$
- (2) For any finite abelian extension L/K, the composition

$$\varphi_{L/K} : \mathbb{A}_K^{\times} \xrightarrow{\varphi_K} \operatorname{Gal}(K^{ab}/K) \twoheadrightarrow \operatorname{Gal}(L/K)$$

is surjective, and ker $\varphi_{L/K} = K^{\times} \cdot N_{L/K} \mathbb{A}_{L}^{\times}$.

(3) If \mathfrak{p} is unramified in L/K, then $\varphi_{L/K}(\pi_{\mathfrak{p}}) = \operatorname{Frob}_{\mathfrak{p},L/K}$ for any local uniformizer $\pi_{\mathfrak{p}}$ of $K_{\mathfrak{p}}$.

Remark 17.3 (Open subgroups). For $v \nmid \infty, K_v^{\times}$ has a basis near 1 of compact open subgroups

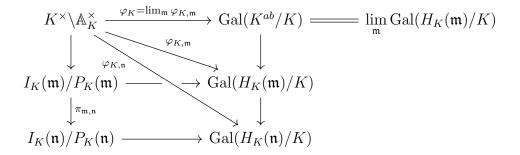
$$\mathcal{O}_{K_v}^{\times} \supset 1 + \mathfrak{p}_v \supset 1 + \mathfrak{p}_v^2 \supset \ldots$$

If π_v is a uniformizer for $\mathcal{O}_{K_v}^{\times}$, we have $\mathfrak{p}_v = \pi_v \mathcal{O}_{K_v}$.

For $v \mid \infty$, this is not the case: \mathbb{R}^{\times} has only two open subgroups, \mathbb{R}^{\times} and $\mathbb{R}_{>0}$, while \mathbb{C}^{\times} has no proper open subgroups.

Theorem 17.4 (Adelic existence theorem). Let U_f be a compact open subgroup of \mathbb{A}_f^{\times} of finite index. Let U_{∞} be an open subgroup of K_{∞}^{\times} . There is a unique finite abelian extension L/Ksuch that $K^{\times} \cdot U_f \cdot U_{\infty} = K^{\times} \cdot N_{L/K} \mathbb{A}_L^{\times}$, i.e., $\varphi_{L/K}$ gives an isomorphism $K^{\times} \setminus \mathbb{A}_K^{\times}/U_f U_{\infty} \xrightarrow{\simeq} \operatorname{Gal}(L/K)$.

To recover the classical formulation of global class field theory, observe that we have a commutative diagram



The connection between global and local class field theory is expressed by commutativity of

$$\begin{array}{ccc} K_v^{\times} & \stackrel{\varphi_{K_v}}{\longrightarrow} & \operatorname{Gal}(K_v^{ab}/K_v) \\ & & & \downarrow \\ & & & \downarrow \\ \mathbb{A}_K^{\times} & \stackrel{\varphi_K}{\longrightarrow} & \operatorname{Gal}(K^{ab}/K), \end{array}$$

where v is a prime of K, the vertical arrows are the natural injections, and φ_{K_v} and φ_K are the maps given by the reciprocity laws.

18 2015-03-02: Idele class characters

We have formulated global class field in three equivalent ways: the classical version, the adelic version, and as an equivalence between Hecke characters and 1-dimensional Galois representations.

Now let us discuss an adelic version of the formulation via Hecke characters. An *idele* class character of a global field K is a continuous group homomorphism $\chi : K^{\times} \setminus \mathbb{A}_{K}^{\times} \to \mathbb{C}^{\times}$, i.e., a continuous group homomorphism $\chi = \prod \chi_{v} : \mathbb{A}_{K}^{\times} \to \mathbb{C}^{\times}$ such that:

(1) There is a compact open subgroup U of $\mathbb{A}_{f}^{\times} = \prod_{v \nmid \infty} K_{v}^{\times}$ such that $\chi(gu) = \chi(g)$ for all $u \in U$.

- (2) $\chi_{\infty} = \prod_{v \mid \infty} \chi_v$ is continuous (and hence real-analytic).
- (3) $\chi(K^{\times}) = 1.$

Condition (1) is equivalent to both of the following being true:

- (a) Each χ_v is continuous, i.e., there is a compact open subgroup $U_v = 1 + \pi_v^{n_v} \mathcal{O}_v$ of K_v^{\times} such that $\chi_v|_{U_v} = 1$.
- (b) For almost all $v, \chi_v|_{\mathcal{O}_v^{\times}} = 1$ (i.e., χ_v is unramified).

Here is what condition (2) means: When v is real, $\chi_v : \mathbb{R}^{\times} \to \mathbb{C}^{\times}$ must be given by $\chi_v(x) = (\operatorname{sign} x)^{\varepsilon} |x|^{s_0}$ for some $\varepsilon \in \{0, 1\}$ and $s_0 \in \mathbb{C}$. When v is complex, $\chi_v : \mathbb{C}^{\times} \to \mathbb{C}^{\times}$ must be given by $z \mapsto z^n |z|^{s_0}$ for some $n \in \mathbb{N}$ and $s_0 \in \mathbb{C}$.

Theorem 18.1. There is a natural bijective correspondence

{Hecke characters of K} \longleftrightarrow {idele class characters of K}.

For any idele class character $\chi = \prod \chi_v : \mathbb{A}_K^{\times} \to \mathbb{C}^{\times}$, let $\mathfrak{m}_f = \prod_v (1 + \pi_v^{n_v} \mathcal{O}_v) \cap \mathcal{O}_v$ so that $\chi(gu) = \chi(g)$ for all $u \in \mathfrak{m}_f$. Then the corresponding Hecke character $\chi_c : I_K(\mathfrak{m}_f) \to \mathbb{C}^{\times}$ is given by $\chi_c(\mathfrak{a}) = \chi(\prod \pi_v^{\operatorname{ord}_v \mathfrak{a}}) = \prod_{v \nmid \mathfrak{m}_f} \chi_v(\pi_v^{\operatorname{ord}_v \mathfrak{a}})$ for any ideal $\mathfrak{a} \in I_K(\mathfrak{m}_f)$.

