Math 845 Notes
Class field theory

Lectures by Tonghai Yang
Notes by Daniel Hast

Spring 2015

Contents

(1.1 Quadratic reciprocity| . . . . . . . . . ...
(1.2 Cyclotomic fields| . . . .. ... ... ... ... ..

2 2015-01-23: Class fields and reciprocity|

NN

2.2 Ray class fields| . . . . . ... ...
2.3 Reciprocity law| . . . . . . . . ..

[3 2015-01-26: Local class field theory|
I;i'l l‘sz!:;!l fig:l!i:‘!l ------------------------------------

S Ot ot OV

N

[3.2  Local reciprocity law| . . . . . . ...

[> 2015-01-30: Lubin—Tate theory|

[>.1  Lubin—Tate formal group laws| . . . . . . . .. ... ... .. ...

6 2015-02-02: Formal groups|

[6.1  Morphisms of formal groups| . . . . . . .. ... ...
[6.2  Lubin—Tate tormal group laws| . . . . . .. .. ... .. ... ...

[7.1 Summary of last time|. . . . . . ... ...

[44 H 77

[8 2015-02-06: Maximal totally ramified abelian extensions|

Ne)

11
11
11

12
12
13
13

14

15



(10 2015-02-11: The global Artin map|

(10.2 Global Artinmap| . . . . . . . . ... ... ... L.

(11 2015-02-13: Higher ramification groups|

(11.1 Lower ramification groups| . . . . . . ... ... .. ... ...
(11.2 Upper ramification groups| . . . . . . . . . . . . .. ... ...
M3 Mainresultl . . . ... ... ... ... .. ... ...

(12 2015-02-16: Global class field theory|

[12.1 Statement of global class field theoryl . . . . . . ... .. ...
(12.2 Hecke characters and Hecke [-functiond. . . . . . . . ... ..

(14.1 Density theorems| . . . . . . . . ... ... ...
[14.2 Higher-dimensional Galois representations| . . . . . . . . . ..

(17 2015-02-27: Adelic reciprocity law|

A8 2015-03-02: Idele class characters

(19 2015-03-04: Reciprocity for idele class characters|

(19.1 The Langlands correspondence|. . . . . . . . ... .. ... ..

(20 2015-03-06: Complex multiplication|

(21 2015-03-09: CM and the class group|

[23 Several missing lectures|

(24 2015-04-13: Rank and modularity of elliptic curves|

[24.1 Final project| . . . . . . . ... ...

(25 2015-04-17: CM elliptic curves and Heegner points|

26 2015-04-24: Galois cohomology|

16
17
17

18
18
19
19

20
20
20

21

23
23
24

24
24
25

25
26

27

28

29
30

31

32

34

35

36
37

37
38

38



[27 2015-04-27: Galois homology] 39

28 2015-05-06: Brauer groups| 40

29 2015-05-08: Brauer groups of local fields| 40

1 2015-01-21: Introduction

References:
e Milne’s notes on class field theory
e Lang, Algebraic Number Theory
e Neukirch, Algebraic Number Theory (very abstract)

Let k be a global field. Let K/k be a Galois extension of degree n with Galois group
G. Let f = dg/ be the relative discriminant. Let p be a prime ideal of O. We can factor
POk = (P, --- P,)°, where efg = n; e is the ramification index, and f = [Ok/P; : Oy/p] is
the residue degree. We have e =1 <= p 1, in which case we say p is unramified in K/k.

We have an Artin map P; — Frobp, € Gal(K/k) such that Frobp,(z) = 2¥* mod P; for
all z € Ok —p;. Moreover, if ¢ € Gal(K/k) such that o(P;) = P;, then Frobp, = o Frobp o~

Special case: if Gal(//k) is abelian, then Frobp, = Frobp, depends only on p, so we
denote it by Frob,.

Remark 1.1. From now on, we will deal only with abelian extensions unless otherwise speci-

fied.

Definition 1.2. Let I(f) denote the group of fractional ideals of Oy, that are prime to §. This
is a free abelian group with respect to ideal multiplication.

The Artin map is thus a homomorphism p — Frob, : I(f) = Ggx.

Aside 1.3. Let Dg/;, denote the relative different, defined by
D ={rekK | tric/n(zy) € Op Yy € Ok}

Note that dx/r = Nk/xDg/k, and the trace map trg ;. is a nondegenerate symmetric bilinear
form.

Basic questions:
(1) What is the image of the Artin map? In fact, it’s surjective.
(2) What is the kernel of the Artin map? Denote
Sply ), = {p €I(§) ‘ Frob, =1} = {p ’ p splits completely in K} .

Amazing fact: Sply , determines K uniquely! More precisely, if Sply, = Spl/, then
K = L as k-algebras.



(3) For which subgroups N of finite index in I(f) is I(f)/N = Gal(K/k) for some abelian
extension K of k7 (In other words, which subgroups of I(f) can be kernels of an Artin
map?)

(4) How can we construct the maximal abelian extension k%°/k? This is wide open even
for real quadratic fields.

1.1 Quadratic reciprocity

Let k = Q and K = Q(v/d), where d € Z such that d = 0,1 (mod 4). Then O = Z [dz‘/ﬂ
and f = dZ = d. Write Gal(K/k) = {1,0}. The split primes are

SPlk/k = {p prime ‘ 7> =d (mod p) has 2 solutions} )

Ezxample 1.4. Does p = 163 split in Q(v/—3)? It’s not immediately clear how to efficiently
determine whether 2> = —3 (mod 163) has two solutions.

Gauss solved this by proving the quadratic reciprocity law. Define the Legendre symbol

0 ifalp,
a
<—) =<1 ifz?=a (mod p) has two solutions,

—1 ifz?=a (mod p) has no solutions.

Theorem 1.5 (Quadratic reciprocity). Let p and q be distinct odd primes. Then

B R O

Corollary 1.6. Whether p € Sply g depends only on the class of p mod d. In fact, p €

Moreover, the kernel of the Artin map consists of all ideals aZ with a = [, pj* - 1, q;cj :
where the p; are split, ¢; are inert, and ) i f; is even.

1.2 Cyclotomic fields

Let K = Q((n), where N is odd or 4 | N. Then dk;g = NZ, and we have an isomorphism
a0, (Z/N)* = G, where 0,(Cy) = (%

What does the composition with the Artin map I(NZ) — Gal(K/Q) = (Z/N)* look
like? We have Frob, = 0, so Splg, = {p|p=1 mod N}. Hence, the kernel of the Artin
map is {aZ |« =1 mod N}.

Theorem 1.7 (Weber). Fvery abelian extension of Q is contained in some cyclotomic field

Q(¢n), e, Q% = Q(¢o) = Uy Q(Cw)-

Ezercise 1.8. Let (—1)* = —4, 2* = 8, and p* = (—1)112;117 if p is odd. For which N do we
have Q(v/p*) € Q(Cw)?



2 2015-01-23: Class fields and reciprocity

Let K/k be an abelian Galois extension with Galois group G of order n, and let | = dgx.
We want to study the Artin map I(f) - Gx/,. What is the kernel?
Given an ideal m C Oy and a subgroup K of I(m) of finite index, is there an abelian field

extension K of k such that the Artin map induces an isomorphism I(m)/K — Gg/? If so,
how many (up to k-isomorphism)?

2.1 Hilbert class fields
Recall the class group Cl(k) = I(Oy)/ Py, where Py, is the subgroup of all principal ideals.

Theorem 2.1 (Hilbert class field theorem). There is a unique (up to k-isomorphism) abelian
extension H of k, called the Hilbert class field of k, such that Art : Cl(k) = Gryi s an
1somorphism.

Corollary 2.2. (1) Every prime ideal of k is unramified in H.
(2) The primes that split in H/k are exactly the principal prime ideals of k.
(8) H is the mazimal abelian extension of k such that every prime ideal of k is unramified.

Remark 2.3. H may not be the maximal extension of k£ such that every prime ideal of k
is unramified. For example, H might not have trivial class group, so we can take its class
group and get a nonabelian unramified extension of k. By the Golod-Shafarevich theorem,
iterating the class field construction can sometimes even result in an infinite tower.

Ezample 2.4. Let k = Q(v/d), where d = pip}---p?, where 2* = 8, (=1)* = —4, p* = p
for p = 1 (mod 4), and p* = —p for p = —1 (mod 4). Then K = Q(/p},V/p3, ..., /DF)
is unramified over k, so K C H := Hil(k), giving a surjection Gal(H/k) — Gal(K/k) =
(Z/2)""1. This was studied by Gauss as genus theory.

2.2 Ray class fields

Given a number field k, we have real embeddings ¢ : k — R and conjugate pairs of complex
embeddings 0,7 : k — C, which we think of as “primes at infinity”. If ¢ is such an infinite
prime, then we get a completion k < k,, where k, is the usual completion of k with respect
to the topology |z|, = |o(x)|. (Similarly, if p is a finite prime, we get a completion k — k,,
the p-adic completion of k.)

A cycle of k is a formal product m = p{'p5* - - - pSroilos? - - - 055 = mymy,, where the o; are
real primes, ¢; > 0, and ¢, € {0,1}. We denote

I(m) = {fractional ideals of k prime to m} = {fractions ideals of k prime to ms},

P(m) = {a0Oy } a=1 (mod*m), o prime to m;},

where o = 1 (mod*m) means o =1 (mod m) for all 7 and o;(a)) > 0 when ¢; = 1.

Fact 2.5. |I(m)/P(m)] < oc.



Theorem 2.6. There is a unique abelian field extension Hy, of k such that Art : I(m)/P(m) —
Gal(Hy/k). Again,

Splp, /i = {0k |a=1 (mod*m), YOy prime} .
Ezxample 2.7. (1) Let k = Q and m = N - co. Then

I(m) _ {nZ | (n,N) =1}
Pm) {nZ|n>0,n=1 (mod N)}

ThllS, Hm = Q(CN)
(2) Let m = N. Then I(m)/P(m) = (Z/N)*/{%1}, so Hy, = Q((n)t = Q(¢y + (3.

~ (Z/N)*.

2.3 Reciprocity law

Theorem 2.8 (Reciprocity law of class field theory). Let L/K be a finite abelian extension
of global fields, and let S be the set of primes of K ramified in L. Then there is a cycle m (the
modulus ) in which the primes are exactly S, and a surjective map Arty g : I(m) — Gal(L/K)
such that:

(1) ker(Arty i) 2 P(m), d.e., L C Hy;
(2) ker(Artp k) = {NL/KA | A is a fractional ideal of L prime to meL}.

