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Chapter 1

Modular forms

1.1 2014-01-22: Introduction to modular forms

I.1.1 Modular forms

Vaguely: modular forms are holomorphic functions f : h — C (where h = {z € C | Im(z) > 0})
that

e satisfy symmetry properties with respect to certain finite index subgroups I' < SLy(Z),
where GLJ (R) = {g € GLy(R) | det g > 0} acts on b by

a b az+b
= —
c d cz+d
e behave well near ico.

One symmetry: for all T'; if <0 1

! h) € I for some h € Z, then f(z + h) = f(z). So we

get a Fourier expansion:

1) = anl )

ne’l

where ¢, = >/ As ¢, — 0, 2 = ico.

Definition I.1.1 (holomorphic at co). We say [ is “holomorphic at oo” if

f= Zan(f)qz

n>0
If also ag(f) = 0, we say f “vanishes at oo” and say f is cuspidal.

Definition 1.1.2 (automorphy factor). Recall the action GL; (R) C h. The automorphy

factor for a = (CCL 2) € GLF (R) and z € b is

jla,z) =cz+d.
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Definition I.1.3 (weight k action). For all k € Z, define the weight k action GL3 (R) C
{f:p—=C}by
(flea)(2) = det(a)*?j(a, 2) " f(a - 2).

Definition I.1.4 (congruence subgroups). Let N € Z>;. Define the principal congruence
subgroup T'(N') < SLy(Z) by

I(N)={y€SLy(Z) | y=1 (mod N)} = ker(SLy(Z) — SL2(Z/NZ)).

This is a finite-index subgroup.
A subgroup I'" < SLy(Z) is called a congruence subgroup (of level N) if I'(NV) < T". For

example:
Fo(N) = {75 <8 :) mod N},

T (N) = {7 = (é *1‘) mod N}.

Definition I.1.5 (modular form). Fix a congruence subgroup I'' A map f : h — C is a
modular form of weight k and level I' if

e f is holomorphic;

o flyy=fforall yeTl;

o (f|ka)(2) is holomorphic at oo for all a € SLy(Z).
Denote the space of modular forms of weight & and level I' by M, (T).
Fact 1.1.6. dim M (I") < oo.

Definition I.1.7 (cusp form). If in addition (f|gc) vanishes at oo for all a € SLy(Z), then
f is a cusp form. Denote the space of cusp forms by Si(I).

Remark 1.1.8. The only weight 0 forms are the constant functions.

We can think of f as a function on I'\h. The spaces I'\h are known as modular curves.

1.1.2 Eisenstein series

F“:{G ?) \neZ}SSLQ(Z):D

Then j(v,2) =1 for all v € ', s0 1|py = j(7,2)7%- 1 = 1. Consider the sum

> 1y

YEL o \I'

Let
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If £ > 4 is even, then this converges absolutely, and we can verify explicitly that this is a
modular form. This is an example of an Eisenstein series. This is, up to a constant factor,

equal to
Ey —l— Z Tp—1( 5

where o3, _1(n) = 32, "7
Fact 1.1.9. M(T') = @k M (T) is freely generated (as an algebra) by F, and Eg.
Ezample 1.1.10. A(z) = ¢ H

n>1

1.2 2014-01-24: Applications of modular forms

Guest lecture by Jordan Ellenberg.

I.2.1 Sums of squares

(Serre, Course in Arithmetic, part 111.)
Let 7,(n) be the number of representations of n as a sum of k squares:

n):#{(al,,ak)ezk‘a%++ai:n}

—#{aezt| || = vn}.

What can we say about 7,(n) (e.g., asymptotics as n — oo with k fixed)? For example,

N
Z ro(n) = # {lattice points at distance < VN from O} ~ area of circle = TN,

n=1

More generally,

Z r(n {lattlce points inside a k-ball of radius VN } — constanty, - N¥/2,

k
So, on average, r(n) ~ cN271.

Theorem 1.2.1 (Lagrange’s theorem). r4(n) > 0 for all n > 0.

1.2.2 Theta functions

We can put rix(n) in a generating function

Z ri(n)q

n=0
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Define
0:22(]"2 =1+20+2¢* +2¢° +....
nez
Note that

oF = Z rr(n)q".

Taking g = €2™7, we can think of § as a function on b, the upper half-plane, satisfying
O(t)=0(r+1).

This is a “modular form” of weight 1/2. In the definition of modular form, this requires us
to say something like

flq

To remove quotes, raise to the 4-th power: % is a modular form of weight 2 under a congru-
ence subgroup of SLy(Z) of level 4.
Recall:

)= (et + d)_l/Qf(T).

ab
cd

E4 ~ Z dS(n)qn7
Es~ Y ds(n)q",

where d;(n) = ka ki. More generally, 0% is a modular form of weight k/2 for all even k.
We can decompose

Qk = Ek/2 + f7
where Ej/; is an Eisenstein series and f is a cusp form. For k > 5, the n-th coefficient of
Ey o is very close to n2~!, and the n-th coefficient of f is o(n2~1).
Remark 1.2.2 (For those who know Hecke operators). 0% is actually a Hecke eigenform, which
is why there’s a formula for r4(n).

I.2.3 More general thetas

Let @ be an arbitrary positive-definite quadratic form in k variables over Z. Then
bo= 3 g2

is again a modular form for some subgroup of SLy(Z) (depending on Q).
More generally still: Let ) be a positive definite symmetric matrix. Then we define

Z qATQA.

AEM"LX]C(Z)

(Note that ATQA is an m x m positive semidefinite symmetric matrix.) This can be thought
of as a formal sum in a power series ring, or as a function on the Siegel upper half plane.
This is still a Siegel modular form, which we also call an automorphic form on Sp,,,.

This gives you a way of addressing questions like: Is every positive definite 2 x 2 matrix
the sum of k “squares” AT A, where A is a 1 x 2 matrix?
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1.3 2014-01-27: Modular curves

Earlier, we defined congruence subgroups I' < SLy(Z) and modular forms M(I"), which are
“functions on T'\h.” We want to think of the modular curve T'\h as a geometric object, a
Riemann surface. (cf. Diamond-Shurman, chapters 2 & 3)

Our goal is to turn I\ h into a Riemann surface Y (I'), then compactify to get a compact
Riemann surface X (I).

[.3.1 Example: Fundamental domain for SLy(Z)\b
Definition 1.3.1. A fundamental domain for I' acting on b is a subset F C h such that:

(0) F is a connected closed domain in b.

(1) b=U,erv F
(2) v-F°NF° = for all v € I with v # £+, where F° is the interior of F.
Theorem 1.3.2. (i) F ={z € bh:|Re(z)| <3, |2| > 1} is a fundamental domain for SL(Z)\b.
(i1) If zy € F such that zo = v-2z1 € F for some v # 1, then one of the following is true:
(a) Re(z1) = +5 and v -z =21 F 1, or
(b) |z1| =1 and v -z = —Z—ll.
1 01

(i) We define an algorithm that takes z € b as input, and outputs v € (S,T) C SLy(Z)
such that v -z € F.

Proof. LetS:<O _01) andT:(l 1>,SOS~z:—%andTi1-z:zi1.

Step 1: Apply T or 7" until |Re(z)| < 3.
Step 2: If |z| > 1, then we are done. Otherwise, apply S. Note that, if Im(z) > 1,

then
Im (%1) = Im (#) > Im(z).

Step 3: If |[Re(2)| < %, then we are done; otherwise, go to step 1.

This process must eventually terminate. Indeed, note that if @ = (CCL Z) € SLy(R),
then 1
Im(a - 2) = LZ)Q
lcz + d|

Given z, there are only finitely many pairs (c,d) € Z? such that |cz + d| < 1. Moreover,

+1 [ A b . k* ok
r (c d) N (c d> '
But step 2 strictly increases Im(z), so it can only occur finitely many times.

(ii) The proof is left as an exercise. O
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[.3.2 SLy(R)-structure of the upper half-plane
Theorem 1.3.3. As SLy(R)-sets, h = SLy(R)/SO5(R).
Proof. This follows from the following two facts:
(i) SLo(R) acts transitively on b.
(ii) There exists z € b such that Stab(z) = SOy(R).
These can both be verified by direct computation:

N 1y x\ . .

(i) ﬁ<0 1) 1=+ 1y.
., at+b
(i) c+d
Remark 1.3.4.

=i <= ai+b= —c+di,soa=dand b= —c, whence (i Z) € SO,(R). O

(i) SLy(R) is a locally compact topological group, and SLy(Z) is a discrete subgroup.
(ii) The action SLy(R) x h — b is continuous.
(iii) The map SLy(R)/SO,(R) — b given by a SOo(R) + o - i is a homeomorphism.

Next time, we will prove that the action is “properly discontinuous”.

1.4 2014-01-29: Construction of modular curves

I.4.1 The action is properly discontinuous

Proposition 1.4.1. For all z1,z5 € b, there are open neighborhoods U; > z; such that, for
all v € Slo(Z), if v(Uy) N Uy # &, then v - 21 = z3. (That is, the action is “properly
discontinuous”.)

We prove this proposition in several steps.

Claim 1.4.2. Given any neighborhoods U! > z; such that U! is compact, v(U!) NUY # @ for
only finitely many v € SLy(Z).

Proof. Let SLy(R) =+ b be the map o — -4, and consider the closed subsets S; = 7~ 1(U}) <
SLa(R). Let (U, Vi; 2 S; be open covers with V;; compact. Then U] C U; 7(Vi;). Since U]

is compact, we can take U/ C Ui, m(Vi;). Hence

n; n
=1 j=1
so S; is compact. Observe that

{y €SLy(Z) | v(U)) NU; # @} € SLy(Z) N S557 .

5 S05(R

Since SLy(Z) is discrete and S, S; ! is compact, the above set is finite. O
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Let F = {y € SLy(Z) | v(U;)) NU; # @}. By Claim [[.4.2] F is finite. The following

completes the proof of the proposition.

Claim 1.4.3. Let U; . be disjoint neighborhoods of v - z1 and z, respectively. Then for
1=1,2,

Uy =U/n ()7 (Uis)

yeF

are the neighborhoods stated to exist in Proposition [I.4.1].
This is easily verified, completing the proof of the proposition. O

Corollary 1.4.4. IfT' is any congruence subgroup, then Y (I') = I'\b is Hausdorff.