Conversely, given a Hecke character $\chi_c : I_K(\mathfrak{m}) \to \mathbb{C}^{\times}$, the corresponding idele class character $\chi_{\mathbb{A}} = \prod_v \tilde{\chi}_v$ is characterized by the following properties:

- (1) For $v \nmid \mathfrak{m}_f \infty$, $\tilde{\chi}_v(\pi_v) = \chi(\mathfrak{p}_v)$, where \mathfrak{p}_v is the prime ideal associated to v and π_v is any uniformizer of K. In particular, $\tilde{\chi}_v(\mathcal{O}_v^{\times}) = 1$.
- (2) For v real, $\tilde{\chi}_v|_{\mathbb{R}>0} = \chi_v|_{\mathbb{R}>0}$.
- (3) For v complex, $\tilde{\chi}_v = \chi_v$.
- (4) For $v \mid \mathfrak{m}_f$, let $n_v = \operatorname{ord}_{\mathfrak{p}_v} \mathfrak{m}_f$. Then $\tilde{\chi}_v \mid_{1+\pi_v^{n_v} \mathcal{O}_v} = 1$.

Since $\chi_v(\mathcal{O}_v^{\times}) = 1$ for all $v \nmid \mathfrak{m}_f \infty$, the Hecke character χ_c is well-defined. It remains to check $\chi_c(\alpha \mathcal{O}_K) = 1$ for any $\alpha \equiv 1 \pmod{\mathfrak{m}}$. Take $\mathfrak{m} = \mathfrak{m}_f \cdot \prod_{v \text{ real}} \mathfrak{m}_v$. Since $\alpha_v = \pi_v^{\operatorname{ord}_v \alpha} u_v$ for some $u_v \in \mathcal{O}_v^{\times}$, we have $\chi_v(\alpha_v) = \chi_v(\pi_v^{\operatorname{ord}_v \alpha} \chi_v(u_v))$. But $\chi_v(u_v) = 1$ for all $v \nmid \mathfrak{m}_f \infty$, so

$$1 = \chi(\alpha) = \prod_{v} \chi_{v}(\alpha_{v}) = \prod_{v \nmid \mathfrak{m}_{f} \infty} \chi_{v}(\alpha_{v}) \cdot \prod_{v \mid \mathfrak{m}_{f}} \chi_{v}(\alpha_{v}) \cdot \prod_{v \mid \infty} \chi_{v}(\alpha_{v}) = \chi_{c}(\alpha \mathcal{O}_{K}) \cdot \prod_{v \mid \infty} \chi_{v}(\alpha_{v})$$

So $\chi_c(\alpha \mathcal{O}_K) = \prod_{v \mid \infty} \chi_v(\alpha_v)^{-1} = \chi_\infty(\alpha)^{-1}.$

19 2015-03-04: Reciprocity for idele class characters

Continuing from last time, we want to construct an idele class character $\chi_{\mathbb{A}}$ from a Hecke character χ of K.

(1) For $v \nmid \infty \mathfrak{m}$, define $\tilde{\chi}_v : K_v^{\times} \to \mathbb{C}^{\times}$ by $\tilde{\chi}_v(\mathcal{O}_v^{\times}) = 1$ and $\tilde{\chi}_v(\pi_v) = \chi(\mathfrak{p}_v)$.

- (2) For $v \mid \infty$ and $v \nmid \mathfrak{m}_{\infty}$, define $\tilde{\chi}_v = \chi_v$.
- (3) For $v \mid \mathfrak{m}_{\infty}$, define $\tilde{\chi}_{v}|_{(K_{v}^{\times})^{+}} = \chi_{v}$.
- (4) $\chi_{\mathbb{A}}(K^{\times} \cdot \mathcal{U}_{\mathfrak{m}_f}) = 1.$

To check this is well-defined, it suffices to show that $a \in K^{\times} \cap \mathcal{U}_{\mathfrak{m}_{f}}\mathcal{U}_{\mathfrak{m}_{\infty}}\prod_{v \nmid \infty \mathfrak{m}} K_{v}^{\times}$, we have $a \equiv 1 \pmod{\mathfrak{m}}$. Indeed,

$$\chi_{\mathbb{A}}(a) = 1 \cdot \prod_{v \mid \infty} \chi_v(a_v) \cdot \prod_{v \nmid \infty \mathfrak{m}} \chi_v(a_v) = \chi_{\infty}(a)\chi(a\mathcal{O}_K) = \chi_{\infty}(a)\chi_{\infty}^{-1}(\alpha) = 1.$$

Example 19.1. A Hecke character of \mathbb{Q} of finite order is a Dirichlet character $\chi : (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$. The corresponding idele class character $\chi_{\mathbb{A}} = \prod_{p < \infty} \tilde{\chi}_p : \mathbb{A}_{\mathbb{Q}}^{\times} \to \mathbb{C}^{\times}$ is defined by

- (1) $\tilde{\chi}_p : \mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$ for p unramified is defined by $\tilde{\chi}_p(p) = \chi(p)$.
- (2) $\tilde{\chi}_{\infty} : \mathbb{R}^{\times} \to \mathbb{C}^{\times}$ is defined by $\tilde{\chi}_{\infty}(a) = 1$ for all a > 0, and $\tilde{\chi}_{\infty}(-1) = \chi(-1)$.

Proposition 19.2. For $p \mid N$, the character $\tilde{\chi}_p : \mathbb{Q}_p^{\times} \cong p^{\mathbb{Z}} \times \mathbb{Z}_p^{\times} \to \mathbb{C}^{\times}$ is defined by $\tilde{\chi}_p(a) = \chi_p(a)$, and factors through $\mathbb{Z}_p^{\times}/(1 + p^e \mathbb{Z}_p) \to (\mathbb{Z}_p/p^e)^{\times} \xrightarrow{\chi_p} \mathbb{C}^{\times}$. Moreover, $\tilde{\chi}_{p_i}(p_i) = \prod_{j \neq i} \chi_{p_j}^{-1}(p_i)$.

Remark 19.3. What could go wrong if we replace \mathbb{Q} by an arbitrary number field? First, Dirichlet characters are defined on elements, but Hecke characters are defined on ideals; this only works because \mathbb{Z} is a PID. Second, if there are several real primes, how do we determine the values at $-1 \in \mathbb{R}$?

Now we state yet another version of the reciprocity law, this time in terms of idele class characters.