Moreover, given a cycle m and a subgroup P(m) C K C I(m), there is a unique finite abelian
extension L of K giving an isomorphism Artyk : I(m)/K — Gal(L/K).

Corollary 2.9 (Kronecker—-Weber theory). Every finite abelian extension of Q is contained
in Q(Cy) for some N.

Question: How do we construct all H,? Note that K% = U Han-

3 2015-01-26: Local class field theory

Last time, we defined the ray class field H,, of K. Moreover:

ker(ArtL/K) = {NL/KO | aC L} . P(m),
Sply k= {NL/KP ’ PcCOp prime},
P(m)={aO0k |a=1 mod m}.

Note 3.1. We consider the extension C/R to be ramified.



3.1 Local fields

Definition 3.2. A local field is a locally compact topological field with respect to a nontrivial
valuation |-| : K — Rsgq such that |1| =1, |ab| = |a| - |b], and |a + b] < |a| + |b|.

Proposition 3.3. Every local field is one of the following:
(1) R or C (archimedean);

(2) a finite extension of Q,, which is a completion of a number field;

(3) a finite extension of F,((x)), which is a completion of a global function field.

Hence, every local field arises from the following construction: Let K be a global field, let
p be a (finite or infinite) prime of K, and define v,(z) = a if 2Ok = p® - m with (m,p) = 1.
Then |9c\p = ¢~*@) makes K into a valued field whose completion is a local field .

Theorem 3.4. Let K be a nonarchimedean local field. For any n > 1, there is a unique (up
to K-isomorphism) unramified extension K, of degree n. The maximal unramified extension

of K is
K = K= K(uw),
pIN

n>1

where uy = (Cy) is the group of N-th roots of unity in K. Moreover, denote the maximal
ideal of O by mg = 7Ok (where w is a uniformizer of K, i.e., a prime element of Ok ),
and write k = Ok /mg = F,. Then we have an isomorphism

Cal(K""/K) = Gal(k/k) = Gal(F,/F,) = (Frob,)"”,
under which the topological generator Frob, € Gal(F,/F,) corresponds to Frob.

Remark 3.5. Hence, every unramified extension of a nonarchimedean local field is abelian!

3.2 Local reciprocity law

Theorem 3.6 (Local reciprocity). Let K be a nonarchimedean local field. There is a group
homomorphism, the local Artin map ¢ : K* — Gal(K®/K) such that:

(1) For any unramified finite extension L/K and any uniformizer m of K,

¢ ()|, = Froby x = Froby .

(2) For any finite abelian extension L/K, N xL* C ker(pk), and ¢ induces an isomor-
phism
YL/K - KX/NL/KLX — Gal(L/K)

In particular, we have a commutative diagram

K* —2  Gal(K®/K)

| |

K*/NpxL* —=— Gal(L/K).



Remark 3.7. However, for topological reasons, g itself is not surjective.

Theorem 3.8 (Existence theorem). Let N < K* be a subgroup. Then the following are
equivalent:

(1) There exists a finite abelian extension L/K such that NpjxL* = N.
(2) [K*: N|] < oo and N is open in K*.

Remark 3.9. If char K = 0, then [K* : N| < oo implies N is open in K*. If char K > 0,
then the openness condition is an honest condition: there are non-open subgroups of finite
index in K*.

Corollary 3.10. Let K be a nonarchimedean local field with residue field k. If char K = 0
and char k # 2, then K has exactly 3 quadratic field extensions (up to isomorphism,).

Proof. By the existence theorem, quadratic field extensions of K correspond to subgroups
N < K* such that [K* : N] = 2. Fix a uniformizer m; then K* = 7% - O}, so

K> J(K7)* 2 (m) [ (7*) x O [(0%)* = (Z/2) x O/ (Og)*.

Note that O = (Ok/mg)* - (1 4+ 70k), so Og/(Ox)* = (Fx)/(Fy)* = Z/2. Thus,
K*/(K*)? = (Z/2) x (Z/2), and quadratic field extensions of K correspond to elements
of order 2 in this group; there are three of these. O

4 2015-01-28: Existence and Lubin—Tate fields

Ezxercise 4.1. (1) Let K be anonarchimedean field. Then1 — 14+mg — O — (Og/mg)”* —
1 is exact. Is it split?

(2) When is K*/(K*)? trivial in characteristic 27

A residue character of K is a character of the residue field Ok /m.
Let us state the existence theorem more precisely:

Theorem 4.2. Finite abelian extensions of K correspond to open subgroups of K* of fi-
nite index, via L — Np,gL*, which is bijective. Moreover, if L1 C Lo, then ]\/Ll/KLlX D
NLQ/KL;, ]\](Li< N L;) == NLl/KLi( . NLQ/KL;, and N(L1L2> == NLl/KLT N NL2/KL§<

Here are two towers of abelian extensions. Note that K* = 7205 = 7%(O /mg)* - (1 +
my ). The first tower is K" = (J, -, K", where K" is the unique unramified extension of
K of degree n. This is associated to (7")K x O). Hence, K" corresponds to Oj; more
precisely, ker(pg)|gun = Of.

Corollary 4.3. pg|gun @ K* — Gal(K""/K) has kernel Oj; this map is given by ™ —
FI‘ObK.



The second tower depends on the choice of uniformizer 7, and corresponds to the subgroup
72(1 +mY) < K*, which is an open finite index subgroup of K*. Class field theory gives a
unique field extension K, of K such that Gal(K,,/K) = K*/7%(1 + m%). Since 7%(1 +
my) = Nk, K, there exists a uniformizer 7, of K, such that Nk _, m, = 7, so 10k =
ﬂ-'rTzLOKw,n'

Corollary 4.4. The above construction gives a tower Ko C K1 C Ko C ... of totally
ramified abelian extensions of K. Their union K, =, Kz, corresponds to 7% and is a
mazimal totally ramified abelian extension.

Remark 4.5. If u € O, then K, might not be the same as K,. Our eventual theorem will
be that K% = K, K"".

We have a commutative diagram with exact rows

Up

] —— Op ——— K~ » L > 0
l L@K l
1 +— Gal(k/k) +— Gal(K®/K) « I« 1

However, oy is surjective but not injective. One thing to do is to take a limit and get
1 - O — K — Z — 0. The second way is via Langlands idea.

The weight group is the inverse image of the discrete group generated by the Frob,, i.e.,
Wk = Ik Frob%(. Put a topology so that Iy < W@ is open. Now, the one-dimensional
characters of Wy are Hom(W @, C) & Hom(K*,C*) = Hom(GL;(K), GL{(C)).

5 2015-01-30: Lubin—Tate theory

The local reciprocity law gives us a morphism ¢ : K* — Gal(K®/K) such that:

(2) If L/K is a finite abelian extension, then ¢,k : K* — Gal(L/K) is surjective, and
kergpL/K = NL/KLX.

Our goal for today: For a uniformizer m of K, construct its associated mazimal totally
ramified abelian extension K, = J, <, Kr» such that:

(1) Kﬂ',n C Kﬂ',nJrl

(2) K,,/K is totally ramified of degree K, : K] =¢"" (¢ — 1), where ¢ = |Ox /mg]|.

5.1 Lubin—Tate formal group laws

Let A be a commutative ring, and let A[[T]] be the ring of formal power series over A. Given
f € A[T] and g € TA[T], the composition f o g is well-defined. If g,h € TA[T], then

folgoh)=(fog)oh. However, fo(g+h)# fog+ foh.



Lemma 5.1. Let f = > 77 a,/ 7" € TA[T]. Then ay € A* <= there exists g € TA[T]
such that fog="T. In this case, g is unique and go f =T.

Definition 5.2. A one-parameter formal group law over A is a power series F(X,Y) €
A[X, Y] such that:

(1) F(X,Y)=X+Y + (terms of degree > 2).

(2) F(F(X,Y),Z) = F(X,F(Y,Z)).

(3) F(X,Y) = F(Y,X).

Proposition 5.3. (1) F(X,0) =X and F(0,Y)=Y.

(2) There eists ip(X) € XA[X] such that F(X,ip(X)) = 0.
Proof. (1) Let f(X) = F(X,0) = X + (terms of degree > 2). By associativity,
F(F(X)) = F(F(X,0),0) = F(X, F(0,0) = F(X,0) = f(2).
Since f(X) € XA[X]), there exists g € X A[X] such that fo g = X. Hence,
f=Tfo(feg)=(foflog=fog=X.

(2) Suppose G(X) =}, -, b, X" satisfies F((X,G(X)) = 0. Then

X+G(X)+ ) a;X'G(X
1+7=2
So by = —1. Proceeding inductively, we can construct ip(X). ]

Remark 5.4. For any formal group law F, we have F(X,Y) = X +Y + XY F(X,Y) for
some power series F7(X,Y).

Remark 5.5. If F is a formal group law over Oy, for any finite extension L/K, we can define
a new addition on my, by a +p b = F(a,b). This makes (my,+r) into an abelian group.

FExample 5.6. The power series F' = X + Y is a formal group, called the additive formal
group. It satisfies (mg,+r) = (mg, +).

Ezample 5.7. The power series F' = X+Y + XY = (1+X)(1+Y)—1is a formal group, called
the multiplicative formal group. There is an isomorphism a — 1+ a : (mg, +7) = (1 4+ m, ).

FExample 5.8. There is a formal group law associated to an elliptic curve
E:y? + a1xy + asy = 2° + asx® + asx + ag.

We want to understand the local behavior near 0 = co. Note that % is a uniformizer at 0.
Write © = >0 , it and y = > .o o bit'. Given Py = (z(t1),y(t1)) and Py = (z(t2), y(t2)),
we can write P, + P, = E (t1,t5) for some formal power series E. The abelian group axioms
for E imply the corresponding axioms for E, which is therefore a formal group law.

10



6 2015-02-02: Formal groups

6.1 Morphisms of formal groups

Let F' and G be formal groups over A. A morphism of formal groups f € Hom(F,G) is a
power series f € TA[T] such that f(F(X,Y)) = G(f(X), f(Y)).
Fix a formal group F. For f,g € TA[T]], define f +r g = F(f(X),9(X)) € XA[X].

Lemma 6.1. (1) (TA[T],+F) is an additive group.
(2) (Hom(F,G),+¢q) is a subgroup of (TA[T],+¢)-
(3) (End(F),+p,0) is a ring.