[.4.2 Make Y(I') a complex manifold

To give Y (I') the structure of a complex manifold, we find for all y € Y (I") a neighborhood

~ - ~ open

U, CY(I') and a homeomorphism ¢, : U, — V,, C C with holomorphic transition maps.
Proposition says that, if z € b is only fixed by I' N {+£[I}, then np : h — Y(T') is a

homeomorphism near z.

Definition I1.4.5. For z € h, let ', := Stab,(I') ={y €' | y- 2 = 2z}. We call z an elliptic
point for T'if £1-T, 2 {£I}. We also call 7p(2) € Y/(T') and vy € T,y # 1 elliptic.

Ezxample 1.4.6. If z =1, then

SLy(Z); = {i], + ((1) _01>} ={(9).

If 2= p=e"* =14/ then SLy(Z), = (TS), where T = (é D

Here is a convenient transformation: given 7 € b, let

1 —7 z2—T
Fr(2) = (1 —?)'Z_z—?

So F.(1) =0 and F.(T) = oc.
[See §2.2 of Diamond—-Shurman for details.|
More generally:

Proposition 1.4.7. For all " and elliptic T, I, is finite cyclic. Hence,

T

Lur, if —Te€T.
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.5 2014-01-31: Elliptic points and compactification

I.5.1 Elliptic points

A few remarks:
e The only elliptic points for SLy(Z)\h are i and p = /3.
e For any congruence subgroup I', there are only finitely many elliptic points in I'\b.
e a € GLJ (R) is called elliptic iff tr(a)? < 4det(a).

e v € SLy(Z) is elliptic iff v is conjugate in SLy(Z) to one of the following:

o 1\ /0 —1\* /0 —1\*
-1 -1 "\1 0 "\1 1 ’
The following have no elliptic elements:

(i) I'(N) for N > 2.
(ii) T1(N) for N > 4.
(iii) To(N) if there is prime p | N such that p = 11 (mod 12).

1.5.2 Compactification

Earlier, we showed that Y (I') is a Riemann surface. We would like to work with a compact
Riemann surface instead; to obtain one, we need to compactify!

Let us move from b to the Poincaré disc 7 := {|z| < 1}. This is another model of the
hyperbolic plane. We can move from the upper half-plane to the Poincaré disc via the Cayley
transformation

C:h— 9,
1 —i z—1
C(z)—(l Z.)-z—zj%.

Note that C'(0) = —1, C(o0) = 1, C(i) = 0, C(1) = —i, and C(p) = 2:/3 Moreover, the
boundary 2 = {|z| = 1} corresponds to the projective real line R U {oo} = P!(R).

The fundamental domain F corresponds to a hyperbolic triangle in &, with a missing
point on 0%. “Filling in” this point gives a compactification.

More generally, if I" is any congruence subgroup, then there is a fundamental domain
which is a convex polygon in hyperbolic geometry, with finitely many cusps on the boundary
to be filled in. The idea is to add points to b to get h*, then look at I'\h* =: X (I').

For X (1) = X(I'(1)) = X(SL2(Z)), we just need to add a single point oo to Y (I'), so we
can take h* = fh U SLy(Z) - 0o, where we think of b as a subset of

P'(C) = {[o: ] | (c, 8) # (0,0)} /(o : B] ~ v AB] VA € C).
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Note that [a : 8] € P}(C) corresponds to 5 if B #0, and to oo = [1: 0] if B = 0. We extend

the SLy(Z)-action by
a b o [a b\ [« _C%+b
(e )= 0) () =57

(¢ 3) ()= () -Feovi-ria

So, let h* = h UPL(Q).
Remark 1.5.1. Let I' < SLy(R) be any discrete subgroup. An element v € I'is called parabolic
if tr(7)? = 4, so 7 has a unique fixed point z., € P(C), and z, € P*(R). Here, take

Observe that

h*=HU {ZEW ’ veTlis parabolic} )

For SLy(Z), co = T(11y:

I.5.3 The topology on h*

We want ['\h* to be Hausdorff.
Ezample 1.5.2. Tx(11)\bh has two cusps, at co and 0. These are indeed different cusps:

ab'_abl_i
11¢ d) %~ \11e a) \o o 11e

which is 0 iff @ = 0, which is impossible because then the determinant of would

a b
11c d
be 11bc # 1. However, ;1= can get arbitrarily close to 0, so we need to be careful if we want
the topology to be Hausdorft!

In general, here is how we define the topology on h*: The neighborhoods of oo are of the

form

Uy :={z€h|Im(z) > M} U{co}

for all M > 0. The neighborhoods of £ € Q are <Z Z) - Uy for all M > 0, where

a b
c d
to the real line R at the point %.)

€ SLy(Z). (These neighborhoods look like circles in the upper half-plane, tangent

[.5.4 The topology of X (I)

Give X(I') = I'\b* the quotient topology, and let 71 : h* — X (I') be the natural projection.
Theorem 1.5.3. X (I') is Hausdorff, connected, and compact.

Proof. To prove compactness, consider the fundamental domain
Fr={z€bh:[z] 21, [Re(z)] < 3} U{oc} CH".
This is a closed subset of P!(C), hence is compact. (See [Diamond-Shurman]| for details.) [
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I.5.5 Complex structure at the cusps
Let s € P1(Q). Choose v, € SLy(Z) such that 7, - s = co. Consider
hs,F = # (SLQ(Z)S/ {ij} Fs) >

the “width of s in I'"". Take Uy (for, say, M = 2) to V = ¢(Uy;) C C via 9(z) = e*>™#/h,
then descend to X (I') via 7 and proceed similarly to with elliptic points.



Chapter 11

Dimensions of spaces of modular forms

I1.1 2014-02-03: Dimension formulas

Guest lecture by Nigel Boston.
Now we have the Riemann surfaces Y (I') and X (I'). Our goals for today:

(1) Understand modular forms as functions on X (I).

(2) Use this to find the dimensions of spaces of modular forms M (I") and Si(T).

II1.1.1 Motivational example

If f € Mp('), then f : h — C satisfies f(v-2) = j(v,2)*f(2) for all v € I'. Thus, f is
well-defined as a function Y (I') — C if and only if £ = 0.

What do we do if k # 07 Say k = 2, and consider the differential dz on h. Then for all
a € GL (R),

~ faz+b\  (cz+d)a— (az +b)c L ad — bc L det «v s
d(aiz)_d(cqud) B (cz + d)? ez +d)? _(cz+d)2d ‘
So if f € My(T'), let wy(z) = f(2) dz (a differential on h). Then
z+d)?f(2)d
orly ) = flr- 2ty 2) = EEDTDE e — ),

i.e., wy(z) is I-invariant. Thus, wy(z) is well-defined on Y(I') = I"\h.
The differential dz has a “simple pole” at oo, but if f(z) € S3(T'), then f(z) vanishes at
00, 80 f(z)dz is a holomorphic differential on X (I"). In fact, we shall see that

ot (X(T)) = 55(T)

as C-vector spaces. (Here, )y, denotes the space of holomorphic differentials.) As a conse-
quence,

dim(c SQ(F) = dlmc Qhol(X(F)) = genus of X(F)

17
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Example 11.1.1. Recall the fundamental domain for I' = SLy(Z) acting on h* = h U P(Q).
Take the three points ¢, p, 00, together with a fourth point 2, in the interior; joining these
together gives a triangulation of X (I'). The Euler characteristic is thus

X(X(I')) = #(vertices) — #(edges) + #(faces) =4 — 6+ 4 = 2.
But x(X(I')) =2 — 2 - genus(X(T)), so genus(X (T)) = 0[]
Thus, dimg S2(SL2(Z)) = 0, and so there are no nontrivial weight 2 cusp forms for SLy(Z).

Ezample 11.1.2. Recall the fundamental domain for I' = T'g(11) on h*. Using Sage, we can
compute that the fundamental domain is isomorphic to a torus. So

dimg S2(Fp(11)) = genus(Xo(11)) = 1.

I1.1.2 Maps between compact Riemann surfaces and the Riemann—
Hurwitz formula

More generally, for all congruence subgroups I' < SLy(Z), there is a natural quotient map

fr: X(T) = X(1) = X(SL(Z)).

The Riemann-Hurwitz formula applied to fr will relate genus(X(I')) to genus(X (1)) = 0,
yielding a formula for dimc Se(T).

For k # 0,2, we will need tensor products of differentials, and then we can use Riemann—
Roch to compute the dimensions of M (I") and Si(T").

Let f: X — Y be a holomorphic map of (connected) compact Riemann surfaces.

Fact 11.1.3. f is constant or surjective.
Proof sketch. f(X) is the continuous image of a compact, connected set, so f(X) is compact
and connected, and hence is closed in Y. If f is nonconstant, then it is open (by the open

mapping theorem). So if f is nonconstant, then f(X) is a connected, clopen subset of Y.
Since Y is connected, f(X) =Y. O

Fact 11.1.4. If f is nonconstant, then f has a well-defined degree deg(f) > 1 such that, for
all but finitely many y € Y, #f~(y) = deg(f).

For each x € X, the ramification degree of f at x, denoted e, > 1, is the multiplicity
with which f takes z to 0 in local coordinates; i.e., f(z) = f(x) 4+ 3.2, ¢(2 — x)", where
Ce, 7 0. Then for all y € Y,

deg f = Z [

zef~1(y)

Theorem II.1.5 (Riemann-Hurwitz). If f : X — Y is nonconstant, then

29(X) — 2 = (deg f)(29(Y) —2) + Y (ea

rzeX

LOne can also determine that X (SL2(Z)) has genus zero in several other ways. For example, the j-function
gives an explicit isomorphism with the Riemann sphere.
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I1.2 2014-02-05: Riemann—Hurwitz formula

Guest lecture by Jordan Ellenberg.

II1.2.1 Remarks on Riemann—Hurwitz

Let X,Y be compact Riemann surfaces. Recall the Riemann—Hurwitz formula:

29(X) — 2 =deg(f)- (29(Y) =2) + ) (e — 1),

zeX

where e, is the ramification degree of f at x. (Since e, = 1 for all but finitely many = € X,
the above sum is finite.)