Theorem 19.4 (Global reciprocity law). There is a natural bijective correspondence

$$\left\{\begin{array}{l} idele \ class \ characters \\ of \ K \ of \ finite \ order \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} 1\text{-}dim. \ representations \\ of \ \mathrm{Gal}(\overline{K}/K) \end{array}\right\}.$$

More generally, there is a group called the Weil group of K such that

$$\left\{\begin{array}{c} idele \ class \ characters \\ of \ K \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} 1\text{-}dim. \ representations \\ of \ Weil \ group \end{array}\right\}.$$

19.1 The Langlands correspondence

It is natural to ask what happens when we look at higher-dimensional representations of $\operatorname{Gal}(\overline{K}/K)$. Langlands conjectured:

Conjecture 19.5. There are natural bijective correspondences

$$\left\{\begin{array}{c} Automorphic representations of \\ \operatorname{GL}_n(K) \backslash \operatorname{GL}_n(\mathbb{A}_K) \text{ of some} \\ special algebraic type \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} n\text{-dimensional} \\ representations of \\ \operatorname{Gal}(\overline{K}/K) \end{array}\right\}$$

and

$$\left\{\begin{array}{c} Automorphic representations of \\ \operatorname{GL}_n(K) \backslash \operatorname{GL}_n(\mathbb{A}_K) \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} n\text{-dimensional} \\ representations of \\ some \ Langlands \ group \end{array}\right\}$$

More generally, if G is a reductive algebraic group over \mathbb{Q} , then there is a similar correspondence involving automorphic representations of G.

There is also a local Langlands correspondence, which has been proved for GL_n .

20 2015-03-06: Complex multiplication

Now we begin our study of complex multiplication. For a reference, see [Sil].

Definition 20.1. Let F be a field. An *elliptic curve* over F is a smooth projective curve over F of genus 1 with a fixed F-point O.

By Riemann-Roch, any elliptic curve over F is isomorphic to one of the form $E: y^2 + a_1xy + a_3y = x^3 + ax + b$. If char $F \neq 2, 3$, we may take $a_1 = a_3 = 0$ without loss of generality, and such a curve E is smooth if and only if $\Delta 4a^3 - 27b^2 \neq 0$.

Given such a realization as a plane curve, define an addition law on E by P + Q + R = 0, where P, Q, R are collinear points on E. This is independent of the embedding, and can also be defined intrinsically in terms of the Picard group.

Over \mathbb{C} , smooth projective curves correspond to smooth compact Riemann surfaces of the same genus, so complex elliptic curves are complex tori. Any elliptic curve over \mathbb{C} corresponds to to $E_{\Lambda} = \mathbb{C}/\Lambda$ for some lattice $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$, and the group structure is induced by addition in \mathbb{C} .

Definition 20.2. Morphisms $\text{Hom}(E_1, E_2)$ of elliptic curves are defined to be group homomorphisms which are also regular maps. A morphism $f \in \text{Hom}(E_1, E_2)$ is called an *isogeny* provided that ker f and coker f are both finite.

Let $\operatorname{End}(E)$ be the ring of endomorphisms $E \to E$ which are either isogenies or zero. Note that $\mathbb{Z} \subset \operatorname{End}(E)$: for n > 0, the map $P \mapsto [n]P = P + \cdots + P : E \mapsto E$ is an isogeny, as is $P \mapsto [-1]P = -P$.

We study the situation over \mathbb{C} , which will be representative of the characteristic zero case in general. Given a map $\tilde{f} = f_{\alpha} : \mathbb{C} \to \mathbb{C}$ given by $z \mapsto \alpha z$, we may descend to $f : \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$ if $\tilde{f}(z) = \alpha z \in \Lambda_2$ for all $z \in \Lambda_1$, where Λ_1 and Λ_2 are free \mathbb{Z} -lattices of rank 2.

Lemma 20.3. Hom $(E_{\Lambda_1}, E_{\Lambda_2}) = \{ \alpha \in \mathbb{C} : \alpha \Lambda_1 \subset \Lambda_2 \}.$

Lemma 20.4. Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 = \omega_1(\mathbb{Z} + \mathbb{Z}\frac{\omega_2}{\omega_1})$ be a lattice with $\tau := \frac{\omega_2}{\omega_1} \in \mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Then $E_{\Lambda} \cong E_{\tau} := \mathbb{C}/\Lambda_{\tau}$, where $\Lambda_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$. This gives a surjection $\tau \mapsto E_{\tau} : \mathbb{H} \twoheadrightarrow \{\text{elliptic curves over } \mathbb{C}\}/\cong$.

When is $\alpha \in \text{Hom}(E_{\tau_1}, E_{\tau_2})$ an isomorphism? Choose $\alpha \in \mathbb{C}$ such that $\alpha \Lambda_{\tau_1} = \Lambda_{\tau_2}$. Let $a, b, c, d \in \mathbb{Z}$ such that

$$\alpha \begin{pmatrix} \tau_1 \\ 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \tau_2 \\ 1 \end{pmatrix}.$$

Then α is an isomorphism if and only if $\gamma := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z})$. In fact, since $\tau_1, \tau_2 \in \mathbb{H}$, we have $\gamma \in \operatorname{GL}_2(\mathbb{Z})$ if and only if $\gamma \in \operatorname{SL}_2(\mathbb{Z})$. To summarize:

Proposition 20.5. Let $\alpha \in \mathbb{C}$ and $\tau_1, \tau_2 \in \mathbb{H}$.

(1)
$$\alpha \in \operatorname{Hom}(E_{\tau_1}, E_{\tau_2}) \iff \alpha \begin{pmatrix} \tau_1 \\ 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \tau_2 \\ 1 \end{pmatrix}.$$

(2) α is an isomorphism $\iff \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}).$

Theorem 20.6. This yields a bijective correspondence between $SL_2(\mathbb{Z})\backslash\mathbb{H}$ and isomorphism classes of elliptic curves over \mathbb{C} .

Thus, we refer to $\operatorname{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$ as a moduli space of elliptic curves. More generally, let X(K) be the moduli space of (isomorphism classes of) elliptic curves over a field K. This is a "scheme" (actually a stack) over \mathbb{Q} .

Definition 20.7. We say an element $[\tau] \in \mathrm{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$ is defined over $F \subset \mathbb{C}$ if E_{τ} can be defined over F.

Theorem 20.8. Let $\tau \in \mathbb{H} \cap \overline{\mathbb{Q}}$. Then $[\tau]$ is defined over $\overline{\mathbb{Q}}$ if and only if τ is imaginary quadratic.