6.2 Lubin—Tate formal group laws

Let K be a nonarchimedean local field with ring of integers Ok and maximal ideal myx =
7TOK. Let q = |OK/I’[1K| Define

Fr={f€Ok[T]| f(T)=7T+ (deg >2), f(T)=T? (modm)}.
Ezxample 6.2. f(X)=7X + X? € F,.
Ezample 6.3. Let K = Q. Then f(z) = (1+2)? —1=pz+ ())z*+--- + 2P € F,.

Theorem 6.4 (Main theorem). (1) For each f € Fy, there is a unique formal group law
Fy such that f € End(Fy).

(2) Fy is an Ok-module, i.e., the map a — [a]; : Ox — End(F}) is a ring morphism.

(3) For f,g € Fr, Hom(F}, Fy) is also an Og-module via a map a — [algf : Ox —
Hom(Fy, F,) such that [a], s is an isomorphism <= a € Oj. In particular, any two
Fy, Iy are tsomorphic.

Lemma 6.5 (Basic lemma). Given f,g € Fr and a linear form ¢y = > | a;X; with a; € Ok,
there is a unique ¢ € Ok[[ X1, Xo, ..., X,] such that:

(1) ¢ = ¢y + (deg > 2).

(2) f(¢(X1a>Xn)) = ¢(9(X1)779(Xn))f i.e., fOQSZ qbog.

This lemma implies the theorem. Indeed, take ¢; = X +Y and g = f. Then there is a
power series Fy € Ok [ X, Y] such that Fy(X,Y)=X+Y + (deg > 2) and fo F; = Fyo f.
By uniqueness and the fact that ¢; is symmetric, Fr(Y,X) = F¢(X,Y). Now we need to
check Fy(Fy(X,Y),Z) = Fy(X, Fy(Y,Z)). Look at ¢ = X +Y + Z, g = f, and check that
both sides give ¢ in the lemma, e.g. for the left side,

and
f(Ff(Ff(Xay)az)) :Ff(f(Ff(X7Y)7Z)) :Ff(Ff(f<X’Y>>’Z)'

11



This proves part (1) of the theorem.

For part (3), given f,g € F, and a € Ok, take ¢; = ax in the lemma. Then there is a
unique ¢ = [a]y s € Ok[X] such that ¢ = aX + (deg > 2) and f(¢(X)) = ¢(g(X)).

We need to check that Fro ¢ = ¢ o F,. Take ¢y = aX + aY. Then Ff(¢(X),o(Y)) =
O(X)+ oY)+ (deg > 2) = aX +aY + (deg > 2), so

JFH(D(X),0(Y))) = F(f 0 ¢(X), f o o(Y)) = Fy(p 0 g(X),d0og(Y)),

so ¢ satisfies the conditions of the lemma. Applying the same argument to ¢ o F}, proves
Fro¢p=¢okF,

A similar approach using the basic lemma can be used to show [a + 0], s = [alg, s + [blg.s,
[alg.; © [Dlng = [abln.s, and X = [1]; = [aa™ ;. = [alg.s o [a™ s O

7 2015-02-04: Construction of Lubin—Tate extensions

7.1 Summary of last time

Last time, we proved the following theorem:

Theorem 7.1 (Main theorem). (1) For each f € Fy, there is a unique formal group law
Fy such that f € End(Fy).

(2) For a € Ok and f,g € Fr, there is a unique [aly; € Ok[X] such that [al,; =
ar + (deg > 2) and [al,r o f = goalss. Moreover, this gives an additive group

homomorphism
(OK7 +) — (HOHI(Ff, Fg)7 +Fg)’
a v lalg. s
Moreover, [a]ng © [blgf = [ablns, so [algf is an isomorphism <= a € OF. In

particular, any two Fy, F, are isomorphic.
(3) The map
(Ok, +,+) = (End Ef, +p,,0),
a— laly = lalys
is a ring homomorphism, making Fy into a formal Og-module.

Example 7.2. 1] =T, [n]; = f.

Our proof was conditional on the following lemma:

Lemma 7.3 (Basic lemma). Let f,g € Fy, and let o1 =), a;,X; be a linear form. There is
a unique ¢ € Ok[ X1, ..., X,] such that ¢ = ¢1 + (deg > 2) and ¢po f =go ¢.

Ezample 7.4. [a+ by s = [algr +F, [blg,r

12



7.2 Proof of the “basic lemma”

Now let us prove the lemma. By induction, we’ll prove that for » > 1, there is a unique
polynomial ¢, of degree < r such that ¢, = ¢1+(deg > 2) and ¢,(f(X)) = g(¢,(X))+(deg >
r+1).

For r = 1, this is trivial with the original ¢;. Suppose we have a unique such ¢,.
Then ¢..1 = ¢, + ¢, where 9 is a homogeneous polynomial of degree r + 1 such that

Gri10f=go g1+ (deg >r+2). So
oftpof=(o+)of=go(dr+¢)+(deg>r+2)
Since f(X) and g(X) are both of the form 7X + (deg > 2),

9(0r(X) + (X)) = g(¢r(X)) + 7 (X) + (deg = 1 + 2)
and Y(f(X)) = 7" (X) + (deg > 7 + 2). So we must solve

¢ (f(X)) + 7 (X) = g(6(X)) + m(X) + (deg > 7 + 2).

Hence,

9(6(X)) = & (f(X))
m(mm—1)
Note that 7" — 1 € Oj. Since g(¢-(X)) = ¢.(X)? and ¢, (f(X)) = ¢,(X?) mod 7, we have

9(0-(X)) — 0.(f(X)) = 0 (X)) — ¢, (X ):E 0 (mod 7), we can divide by 7, giving us ¢,41.
Take ¢ = lim, oo ¢y = 1 + 3,25(0, — d-1) € Og[[X]). =

V(X)) = + (deg > r +2).

7.3 Construction of “maximal” totally ramified abelian extension

We construct a totally ramified abelian extension K of K associated to a uniformizer 7. Let
K be the algebraic closure of K. Let z — |z| = ¢~ °% : K* — R, be the absolute value
on K. The image of the absolute value is ¢”.

The absolute value extends uniquely to an absolute value || : K> R- o whose image is
qV. Define

OF:{I’GF: ‘l" < 1},
mg={zeK:|z|<1}.
Then my is the maximal ideal of the local ring O.
A formal group f € F, gives us a formal group Fy, which yields an Og-module A =

Ay = (mg,+r,). Since all the Fy are isomorphic, this is independent of f, so we’ll choose
f =mX + X1 for convenience.

Definition 7.5. Define the n-torsion of A = Ay by

A, Y ker[r"]; = ker[n]},

where we denote f) = f and f" = fof("=V. Note that [r]; = f and [7"]; = [r]0.. .o[n]; =
o,

13



Proposition 7.6. A, is an Ox-module give by A\, = {93 cmye: fM(X) = 0}.

If we take f = 71X + X9, then f(™ = X (mod 7). The theory of Newton polygons tells
us all roots of f(™ have absolute value < 1.

Theorem 7.7. K, =J,>; K(A,).

We'll prove this next time.

8 2015-02-06: Maximal totally ramified abelian exten-
sions

FEzercise 8.1. Let K be a local field and L/K a finite unramified extension. Then NL/K(’)E =
Ok.
Today, we construct a totally ramified extension of K associated to 7 such that K% =

K,.K"". In particular, we will show there exists a unique map px : K* — Gal(K%/K) such
that:

(1) @%)\Kun = Frobg for any uniformizer of K, and pk(a)|gun =1 if a € OF.

(2) If L/K is a finite abelian extension, then pr/x = ¢k|r : K* — Gal(L/K) satisfies
kergpL/K = NL/KLX.

Given a uniformizer m, we obtain F,, which gives an isomorphism class F, = {F}} of
formal Ok-modules. Last time, we constructed from this a genuine Og-module A = Ay =
(mz, +r,) with submodules

Ap =ker([7"]; : A = A) = {z € mp: ™ (z) =0}.
Lemma 8.2. If f =7X + -+ X9, then A, = {x c K : f™(x) =0}.

This follows from the theory of Newton polygons: given f(z) = ag+ a1 X + -+ + a, X"
with a; € Ok, we construct the polygon with vertices P; = (i, ord, a;). The Newton polygon
of f is the convex hull of these points. Each segment P;P; tells us there are j — ¢ roots o of
f with ord, o = —slope(P,F;).

If f=nX+---4 X9 then the Newton polygon of % = 7 +---+ X9 ! has only a single
edge from (0,1) to (¢ —1,0), so f has ¢ —1 roots ay, ..., a,; of order q%l. Hence, K(«;)/K
is totally ramified for each i.

Lemma 8.3. A, = Ok /7" as Og-modules. In particular, Aute, (A,) = (Ok /7).
Proof. See Milne’s notes. O
Theorem 8.4. Let K., = K(A,) and K, = Un21 K.

n—1

(1) K n/K is a totally ramified abelian extension of degree (¢ — 1)q

14



(2) There are isomorphisms @r., : (O /T")* — Aute, (A,) — Gal(K,,,/K) defined by
Orn(a)(N) = [a]f(X) for X € A,.

(3) T € NK‘/r,n/KK;,n'

Remark 8.5. The kernel of ¢, : K* — Gal(K, ,/K) is 7% x (1 + 7" Of). How do we know
ker rn = Nk, ./ K7 (Exercise: Prove this without class field theory.)

Let f(X) = 7X + -+ X9 as before. Choose a nonzero root m; such that f(m) = 0.
Now choose 7y such that f(m) = m. Continuing, choose 7, such that f(m,) = m,_1. Then
we obtain a tower K C K(m) C K(m) C --- C K(m,) such that [K(m) : K] = ¢— 1 and
[K(miy1) : K(m;)] = q for all ¢ > 1. Moreover, m; € A,,, so K(m;) C K(A;) for each i.

The Galois group Gal(K, ,/K) acts on A, and commutes with the Og-action, giving an
embedding Gal(K,,,/K) — Auto, (A,) = (Og/7")*. But (Ok/7™)* has (¢—1)¢" elements,
hence so does Gal(K ,,/K). This proves K., = K(A,) = K(m,) for all n, proving (1) and
(2) of the theorem.

For part (3), write f"l(z) = %of(”*l)(X) =4+ (fODX)) =4+ X @D
Then fI"/(7,) = 0, so by a degree argument, fI"(z) is the minimal polynomial of m,. Thus,
Ni, /5 (Tn) = (=1)@ D" 'z = 7 unless ¢ is even and n = 1. In the latter case, consider
instead Nk, ,/x(—m1). O

For each 7, we have constructed a totally ramified abelian extension K, = J,~, K, and
a map

or  K* — Gal(K,/K),
T 1,
u— [u 'y Vue Of.