Definition I1.2.1. y(X) = 2¢g(X) — 2 is the Euler characteristic of X.

When there’s no ramification, f : X — Y is a covering map, and

X(X) = deg(f) - x(Y).

This is also a property of the Euler characteristic in higher dimension.
Topologically, being unramified means every y € Y has a neighborhood U, such that
f71(U,) is the disjoint union of the right number of discs [[ U,,.

Example 11.2.2. Consider a cover of P!(C) given by adjoining a square root +/f(z) of a
polynomial of degree 2n. Continuously winding around the zeros of f “transports” between
the two branches. This yields a Riemann surface X of genus n — 1, which has an involution
v : X — X such that X/y =2 P!(C). So we have a degree 2 map

X = X/y=PY(C),
ramified exactly at the roots of f. By Riemann-Hurwitz,

29(X) — 2 = deg(r) - (29(P'(C)) =2) + Y (s — 1)

6 points

=2-(2:0-2)+ » (2-1)=-4+6,

6 points

so g(X) = 2.

I1.2.2 Prototypical ramified cover

Consider the map
b*/T'(p) — "/T(1) = P'(C).
Notice that I'(p) is a normal subgroup of I'(1) = SLy(Z), and I'(1) /I'(p) = SLo(Z/pZ)/ {£1}.
So
G =SLy(Z/pZ)/{+1} Ch"/T(p) = X(p),
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and X (p)/G = X(1). Thus, the degree of the map is |G| = 1(p* — p).

Write Y = X/G. For each y € Y, 7 (y) is an orbit of G on X. A point z € X is
ramified iff |Gz| < |G|

To compute g(X(p)), we need to find the ramification points in X (p) — X (1). These are
points [z] € h*/T'(p) where g1[z] = ¢2[z] for some distinct g1, 90 € G = Slo(Z/pZ)/ {1},
i.e., g1z = goz for g1, g2 € SLo(Z)/ {£1} which lie in different cosets of T'(p).

The ramification comes from stabilizers in the upper half-plane: points which are fixed
by nontrivial elements of SLy(Z)/ {£1}. In other words, ramification only occurs above the
cusps and the elliptic points.

II.3 2014-02-07: Ramification at elliptic points

I1.3.1 The local picture

We have the map fr : X(I') — X (1), and we want to compute the ramification index e, of
fr for x above 1, p, o0

Say fr(z) =y € X(1). We can find 7 € h* such that 7p(7) = 2 and 7gr,(z)(7) = y, and
a neighborhood U > 7 and charts ¢,, ¢, near  and y giving a commutative diagram

U—49 U

Fr \
r 7F SL2 (2)
fr

&

|

|

|

|

|
\]/
:c

with fi,. defined by the above diagram, and where

2+ €2™%/h near a cusp,
P, = N

Zz near an elliptic point

and

width of the cusp 7 if 7 is a cusp of T,
hy = ¢ period of the elliptic 7 if 7 is elliptic for T,

1 otherwise,

and similarly with SLy(Z) instead of T

11.3.2 Ramification indices

Let ¢, = Py, o I and ¢, = P}, o F;.. Two cases:

2For those who like stacks, this has an interpretation in terms of stacks.
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(i) 7 € b, ie, 7 is not a cusp. In this case, Py(z) = 2", s0 fioc © ¥y = t,. Then
fioe(2) = 2M/Me We know h,, h, € {1,2,3}, and fio is holomorphic, so h,/h, € Z.
Hence, either h, =1 or h, = h,. Thus, by definition,

[

h {hy if 7 is elliptic for SLy(Z) but not T,

2= }::BLﬂZ%:{iI}PJ.

1  otherwise

(ii) 7 € h*\ h =PY(Q), i.e., 7 is a cusp. Then Pp(2) = €>™*/" 50 fioe(2) = zP=/hv. Thus,

ep = ’,j— = [SLa(Z),  {£1} T

But y = oo, so h, = 1, hence e, = h,.
So, we have elliptic points

Yo = SLQ(Z) -1 E X(l),
y3 = SLo(Z) - p € X (1)

and the cusp
Yoo := SLin(Z) - 00 € X(1),
with Ay, =2, hy, =3, and h,_ = 1.
Every elliptic point of I' of period 2 is in fr ' (y2), of period 3 in f5'(y3), and every cusp

of T'is in fi'(yso). Let

v := # of elliptic points of X (I") of period 2,
vy := # of elliptic points of X (I") of period 3,
Voo := # of cusps of X(T).

For h € {2,3},
deg(fr) = > ex=vn-1+ (#f (n) —va) - h.
2 fr* (yn)
Hence,
S e = 1) = (1) (B () — ) = () — ).
z€ i (yn)

Likewise, deg(fr) = Ewefgl(yw) e, and v = #ffl(yw>7 S0

Z (e — 1) = deg(fr) — veo-

xefl:l(yoo)
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I1.3.3 Genus of X(I)
Let = deg(fr) = [PSLy(Z) : T].
Theorem I1.3.1. The genus of X(T') is

1% 120} V3 Voo
XI)=14+L —2_25_ sy
g XIN =1+ 5 -7 -3~

Proof. By the Riemann-Hurwitz formula,

SO

ﬂX@»=1—u+l(

1 2
: —m—wa+—m—ua+u—%g. 0

2 3

II.4 2014-02-10: Meromorphic differentials on Riemann
surfaces

I1.4.1 Meromorphic modular forms

Definition I1.4.1. Let k € Z, and let I' < SLy(Z) be a congruence subgroup. A meromor-
phic modular form of weight k and level T is a function f : h — P!(C) such that:

(i) f is meromorphic;
(i) fley = f for all v € T
(iii) f|x is meromorphic at oo for all a € SLy(Z).

Denote the C-vector space of all such forms by A(I'). Then

Si(T) € My(T') C Au(T).

11.4.2 Differential forms

Given a Riemann surface X, the “best” way to think about differential forms on X is to
construct the cotangent bundle p : Qx — X this is a line bundle.

Definition 11.4.2. A differential form w is a section of p: Qx — X, ie,amapw : X — Qx
such that pow =id.

Concretely: X is covered by open sets U equipped with maps ¢ : U — V C C. So,
to describe differential forms on X, we need to define Q(V') for V' C C an open subset (the
local picture), and to see what independence of the chart for differential forms on X implies
for the transition maps on overlaps.

Let V C C be open.
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e dzisin Q(V).
e Because V' is 1-dimensional, (V') should be 1-dimensional over
M (V) = {meromorphic functions f : V — C},
the “ring of functions on V.

Hence, we define

QV)={f(z)dz | feMV)}.
For n € Z>¢, define
Q¥ (V) := QY (V) @mvy - - Qe Q(V) = {f(2) (d=)" | f e M(V)}.

Then we define the ring

V)= P o),

nEZZO

where (dz)™ - (dz)™ = (dz)™™™. This is the local picture.

11.4.3 Pullbacks of differential forms

Next, let us study how gluing works. In particular, we need to understand the relation
between (V) and Q(V3) given a holomorphic map ¢ : V; — V5.

n=0 Q%) =2M,M(V), and a holomorphic map ¢ : V; — V5, induces a “pull-back” map

@ M(Va) — M(Va)
J=foep

Given Vi 25 Va 225 Vs, we have (g3 0 ¢1)* = ¢} 0 @5,
n=11If f(z9)dz on V,, then

Q'(V1) 3 0" (f(22) dza) = f(o(21)) d(p(21)) = (f(p(21))¢ (1)) dza.

General n The pullback map is given by
" QE(Vp) = QF"(W1)
fz)(dz2)" = fle(1)) (¢'(21))" (dz1)".
Remark 11.4.3. (i) If ¢ : V] < V4 is an inclusion, then ¢*(w) = wly;.
(i) If ¢ : Vi — V4 is surjective, then ¢* is injective.

(iii) If ¢ : Vi —» V4 is an isomorphism, then (¢~1)* = (p*)~".
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I1.4.4 Gluing differential forms

Consider a Riemann surface X with coordinate charts ¢; : U; — V; C C (where j € J).
Given two coordinate charts ¢;, ¢, we have holomorphic transition maps ¢, and ¢y ;.

Definition II.4.4. A global meromorphic differential form w on X of degree n > 0 is a

compatible system (w;)jes € [;c; Qe (V;), ie.,

@Z,j (wk’Vk,j) = wj’ijk'

I1.5 2014-02-12: Meromorphic modular forms and differ-
entials

Recall that
Q%"(X) = {w = (wj)jes on X of degn >0 | w; € Q¥ (V;)}.

Our goal is to show that, for £ € Zs, even, I' a congruence subgroup, there is an
isomorphism of C-vector spaces

w: AR(T) = Q®F2(X(I))
[ w(f)

The map 7 : h* — X(I') induces a map of differentials
w5 QX (1)) — Q2" (h).

Claim IL.5.1. A collection (w;)jes € [];c; Q®™(V;) ds compatible iff the ¢5(w;) to b are the
restriction of a global meromorphic differential f(7)(dT)®™ € Q®™(h), where f € As,(T).

Claim I1.5.2. For all f € Ay, (T'), there exists (w))jes with w; € Q¥(V;) such that ¢ (w;) =
f@)dr)" v,

Define 77 given w = (w;)jes € Q¥"(X()). Let Uj = U;Nb, Vi = 1;(U}), and w; = w;lvs.
Define @; := 7 (w;) on Uj. These @&; are compatible:

Uinu;

2LES

! =~ ! !/
ik (U N UR) — = Vil

Pk,j

Gilurug = Vilrlvg,) = 05 (i (wnlvy ) = i wilvy,) = &

Hence, the @; give nj(w) := @ = f(7)(d7)®" € Q®"(h).

U;nuy -

Claim I1.5.3. f € Ay, ().
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Proof. For all v € T', we have v : h — b, 7+— 7, so v* : Q®"(h) — Q®"(h). We have
h—L
\ lﬂr
T
X(I),
i.e., mp oy = 7p, so y* o mjt = 7. Thus,

(W) =7 (i (w)) =" (f()(dr)") = f(y - T)((y- 7)) (dr)"
= fly-m)i(y,7) " (dr)" = f(r)(dr)",

i.e., (fleny) = f. It remains to check f|s,c is meromorphic at oo for all a € SLy(Z).