Proposition 20.9. Let $\tau \in \mathbb{H}$. Then

$$\operatorname{End}(E_{\tau}) = \begin{cases} an \ order \ in \ \mathbb{Q}(\tau) & if \ \tau \ is \ imaginary \ quadratic, \\ \mathbb{Z} & otherwise. \end{cases}$$

Proof. Let $\alpha \in \text{End}(E_{\tau})$. Then $\alpha \in \mathbb{C}$ such that $\alpha = c\tau + d$ and $\alpha\tau = a\tau + b$. If $\alpha \in \mathbb{Q}(\tau)$, then $(c\tau + d)\tau = a\tau + b$, so $c\tau^2 + (d - a)\tau - b = 0$, so τ is imaginary quadratic.

Conversely, if τ is imaginary quadratic, write $k = \mathbb{Q}(\tau)$. We have $\alpha \in \text{End}(E_{\tau})$ if and only if $\alpha \Lambda_{\tau} = \Lambda_{\tau}$, and $\mathcal{O}_{\tau} = \{\alpha \in k : \alpha \Lambda_{\tau} \subset \Lambda_{\tau}\}$ is always an order of k.

21 2015-03-09: CM and the class group

The j-invariant

$$j(\tau) = j(E_{\tau}) = 1728 \frac{E_4^3}{\Delta(\tau)}$$

gives a bijection between $SL_2(\mathbb{Z}) \setminus \mathbb{H}$ and the set of isomorphism classes of elliptic curves over \mathbb{C} . Here, for even $k \geq 4$,

$$E_k(\tau) = \sum_{\gamma \in \Gamma_{\infty} \setminus \operatorname{SL}_2(\mathbb{Z})} (c\tau + d)^{-k},$$

where $\Gamma_{\infty} = \left\{ \pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \right\}$, is a modular form of weight k for $\mathrm{SL}_2(\mathbb{Z})$. Also,

$$\Delta(\tau) = \frac{1}{1728} (E_4^3 - E_6^2) = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$

is the unique weight 12 cusp form for $SL_2(\mathbb{Z})$.

Theorem 21.1. E_{τ} can be defined over F if and only if $j(\tau) \in F$, in which case we write $[\tau] \in F$.

Let E be an elliptic curve over \mathbb{C} . Recall from last time that $\operatorname{End}(E)$ is either \mathbb{Z} or an order \mathcal{O} of an imaginary quadratic field. In the latter case, we say E has complex multiplication (CM) by \mathcal{O} .

Let $k = \mathbb{Q}(\sqrt{d})$ be the field of fractions of $\mathcal{O} = \mathcal{O}_k$, and denote

 $\mathcal{E}\ell\ell(k) = \{\text{elliptic curves } E/\mathbb{C} \text{ with CM by } \mathcal{O}_k, \text{ up to } \mathbb{C}\text{-isomorphism}\}.$

Proposition 21.2. The map $[\mathfrak{a}] \mapsto E_{\mathfrak{a}} = \mathbb{C}/\mathfrak{a}$ induces a bijection $\mathrm{Cl}(k) \to \mathcal{E}\ell\ell(k)$.

The group $\operatorname{Aut}(\mathbb{C})$ acts on elliptic curves over \mathbb{C} as follows:

$$\begin{array}{c} E^{\sigma} & \longrightarrow & E \\ \downarrow & & \downarrow \\ \operatorname{Spec} \mathbb{C} & \stackrel{\sigma}{\longrightarrow} & \operatorname{Spec} \mathbb{C} \end{array}$$

In coordinates, $E: y^2 = x^3 + ax + b$ is sent to $E^{\sigma}: y^2 = x^3 + \sigma(a)x + \sigma(b)$.

Lemma 21.3. This induces an isomorphism $f \mapsto f^{\sigma} : \operatorname{End}(E) \xrightarrow{\simeq} \operatorname{End}(E^{\sigma})$, where $f^{\sigma}(p^{\sigma}) = f(p)^{\sigma}$. (If $p \in E(\mathbb{C})$, then $p^{\sigma} \in E^{\sigma}(\mathbb{C})$.)

Corollary 21.4. If $E \in \mathcal{E}\ell\ell(k)$, then $E^{\sigma} \in \mathcal{E}\ell\ell(k)$. In particular, $\operatorname{Aut}(\mathbb{C})$ acts on $\mathcal{E}\ell\ell(k)$.

Hence, there exists a number field $F \subset \overline{\mathbb{Q}} \subset \mathbb{C}$ such that $\operatorname{Aut}(\mathbb{C}/F)$ acts trivially on $\mathcal{E}\ell\ell(k)$ and $[F:\mathbb{Q}] \mid h_k = \# \mathcal{E}\ell\ell(k)$.

Proposition 21.5. For each $E \in \mathcal{E}\ell\ell(k)$, we have $j(E^{\sigma}) = j(E)^{\sigma}$ and $[\mathbb{Q}(j(E)) : \mathbb{Q}] \leq h_k$.

Example 21.6. The elliptic curve $E: y^2 = x^3 + x$ has an endomorphism $f: (x, y) \mapsto (-x, iy)$ of order 4. This gives an inclusion $i \mapsto f: \mathbb{Z}[i] \subset \operatorname{End}(E)$, so $\operatorname{End}(E) = \mathbb{Z}[i]$. Thus, E has CM by $\mathcal{O}_{\mathbb{Q}(i)} = \mathbb{Z}[i]$. Since $\mathbb{Z}[i]$ is a PID, $\mathcal{E}\ell\ell(\mathbb{Q}(i)) = \{E_i\}$, so $E_i \cong E$. Thus, $j(i) = j(E_i) = j(z) = 1728$.

Example 21.7. The elliptic curve $E: y^2 = x^3 + 1$ has an endomorphism $(x, y) \mapsto (\zeta_3 x, y)$, where $\zeta_3 = \frac{-1+\sqrt{-3}}{2}$. Thus, E has CM by $\mathbb{Z}[\zeta_3]$, which is a PID, so $E = E_{\zeta_3}$ and $j(\zeta_3) = j(E) = 0$.

Theorem 21.8. Let $E \in \mathcal{E}\ell\ell(k)$. Let H = k(j(E)) and $L = k(j(z), E_{tor})$, where $E_{tor} = \bigcup_{m>1} E[m]$ is the set of torsion \mathbb{C} -points of E. Then $\operatorname{Gal}(L/H)$ is abelian.