From this, it is clear that K, N K** = K, and we can extend to a map ¢, : K* —
Gal(K,K""/K) such that ¢, |k is as before, and ¢, |k, is what we just defined.
Here’s what we still need to show:

(1) K K" = K.
(2) ¢ = pr does not depend on 7.
(3) ¢lr : K* — Gal(L/K) has kernel Ny xL*.

9 2015-02-09: Local Kronecker—Weber

Note that the map ¢, mentioned last time factors as K* = 72x 0% — O — Gal(K,K""/K).
Hence, for ¢ = 7" - v with u € OF,

(1) #r(a)|xun = (Frobg)™;
(2) r(a)lx, = px(u)lk,, where o (u)(A) = [u™f(A) for A € Ay = U,y An.

Recall the statement of local class field theory: oy : KX — Gal(K®/K) is a map such
that:

15



(1) ¢x(a)|xum = (Frobg)ord=e.

(2) For L/K finite abelian, ¢ /x = ¢x|r : K* — Gal(L/K) is surjective with ker ¢ x =
Npx L.

Proposition 9.1. Neither K, K"" nor ¢, depends on the choice of .

Proof. See Milne’s notes. The idea is to show that, given w = 7u with v € O, for any
f € Fr and g € F, there is an isomorphism Fy = F}; of formal groups over O = O

Theorem 9.2 (Local Kronecker-Weber). K% = K, K",
Ezample 9.3. Q5" = Qp(Gpe) - Qu(Ga : (n,p) = 1).

Caution 9.4. We don’t have this sort of theorem for global fields, not even for finite abelian
extensions.

KUTL

Our proof of the theorem will proceed as follows:
(I) If K, C L C K* with L/K, totally ramified, then L = K.
(1) If K, C L C K% with L/K, unramified, then L C K,K"".

(ITI) If K, ¢ L C K with L/K, finite of degree m, then there is a totally ramified
extension L; of K such that L C L; K" = LK.

Granting these, if L/K is a finite abelian extension, then LK, C L,K"* = LK"" for L;/K,

totally ramified, so Ly = K. Thus, L C LK, C KK} C K;K"". O

To see (II), suppose L = K (a). Descend to finite level: L'/K,,, with L = K;L' and
L' = K; (). Then L'/K factors into L'/L"/K with L"/K unramified and L'/L" totally
ramified. Hence, L' = K ,,L", so L = K, L" C K;K"".

For (III), Gal(LK}"*/ K,) — Gal(K,K!""/K,) = Gal(K""/K) corresponds to @ Z/m; —
Z/m, where m; | m. This map splits, i.e., Gal(LK"/K,) = (t) x H. Take L; = (LK""){").
Then Gal(LKY' /L) = Gal(KK“'/K;) = (T).

For (I), see Milne’s notes (Lemma 4.9) or the sections on higher ramification in Serre’s
Local Fields. We'll discuss this more next time.

10 2015-02-11: The global Artin map

Last time, we determined that we need the following lemma:

Lemma 10.1. If K, C L C K® with L/K, totally ramified, then L = K, i.e., K. is the
maximal totally ramified abelian extension of K.

Using higher ramification groups with the upper numbering, |G"/G" | < ¢ = |Ok /mk]|.

Ezample 10.2. Let K = Q, and m = p. Choose f(z) = (1+ z)? — 1 € F,. Then f™(z) =
(1+2)”" —1, and

Agy, {$Gmf " (z) } {zeQ,: (z+1)"" =1},
(Q@p)rn = Qp(Agn) = Qplppn).
Since Q" = U, Qp(ttn), We obtain Qg = Qp(t10) 1= U,zy Qpltn)-
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Theorem 10.3. Every finite abelian extension of Q, is contained in a local cyclotomic field
Qp(pn) for some n.

10.1 Global Kronecker—Weber theorem

This has a global analogue:

Theorem 10.4 (Global Kronecker—Weber). FEvery finite abelian extension of Q is contained
in Q(uy,) for some n, i.e., Q¥ = Q(ps0)-

First, we prove a lemma.

Lemma 10.5. Let L/Q be a finite Galois extension, let G = Gal(L/K), and let S be the set
of prime ideals of L that are ramified in L/Q, i.e., S = {p € SpecOr, :p | dr}. Forp € S,
let 1(p) be its inertia group. Then G = (I(p) :p € S).

Proof. Let H= (I(p):p € S). Let M = L¥. Then every prime ideal of M is unramified in
M/Q. But we know any prime dividing the discriminant dy; is ramified, hence |dy;| = 1, i.e.,
M = Q. 0

Moving on to the proof of the theorem, let L/Q be a finite abelian extension. Then

D, = Dy if pnQ = p'NQ. Since G = Gal(L/Q) = (I(p) : p | dr.), we have L, C Q,((,r,Cn)-
Let K = Q((,s : p | dp) and L' = KL. Our goal is to show L' = K, which implies
L C K. First notice L}, C Q((,s5,Cn) if p’ N L =p. So we can assume L D K by replacing

pri
L with L. Tt remains to show L = K.

Since K C L, we have |G| = [L : Q] > [K : Q] = [],,, ©(p°r). On the other hand,
G=(I(p):pld),so G <TL,[I(p)| <II, (). Thus, |G| =]I,¢(%)and L=K. O

10.2 Global Artin map
Let L/K be a finite abelian extension of global fields. There is a cycle m and a map
on: Iic(m) > Gal(L/K),
alp) = (Froby) | = (p. /1) = (£45).
satisfying the following conditions:
(1) Px(m) ={aOk:a=1 (mod*m)}.
(2) @ is surjective.

(3) kerpw = Pg(m) - Np/gIp(m).

FExample 10.6. Let us describe the reciprocity law for Q. Given a finite abelian extension
L/Q, by Kronecker-Weber, L C Q((,,) for some m. (Note that Q((,,) is the ray class field
of m.) Take

m + Io(m) = Gal(L/Q),
L/Q
v <T) |
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Let 0 € Gal(L/Q). Take 7 € Gal(Q((n)/Q) such that 7|, = 0. Then 7 = 7, : § — (%
for some a € (Z/m)*. By Dirichlet, there are infinitely many primes p such that p = a
(mod m). So

11 2015-02-13: Higher ramification groups

Guest lecture by Vlad Matei. A reference for higher ramification group is [S, ch. IV].
Our goal for today is to prove that, if L/K is totally ramified, then L = K.

11.1 Lower ramification groups

Definition 11.1 (Lower ramification groups). Let K be a nonarchimedean local field and
L/K a finite Galois extension. For n > —1, define

Gi={0ceG:ox)=r (modn}™)VzeO,}.

Note that G_; = G is the whole Galois group, Gy = [ is the inertia group, and G,, O G,
for all n. We can also characterize these as

G, = ker(G — Aut(Op /7" OL)),
which makes it clear that G,, is a normal subgroup of G.
Proposition 11.2. With notation as above,
(1) G, ={o € G:v(o(ry) —mL) > n}.
(2) N, Gn = {1}
(3) Go/G1 = kf, and forn > 1, G,/Gni1 = (kr,+), where ky, is the residue field of L.

Proof. (1) Reduce to L/K totally ramified. Then O = Og|[n;] for 71, a uniformizer. If

o(mp) = 7 (mod 7*h), then it follows for polynomials in 7.

(2) If 0 # 1, then o(nr) # 7w, so v(o(ng) — ) is finite. Hence, o ¢ G,, for sufficiently
large n.

(3) See [S, TV.2.6]. O

What happens for L = K,,,? We have an isomorphism O%/(1 +m") — G sending
(14 m") /(14 m") onto Gyi_;.
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11.2 Upper ramification groups

Define ¢(u) = fou (Ggl—th) This is continuous, piecewise linear, concave, strictly increasing,
and satisfies ¢(0) = 0 and ¢'(u) = m when ¢ is linear at u.

From the above, ¢ has an inverse map 1, which is continuous, piecewise linear, convex,
strictly increasing, and satisfies ¢(0) = 0 and ¢'(u) = (G : G,) when 9 is linear at u.

Moreover, if v is an integer, so is 1(v).

Definition 11.3 (Upper ramification groups). Define G¥ = G ,), so that G#® =y for all
u > —1.

Proposition 11.4 ([S| IV.3.14|). Let H be a normal subgroup of G. Then (G/H)" =
G'H/H.

Note 11.5. For K ,,, we have G¥ = G _, for all integers k > 1, where ¢ is the cardinality of
the residue field.

The upper ramification groups of K are limits of higher ramification groups for K.
A jump in the filtration of G' by upper ramification groups is an index j such that G7 #
G for every € > 0.

Theorem 11.6 (Hasse-Arf). For G abelian, jumps are integers. (This can fail for G non-
abelian. )

11.3 Main result
Let G = Gal(L/K) and H = Gal(L/K,), so G/H = Gal(K,/K). We have an exact

commutative diagram

~ ~ v

l— G"'NH — G""' ——— (G/H)"™ —— 1

1 — G"NH > G" » (G/H)" —— 1
N G”TWH N n M n-+1 \ (G/\;'I)n N
Looking at cardinalities of the bottom row, we obtain the result. O]
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12  2015-02-16: Global class field theory

12.1 Statement of global class field theory
Today, we begin our study of global class field theory. Let K be a global field (i.e., a finite

extension of Q or Fy(z)). For a modulus m, recall that
I (m) = {fractional ideals of K prime to m},
Pgk(m) ={aOk :a=1 (mod*m)} C Ix(m),
where o =1 (mod* m) means that ord,(¢ —1) > 1if p | my and (o) >0 for all o : K — R,
0 € M.
Theorem 12.1 (Global class field theory). Let L/K be a finite abelian extension. There
exists a modulus m = my - my, such that:
(1) The Artin map ¢rm : Ix(m) — Gal(L/K) is surjective, and ker ¢ n = Pr(m) -
NL/KIL (m) .
(2) For every subgroup H of Ix(m) of finite index and containing Pk (m), there is a finite
abelian extension L/K such that H = Pg(m) - Ny gl (m).

Fact 12.2. Suppose n C m. If the theorem works for m, then it also works for n. The biggest
ideal m which works for L/K is called the conductor of L/K, denoted fr k.

12.2 Hecke characters and Hecke L-functions

Definition 12.3. A Hecke character of K of modulus m is a group homomorphism Yy :
I (m) — C* such that there is a continuous character

Xt K5 =[] KX x [] K;-—cC*
o:K—R 0,0: K—C
satisfying x(aOk) = Xoo(a)™! for aOk € Py (m). (When we work with adeles later on, we
will see the reason for the inverse here.)
If n C m, then any Hecke character of K of modulus m is also a Hecke character of
modulus n. The biggest modulus for which y is a Hecke character is called the conductor of
X, denoted f,. A Hecke character x of modulus m is called primitive if m = f,.