25

]

Claim I1.5.4. Let f € Ay, (D), ¥; : U;NVj, and Uj = U; 0. Then there is w; € Q9" (V})

such that 1/);-‘(wj|vj/) = f(T)(dT)n|UJ<.
Proof. Consider §; = (1 5

there exists

1 —Tj

N = (F5Y) (F()an)y
such that f(7)(dr)"|vs = F7 (A;). Let v = 6;'. Then

vr)

=@ () = fla ) e

(dz)" = (flane)(2)(d2)".
So for any v € T,

(a7 ya)" Aj = (flanaa™ya)(2)(d2)" = (flzac)(2)(d2)" = A;.

Hence, JA; is invariant under 5jF5j’1.

I1.6 2014-02-14: Divisors and Riemann—Roch

I1.6.1 Meromorphic modular forms and differentials

_> € GLy(C). Write 6; - 7 = f,,(7). Since F,, is a bijection,

Continuing from last time: J; is 6jF5j’1—invariant. If 7; is not a cusp, then §; : 7; — 0, and

h; = #{£I} (0,16, )o/ {£1}

is cyclic generated by 7y, : 2+ uy; 2z, where pp,, = e?™/hi We have

(flana)(2)(d2)" = Aj = 1, (Aj) = (f|2n0) (pn; 2)(d(pn;2))" = (f l2nc) (pn,; 2) iy, (d2)",

so there exists g; € M(V]) such that

(10n;2)" (fl2000) (i, 2) = 2" (fl200) () = g5(2"7) = g(a),
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where ¢ = 2" . Define

/. gj(Q) n
= Ty 0"

Hence
Vi (w)) = F7 (0} ().
We want to show that p}(w’) = A;. Indeed,

() = st = L2 @ = () =

— eQﬂ'iZ/hj

At a cusp, 0, : 7, — 00, h; is the width, and p;(z) . We now instead have

/ .g](q) n
7 Gy

and the rest proceeds similarly.
This completes the proof of the isomorphism

w: A(l) = Q®F2(X(T)

for k even.

11.6.2 Divisors on Riemann surfaces

Let X be a compact Riemann surface.

Definition I1.6.1. The divisor group on X, denoted Div(X), is the free abelian group on the
set of points in X. In other words, a divisor D on X is a finite formal sum D =) _\ n,,
where n, € Z and all but finitely many n, are zero.

e Write D > D" if n, > n/, for all x € X.

e There is a natural homomorphism

deg : Div(X) — Z,

S e

reX zeX

Ezample 11.6.2 (Principal divisors). For any f € 9M(X) and x € X, define the order of

vanishing ord,(f) by locally writing f,(2) = >, ., an(z — 2)", and setting

min{n € Z | a, # 0} if f #0,

ordz(f) = {oo if f=0.

For f # 0, define the principal divisor
div(f) := Zordx(f)x.
reX

This gives a homomorphism
M(X)* — Div(X).
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Note 11.6.3. e By a general theorem of complex analysis, deg(div(f)) = 0.
e ord,(f1 + fo) > min(ord, fi,ord, fa).
Definition 11.6.4. Let D be a divisor. The linear space of D is
L(D) = {f e M(X) | div(f)+D >0} u{0}.

Ezample 11.6.5. (1) If D = —2-0+ 3 -1, then L(D) consists of functions with a zero of
order at least 2 at 0, and a pole of order at most 3 at 1.

(2) If g € M(X)*, then L(div(g)) = {f | fg is holomorphic}.
Fact 11.6.6. e L(D) is a C-vector space.

e /(D) :=dim¢ L(D) < 0.
If we Q®(X) with w # 0, and x € U %) V C Cis a local chart, set w = ¢*(w,) with

wy = f2(q)(dq)™. Define
ord, (w) := ordg—y(z) fa

and

div(w) = Z ord, (w)x.

rzeX

Then
div(wiwy) = div(wy) + div(ws).

Definition I1.6.7. If A € Q'(X) with A # 0, then div()) is called a canonical divisor.

I1.6.3 The Riemann—Roch theorem
Theorem I1.6.8 (Riemann—Roch). For all D € Div(X),
((D) = deg(D) — g(X) + 1+ {(div(\) — D),

where div(A) is a canonical divisor and g(X) is the genus of X.

II.7 2014-02-16: Riemann—Roch

I1.7.1 Consequences of Riemann—Roch

Let A € Q'(X) be nonzero and D € Div(X) be arbitrary.

Theorem I1.7.1 (Riemann—Roch). (D) = deg(D) — g(X) + 1 + £(div(\) — D).
Corollary I1.7.2. (a) ¢(div(\)) = g.

(b) deg(div()\)) = 2g — 2.

(c¢) If deg(D) < 0, then ¢(D) = 0.
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(d) If deg(D) > 2g—2, then {(D) = deg(D)—g-+1. (This is the “simple form” of Riemann—
Roch.)

Proof. (a) If D =0, then /(D) = 1. Plug in D = 0.

(b) Plug in D = div(]).

(c) If¢(D) > 0, then there exists f such that div(f) > —D. So 0 = deg(div(f)) > — deg(D).

(d) In this case, deg(div(\) — D) < 0, so the result follows from (c). O

I1.7.2 Application to meromorphic modular forms
Let k > 2 be even. Here is our plan:
(1) Show there exists nonzero f, € Ay(T).
(2) Show Ay(I') = M(X (L)) - fo.
(3) For any g € A(T), we will make sense of div(g) € Divg(X(I')) := Div(X(I)) ©7 Q.
(4) My(T') = L(div(fy)), and similarly for Sy(I).
(5) Relate ord,(w(f)) to ord.(f).
For any f € Ax(I') and v € T,
(flen)(z) = (cz + d)" f(2).
Note that (cz + d)* ¢ {0, 00} for all z € b, so ord, f = ord,., f.
Let 7 € h and ¢y = 7r(7) € X(T'). Then
f)= D> anlz—1)"
n>ord, f
In local coordinates, (¢ — qo) is (z — 7)"". So
f@= Y an(z=7")" = 3 aulg—a)""™.
n>ord, f n>ord, f

Hence, we can define

ordy (/) := 27!

Say = = mr(s), where s € P(Q). Let h, be the width of x. If s = co, then

enr=en((p 1)),

but since —I might not be in I, this only implies I', is one of the following:

el 1)) (o) Gl v

1 1
elzulz.
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If z = 7r(s) with s € P1(Q), choose a € SLy(Z) such that - 0o = s. If

-1 )

1

then x is called an irreqular cusp, and then (0

}?f) ¢ a 'Ta. So if k is odd, then

(o= (5 )@= (- (5 ) ) (Flea)(2) = (~D(Flka) ().

so h, is not the period. Thus,

ords f  if x is regular or k is even,
ord, f :=

sord, fif 2 is irregular and & is odd.

11.7.3 Order of differentials

Let w € Q¥"(X(T")), so w = w(f) for some f € Ay, (T).
If x is not a cusp, let g(q) = 2"= f(z), where ¢ = z"=. Then
4(q) k ko1l k

ord, w = ord, 0 qq)k/2 = ordg g(q) — 5= ord,(f) + = — — = .

In particular, if h, = 1, then ord,(w) = ord,.(f).
If z is a cusp, let g(q) = f(e*™/"+). Then

9(q)

k
Grig/h 7~ Ty

ord, w = ordg

We formally define

div(d,) := — Z %l’gﬂ; — Z gl’&i — Z Tooi € Divg(X),

i

29

where x5 ;, 3, o, Tange over the order 2 elliptic points, order 3 elliptic points, and cusps,

respectively.

II.8 2014-02-19: Computing the dimensions

I1.8.1 Computing the dimension of M;(I)
Assuméf| there exists fo # 0 in A,(T") for k > 0.

Proposition I1.8.1. For k >0, Ax(I') = M(X(T)) - fo.

3For now; we’ll prove this later.
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Proof. Let f € Ag(I'). Then f/fy € Ao(I') is I-invariant, so descends to X (I). O
So
ML) = {£fy | f € MX (D)), Ffo=0or div(ffo) > 0}
=~ {feMX(T)) | f=0or div(f) +div(fo) > 0}
= L(div(fo)).

The problem is, div(fp) is usually not integral. To fix this, for D = > n,x € Divg(X (")),
define | D] := > |n, ]z € Div(X(I')). Since div(f) is integral for f € M(X(I")),

My, (T') = L([div fo]).
For k > 0 even, w(fy) = fo(7)(d7)*/?, so

div(w(fo)) = div(fo) + gdiv(dT)

is integral. Hence,

ldiv fo] = div(w(fo)) + Z EJ o + Z gJ T3 + Z ga:oo

We need to know deg(div(w(fo)))*
If A € QY(X(T)) (so \¥/2 € Q®k/2(X(T))), then
k k
deg(div(\¥/?)) = 5 deg(div(d)) = (29 = 2) = k(g - 1).
For all w € Q*2(X(I")) € M(X(T)) - \¥/2, writing w = f - \*/2, we have

div(w) = div(f) + div(A\*/?),

SO
deg(div(w)) = deg(div(f)) + deg(div(A*?)) = deg(div(\*/?)).
Hence,
k k k
deg(LdIVfOJ) = k:(g - 1) + \‘ZJ Vo + \‘gJ vs + 5 Voo
k 2 k—2 k
= 5(29—2)+ <—) vy + (T) 1/3‘|‘§1/oo
_ k—2 1) 21/3
=29-2+—5 (29—2+ 5 T3 +l/oo) Voo
=£>0by th;genus formula
> 29— 2+ Us (if £ > 2)

> 29 — 2

because there are always cusps. Therefore, we can use the simple version of Riemann—Roch:
if k> 2 is even, then

dime Mi(T) = (k—1)(g — 1) + EJ vy + EJ Vg + g Voo-
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I1.8.2 Computing the dimension of Sj(I")

Similarly:

Sp(T) = ( |div fo] Z Too Z)

If k = 2, then
|div fo| = div(w(fy)) +0+ 0+ Z Toois

so S(T") = (dlv( (fo))) so dimg Sy(T") = g(X(T)).
If k>4, then .2 > 0, so

k—2 /u
29 — 2 —(—>>2 _9.
9-2+—— (5 g

By the simple version of Riemann-Roch, for & > 4,

dim(c Sk(P) == dlm(c Mk(F) — Vso-

I1.8.3 Negative weight modular forms

If £ =0, then
My(T") = {f holomorphic} = constants = C.