Proof. Define a map $\sigma \mapsto \rho(\sigma)$: $\operatorname{Gal}(L/H) \to \operatorname{Aut}(E_{\operatorname{tor}})$, where $\rho(\sigma)P = P^{\sigma}$. This is well-defined as $E^{\sigma} = E$ since $j(z) \in H$ is fixed by σ and E is defined over H.

Let $L_m = H(E[m])$. Then ρ induces an injection $\operatorname{Gal}(L_m/H) \hookrightarrow \operatorname{Aut}(E[m])$. Notice that E[m] is actually an \mathcal{O}_k -module. So $\operatorname{Im} \rho \subset \operatorname{Aut}_{\mathcal{O}_k} E[m]$, which is abelian as E[m] is \mathcal{O}_k -principal.

This is analogous to the construction of totally ramified abelian extensions in local class field theory.

22 2015-03-11: CM and Hilbert class fields

Recall from last time that we have the space of CM elliptic curves $\mathcal{E}\ell\ell(k) \cong Cl(k)$ with an action of $Aut(\mathbb{C})$.

Lemma 22.1. Fix $i : K \hookrightarrow \mathbb{C}$ and $E \in \mathcal{E}\ell\ell(k)$. There exists a unique $\iota : \mathcal{O}_K \xrightarrow{\simeq} \operatorname{End}(E)$ such that $\iota(a)^* \omega = i(a) \omega$ for all $\omega \in \Omega_{E/\mathbb{C}}$.

Today, we give a proof of the theorem from last time.

Theorem 22.2. Let $E \in \mathcal{E}\ell\ell(k)$, $H_E = K(j(E))$, and $L = K(j(z), E_{tor})$. Then L is abelian over H_E .

Definition 22.3. If $E \in \mathcal{E}\ell\ell(k)$ and $\mathfrak{a} \subset \mathcal{O}_K$ is an ideal, the group of \mathfrak{a} -torsion points of E is

$$E[\mathfrak{a}] = \{ P \in E(\mathbb{C}) : \iota(\alpha)P = 0 \ \forall \alpha \in \mathfrak{a} \}$$

Lemma 22.4. Let $E \in \mathcal{E}\ell\ell(k)$. Then $E[\mathfrak{a}]$ is an \mathcal{O}_K -module and $E[\mathfrak{a}] \cong \mathcal{O}_K/\mathfrak{a}$.

Proof. Since $E \in \mathcal{E}\ell\ell(k), E \cong E_{\mathfrak{b}}$ for some fractional ideal \mathfrak{b} of k. So

$$E[\mathfrak{a}] = \{ [z] \in \mathbb{C}/\mathfrak{b} : \alpha z \in \mathfrak{b} \ \forall \alpha \in \mathfrak{a} \} = \mathfrak{a}^{-1}\mathfrak{b}/\mathfrak{b} \cong \mathcal{O}_K/\mathfrak{a}.$$

Proof of the theorem. We have $L = \bigcup_{m \ge 1} L_m$, where $L_m = H_E(E[m])$. Define a homomorphism $\rho : \operatorname{Gal}(L_m/H_E) \hookrightarrow \operatorname{Aut}(E[m])$ by $\rho(\sigma) \cdot P := P^{\sigma}$. One can check that $\rho(\sigma)$ is \mathcal{O}_K -linear for all $\sigma \in \operatorname{Gal}(L_m/H_E)$, and hence lands in $\operatorname{Aut}_{\mathcal{O}_K}(E[m])$, which by the lemma is isomorphic to $\operatorname{Aut}_{\mathcal{O}_K}(\mathcal{O}_K/m) = (\mathcal{O}_K/m)^{\times}$, an abelian group. \Box

Example 22.5. We have $\mathbb{Q}^{ab} = \mathbb{Q}(\mathbb{G}_{m,\text{tor}}) = \mathbb{Q}(\zeta_{\infty})$ and $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^{\times}$, with \mathbb{Z} acting on \mathbb{C}^{\times} by $n \cdot z = z^n$.

Recall our setup from local class field theory: Let K be a local field, and let π be a uniformizer of K. Choosing $f = \pi X + X^q$, let F_f be the corresponding formal group law over \mathcal{O}_K . Then $\Lambda_n = \{x \in \mathfrak{m}_{\overline{K}} : [\pi^n]_f \cdot x = 0\}$ is also an \mathcal{O}_K -module, and we proved:

- (1) $K_{\pi} = K(\bigcup_{n>1} \Lambda_n)$ is a maximal totally ramified abelian extension of K.
- (2) $K^{ab} = K_{\pi}K^{un} = K_{\pi} \cdot K(\mu_n : \mathfrak{p} \nmid n).$

We have a similar picture for $H_E = K(j(E))$:

- (1) H_E is independent of $E \in \mathcal{E}\ell\ell(k)$ and is the Hilbert class field of K: every prime of K is unramified in $H = H_E$, and $\operatorname{Gal}(H_E/K) \cong \operatorname{Cl}(K)$.
- (2) $k^{ab} = k(j(E), h(E_{tor}))$, where if we write $E : y^2 = x^3 + ax + b$ (with $a, b \in H$) and $P = (x, y) \in E(\mathbb{C})$, then

$$h(P) = \begin{cases} x & \text{if } ab \neq 0, \\ x^2 & \text{if } b = 0 \text{ (when } j(E) = 1728), \\ x^3 & \text{if } a = 0 \text{ (when } j(E) = 0). \end{cases}$$

We have defined two actions on $\mathcal{E}\ell\ell(k)$:

- (1) $\operatorname{Gal}(\overline{K}/K) \circlearrowleft \mathcal{E}\ell\ell(k) \cong \operatorname{Cl}(k)$
- (2) $\operatorname{Cl}(k) \circlearrowleft \mathcal{E}\ell\ell(k)$ simply-transitively by $[\mathfrak{a}] * E_{\Lambda} = E_{\mathfrak{a}^{-1}\Lambda}$.

Definition 22.6. Fix $E \in \mathcal{E}\ell\ell(k)$. Define a map

$$F = F_E : \operatorname{Gal}(\overline{K}/K) \to \operatorname{Cl}(k),$$
$$\sigma \mapsto F(\sigma),$$

where $F(\sigma)$ is defined by $F(\sigma) * E = E^{\sigma}$.

Proposition 22.7. (1) F_E is independent of the choice of E.

(2) $F = F_E$ is a group homomorphism.