For a Hecke character x, define the Hecke L-function for Res > 0 by

s = Y AT xmove )

S
0#a<10k ( ) pifx
(avfx)zl

Theorem 12.4 (Hecke). L(s,x) has meromorphic continuation to the complex plane with at
most a simple pole at s = 1, which happens exactly when x s the trivial character. Moreover,
there exists N € C and a product of T'-functions Lo (s, x) such that the completed L-function
A(s,x) = N*2L.(s,x)L(s,x) satisfies the functional equation

A(S, X) = w(X)A(l -5 X_1>7
where w(x) € C is the root number of x and satisfies |w(x)| = 1.
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FExample 12.5. Let x = 1 be the trivial character a +— 1: Ix — C*. Then

L(s, 1) = ) Nl = xx(5).

0#£a<10k (

Example 12.6. Let x : (Z/N)* — C* be a Dirichlet character. This extends to x : Igo(N) —
C*, defined by nZ + x(n). We define xoo(—1) = x(—=1). If x(—=1) = 1, we can take the
modulus m = NZ; otherwise, if x(—1) = —1, we must use the modulus m = (NZ) - cc.

Now let us reformulate global class field theory in terms of Hecke characters. Let L/K
be a finite abelian extension, and let ¢ /xm : Ix(m) — Gal(L/K) be the Artin map. If
p: Gal(L/K) — C* is a Galois character, then

X=POQL/Km Ix(m) — C*

is a group homomorphism satisfying x(aQOf) = 1 for « =1 (mod* m). Hence, x is a Hecke
character of K of finite order.

Theorem 12.7 (Hecke). The above construction induces a bijection

Hecke characters of Galois characters| _ [ I-dim. rep’n of
K of finite order of Gal(K /K) B Gal(K/K) '

13 2015-02-18: L-functions of Hecke characters

Last time, we stated the connection between Hecke characters and 1-dimensional Galois
representations. Today, we explore this further.

Theorem 13.1. Let x be a Hecke character of finite order. Let
-1
L(s,x) = J] (1=x(p)((Np)~)",
p finite
where we define x(p) =0 if p | f. Then:
(1) L(s,x) is absolutely convergent for Res > 1.

(2) L(s,x) has analytic continuation to the complex plane, with a simple pole at s = 1 if
and only iof x = 1 s the trivial character, in which case

2m (QW)TQhKRK

Res L(s, 1) = Res (k(s) =

Y

where ry is the number of real places, ry is the number of conjugate pairs of complex
places, hi is the class number, Ry is the requlator, wy s the root number, and dy s
the discriminant.

(8) L(s,x) satisfies the functional equation

L(s,x) = w(x) - (I'-factors) - L(1 — s, x).
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(4) L(1,x) # 0.
Remark 13.2. One can check explicitly that L(1,x) # 0 by studying log L(s, x).

Definition 13.3 (Dirichlet density). Let A be a set of prime ideals of K. The Dirichlet

density of A is
lo 1—(Np)=5)!
d) — i 2Tl = (V) )
s—1+ log C ()

Theorem 13.4 (Chebotarev density theorem). Let L/K be a finite Galois extension. Then

Sply k= {p € M}; . p splits completely in L}

has Dirichlet density [L - K|~'. In particular, Sply g is infinite.
Proof. Observe that

1 1
logCu(s) = 30D — s = - +0(1)
22 g 2 V)
1 1
:t ; 100
2 2 Wr T 2 T

Fpp=1 b f=lpp22
1
L K ; (Np)® W
fyp/p=1
1

=|L: K + 0O(1).

[ ]pespzl (Np)s ( )
L/K
Thus,
ZpESp] (Np)fs ]_ 10
s LK _ . logr(s) 1
L) = B o) K] TogCul) B2 AT -

Corollary 13.5. Let L/K and M/K be two finite Galois extensions of global fields. If

Proof. Apply the Chebotarev density theorem to LM. m
Theorem 13.6. Let L/K be a finite abelian extension with Galois group G. Then
¢u(s) = TT £s.0).
x€G
where G = Hom(G, C*) is the group of characters of G.

Corollary 13.7. (1.(s)/Ck(s) is holomorphic and is neither 0 nor oo at s = 1.

Proof. Observe that CCL—ES)) = H L(s, x), which has the desired properties. O
KA xGG
x#1
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Theorem 13.8 (Dirichlet density theorem). For o € Gal(L/K), define
Alo) = {P € Mj. : er/k(P) =1, pr/x(p) = U} :

Then d(A(c)) = [L : K]

Ezxample 13.9. Let L = Q((n), K = Q, and 0 = 0, : (,, — (2. Then we recover the original
Dirichlet density theorem:

tog [T (1= V)" = 37 (V)" +0(1) = - 57 57 x (o) ()W)

peA(o) peA(o) P xeG
1 _ 1
=) y 1(0)2 X(P)s =—Y x Yo)log L(s,x)
n (Np)
xX€G b x€G
1
—Liogtu(s)+= 37 w7 o)log Lis, x)
1#£xe@

14 2015-02-20: Character version of CFT

Recall the classical statement of class field theory:

Theorem 14.1 (Global class field theory). For each finite abelian Galois extension L/K of
number fields, there is a cycle m of K such that

er/km : Ix(m) = Gal(L/K),
p = FI‘Ob%L/K
is surjective and has kernel Pg(m) - Np /gl (m), where Pg(m) = {aOk : =1 (mod*m)}.

We reformulate this in the language of Hecke characters. There is a bijective correspon-
dence

{Hecke characters of} 1-dim. representations
K of finite order of Gal(K/K) ’

X <P
X(p) = p(Froby 1/ ).
Theorem 14.2. We have (1 (s) = H L(s,x). Hence, (1(s)/Ck(s) is holomorphic on

XEGal(L/K)"

C.

14.1 Density theorems

Theorem 14.3. Let L/K be a finite abelian Galois extension, and let o € Gal(L/K). Then
A(O’) = {p € Mif( : Fl”Obp7L/K = O'}

has Dirichlet density [L : K]7'.

23



More generally:

Theorem 14.4 (Chebotarev density theorem). Let L/K be a finite Galois extension with
G = Gal(L/K). Let C be a conjugacy class in G. Then

A(C) = {p € M : Froby i = C}

has Dirichlet density %

Proof. See [M, VIII.7.4]. O

14.2 Higher-dimensional Galois representations

To understand a group, we should study its representations. In particular, we can study
Galois representations p : Gal(K/K) — GL(V) = GL,(C), where V is a finite-dimensional
C-vector space. For topological reasons, such representations factor through a finite quotient
Gal(L/K), so we can study representations p : Gal(L/K) — GL(V).

Let B be a prime of L unramified over a prime p of K. We obtain a conjugacy class
Frobg y, and p(Froby , is a linear operator on V. Define

s -1
Ly(s, p) = det (1 — (Np)~*p(Frobgp)) .
This depends only on p. In general, to account for ramification, let I = I/, be the inertia

group. Then define
1

Ly(s,p) = det (1 — (Np)~*p(Frobg ) |v1) .
Multiplying these local factors, we obtain the Artin L-function

L(S,p) = HLP(Svp)'
p

15 2015-02-23: Artin L-functions and adeles

15.1 Artin L-functions

Last time, we defined the L-function L(s, p) associated to an n-dimensional Galois represen-
tation p : Gal(K/K) — GL(V).

Theorem 15.1 (Artin). L(s,p) has meromorphic continuation to the whole complex plane
and satisfies a functional equation L(s, p) = (U-factor) - L(1 — s, p).

Conjecture 15.2 (Artin). IF p is irreducible and nontrivial, then L(s, p) is holomorphic.

Conjecture 15.3 (Langlands correspondence). There exists an irreducible cuspidal auto-
morphic representation m of GL,,(K) such that L(s,p) = L(s, 7).

Remark 15.4. Galois representations for which Langlands’ conjecture is true are called mod-
ular. Modularity is known for representations p : Gal(Q/Q) — GL»(C).
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15.2 Adelic language

Let K be a global field, and let My be the set of primes (finite or infinite) of K. For
v € Mg, let K, be the completion of K at v. More explicitly, each prime v is associated with
an absolute value:

o If 0 : K — R is a real prime, then |z|, = |o(x)|.

e If 0,5 : K < C is a complex prime, then |z|, = |o(z)|*.

e If p is a finite prime, then |x|p - (Np)*ordpx.

Proposition 15.5 (Product formula). H |z|, =1 for all x € K*.
veEMK

Definition 15.6 (Restricted products). Let (R;);cr be a family of rings, and for each ¢ € I, let
Og, be a subring of R;. The restricted product [[[;c,(R;, Or,) is the ring of all (x;); € [[,c; Rs
such that x; € Op, for all but finitely many ¢ € I.

If each R; is a topological ring, then we give the restricted product the topology generated
by the open basis of sets of the form U = [][, U;, where U; C R; is open and U; = Op, for
almost all 7.

Definition 15.7. The ring of adeles of K is the restricted product

Ak = [ 5., Ox,).

v

Fact 15.8. K — A is discrete, and A = K + @K + K (or K - @K - Ky), where K, =

HU‘OO KU, 6[{ = vaoo OKU, and Kf = AKJ = ]]][vfoo KU.
Moreover, A is locally compact, and admits a Haar measure dz = [ [, dz,,, where dz, =
|dz| on R, dx, = |dz A dz| on C, and fOK dry, =1 on K,.
P

Definition 15.9. The group of ideles of K is Ay, the group of units of Ax. We give Aj
the topology induced by the open basis of U =[], U, with U, C K open and U, = O; for
almost all v.

16 2015-02-25: Adeles and ideles

Recall that K embeds into Ax as a discrete subspace. Moreover, the quotient K\Af is
compact.

Theorem 16.1. Let ¢ : K\Ag — C! be a nontrivial additive character. Then
Hom(K\Ag,C*) ={¢,:a € K},

where Y, (z) = VP (ax).
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16.1 Ideles

We defined the group of ideles to be Ay, the group of units of Ax. We equip this with a
Haar measure d*z = [[, d*z,, where

o {(1—(va)1) a- it ot oo,

dx,
‘xv |11

if v | co.

Hence, we have vol(O), d*x,) = 1.
If Ok is the ring of integers in Ak, then Oy is the maximal compact open subgroup of

(Ag)y = K7.