So dim M(I') = 1 and dim Syp(I") = 0.
Suppose k < 0. Recall A € S12(SLy(Z)), given by

A=a[[0- 0

n>0

So A(1) #0 for all 7 € h. Let f € M(T). Then f2A~* € Sy(T') =0, so f = 0. Thus,

My(T') = Si(I') =

for k < 0.

I1.8.4 Example: modular forms for SLy(Z)
Let I' = SLy(Z)), and let k > 4 be even. Then

|£] -1 ifk=2 (mod 12),

Lﬁj otherwise,

31
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I1.8.5 Odd weight modular forms
Let k > 0 be odd. If —1 € T, then j(—I,2)* = —1, so
f(r) = (fle = D7) = =f(7),

and there are no nontrivial modular forms of weight k.
Assume —1 ¢ T'. Given f € A.(T), look at w(f?).

Theorem I1.8.2. Suppose k > 3 is odd and —I ¢ T'. Then

dime My(T) = (k= 1)(g = 1)+ ||+ oz 500
dime Si(T") = dim M (I") — v3E.
Now consider k = 1:
o If ;8 > 29 — 2, then
dime My (T) = ”?

e Otherwise:

reg
dime S, (T') = dime M, (T) — ”;’ .
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Eisensteln series

ITI.1 2014-02-21 [missing]

I11.2  2014-02-24

I11.2.1 Cusps of I'(N)
Recall: the cusps of I'(N) are given by

(=) v

with ged(a,c) = 1, so the cusps of I'(N) are represented by
elements of (Z/N)? of order exactly N.

Remark 111.2.1. N2
71‘[(1—%) it N > 2,
VOO(F(N)>> = p|N p
3 if N =2.

a
c

with ged(a,c) = 1, ie., by

I11.2.2 Cocycle relations

We have the following cocycle relation for j(v, 2):
Lemma II1.2.2. For all o, 3 € GL$ (R) and z € b,

jlab, z) = ja, Bz)j(B, ).
Let x be a cusp of I, and let o € SLy(Z) such that o - = co. Then:

Lemma I11.2.3. Let kK > 0. Then
jloyo™h2)f =1 Vyel,

iff k is even or —I ¢ T or x is reqular.

33
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Definition IT11.2.4. Let £ > 3, and take [' = ['(IV). Let x; € h* be cusps of I'(N), and let
0; € SLy(Z) such that o; - x; = oco. (If k is odd, assume the z; are regular.) Suppose xy = oo
and oy = I. Define:

ef . _
gi(2) = gz b, N) = (o, 2) e

V€L, \T

Our goal is to show that {g;(2)} is a basis of the Eisenstein space E(I'(N)) for all k > 3,
le.:

(i) g; € Myp(T(N)).
(ii) The g; are linearly independent.
Note 111.2.5. —I € T(N) iff N € {1,2}.

Lemma II1.2.6. There is a bijection

ged(e,d) =1,
(c.d) = (0,1) (mod N),
if N € {1,2}, thend >0

n 1 Ne a b\ [(a+cNe b+dNe\ [(d UV
0 1 c d) c d \e d
a b

with a’'d — V¢ =1 and xd — yc = 1. So (c d) e€lg(N),and N |a—d/, N|b-1V.
LetCNzlifNZ&andCN:%ifN:1,2. So

L\ +— { (¢,d) € Z°

Note that

1
gO(Z) =C, Z m

(c,d)eZ?
(e,d)=(0,1) (N)
ged(e,d)=1

For v = (¢,d) mod N of order N in (Z/N)?, let

Gi(2)=Cy ) m.

(c,d)eZ?
ged(c,d)=1
(e,d)=v (N)

Let i 1
Eir(z) = Z T dr

(c,d)eZ?
(c,d)#0

Proposition II1.2.7. For all k > 3, Ek(z) converges absolutely and uniformly on compact
subsets of b.
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Proof. Let z € b, and denote L, := {cz+d|c,d € Z} C C. For n € Z~o, let M,, be the
boundary of the parallelogram whose vertices are £nz £ n. Then {J,-,(L N M,) = L\ {0},
and #(L N M,) = 8n. -

Let r(z) be the distance from the origin to Mj; this is a continuous function of z. If
w € LN M,, then |w| > r(z) - n. Thus,

S 1
Z Z 2, ™ ;Sn. (r(z)n)*

d)ez? n=1 weLNM,
o

= 8&r(2)7FC(k = 1).
|Cz+d’ 8r(z)"¢(k —1) O

b
d

W= 3 )

YET o \I'o

Lemma II1.2.8. (i) Let o = (CCL ) € SLy(Z) such that (c,d) =v (mod N). Then

(ii) For all v € SLy(Z),
(Gilky) = GY.

Proof. (i) If (¢,d’) = (0,1) mod N, then

a v a b
d d c d

(Gilev)(2) = Cwi(v. )™ > i v-2)7"

v €l \I'e

=Cyv Y. (/v

YEl o \I'o

S D DR (O e/l E) 0

"€l \['oy

(z Z) (mod N).

(i) We have

I11.3 2014-02-26: Eisensteln series

Let v € (Z/NZ)?*. Define

_ 1
Gi(z)=C —_—
1(2) N Z (cz + d)k
(c,d)ezZ?
ged(e,d)=1
(e.d)=p (N)

where Cy = % if N =1,2, and C = 1 otherwise. This set of functions (with 7 varying and
k fixed) is permuted by SLy(Z), whence G;OJ)(z) is preserved by Stabg 1) SLa(Z) = I'1 (V).
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How does GY(z) behave as we move towards the boundary of h*, e.g., what happens to
Gy as z — ioco? (Note that if we wanted to describe behavior as z — p/q = yoo, we can just
study G%(vz) = ¢,G¥ (2) as z — 00.)

When k > 2, the sum Y (cz + d)~* is uniformly convergent. So

1 1
li —_— = lim ——.
Jim On D | gy = On 2. lim

Note that lim, ;s (cz 4+ d) =% = 0 whenever ¢ # 0. Since ged(c,d) = 1, if ¢ = 0, then d = +1.
Thus,

1 if 7= (0,1) and N > 3,
- 1 1 1% ifp=(0,-1) and N > 3,
CNth—k:ONZ_k: ( ) o ( )
z—ico (cz 4 d) Pl d 1 if v=1(0,1) and N € {1,2} and k even,
(0,d)=v 0 otherwise.

To sum up, lim, ;o G¥(2) is one of 0,1, (—1)*.
We can use this computation to show these forms are a basis of the space of Eisenstein

series. We have an exact sequence

00— Sk(F(N)) - Mk(F(N)) £> (C{cusps of I'(N)}
[ (s— igr;f(z))

What we have just done is computed E (G,(Co’l)).

Consider

- 1
El(z)= ) CEYL

- Y (X )are

z€(Z/NZ)* n=x (N)

= Z <m(k>Gi_ll7(Z)'

x€(Z/NZ)*
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I11.4 2014-02-28: The g-expansion

Recall E};’ from last time: Fix (c,,d,) € Z? such that ged(c,,d,) = 1 and (c,,d,) = ©
(mod N). Then

o
C
B g L N Vo ek 1 i

cz—l—dv
c=cy dE Cc=cy deZ + d)

The ¢ = 0 term gives a constant term

0 ifc, #0 (mod N),
constant term = Zd et 1 if e, = 0.

d#0
Ifc>0,then7‘::%€f).

Lemma II1.4.1. We have

1 = el
e D D
m=1

deZ

where T €, k> 2, ¢ = 2™, and Qy, := ((_kQ_”f)),k
Proof. Use Poisson summation: let h : R — C such that
o [* |h(z)| dz < oo, and

® > .oz h(z 4 d) converges absolutely and uniformly on compact subsets, and is C*°.

Zh(x + d Z h 27rzm:c

dezZ meEZ

Then

where h is the Fourier transform

(e}

E(x):/ h(t)e 2™ dt.

o0

Let 7 := x 4 iy for fixed y > 0. Applying Poisson summation to h(z) = & =

k > 2, it suffices to show that

G or

/ﬁ 0 if m S 0,
QemF 1t if m > 0.

For m = 0, observe that

A o S ! h
0= [ woa= [ o = e O

o0
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If m > 0, then replacing ¢ with ¢ — iy by a change of variables,
~ e o] 1 ) 1Yy—+00 1
h(m) — / : 672mmt dt = eQTrmy/ 6727rzmt dt.
00 (t + Zy>k 1Yy —00 tk
Let f.(2) = z7%e~2mm= This is meromorphic with a pole at z = 0. We can check that

—2mi Res,—g fin(2) = QemF1,

and contour integration shows this is indeed the value of the above integral.
If m < 0, then

—~ o0 1 .
h(m):/ —( UL

w (t+1y)k

— oo 1 .
_ - —2miimt
- /oo (—t+ i) “

_ (_1)k+1 /OO ( ]' kefQﬂi\m\t dt.

oo (t— 1Y)

We can now do a contour integral containing no poles, so by the residue theorem, the integral
is zero. ]

Continuing with the Eisenstein series from before,

cz+dv
c=cy deZ + d)

Ife<0,7=2t iy =e?/N and gy = e™™/V, then

2miTm 27rimcz/N€27ridvm/N

e —e dym

aN uN"

so the ¢ > 0 part is equal to

o9
k-1, dym _cm __ kldmn
> m MﬁN—NkZZm N

Cc=Cy m=1 n=1 m|n
c>0

m ™ =Cv

m>0

Ife<0,7=— (Cz+d“) € b, then the ¢ < 0 part is

E:m Mdvm—cm_ 2: mkzldumxf

c= Cy m= 1 n= 1 m|n
c<0 n—c
—Ltv

'm<0

This computation yields the following:



II1.5. 2014-03-03 39

Theorem I11.4.2. For k > 3 and v € (Z/N)? of order N,

EZ( ) = 6(ca) (d Zak 1(n)ay,

where

0 otherwise,

{1 if 3 =0 (mod N),

ol ()= 3 sen(m)mh .

mln

L=c
m v

Remark 111.4.3. If T is a congruence subgroup such that I'(N) < T, let
Ejri= Y Eilwy e M),
YEL(N)\I
Ezample 111.4.4. For N = 1 and v = (0, 1), we have
if £ is odd,
<dv Z ar {2§ if k is even
d#0 '
and

op_1(n) =) sgn(m)m" =

mln

Also, o_1(n) = > d4n d*1, so we get Ek(z) =0if k is odd, and

d>0

{o if k is odd,

205_1(n) if k is even.