Proof. Choose another $E_1 \in \mathcal{E}\ell\ell(k)$. Since $\operatorname{Cl}(k)$ acts simply-transitively on $\mathcal{E}\ell\ell(k)$, there exists $[\mathfrak{b}] \in \operatorname{Cl}(k)$ such that $E_1 = [\mathfrak{b}] * E$. Write $F_{E_1}(\sigma) = [\mathfrak{a}_1]$ and $F_E(\sigma) = [\mathfrak{a}]$. Then $E_1^{\sigma} = [\mathfrak{a}_1] * E_1$, so

$$[\mathfrak{a}_1\mathfrak{b}] * E = [\mathfrak{a}_1] * [\mathfrak{b}] * E = ([\mathfrak{b}] * E)^{\sigma} = [\mathfrak{b}] * E^{\sigma} = [\mathfrak{b}] * [\mathfrak{a}] * E = [\mathfrak{b}\mathfrak{a}] * E$$

(We should check $([\mathfrak{b}] * E)^{\sigma} = [\mathfrak{b}] * E^{\sigma}$.) This implies $[\mathfrak{a}_1 \mathfrak{b}] = [\mathfrak{b}\mathfrak{a}]$, so $[\mathfrak{a}_1] = [\mathfrak{a}]$.

We'll finish the proof of the theorem next time. As a final remark, note that the following diagram commutes:

where the right arrow is the isomorphism given by class field theory.

23 Several missing lectures

[I don't have notes for a few weeks of lectures at this point. See [Sil, chapter 2] for an exposition of the theory of complex multiplication, the subject of these lectures.]

24 2015-04-13: Rank and modularity of elliptic curves

Theorem 24.1 (Mordell–Weil). Let L be a number field. Let $E : y^2 = x^3 + ax + b$ be an elliptic curve over L, where $a, b \in \mathcal{O}_L$. Then E(L) is a finitely-generated abelian group.

Remark 24.2. Due to work of Mazur, the torsion part of E(L) is known to be one of a finite list of possibilities. The rank r(E(L)) of E(L) is called the *Mordell-Weil rank* of E, and is more mysterious.

Let \mathfrak{p} be a prime of L such that E has good reduction modulo \mathfrak{p} . Let $q_{\mathfrak{p}} = |k_{\mathfrak{p}}|$, where $k_{\mathfrak{p}} = |\mathcal{O}_L/\mathfrak{p}|$. Let $a_{\mathfrak{p}}$ be the trace of $\sigma_{\mathfrak{p}}$ on $H^1(\tilde{E})$. Then $a_{\mathfrak{p}} = q_{\mathfrak{p}} + 1 - \left|\tilde{E}(k_{\mathfrak{p}})\right|$.

Define the local L-factor

$$L_{\mathfrak{p}}(s, E) = \left(1 - a_{\mathfrak{p}}q_{\mathfrak{p}}^{-s} + q_{\mathfrak{p}}^{1-2s}\right)^{-1}.$$

The global L-function of E is defined by

$$L(s,E) = \prod_{\mathfrak{p}} L_{\mathfrak{p}}(s,E)$$

(note: the definition of $L_{\mathfrak{p}}$ at bad primes is slightly different), which is absolutely convergent if $\operatorname{Re} s > \frac{3}{2}$. Also, by the Weil bound, $|a_{\mathfrak{p}}| \leq 2\sqrt{q_{\mathfrak{p}}}$.

Conjecture 24.3. L(s, E) has holomorphic continuation to the whole complex s-plane and has functional equation

$$N^{s}L(s, E)L_{\infty}(s, E) = w_{E}N^{2-s}L(2-s, E)L_{\infty}(2-s, E),$$

where $w_E = \pm 1$. (The most interesting part is for s = 1.)

Conjecture 24.4 (Birch–Swinnerton-Dyer). The algebraic rank and analytic rank are equal: $r(E(L)) = \operatorname{ord}_{s=1} L(s, E)$. Moreover,

$$\frac{L^{(1)}(1,E)}{r!} = \frac{|\mathrm{III}(E)| R_{E/L}}{|E(L)_{\mathrm{tor}}|^2}.$$

Theorem 24.5 (Wiles, Taylor–Wiles). If $L = \mathbb{Q}$, then L(s, E) has holomorphic continuation and functional equation as conjectured above. Moreover, L(s, E) = L(s, f) for some modular form f of weight 2.

Theorem 24.6 (Deuring). Suppose E has CM by \mathcal{O}_K .

(1) If $K \subset L$, then

$$L(s, E/L) = L(s, \chi_{E/L}) \cdot L(s, \overline{\chi}_{E/L}).$$

(2) If $K \not\subset L$, write L' = KL. Then

$$L(s, E/L) = L(s, \chi_{E/L'}).$$

In particular, holomorphic continuation and the functional equation hold for E/L.

24.1 Final project

Take your favorite imaginary quadratic field k. (Easy choice: class number one.) Choose a CM elliptic curve E/H. Find $\chi_{E/H}$ and L(s, E/H).

25 2015-04-17: CM elliptic curves and Heegner points

Let \mathbb{H} be the upper half plane, and define $Y_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathbb{H}$, the moduli space of degree-N cyclic isogenies $\varphi : E \to E'$ of elliptic curves up to isomorphism. The variety $Y_0(N)$ is defined over \mathbb{Q} . For any number field F,

 $Y_0(N)(F) = \left\{ E \xrightarrow{\varphi} E' : E, E', \varphi \text{ defined over } F \right\} / (F \text{-isomorphism}).$

Take $k = \mathbb{Q}(\sqrt{d})$ such that every $p \mid N$ splits in k (the Heegner condition). Write $N\mathcal{O}_k = \mathfrak{n} \cdot \overline{\mathfrak{n}}$. For each fraction ideal \mathfrak{a} , define

$$P_{\mathfrak{a}} = \begin{pmatrix} E_{\mathfrak{a}} = \mathbb{C}/\mathfrak{a} \xrightarrow{\varphi} \mathbb{C}/\mathfrak{n}^{-1}\mathfrak{a} = E_{\mathfrak{n}^{-1}\mathfrak{a}} \\ [z] \mapsto [z] \end{pmatrix}.$$

The kernel ker $P_{\mathfrak{a}} = \mathfrak{n}^{-1}\mathfrak{a}/\mathfrak{a}$ is cyclic of order N. Let H be the Hilbert class field of k.