Lemma 16.2. Let A}, = {z = (z,) € A} : |z|, =1, lzo|l, =1}. Then K* — A} is dis-
crete and K*\AL is compact. Moreover, we have an exact sequence

1 — K\AL — K*X\AX — Ry — 1.

Definition 16.3. The group K*\A% is called the idele class group. It is a locally compact
abelian group, so we can do Fourier analysis on K *\AJ.

We have a map

Ay — Ix = {fractional ideals of K},
$:(l'y)’_>( )—I’OK—:L‘fOKﬂK Hpordvxv

vfoo
which restricts to x — (z) = 2Ok : K* — Pkg.

Proposition 16.4. The above maps induce an isomorphism KX\A[X(/@IX(KOXO = CI(K),
where CI(K) is the ideal class group of K.

Theorem 16.5. Let m be a cycle of K. Then we have a natural isomorphism

KX \AR U, sUncc — Clic(m) = I (m)/ Prc(m),

where

Ung =[] +m)nOx =TJOx [T +p0 ™),

vfoo vim vlmy
Unoo = [ (T T] K2
v|moo ’Umeoo
v]oo

where (K)T denotes the connected component of 1 € K (i.e., Rsg for real places and C*
for complex places).

Define A, : KX — Clg(m) for v f m by A\, (z,) = pod® for v { oo, and \,(z,) = Ok for

v | oo.
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Fact 16.6 (Approximation theorem). Let S be a finite set of primes and Kg = [[,.q K.
Then K* — K7 is dense. In particular, for any open subgroup Ug of K, K*Ug = K.
Consequently, A = K*Us[l[ 45 K, = (A%).

Returning to the theorem, take S = {v:v | m}, and denote Sy = {v € S:vtoo} and
S ={v € S :v|oc}. Then

Us = Un Uno N K5 = T +p0 ™) T (K*

’UESf VESso

Hence, A = K*Us[ll[,¢5 K- Define A : A — Clx(m) to satisfy A|xxyy = 1 and A[px =
Ay One can check that this is well-defined, after which bijectivity is clear. m

17 2015-02-27: Adelic reciprocity law

Recall that K* < A} is discrete. The approximation theorem tells us that, for any finite
set of primes S and any open compact subgroup U of K§, A% = K*U(A%)*, where Ay, =

]H[vgés KV'
(UO))X —

Proposition 17.1 (Strong approximation). For any prime vy, the map K* — (A}
]]][wév0 KX is discrete. However, for any set of at least two primes S, the map K* < (A%,)
1s dense.

X

Last time, we asserted that the map
A KX\AY /Uy — Clg(m) = Ix(m)/Pg(m)
is an isomorphism. The map is constructed as follows:
(1) Construct the map A, : K — Ix(m)/Pk(m) for unramified primes v { m.
(2) Use the approximation theorem to extend the map to K*\A%.
(3) Define the map A : Ay — K*\Ax — Ix(m)/Px(m).
(4) Define A\, : K — Ix(m)/Pk(m) for all v (not just unramified primes).

Theorem 17.2 (Adelic version of the reciprocity law). Let K be a global field. There exists
a unique continuous group homomorphism gy : Af — Gal(K®/K) such that:

(1) ker o = K* - (KX)? D K*.
(2) For any finite abelian extension L/K, the composition
oo Ay 5 Gal(K®/K) — Gal(L/K)
is surjective, and ker o) = K* - NpjgA] .
(3) If p is unramified in L/ K, then ¢, k(m,) = Frob, 1,k for any local uniformizer m, of
K,.
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Remark 17.3 (Open subgroups). For v t oo, K¢ has a basis near 1 of compact open subgroups
Op Dl4+p,D1l+piD....

If 7, is a uniformizer for Oy , we have p, = 7,0k, .
For v | 0o, this is not the case: R* has only two open subgroups, R* and R. g, while C*
has no proper open subgroups.

Theorem 17.4 (Adelic existence theorem). Let Uy be a compact open subgroup of A? of finite
index. Let Uy, be an open subgroup of KX . There is a unique finite abelian extension L/K
such that K* Uy -Usx = K* - N AT, i.e., pr/x gives an isomorphism K*\Ay /UsUs =
Gal(L/K).

To recover the classical formulation of global class field theory, observe that we have a
commutative diagram

pr=limn PK,m

KP\AL

l PK.n

» Gal(K®/K)

PK,m l

Ix(m)/Pg(m) ——~— Gal(Hg(m)/K)

2 |

Ix(n)/Px(n) ———  Gal(Hg(n)/K)

linr1n Gal(Hg(m)/K)

The connection between global and local class field theory is expressed by commutativity of

KX 5 Gal(K®/K,)

| |

AX 5 Gal(K®/K),

where v is a prime of K, the vertical arrows are the natural injections, and g, and @k are
the maps given by the reciprocity laws.

18 2015-03-02: Idele class characters

We have formulated global class field in three equivalent ways: the classical version, the
adelic version, and as an equivalence between Hecke characters and 1-dimensional Galois
representations.

Now let us discuss an adelic version of the formulation via Hecke characters. An idele
class character of a global field K is a continuous group homomorphism y : K*\Ax — C*,
i.e., a continuous group homomorphism y = [[x, : Ax — C* such that:

(1) There is a compact open subgroup U of At = ][, K, such that x(gu) = x(g) for all
ueU.
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(2) Xoo = [I,j00 Xv s continuous (and hence real-analytic).
(3) x(K™) = 1.
Condition (1) is equivalent to both of the following being true:

(a) Each y, is continuous, i.e., there is a compact open subgroup U, = 1+ 7*O, of K}
such that x,|y, = 1.

(b) For almost all v, x,|px =1 (i.e., X, is unramified).

Here is what condition (2) means: When v is real, y, : R* — C* must be given by
Xo(z) = (signx)® |z|* for some € € {0,1} and sy € C. When v is complex, x, : C* — C*
must be given by z — 2™ |2z|* for some n € N and s, € C.

Theorem 18.1. There is a natural bijective correspondence
{Hecke characters of K} <— {idele class characters of K} .

For any idele class character x = [[xv : Ag = C*, let my = [[,(1 + 72 O,) N O, so that
x(gu) = x(g) for all w € my. Then the corresponding Hecke character x. : Ix(my) — C* is
given by xe(a) = x(TT75%%) = [Ty, Xo(2) for any ideal a € I (m;).

Conversely, given a Hecke character x. : Ix(m) — C*, the corresponding idele class
character xa = [, Xv s characterized by the following properties:

(1) Forv{msoo, Xu(my) = X(y), where p, is the prime ideal associated to v and 7, is any
uniformizer of K. In particular, x,(O)) = 1.

(2) For v real, Xv’R>O - X’U|R>0'
(8) For v complex, Xy = Xo-
(4) Forv | my, let n, = ordy, my. Then Xy|i4amweo, = 1.

Since x,(O)) =1 for all v { mpoo, the Hecke character y. is well-defined. It remains to
check x.(aOk) =1 for any @ =1 (mod*m). Take m = m; - [, ,., Mo Since o, = 7074wy,

for some u, € OF, we have x,(a,) = Xo (70 %y, (u,). But x,(u,) =1 for all v {mgoo, so

1= X(a) = HXv(av) = H Xv(av) ’ H Xv(av) ' HXv(av) = XC(QOK> ’ HXv(av)'

vim oo vlmy v|oo v|oo

So XC(O‘OK) = Hv|oo Xv(av)il = Xoo{a)iy

19 2015-03-04: Reciprocity for idele class characters

Continuing from last time, we want to construct an idele class character y, from a Hecke
character y of K.

(1) For v { com, define x, : K — C* by x,(OF) =1 and x,(m,) = x(po)-
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(2) For v | oo and v { my, define \, = xo.
(3) For v | my, define )ZU](KHXﬁ = Yo
(4) xa(K>* - Un,) = 1.

soom 180 » We have

To check this is well-defined, it suffices to show that a € K> N Up Un., ]
a =1 (mod*m). Indeed,

XA(G) =1 HXv(av) ’ H Xv(av) = XOO(CL)X(CLOK) = XOO(CL)X(;}(O{) =1
v]oo vioom

Ezample 19.1. A Hecke character of Q of finite order is a Dirichlet character x : (Z/N)* —
C*. The corresponding idele class character x, = Hpgoo Xp : A@ — C* is defined by

(1) Xp : Q) — C* for p unramified is defined by x,(p) = x(p).

(2) Xoo : R* — C* is defined by Yoo(a) =1 for all @ > 0, and Xoo(—1) = x(—1).
Proposition 19.2. For p | N, the character x, : Q) = p? x Zy — C* is defined by
Xp(a) = xp(a), and factors through Z /(1 + p°Z,) — (Zy,/p°)* X2y C*. Moreover, Xp: (Di) =
Hj;é’i X;;jl (pi)-

Remark 19.3. What could go wrong if we replace Q by an arbitrary number field? First,
Dirichlet characters are defined on elements, but Hecke characters are defined on ideals; this

only works because Z is a PID. Second, if there are several real primes, how do we determine
the values at —1 € R?

Now we state yet another version of the reciprocity law, this time in terms of idele class
characters.

Theorem 19.4 (Global reciprocity law). There is a natural bijective correspondence

tdele class characters L-dim. representations
of K of finite order of Gal(K/K)

More generally, there is a group called the Weil group of K such that

tdele class characters 1-dim. representations
of K of Weil group ’

19.1 The Langlands correspondence

It is natural to ask what happens when we look at higher-dimensional representations of
Gal(K/K). Langlands conjectured:

Conjecture 19.5. There are natural bijective correspondences

GL,(K)\ GL,(Ag) of some representations of

Automorphic representations of n-dimensional
special algebraic type Gal(K/K)
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and

GL,(K)\ GL,(Ak) representations of

{ Automorphic representations of } { n-dimensional }
N :
some Langlands group

More generally, iof G is a reductive algebraic group over Q, then there is a similar correspon-
dence involving automorphic representations of G.

There is also a local Langlands correspondence, which has been proved for GL,,.

20 2015-03-06: Complex multiplication

Now we begin our study of complex multiplication. For a reference, see [Sil.

Definition 20.1. Let F' be a field. An elliptic curve over F is a smooth projective curve
over F' of genus 1 with a fixed F-point O.

By Riemann-Roch, any elliptic curve over F is isomorphic to one of the form E : y? +
a1xy +asy = v3+ax+b. If char F' # 2,3, we may take a; = as = 0 without loss of generality,
and such a curve E is smooth if and only if Ada® — 270 # 0.