E(z) = 20(k) + 20 Y _ ou1(n)g

if k£ is even.

II1.5 2014-03-03

Let
C1-k) <
- +3 oii(n)g”, K even,
Eip(2) = 55 Ei(2) = 2 et
2,
0, k odd

Another useful normalization:
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= 1
Fact 1I1.5.1. E M(HZ) = ——, so if k is even, then
m
m=1

¢(k)
2 - n
Ge(z) =1+ AR ;Uk_l(n)q
Define: ]
Alz) = 152 (G- G§)

Then A € 512<SL2(Z))
Consider the j-invariant:

G o1
J(2) = J = o T 1968840 + - € Ag(X (1) = M(X(1)) -

Theorem II1.5.2. j'(2) € Ay(SLa(Z)), so there exists fo # 0 in Ar(SLa(Z)) for all k >0
even (namely, fo = (§/)/?).

Proof. For all v € SLy(Z), consider the map b p 2, C. We have

. —(io 2) = i (~v2) -~ (2) = i (~vz 1 — (4 z
J(z) =G ov)(2) =4 (vz) -+ (2) =5 (v )j(%z)2 (7'127)(2)-

This is holomorphic on h and meromorphic at oo, so j' € Ay(SLy(Z)). O

II1.5.1 G4 and G generate modular forms

Theorem II1.5.3. M (SLy(Z)) = @Mk(SLQ(Z)) is freely generated by G4 and Gj.

kEZ

We will soon show that G4 and G are algebraically independent. Assuming this, (G4, Gg)
is a freely generated subring of M (SL2(Z)). Recall that

| £]+1 ifk#£2 (mod 12),

12

| £ if k=2 (mod 12).

12

dim M; (SLa(Z)) = {

For example:

k|4 6 8 10 12 14 16
dm|[ 1 1 1 1 2 1 2
gen G4 G6 Gi G4G6 Gi, G% GZG(; Gi, G4G%

Note that dim Sy, 12 + 1 = dim M1 = dim M}, + 1. Consider the map

5:Mki>5k+12
f—=f-A.

So we want to show there exists a non-cusp form in (G4, Gg) for all even k£ > 4. Indeed:
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e If £ =0,4,8 (mod 12), we have Gi/‘{
o If k=6 (mod 12), we have GF/°.

k—6
o If k=2,10 (mod 12), we have G,* - Gg.
Lemma I11.5.4. If fi, fo € My(T") are non-zero and f; # \fs for A € C, then fi and fy are

algebraically independent.

Proof. If F(z,y) € Clz,y] such that F(f1, fo) = 0, then F(x,y) = > 5, Fa(z,y), where Fy
is homogeneous of degree d. For each d, there exists P;(t) such that

Fd(flu fQ)
— < = Fa(f1/f2).
3
Since P, is a polynomial in one variable, it has finitely many roots. Thus, f;/fs is constant,
contrary to what was assumed. O]

Thus, G3 and G are algebraically independent, and hence so are G4 and Gg.

I11.5.2 Congruences
Observe that

- 691 N
27 9.12.2.3.5.7.13 ' "
—1
Ey=— 4. ..
=5 6.2.3.7
SO
65 691
A=—" _F,— —F2
65 + 691 3

We can write A =Y 7(n)q", and
A= FEj;y (mod 691),
i.e., if p is prime, then

(p) =1+p't  (mod 691).

II11.6 2014-03-05: Dirichlet characters

I11.6.1 Dirichlet characters

Let N be a positive integer. A Dirichlet character mod N is a homomorphism y : (Z/N)* —
C*.
Given two Dirichlet characters x,n: (Z/N)* — C*, we can form the product

(xn)(a) = x(a)n(a).
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There is also an identity character 1y = 1 defined by 1(a) = 1, and inverses are given by

complex conjugation. Hence, the Dirichlet characters form a group (Z/N)*, the dual group
of (Z/N)*.
Dirichlet characters satisfy the usual orthogonality relations.

Note 111.6.1. If d | N and x is a Dirichlet character mod d, then yx induces a Dirichlet
character yy mod N.

The conductor ¢, of x is the least positive integer such that y factors through (Z/c,)*.
Ezxample T11.6.2. Let p be an odd prime. Then

N (a) 1 if2? =a (mod p) has a solution,
a —_ =
D —1 otherwise

is a Dirichlet character mod p.
If ¢, = N, then yx is called primitive.

Remark 111.6.3. By convention, we extend x to Z/NZ by defining x(0) = 0, and to Z via
Z — Z/NZ, so
x(a) = x(a mod N).

Note 111.6.4. e x(ab) = x(a)x(b) for all a,b € Z.

I11.6.2 Gauss sums

Concretely: let puy = e*™/N  a primitive N-th root of 1. Let y be a Dirichlet character mod
N. Then
()= > x(a)uk €C.
a€Z/N
Look at

Y x(@) (@)= ) x(apm(a).

a€Z/N a€Z/N

Conceptually: The map

Um : ZJN = C

a— (uy)"

is an additive character of Z/N. Note: 1,,(a) = 11 (ma).
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Given any additive character ¢ : Z/N — C and any f : Z/N — C, we define the Fourier
tmnsformﬂ
Fm)= 3" f(a)im(—a).

a€Z/N

Note that 7(x) = 7(x,%-1) = X(—1).
Facts:

e [f x is primitive mod N, then for all m € Z,

(X ¥Ym) = X(m)7T(X),
and |7(x)| = V'N.

e Consider Y mod N of conductor Ny coming from xo mod Ny. Then
7(x) = u(IN/No)xo(N/No)T(x0)-

o 7(X) = x(—=1)7(x)-

e If x and y’ are characters mod N and N’, respectively, and ged(N, N') = 1, then

T(xx') = x(N )X (N)7 ()7 (xX)-

More generally, if (N, N') > 1, then

(X, X') =

where J(x, x’) is the Jacobi sum.

e x(—1) =41 If x(—1) =1 (resp. x(—1) = —1), then x is even (resp. odd). If N > 3,
then exactly half the Dirichlet characters are even and half are odd.

I11.6.3 L-functions

Definition II1.6.5. The Dirichlet L-function of a character y is the function defined for
Re(s) > 1 by
o Y(n
L(s,x) :== (—s)
n=1 n

Since |x(n)| = 1, this converges absolutely for Re(s) > 1.
Note 111.6.6. If x = 14, then L(s, x) = ((s).

!The name makes sense: If f: R — C, the additive characters of R are v, (z) = €?™¥* and

Flw) = / f(@)by(~z) da

is the usual Fourier transform.
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Theorem III.6.7 (Euler). Let F(n) be a multiplicative function Z>, — C (i.e., F(ab) =
F(a)F(b) if (a,b) = 1) such that Y >, F(n) is absolutely convergent. Then

iF(n) = | (iF(pm)),

p prime \m=0

and the product is absolutely convergent. If F is completely multiplicative, then F(p™) =

F(p)™, so
> 1
2. 1= 1 vy

p prime
Applying this to F(n) = x(n)n™*, we obtain

L(s, x) = H #

» (p)p—*

I11.7 2014-03-07: The functional equation

Today, we will prove the functional equation for L(s, x).

Here’s the idea for proving the functional equation: use “modular forms” of half-integer
weight (theta series) and harmonic analysis for RZ,,.

As motivation, consider the function I' defined for Re(s) > 0 by

This generalizes the factorial function, in the sense that I'(s + 1) = sI'(s) and I'(1) = 1, so
I'(n)=(n—1)!forall n € Zs,.
Using the change of variables y — mn?y, we have

0 d 1
/ e’””2yy2—y =n °T'(s)—
0 Y

n2s ’

Summing over all n > 1,

7 °T(s)((2s) = /000 (Z e‘””zy) ys%.

n=1

Recall the function .
9(2) _ Z eiﬂnzz —142 Zeimﬂz.
nez n=1

The above function @ satisfies a functional equation coming from the fact that 6 is a modular
form. Define

A(s) = 72T (£)((s).
We will use “modularity” of  to show that A(s) = A(1 — s).
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I11.7.1 The Mellin transform
Let us compare the topological groups (R, +) and (RZ,-):

(Ra +) ( ;07 )
locally compact locally compact
Haar measure: dx d*y = %
Characters: Y (z) = ™ m e R vs(y) =1y%, s C
“Fourier” transform: | f(m) = [, f(x)e >"*dz | Mellin transform: I F(y)ysdgy

Definition III.7.1. The Mellin transform of a continuous function F': R, — C is

MF)s) = [ (Pl - Pl ™.

Ezample 1I1.7.2. T'(s) = M(e7¥)(s).
Theorem II1.7.3. Let F,G : RZ, — C be continuous functions such that
F(y) = ap + O(e™ "),
G(y) = ag + O(e™")
as y — oo. Suppose there exist k € Ryg and C € C* such that
F(i) = Cy*G(y).
Then:

(i) M(F)(s) and M(G)(s) converge absolutely and uniformly on compact subsets of Re(s) >
k, and they have an analytic continuation to C\ {0, k}.

(i1) M(F)(s) and M(G)(s) have simple poles at 0 and k with residues as follows:

0 | K
M(F) | —ap | Cag
M(G) | —ag | Crar

(iii) M(F)(s) = CM(G)(k — s).