Define the compactification X(N) by

$$X(N)(\mathbb{C}) = Y_0(N) \cup \{ \text{cusps} \} = \Gamma_0(N) \setminus (\mathbb{H} \cup \mathbb{Q} \cup \{\infty\}).$$

This is a compact \mathbb{C} -curve, and $X_0(N)/\mathbb{Q}$ is a projective smooth curve.

Theorem 25.1 (Wiles, Taylor–Wiles). For every elliptic curve E/\mathbb{Q} with conductor N, there is a surjective map

$$\begin{aligned} X_0(N) &\xrightarrow{\pi} E \\ P_{[\mathfrak{a}]} &\mapsto \pi(P_{[\mathfrak{a}]}) \in E(H). \end{aligned}$$

Moreover, $L(s, E/k) = L(s, E/\mathbb{Q}) \cdot L(s, E^d/\mathbb{Q})$, where $E: y^2 = x^3 + ax + b$ and $E^d: dy^2 = x^3 + ax + b$ and $k = \mathbb{Q}(\sqrt{d})$.

The Heegner condition also implies that the functional equation takes the form

$$L(s, E/k) = -(\Gamma \text{-factors})L(2 - s, E/k)$$

since $w_{E,k} = -1$. Hence, L(1, E/k) = 0.

Theorem 25.2 (Gross-Zagier formula). Let $y_k = \sum_{[\mathfrak{a}] \in Cl(k)} \pi(P_{[\mathfrak{a}]}) \in E(k)$. Then

$$L'(1, E/k) = C \langle y_k, y_k \rangle_{\rm NT}$$

for some C > 0, where

$$\langle \cdot, \cdot \rangle_{\mathrm{NT}} : E(F)/E(F)_{\mathrm{tor}} \times E(F)/E(F)_{\mathrm{tor}} \to \mathbb{R}_{\geq 0}$$

is the Neron-Tate height, which is bilinear, symmetric, and positive-definite.

Corollary 25.3. $L'(1, E/k) \neq 0 \iff y_k \in E(k)$ has infinite order, in which case rank $E(k) \geq 1$.

Kolyvagin developed the notion of *Euler system* to prove:

Theorem 25.4 (Kolyvagin). If $y_k \in E(k)$ has infinite order, then rank E(k) = 1.

(If y_k has finite order, nothing is known; the BSD conjecture implies rank $E(k) \ge 3$.)

Theorem 25.5 (Gross-Zagier, Kolyvagin). If $L'(1, E/k) \neq 0$, then rank E(k) = 1 and rank $E(\mathbb{Q}) = \operatorname{ord}_{s=1} L(s, E/\mathbb{Q})$.

25.1 Class numbers

Let $k = \mathbb{Q}(\sqrt{d})$ and $h_d = |\operatorname{Cl}(k)|$.

Theorem 25.6 (Siegel). We have

$$\frac{|d|^{1/2}}{\log|d|} \ll h_d \ll |d|^{1/2} \log|d| \,.$$

This is not effective, but can be made effective if we assume the Riemann hypothesis.

Theorem 25.7 (Goldfeld 1979). If there is an elliptic curve E/\mathbb{Q} such that $\operatorname{ord}_{s=1} L(s, E) \geq 3$, then

$$h_d \ge \kappa(\varepsilon) \, |d|^{\frac{1}{2} - \varepsilon}$$

for every $\varepsilon > 0$, where $\kappa(\varepsilon)$ is an explicit constant.

Example 25.8. Consider the elliptic curve $E : -139y^2 = x^3 + 10x^2 - 20x + 8$. Then y_k is torsion, so L'(1, E/k) = 0, which implies $\operatorname{ord}_{s=1} L(s, E) \ge 3$. This proves the hypothesis of Goldfeld's theorem.

26 2015-04-24: Galois cohomology

Theorem 26.1. Let L/K be a finite Galois extension of fields with G = Gal(L/K). Then $H^1(G, L^{\times}) = 0$.

Corollary 26.2 (Hilbert 90). IF $G = \langle \sigma \rangle$ is cyclic and $N_{L/K}x = 1$, then $x = \frac{\sigma y}{\eta}$ for some y.

Theorem 26.3. Let M be a G-module and $\varphi \in Z^2(G, M)$. Then φ gives rise to a group extension

$$0 \to M \to E \xrightarrow{\pi} G \to 1$$

such that:

- (1) The G-module M associated to the above short exact sequence coincides with the original G-module structure on M.
- (2) The 2-cocycle associated to the sequence is equivalent to φ .

27 2015-04-27: Galois homology

Let G be a group and M a G-module. Define $H_r(G, M) := \operatorname{Tor}_r^G(\mathbb{Z}, M)$. Equivalently, $H^r(G, -)$ is the derived functor of the coinvariants functor $M \mapsto M_G$, where M_G is the maximal quotient on which M acts trivially.

Theorem 27.1. $H_1(G, \mathbb{Z}) = G^{ab}$.

Let I_G be the augmentation ideal of the group algebra $\mathbb{Z}[G]$.

Lemma 27.2. $\mathbb{Z} \otimes_G M = \mathbb{Z}[G]/I_G \otimes_{\mathbb{Z}[G]} M = M/I_G M$, which is by definition M_G .

Lemma 27.3. *M* if *G*-flat iff $H_r(G, M) = 0$ for all r > 0.

Proposition 27.4. $H_1(G, \mathbb{Z}) = I_G/I_G^2$.

Proof. Taking coinvariants of the short exact sequence

$$0 \to I_G \to \mathbb{Z}[G] \to \mathbb{Z} \to 0$$

yields a long exact sequence

$$H_1(\mathbb{Z}[G]) \to H_1(\mathbb{Z}) \to H_0(I_G) \to H_0(\mathbb{Z}[G]) \to H_0(\mathbb{Z}) \to 0.$$

Since $H_1(\mathbb{Z}[G]) = 0$ and $H_0(\mathbb{Z}[G]) = H_0(\mathbb{Z}) = \mathbb{Z}$, we obtain an isomorphism $H_1(\mathbb{Z}[G]) \cong H_0(I_G) = I_G/I_G^2$.

Lemma 27.5. $I_G/I_G^2 \cong G^{ab} = G/[G,G].$

Tate defined a "very long" exact sequence that glues together both homology and cohomology. Define a norm map

$$N_G: M \to M^G$$

 $m \mapsto N_G(m) = \sum_{g \in G} gm_g$

Lemma 27.6. $I_G M \subset \ker N_G$ and $\operatorname{im} N_G \subset M_G$.