Given such a realization as a plane curve, define an addition law on £ by P+ @Q + R = 0,
where P, (), R are collinear points on E. This is independent of the embedding, and can also
be defined intrinsically in terms of the Picard group.

Over C, smooth projective curves correspond to smooth compact Riemann surfaces of
the same genus, so complex elliptic curves are complex tori. Any elliptic curve over C
corresponds to to Ey = C/A for some lattice A = Zw; + Zws, and the group structure is
induced by addition in C.

Definition 20.2. Morphisms Hom(FE, F») of elliptic curves are defined to be group homo-
morphisms which are also regular maps. A morphism f € Hom(Fy, Fy) is called an isogeny
provided that ker f and coker f are both finite.

Let End(E) be the ring of endomorphisms E — E which are either isogenies or zero.
Note that Z C End(E): for n > 0, the map P+ [n]P =P+ ---4+ P: E — E is an isogeny,
asis P — [—1]P = —P.

We study the situation over C, which will be representative of the characteristic zero
case in general. Given a map f = fo : C — C given by z — az, we may descend to
f:C/Ay — C/Ay if f(z) = az € Ay for all z € Ay, where A; and A, are free Z-lattices of
rank 2.

Lemma 20.3. Hom(Ey,, Ey,) = {a € C: aA; C As}.

Lemma 20.4. Let A = Zw, + Zwy = w(Z + ZZ—?) be a lattice with T = Z—f e H =
{z€C:Imz>0}. Then Eyx = E, := C/A,, where A, = Z + Z7. This gives a surjec-
tion T — E. : H — {elliptic curves over C} /=.
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When is @ € Hom(FE,,, E,,) an isomorphism? Choose o € C such that aA,, = A,,. Let

a,b,c,d € Z such that
Ty _ (G b T2
“N1) = \e da 1)

b
d
have v € GLy(Z) if and only if v € SLy(Z). To summarize:

Then « is an isomorphism if and only if v := ) € GLy(Z). In fact, since 7,7 € H, we

Proposition 20.5. Let o € C and 11,7 € H.

(1) o € Hom(E,, , E,,) < a (Tll) - (‘CL Z) (Tf)

(2) « is an isomorphism <= (CCL Z) € SLy(Z).

Theorem 20.6. This yields a bijective correspondence between SLo(Z)\H and isomorphism
classes of elliptic curves over C.

Thus, we refer to SLy(Z)\H as a moduli space of elliptic curves. More generally, let
X (K) be the moduli space of (isomorphism classes of) elliptic curves over a field K. This is
a “scheme” (actually a stack) over Q.

Definition 20.7. We say an element [7] € SLy(Z)\H is defined over F* C C if E, can be
defined over F.

Theorem 20.8. Let 7 € HN Q. Then [7] is defined over Q if and only if T is imaginary
quadratic.

Proposition 20.9. Let 7 € H. Then

an order in Q(7) if T is imaginary quadratic,

7 otherwise.

End(E,) = {

Proof. Let o € End(E,). Then a € C such that & = ¢ +d and ar = ar +b. If a € Q(7),
then (¢t +d)7 = ar + b, 50 ¢t + (d — a)T — b = 0, so T is imaginary quadratic.

Conversely, if 7 is imaginary quadratic, write & = Q(7). We have o € End(E,) if and
only if oA, = A;, and O, = {a € k: A, C A, } is always an order of k. O

21 2015-03-09: CM and the class group

The j-invariant
Ej
A(r)
gives a bijection between SLy(Z)\H and the set of isomorphism classes of elliptic curves over
C. Here, for even k > 4,

§(7) = J(E,) = 1728

Efr)= Y (er+d)F

7€l \ SL2(Z)
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where 'y, = {j: ((1) Tf) 'n € Z}, is a modular form of weight k& for SLy(Z). Also,

1 o0
AT) = 755 (Fi = H L=d")

is the unique weight 12 cusp form for SLy(Z).

Theorem 21.1. E. can be defined over F if and only if j(T) € F, in which case we write
] € F.

Let E be an elliptic curve over C. Recall from last time that End(FE) is either Z or an order
O of an imaginary quadratic field. In the latter case, we say E has complex multiplication
(CM) by O.

Let k = Q(V/d) be the field of fractions of O = Oy, and denote

EUl(k) = {elliptic curves E/C with CM by O, up to C-isomorphism} .
Proposition 21.2. The map [a] — E, = C/a induces a bijection Cl(k) — ELL(k).

The group Aut(C) acts on elliptic curves over C as follows:

EFF — F

| |

Spec C —Z— SpecC
In coordinates, E : y*> = 23 + ax + b is sent to E? : y?> = 2° + o(a)x + o(b).

Lemma 21.3. This induces an isomorphism f +— £ : End(E) — End(E°), where f7(p°) =
f(p)?. (If p € E(C), then p” € E°(C).)

Corollary 21.4. If E € EUU(k), then E7 € ELU(K). In particular, Aut(C) acts on ELU(k).

Hence, there exists a number field F C Q C C such that Aut(C/F) acts trivially on
EU(k) and [F: Q] | hy, = # EUU(E).

Proposition 21.5. For each E € E0L(k), we have j(E7) = j(F)? and [Q(j(E)) : Q] < hy.

Example 21.6. The elliptic curve E : y* = 23 + z has an endomorphism f : (z,y) — (—x,iy)
of order 4. This gives an inclusion i — f : Z[i] C End(E), so End(E) = Z[i]. Thus,
E has CM by Oqq) = Z[i]. Since Z[i] is a PID, £00(Q(i)) = {E;}, so E; =2 E. Thus,
J(i) = j(E;) = j(z) = 1728.

Example 21.7. The elliptic curve E : y?> = 23 + 1 has an endomorphism (z,y) — ((z,9),
where (5 = %‘73 Thus, £ has CM by Z[(3], which is a PID, so E = E¢, and j((3) =
J(E) =0.

Theorem 21.8. Let E € E0U(k). Let H = k(j(F)) and L = k(j(2), Eior), where Eioy =
U,ns1 Elm] is the set of torsion C-points of E. Then Gal(L/H) is abelian.
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Proof. Define a map o — p(o) : Gal(L/H) — Aut(Ei,), where p(o)P = P?. This is
well-defined as F7 = E since j(z) € H is fixed by o and E is defined over H.

Let L,, = H(E[m]). Then p induces an injection Gal(L,,/H) — Aut(E[m]). Notice
that E[m] is actually an Op-module. So Imp C Aute, E[m|, which is abelian as E[m)] is
Op-principal. O

This is analogous to the construction of totally ramified abelian extensions in local class
field theory.

22 2015-03-11: CM and Hilbert class fields

Recall from last time that we have the space of CM elliptic curves £00(k) = Cl(k) with an
action of Aut(C).

Lemma 22.1. Fizi: K — C and E € E00(k). There exists a unique ¢ : Ox — End(E)
such that t(a)*w = i(a)w for all w € Qp/c.

Today, we give a proof of the theorem from last time.

Theorem 22.2. Let E € EUU(k), Hg = K(j(F)), and L = K(j(2), Etor). Then L is abelian
over Hg.

Definition 22.3. If F € £0((k) and a C Ok is an ideal, the group of a-torsion points of E
is

Ela)={P € E(C) : t(a) P =0 Vo € a}.
Lemma 22.4. Let E € EU(k). Then Ela] is an Og-module and Ela] = Ok /a.
Proof. Since E € EUU(k), E = Ej, for some fractional ideal b of k. So

Ela]={[s]€C/b:azcbVaca}=a'b/bO/a.
O

Proof of the theorem. We have L = J,,~; Lm, where L,, = Hg(E[m]). Define a homomor-
phism p : Gal(L,,/Hg) < Aut(E[m]) by p(c)-P := P°. One can check that p(c) is Og-linear
for all o € Gal(L,,/Hg), and hence lands in Autp,. (E[m]), which by the lemma is isomorphic
to Autp, (Okx/m) = (Ox/m)*, an abelian group. O

Ezample 22.5. We have Q% = Q(G,,10r) = Q(¢s) and G,,(C) = C*, with Z acting on C*
by n-z= 2"

Recall our setup from local class field theory: Let K be a local field, and let m be a
uniformizer of K. Choosing f = 7X + X9, let F; be the corresponding formal group law
over Okg. Then A, = {z € mg: [1"]; - © = 0} is also an Ok-module, and we proved:

(1) Kr = K(U,>; An) is a maximal totally ramified abelian extension of K.

(2) K% =K, K" = K- K(n : p1n).
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We have a similar picture for Hp = K(j(FE)):

(1) Hg is independent of E € £0¢(k) and is the Hilbert class field of K: every prime of K
is unramified in H = Hp, and Gal(Hg/K) = Cl(K).

(2) k% = k(j(E), h(Eir)), where if we write E : y*> = 2° + ar + b (with a,b € H) and
P = (z,y) € E(C), then

x ifab#0,
h(P)={ 2 ifb=0 (when j(E) = 1728),
3 if a =0 (when j(F) =0).
We have defined two actions on E04(k):
(1) Gal(K/K) O E00(k) = Cl(k)
(2) Cl(k) O EL(k) simply-transitively by [a] x Ey = Ey-1,.
Definition 22.6. Fix £ € £0((k). Define a map
F = Fp: Gal(K/K) — Cl(k),
o F(o),
where F(0) is defined by F(o) * E = E”.
Proposition 22.7. (1) Fg is independent of the choice of E.
(2) F = Fg is a group homomorphism.

Proof. Choose another Fy € £00(k). Since Cl(k) acts simply-transitively on £0¢(k), there
exists [b] € Cl(k) such that Ey = [b] x E. Write Fg,(0) = [a4] and Fg(o) = [a]. Then
E? = [a4] * Ey, so

[a:b] ' = [ay] + [b] + £ = ([b] ¥ )7 = [b] % E7 = [b] x [a] + ' = [ba] + E.
(We should check ([b] * E)? = [b] * E°.) This implies [a;b] = [ba], so [a;1] = [qa]. O

We’'ll finish the proof of the theorem next time. As a final remark, note that the following
diagram commutes:

Gal(K/K) —E— CI(K)

| lﬁ

Gal(K/K) — Gal(H/K),

where the right arrow is the isomorphism given by class field theory.

23 Several missing lectures

[I don’t have notes for a few weeks of lectures at this point. See [Sil, chapter 2| for an
exposition of the theory of complex multiplication, the subject of these lectures.|
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24 2015-04-13: Rank and modularity of elliptic curves

Theorem 24.1 (Mordell-Weil). Let L be a number field. Let E : y*> = 23 + ax + b be an
elliptic curve over L, where a,b € Or. Then E(L) is a finitely-generated abelian group.