Proof. As s varies over compact subsets of C, for y > 1, e~ yRe(®)+1 is O(1)-independent
of Re(s). Thus, for some constant [,

o o o d
/ [(Fy) — ap)y*| dy < / BemevyRet 1 2,
1 1 )
So for Re(s) > k, M(F)(s) = [~ + fol, and the [ term converges absolutely and uniformly
on compact subsets. Now we use the functional equation to handle the fol term. Applying

the change of variables y — i =u, du = —y%dy,
o _.d sI' a >0 _.d
[yt - ae [ e
1 Y S o S 1 Y

CaG

__CL_F_ > _ k—sd_y
= k:—s+c/1 (G(y) ag)y "
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Note that floo(G(y) — ac;)yk*‘sd—; converges absolutely and uniformly. The other two terms
can give poles at 0 and k. In particular:

M(F)(s) = =48 4 G964 7

S s—k

where
F(s) = / (P) - ar)y™ +C / (1) - ac)y~*

is a holomorphic function that converges absolutely and uniformly. Applying the same

argument for G, we have G(i) =CWrkF(y), so
_ Cc-1
M(G)(s) = =%+ =L +G(s).

where G(s) is a holomorphic function that converges absolutely and uniformly. Clearly,
F(s) = CG(k —s),

from which the functional equation follows immediately. O]

I11.7.2 Proof of the functional equation
Let x be a primitive Dirichlet character mod N. We want to find F) and G, such that

546

M(‘FX)(S) - A(S7 X)N 2 = ]\(8, X)7
M(Gy)(s) = Als, DINF = A(s,%).
Here, we will have C' = %)N

Observe that

(s+9)

Ms0 = A (552 2so0m 1 -)

F(S_I_(S) :/Ooe_yys-géd_y.
2 0 Yy

Taking the change of variables y — ”Tnzy, we obtain

and

SO
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(

)

where
2
_ Z X(n n5ez7rn Z/N.
nez
Theorem II1.7.4. The function 0, satisfies the functional equation
- T(x) (2\o*2
g, (=) = X (-) 6-(2).
X( z ) 26\/N X( )
Assuming the above theorem for now, let o, := (%)6/ ?. Then
!
F(y) = 0y (iy) - 7X
o)
Coly) = bxlin) - 5.
Thus,
1 o 1 « —1 1 «
Fl-)==20(-)=20,(—)= o2 O (i) =X
: (y 2 (y> 2 cy) ORI
where w(y) = ;% is the root number. Note that |w(x)| = 1.
By the previous theorem, assuming y # 1
~ s+ 1 s+946 ~ .
8500 = M) (157 = w0 (04 5 - 257 = w(0id - s
ITI.8 2013-03-10: Eisenstein series of a character
Today, we’ll talk more about the Eisenstein series & (I'g(N)) and E(N, x), where x is a
Dirichlet character mod N
Recall that
M(T'1(N)) = @ Mi(N, x),
XE(Z/N)*
with an action of I'g(N)/T'y (V)
Suppose k > 3. Recall that for v € (Z/N)? of order N
. N = 5
Bi(7) = 8(e)GE () + e S o1 (n)af
n=1
where i
= Y st
m|n
Example 111.8.1. Consider Z E]SJT)(T). Note that for v = (ZV Z") € I'h(N),
de(Z/N)* v
(d,N)=1

(0, ) = (0,dd,)
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Notation:

e ¢ is a Dirichlet character mod M,,.

e 1) is a Dirichlet character mod M,.

e 1 is a Dirichlet character mod M, M,.

Let ¢ be primitive, and 1 such that (¢i)(—1) = (—1)*.
One can check that, for v € I'y(N) (hence ¢, = 0 and a,d, = 1 mod N),

(eMy,,d+eMy)y = (¢ My, d + €' M,),
where ¢ = ca,,, d = dd.,, and €' = (e + ca,b,)d,. Moreover,

U()B(d) = Y(c)i(ay)B(d)B(dy) = (Y)(dy) ™ () B(d).

This suggests that we take the following “symmetrized twisted sum”

Definition IT1.8.2. E}¥(7):= ) > Y v EleMe M) 1y,

¢ (mod My) d (mod M) e (mod My)

If v € T'o(N), then
(EL21) (1) = () (dy) B4 (),
Hence, E¥ € My(N, ¢).

IT1.8.1 Fourier expansions

We’ll split this up into the constant and non-constant parts.
The non-constant part of £} can be rewritten as

Qk m_mn
~ sgn(m)m* ! " g,

mn>0
n=cM,

For EV%, we get

B B W C R DR L

c d e mn>0
n=cM, (N)
- %Z;w(dﬁ(d) ZO sgn(m)m" ! gy (Zu >
c mn>

n=cM, (N)
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Note that ), Har, = My if My | m, and 0 otherwise. Applying the change of variables
m — mMy and n — nM,,

= S e Y sanlmmt g

Y ¢ d mn>0
n=c (My)
Q m
— 00 Y sen (zso )
¥ ¢ mn:>0
P(m)(P)
Q - mn
= 177(®) D () sgu(m)p(mym* g
¥ mn>0
Q mn
=2557(®) D (n)e(m)m* g
P m,n>0

m>0
20— N
= WT(SO)ZUZ_S?(H)Q )
n=1

where

The constant term is

2. 2.2 VOB (B) = 0(0) 2 D PGy,

Recall that ¢(0) # 0 iff ¢» = 1. Take ¢(0) # 0, so ¥(0) =1, My =1, and M, = N, whence

by the functional equation for L(s, x). Let

B () = gy BE )

Then:

L(1—
Theorem II1.8.3. E/?(1) = 1 (0) —~———~ b ¢) + Za n)q" € E(N, ).
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Definition III1.8.4. Let Py, be the set of triples (¢, ¢, t) such that v, ¢ are primitive mod
My, M, respectively, (¥p)(—1) = (—1)*, and ¢ € Zs; such that tMyM, | N.

Let e?'(1) := EV?(tr) € My(Ty(tMyM,)) C Mi(T1(N)).

Theorem II1.8.5. Let x be a character mod N. Then

{E;f’%t : (% 2 T) < ‘@va and ¢90 - X}

is a basis of EL(N, x).

IT1.9 2014-03-24: Families of Eisenstein series [incom-

plete]

I11.9.1 Weight 2 Eisenstein series
Let

- 1
Ey(7) = Z e

(0,0)%(c,d)€Z2

This converges conditionally. Then

~ 2mic

(Balan)(7) = Ealr) —

b
d
SLy(Z), but not holomorphic.

Note TI1.9.1. My(SLy(Z)) = 0.

Recall: dim & (') = vy — 1.

For v, > 2, here’s the idea: Say you find £ and E® weight 2 invariant, but not
holomorphic. Then we hope that E®) — E® is holomorphic.

Fix v € (Z/N)? of order N. Let

for v = <CCL > € SLy(Z), but EQ(T) — % (where 7 = x + 1y) is weight 2 invariant under

n=1
~ T
g5 (1) = E3(r) - N2y
weight 2 invariant under I'(V).
Theorem I11.9.2. &(I(N)) = {zﬁ aEY S, ay = 0,a, € C}.
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I11.9.2 Families of Eisenstein series

(Miyake §7.2)
Hecke introduced a parameter s € C. Let k € Z, and let v, ¢ be primitive characters
mod My, M, respectively. Then

s = 3 $(m)@(n)

(mT +n)* |mr + n|28

m,ne’
(m,n)#(0,0)

converges absolutely and uniformly on Re(k+2s) > 2+« for all e > 0, and so it’s holomorphic.
Let

To(My, M,) = {(Z Z) €SLy(Z) :b=0 (mod M,), c=0 (mod Mw)} .

Then for all v € T'o(M,y, M,),
Ey(y -z 50, 9) = (V@) (d)j(ez + d)* |ez + d[* Ey(z, 59, ¢).
So if k > 3, we can plug in s = 0 to obtain
Ei(z,0;99) iy = () (d) Ei(2,0;, 4, )
for all v € I'g(My, M,,). In fact, for & > 3,
Ep(M,z,0:9, ) = B (2).

The idea is to analytically continued Ej(z,s;t, ) to Re(s) > —e for some £ > 0 and
k=1,2, and plug in s = 0.
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Chapter 1V

Hecke operators

IV.1 2014-03-26: Hecke operators

IV.1.1 Motivation

Let I' = SLy(Z). Think of SLy(Z)\b as the space of 2-dimensional lattices (up to homothety,
i.e., scaling and rotating). Let

£ .= {full rank lattices A C C},

%

B = {pairs (w1, ws) € C* such that Im <ﬂ) > 0} .
There is a natural surjection
b:B—»Z,
(wl, LUQ) — A(wl, WQ) = Zw1 D ZWQ.

Two pairs w,w’ € B give the same lattice iff there exists v € SLy(Z) such that yw = W'.
Thus, £ = SLy(Z)\B.
There is also a map

U:B—b,
w1
= —.
<w17w2) Wo

This commutes with the action of SLy(Z).
Note that C* acts on £ and B by scalar multiplication, and ¥ induces an SLy(Z)-
equivariant isomorphism

U B/C* = h.
So we have an isomorphism
SLo(Z)\%/C* = SLy(Z)\h
between the space of lattices modulo homothety and the modular curve.

Remark IV.1.1. An elliptic curve E/C is a complex torus, i.e., there is a lattice A C C such
that £ = C/A. Moreover, C/A = C/A’ as elliptic curves iff A ~ A’ (homothety). So we can
think of SLy(Z)\b as the moduli space of complex elliptic curves.

53
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IV.1.2 Connection to modular forms

Since C* acts on .Z and C, it acts on the set of maps Homget(-Z, C).
The characters of C* are of the form z — 2°. For k € Z, say F' is of weight k if for all
AeC*and A € Z,
F(AA) = XFE(A).

Denote F(wq,ws) := F(A(wi,ws)). Weight k& means:
F(dwr, dws) = AN FF(wy, w,).

We can dehomogenize in F": let

F(wy,ws) := w];F(wl,wQ).

If F has weight k, then F(wy,w;) = F(g—;, 1). Let z := £!. There is a function f : h — C

such that F(w,w,) = f(2).
For F' to be SLy(Z)-invariant means that

k
(cwy + dwy)* F(aw + bwy, cwr + dws) = (cwy + dwy)*Fwy, wy) = (cﬂ + d) WS F(wy, wy),
%)

e, flev = f.

IV.1.3 Hecke operators
Let & be the free abelian group on .Z. For n € Z>;, we have Z-linear operators
Tn): 2 —9
(Al > A

A CA
index n

and

Sn): 92— 9
[A] — [nA].