Definition 27.7. For $r \in \mathbb{Z}$, define

$$H_T^r(G, M) = \begin{cases} H^r(G, M), & r \ge 1, \\ M^G/(\operatorname{im} N_G), & r = 0, \\ (\operatorname{ker} N_G)/I_G M, & r = -1, \\ H_{-r+1}, & r \le -2. \end{cases}$$

Proposition 27.8 (Tate). Given a short exact sequence

$$0 \to M_1 \to M_2 \to M_3 \to 0,$$

we obtain a doubly-infinite long exact sequence

$$\cdots \to H^r_T(G, M_1) \to H^r_T(G, M_2) \to H^r_T(G, M_3) \to H^{r+1}_T(G, M_1) \to \ldots$$

Theorem 27.9. Let L/K be a finite Galois extension of fields. Then $H_T^r(G, \mathbb{Z}) \xrightarrow{\simeq} H_T^{r+2}(G, L^{\times})$ for all r, and the isomorphism is "canonical", depending only on a choice of generator of $H_T^2(G, L^{\times})$, which is cyclic of order |G|.

28 2015-05-06: Brauer groups

The *Brauer group* of a field is the group of central division algebras over K with the operation of tensor product.

Proposition 28.1. Let K be any field. Then $Br(K) \cong H^2(G_K, \overline{K}^{\times})$.

29 2015-05-08: Brauer groups of local fields

Today, we will prove that the Brauer group of a nonarchimedean local field is \mathbb{Q}/\mathbb{Z} , which implies local class field theory.

Let $x \mapsto |x| = q^{-\operatorname{ord}_K x} : K \to \mathbb{R}_{>0}$ be the valuation of K. Let \mathcal{O}_K be the ring of integers, $\mathfrak{p} = \pi \mathcal{O}_K \subset \mathcal{O}_K$ the maximal ideal with a uniformizer π , and $k = \mathcal{O}_K/\mathfrak{p}$ the residue field of order q.

Let D be a central division algebra over K of index $[D:K] = n^2$. Then there is a unique norm $|\cdot|: D \to \mathbb{R}_{>0}$ such that |xy| = |x| |y| and $|x+y| \le \max\{|x|, |y|\}$ for all $x, y \in D$.

The subring $\mathcal{O}_D = \{x \in D : |x| \leq 1\}$ is the unique maximal order in D. This ring has unique maximal ideal $\mathfrak{m}_D = \{x \in D : |x| < 1\}$. The quotient $\ell = \mathcal{O}_D/\mathfrak{m}_D$ is a finite field extension of k of index $f = [\ell : k] \leq n$. Moreover, $\mathfrak{p}\mathcal{O}_D = \mathfrak{m}_D^e$.

Lemma 29.1. e = f = n.

Corollary 29.2. Let D be a central division algebra over K of rank n^2 . Let $L = K_n^{un}$ be the unique unramified extension of K of degree n. Then $K_n^{un} \to D$, and K_n^{un} splits D in the sense that $D \otimes_K K_n^{un} \cong M_n(K_n^{un})$. In other words, $[D] \in \operatorname{Br}(K_n^{un}/K)$, i.e., $[D] = 1 \in \operatorname{Br}(K_n^{un})$.

Theorem 29.3. Let K be a nonarchimedean local field. Then $Br(K) \cong \mathbb{Q}/\mathbb{Z}$.

Proof. Let K^{un} be the maximal unramified extension of K. We have an exact sequence

$$1 \to \operatorname{Br}(K^{un}/K) \to \operatorname{Br}(K) \to \operatorname{Br}(K^{un}).$$

Assume D is a central division K^{un} -algebra of degree n^2 . There is a finite unramified extension K'/K such that $D = D' \otimes_{K'} K^{un}$. By the corollary, $D' \otimes_{K'} L \cong M_n(L)$, where L is the unramified extension of K' of degree n. So

$$D = D' \otimes_{K'} K^{un} = (D' \otimes_{K'} L) \otimes_L K^{un} \cong M_n(K^{un}).$$

Thus, $Br(K^{un}) = 0$. Hence,

$$Br(K) \cong Br(K^{un}/K) \cong H^{2}(Gal(K^{un}/K), K^{un\times}) \cong H^{2}(Gal(K^{un}/K), \mathbb{Z})$$
$$\cong H^{1}(Gal(K^{un}/K), \mathbb{Q}/\mathbb{Z}) \cong Hom(Gal(K^{un}/K), \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Q}/\mathbb{Z}.$$

Let us explicitly construct the isomorphism $\operatorname{Inv}_K : \operatorname{Br}(K) \to \mathbb{Q}/\mathbb{Z}$. Let D be a central division K-algebra of rank n^2 . Let $\sigma_{K_n^{un}/K}$ be the Frobenius automorphism, which generates $\operatorname{Gal}(K_n^{un}/K)$. There exists $e \in D^{\times}$ such that $\sigma_{K_n^{un}/K}(x) = exe^{-1}$. Then $\operatorname{Inv}_K([D]) = \operatorname{ord}_K e$ (mod \mathbb{Z}).

Theorem 29.4. Every quadratic extension of K is inside the unique quaternion division algebra D.

References

- [CF] Cassels and Fröhlich, Algebraic Number Theory.
- [L] S. Lang, Algebraic Number Theory.
- [M] J. Milne, Class Field Theory, online notes.
- [N] J. Neukirch, Algebraic Number Theory.
- [S] J.P. Serre, Local Fields.
- [Sil] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves.

Index

additive formal group, 10 adele, 25 Artin L-function, 24 Artin map, 3 Brauer group, 40 completed L-function, 20 complex multiplication, 33 conductor, 20 of a Hecke character, 20 cycle, 5 Dirichlet density, 22 elliptic curve, 31 Euler system, 38 formal group law, 10 Gauss's genus theory, 5 Hecke L-function, 20 Hecke character, 20 Heegner condition, 37 Hilbert class field, 5 idele, 25 idele class character, 28 idele class group, 26 isogeny, 31 jump, 19 Legendre symbol, 4 local Artin map, 7 local field, 7 modular, 24 moduli space of elliptic curves, 32 modulus, 6 Mordell–Weil rank, 36 multiplicative formal group, 10 primitive, 20 residue character, 8 restricted product, 25