Remark 24.2. Due to work of Mazur, the torsion part of F(L) is known to be one of a finite
list of possibilities. The rank r(E(L)) of E(L) is called the Mordell-Weil rank of E, and is

more mysterious.

Let p be a prime of L such that E has good reduction modulo p. Let g, = |k,|, where

ko = |Or/p|. Let a, be the trace of o, on H*(E). Then a, = g, + 1 — )E(kp)‘
Define the local L-factor

s _ogy—1
Ly(s,E) = (1 - apg," +¢,7*) .
The global L-function of E is defined by

L(‘SvE) = HLP(S7 E)
p
(note: the definition of L, at bad primes is slightly different), which is absolutely convergent
if Res > 2. Also, by the Weil bound, |a,| < 2,/g,.

Conjecture 24.3. L(s, E) has holomorphic continuation to the whole complex s-plane and
has functional equation

N*L(8,E)Loo(5, E) = wgN**L(2 — 5, F)Loo(2 — 5, E),
where wg = 1. (The most interesting part is for s = 1.)

Conjecture 24.4 (Birch-Swinnerton-Dyer). The algebraic rank and analytic rank are equal:
r(E(L)) = ords—q L(s, E). Moreover,

LOWE) _ |UI(E) Ry
T Bl

Theorem 24.5 (Wiles, Taylor—Wiles). If L = Q, then L(s, E) has holomorphic continuation
and functional equation as conjectured above. Moreover, L(s, E) = L(s, f) for some modular
form f of weight 2.

Theorem 24.6 (Deuring). Suppose E has CM by Ok.

(1) If K C L, then
L(S7 E/L) = L(‘S?XE/L) ’ L(SJYE/L)'

(2) If K ¢ L, write L' = KL. Then
L(SaE/L) = L(S7XE/L’>'

In particular, holomorphic continuation and the functional equation hold for E/L.
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24.1 Final project

Take your favorite imaginary quadratic field k. (Easy choice: class number one.) Choose a
CM elliptic curve E/H. Find xg/u and L(s, E/H).

25 2015-04-17: CM elliptic curves and Heegner points

Let H be the upper half plane, and define Yy(V)(C) = I'o(N)\H, the moduli space of degree-
N cyclic isogenies ¢ : E — E’ of elliptic curves up to isomorphism. The variety Yy(N) is
defined over Q. For any number field F,

Yo(N)(F) = {E “5 E': E,E', ¢ defined over F} /(F-isomorphism).

Take k = Q(+/d) such that every p | N splits in k (the Heegner condition). Write
NQO; = n-n. For each fraction ideal a, define

P = (Ea =C/a 5 C/nta= En1a> .
[2] = [2]

The kernel ker P, = n~'a/a is cyclic of order N. Let H be the Hilbert class field of k.
Define the compactification X (N) by

X(N)(C) = ¥o(N) U{cusps} = To(N)\(HUQU {oc}).
This is a compact C-curve, and Xo(N)/Q is a projective smooth curve.

Theorem 25.1 (Wiles, Taylor-Wiles). For every elliptic curve E/Q with conductor N, there
1S a surjective map

Xo(N) &5 E
P = m(Pa) € E(H).

Moreover, L(s, E/k) = L(s, E/Q) - L(s, E*/Q), where E : y*> = 23 4+ ax + b and B : dy? =
2® +ar +b and k = Q(\/d).

The Heegner condition also implies that the functional equation takes the form
L(s, E/k) = —(T-factors)L(2 — s, E/k)
since wg = —1. Hence, L(1, E/k) = 0.
Theorem 25.2 (Gross—Zagier formula). Let yp = > ccip T(Fla) € E(k). Then
L'(1, E/k) = C (Y, Yr)nr
for some C' > 0, where
(s Ine t E(F)/E(F)wor X E(F)/E(F)tor = R0

1s the Neron—Tate height, which is bilinear, symmetric, and positive-definite.
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Corollary 25.3. L'(1,E/k) # 0 <=y, € E(k) has infinite order, in which case
rank E(k) > 1.

Kolyvagin developed the notion of Fuler system to prove:
Theorem 25.4 (Kolyvagin). If yx, € E(k) has infinite order, then rank E(k) = 1.

(If y has finite order, nothing is known; the BSD conjecture implies rank E(k) > 3.)
Theorem 25.5 (Gross—Zagier, Kolyvagin). If L'(1,E/k) # 0, then rank E(k) = 1 and
rank £(Q) = ords—y L(s, E/Q).

25.1 Class numbers

Let k = Q(v/d) and hy = |C1(k)|.

Theorem 25.6 (Siegel). We have
'
log |d|

< hg < |d|"*1og|d|.

This is not effective, but can be made effective if we assume the Riemann hypothesis.

Theorem 25.7 (Goldfeld 1979). If there is an elliptic curve E/Q such that ords—y L(s, E) >
3, then

ha 2 () |d]*~*
for every € > 0, where k() is an explicit constant.

Example 25.8. Consider the elliptic curve E : —139y? = 23 + 1022 — 20z + 8. Then y;, is
torsion, so L'(1, E/k) = 0, which implies ords—; L(s, F') > 3. This proves the hypothesis of
Goldfeld’s theorem.

26 2015-04-24: Galois cohomology

Theorem 26.1. Let L/K be a finite Galois extension of fields with G = Gal(L/K). Then
HY(G,L*)=0.

Corollary 26.2 (Hilbert 90). IF G = (o) is cyclic and Nz =1, then v = %* for some y.

Theorem 26.3. Let M be a G-module and o € Z*(G,M). Then p gives rise to a group
extension
0—-M-—=FE-5G—1

such that:

(1) The G-module M associated to the above short exact sequence coincides with the original
G-module structure on M.

(2) The 2-cocycle associated to the sequence is equivalent to .
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27 2015-04-27: Galois homology

Let G be a group and M a G-module. Define H,(G, M) := Tor%(Z, M). Equivalently,
H"(G,—) is the derived functor of the coinvariants functor M +— Mg, where Mg is the
maximal quotient on which M acts trivially.

Theorem 27.1. H,(G,Z) = G™.
Let I be the augmentation ideal of the group algebra Z[G].

Lemma 27.2. Z ®q M = Z[G]/1g @z M = M/IgM, which is by definition M.
Lemma 27.3. M if G-flat iff H.(G, M) =0 for all r > 0.
Proposition 27.4. H,(G,Z) = Io/I%.
Proof. Taking coinvariants of the short exact sequence

0—Ic—ZIGl—7Z—0
yields a long exact sequence

H\(Z|G)) — H\(Z) — Ho(Ig) — Ho(Z|G]) — Ho(Z) — 0.

Since Hy(Z|G]) = 0 and Hy(Z|G]) = Hy(Z) = 7Z, we obtain an isomorphism H;(Z[G])
Ho(Ig) = I/ I%.
Lemma 27.5. I¢/I% = G® = G/|G,G].

Tate defined a “very long” exact sequence that glues together both homology and coho-
mology. Define a norm map

%

Ng: M — M€
m +— Ng(m) = ng.
gea
Lemma 27.6. IoM C ker Ng and im Ng C M.
Definition 27.7. For r € Z, define
H" (G, M), r>1,

M€%/(im Ng), r=0,
(keI'Ng)/IgM, r = —1,
H i1, r< =2

H(G,M) =

Proposition 27.8 (Tate). Given a short exact sequence
0— M, - My — M; — 0,
we obtain a doubly-infinite long exact sequence
oo — HIL(G, My) — HY(G, My) — HA (G, Ms) — HZPHG, M) — ...

Theorem 27.9. Let L/ K be a finite Galois extension of fields. Then Hy(G, Z) — Hy (G, L*)
for all r, and the isomorphism is “canonical”, depending only on a choice of generator of
H2(G, L*), which is cyclic of order |G)|.
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28 2015-05-06: Brauer groups

The Brauer group of a field is the group of central division algebras over K with the operation
of tensor product.

Proposition 28.1. Let K be any field. Then Br(K) = H*(Gx, K ).

29 2015-05-08: Brauer groups of local fields

Today, we will prove that the Brauer group of a nonarchimedean local field is Q/Z, which
implies local class field theory.

Let z +— || = ¢~ "% % : K — R.q be the valuation of K. Let Ok be the ring of integers,
p = 1Ok C Ok the maximal ideal with a uniformizer =, and k = Ok /p the residue field of
order gq.

Let D be a central division algebra over K of index [D : K| = n® Then there is a unique
norm || : D — Ry such that |zy| = |z||y| and |z + y| < max {|z|, |y|} for all x,y € D.

The subring Op = {x € D : |z| <1} is the unique maximal order in D. This ring has
unique maximal ideal mp = {z € D : |z| < 1}. The quotient ¢ = Op/mp is a finite field
extension of k of index f = [¢ : k] < n. Moreover, pOp = m,.

Lemma 29.1. e = f =n.

Corollary 29.2. Let D be a central division algebra over K of rank n?. Let L = K" be the
unique unramified extension of K of degree n. Then K — D, and K" splits D in the sense
that D @ K™ = M,(K}"). In other words, [D] € Br(K'"/K), i.e., [D] =1 € Br(K!").

Theorem 29.3. Let K be a nonarchimedean local field. Then Br(K) = Q/Z.
Proof. Let K" be the maximal unramified extension of K. We have an exact sequence
1 — Br(K"/K) — Br(K) — Br(K"").

Assume D is a central division K“"-algebra of degree n?. There is a finite unramified extension
K'/K such that D = D' @ K**. By the corollary, D’ @y L = M,(L), where L is the
unramified extension of K’ of degree n. So

D=D @ K" = (D @ L) @1 K™ = M,(K"™).
Thus, Br(K"") = 0. Hence,
Br(K) = Br(K""/K) = H*(Gal(K""/K), K*"*) = H*(Gal(K""/K), Z)
~ HY(Gal(K""/K),Q/Z) = Hom(Gal(K""/K),Q/Z) = Q/Z. O

Let us explicitly construct the isomorphism Invy : Br(K) — Q/Z. Let D be a central
division K-algebra of rank n?. Let oxun /i be the Frobenius automorphism, which generates
Gal(K'"/K). There exists e € D* such that ogun/k(x) = exe™'. Then Invg([D]) = ordg e
(mod Z).

Theorem 29.4. Fvery quadratic extension of K 1is inside the unique quaternion division
algebra D.
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