Now any map F': £ — C yields F': ¥ — C, and for any linear T': ¥ — &, we can define
(T F)(A) = F(T- [A]).
So we can define T'(n) on f: h — C by
(T'(n) - f)(2) = function on b corresponding to n*'T(n) - F.

This is a Hecke operator.
Let’s rephrase this definition in terms of group theory. For n > 1, let

Ms(n) = {o € My(Z) | det(ar) =n} .

Let « € My(n) and A € Z. Then A’ := aA C A has index n. Conversely, if A’ C A has
index n, then there exists & € My(n) such that A’ = aA. Moreover, aA = SA iff there exists
v € SLy(Z) such that g = va.
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Lemma IV.1.2. My(n) = | | SL(Z) (“ b).

So sublattice of A(wy,ws) of index n are exactly A(aw; + bws, dwy), where a, b, d are as
above.

Fact TV.1.3 (Structure theorem of finitely-generated abelian groups). Let a@ € My(n) and
A = aA. We can choose bases w and w’ of A and A’ such that w] = aw; and w) = dw,,
where a > 1, a | d, and ad = n. That is,

My(n) = | | SLa(2) (8 2) Sy (Z).

Remark IV.1.4. Next time, we’ll discuss “abstract Hecke algebras”, first introduced by Shimura.
The idea is, given I' < SLy(Z), and T'(n) acting on Mg (I'), we need to think of 7'(n) as a
formal sum over double cosets.

IV.2 2014-03-28: Abstract Hecke algebras
Let G be a group (e.g., GLj (R)) and I',I” < G subgroup (e.g., congruence subgroups).

Definition IV.2.1. We say that I' and I are commensurable, denoted I' = I, if [I' : NI
and [I'V : I' N ["] are both finite. The commensurator of I' is G is

f::{g€G|gFg_1%F}§G.
(If T < GL{ (R) is a congruence subgroup, then T' = R* - GLJ (Q).)
Lemma IV.2.2. Suppose I' = T". Then:
()T =T
(ii) For all « €T,

d e
Fal” = |_| Fay; = |_| d;al”,
i=1 j=1

where the ~; and &; are coset representatives of (I" N a ' Ta)\I" and T'/(T Nal’a™),
respectively.

Definition IV.2.3 (Abstract Hecke algebras). Let I' ~ I, and let A C " be a submonoid
such that A D T',T". Let R be a commutative ring. Then we define Hg(T",I"; A) to be the
free R-module generated by double cosets I'al” for o € A. (We also write Hr(I'; A) when
[' =1", and we drop the subscript when R = Z.)
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Let ' = IV ~ I, and let A D I'”. Define a multiplication map
HR(F, F,; A) X HR<F,, F”; A) — HR(F, F”; A)
as follows: for a, 5 € A, write

Tol” =| |Tay,
FIﬁF” _ |—| Flﬁj-
J

Then
Tal’AT" = | JTal"8; = | JTai; = | [Tl
J (2] k

so we define
(Tal’) - (BT < 3" eTyTY,

[yI" Chal" BT

where ¢, := #{(¢,7) : T;8; = I'y}. This is well-defined and associative.
Lemma IV.2.4. Let o € T. If #(I\[al') = #(Tal/T) =: d, then there exist a; such that

d d
ol = |_| To; = |_| a;T.
=1

=1

Proof. Choose «;, 3; such that I'al’ = | |;T'a; = [ |; 8;I" and T'e; N ;1" # @ for all i, j. Let
(51‘ c FO[Z' N BZF Then FO@ = Fél and BJ‘ = 52F ]

Remark 1V.2.5. The multiplication defined above makes Hz(I'; A) into a unital associative
algebra.

Theorem IV.2.6. Suppose there is an involution ¢ : A — A such that:
° (aﬂ)c — ﬁcac
o (a9 =

o [ =T

Fa‘T" =Tal for alla € A

Then for alla € A, T\I'aIl" and T'al'/T" have a common set of representatives, and Hr(I'; A)
18 commutative.

Let M be an R-linear right A-module. Then M' has a natural Hz(T,T"; A) “action”.
Write Dal” = | |1, Ty, and define

d
m|Cal” & Zm|ai e M".

i=1
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IV.2.1 Concrete example
Now let I' = T'y(IV), and consider

Ao(N) := {a: <Z Z) € My(Z):¢c=0 (mod N), ged(a,N) =1, det A >0

3
|

Aj(N) = {a = <Z Z) € My(Z):¢c=0 (mod N), ged(d,N) =1, det A>0,.
Let
H(N) = H(To(N), Ao(N)),
HA(N) := H(To(N), Ag(N)).

Fact IV.2.7. If a € Ag(N) (resp. A§(N)), then there are unique a,d € Z>; such that a | d,
a 0 d 0

ged(a, N) =1, and Tal' =T (O d) [ (resp. Tal' =T (O a) ).

Theorem IV.2.8. H(N) and H*(N) are commutative.

Proof. Apply Theorem |[V.2.6 using the following involution:
a b\° [ a ¢
¢cN d) \bN d)°’

For ged(a, N) =1, let

a 0O
I'(a,d) —F<0 d)FEH(N),
I (a,d) —F<0 a)FE’H(N).
For y a Dirichlet character mod N, and o = “ Z) € Ag(N), extend x to a map I'o(N) —

C* by x(a) :=Xx(a). If a € AJ(N), extend to x*(«) := x(d). If a € T'o(N), then x(a) =
X (@).
For G any of A, M, S, and ? either nothing or %, we have the Hecke action

defined by
flglal := det(a)g_1 Z?(Oﬁ)ﬂk%’,

where I'al’ = | |, T'o;.
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IV.3 2014-03-31: Hecke actions

Continuing with the notation from last time: For n > 1, let

T'(n) = Z

FaleH’(N)
det(a)=n

Then:

Z T(a,d),

ad=n
(a,N)=1
ald

Z T*(d,a).

ad=n
(a,N)=1
ald

So, T'(p) = T'(1,p) and T*(p) = T*(p, ) for p prime.
Theorem IV.3.1. e If(m,n) =1, then T(m)T(n) =T (mn).

o Ifp|N, then T(p°) = T(p)T(p*").
e Otherwise, T(p°) = T(p)T(p) — pT(p, p)T(p°~2).

o Generally,
T(m)T(n) =---

IV.3.1 Petersson inner product

This is an inner product (-, -) on Sk(I).

HECKE OPERATORS

Recall that h* = h UPH(Q). Since P'(Q) is countable, it has measure zero. We have

b = GL3 (R)/R%, 02(R),

which is a locally compact group, and thus has a Haar measure ug such that pug(aX) =
pe(X) for all @ € GL; (R) and all Borel X C GL3 (R). This induces a GLJ (R)-invariant

measure on h. If 7 = x + iy, then du(r) = %.

Recall that 7* = {|Re(7)| < 1, |7| > 1} U {oc}.

Lemma IV.3.2. If ¢ : h — C is continuous and bounded, then for all o € SLy(Z),

| elariaut)

COMVETGES.

Ezxample 1V.3.3. For ¢ = 1, we have

V2 1 2
/ / / dyd / dx = 2 arcsin <—) =T ¢(2) - —.
71/2 Vi—zZ Y 0 1— 22 2 3 T

Thus, Vol(X (SLy(Z
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IV.4 2014-04-09: Newforms
N)

(1) We've seen that Si(IV,x) has basis of eigenvectors for ’]I‘ﬁusp(N ,X). Why not all of
Teusp (N, X)?

(2) Let f be a newform eigenvector for all Hecke operators. Then L(s, f) has an Euler
product.

(3) Theory of conductors for modular forms.

Hecke showed that, if y = 1 and N is prime and k < 12 or k = 14, or if y is primitive,
then Sk(IV, x) does have a basis for eigenvectors for the full Hecke algebra.

However: suppose, for example, that f € Si(N,x), p t N, flxT(p) = N\ f, and f €
Sk(Np",x) for all » > 0. Moreover, write f;(z) := f(p’z) € Sp(Np", x) for 0 < j < r and

5j = <Zz)] (1)> Then

and 6,To(N)d; " C To(N).
Consider the actions T'(p) C Sk(V, x) and U(p) C S(Np", x) for r > 1. Then

(f1105)(2) = P2 f(p2),

1) = vt (5 1),
PO 0) = 1T =511 (B 1) = 0r =00

If 7 > 1, then

fj\kU(p)ZPSIZX(é T;)fj\k ([1) 7;)

m=0

p—1
:p—lgfj—ﬂk (g (1]) ((1) TZ)
p—1
:p—lmzzofj_1|k (g g) <(1) T) = fj_l.

So the action U(p) C'V := (fo, f1,-.., fr) is given by the matrix

Ay 100
P x(p) 0 10
0 00 1
0 000
0 000

Note that W := (fo, f1) C V is U(p)-stable, with characteristic polynomial 2% — A,z +
k—1
P x(p)-
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Lemma IV.4.1. If T :V — V s a diagonalizable linear operator and W <V is T'-stable,
then T : V/W — V/W is diagonalizable.

Hence, if > 3, then U(p) is not diagonalizable on (fo, ..., f.).
We want to develop a theory of “primitive” modular forms and “conductors”. For ¢t € Zx,,

0y = ((t) (1)) and f(tz) = t7*/2 |0y, so if f € My(N,x), then f(tz) € M(Nt,x).

Let M, N be positive integers with M | N, so Sp(M,x) € Sk(N,x). For all ¢ | 4%, we
have a “degeneracy map”

LMNt - Sk(M7 X) — Sk<N7 X)7
f = flede € Sp(Mt, x).

Fact IV.4.2. Let T = T(n) or T'(n,n), where (n,T) = 1. (For T'(n,n), also require (n, N) =
1.) Then the following diagram commutes:

Sk(M,x) —= Si(M, x)

L]M,N,tl lL]w,N,t

Define the old subspace by

SPUN ) E | ianwe(Se(M, X)) € Si(N, x).
M|N t|%
M#N

Proposition 1V.4.3. SJ4(N, x) is Hecke stable.
Proof. The fact for p | N is similar to computations of U(p) C f. O
The new subspace is
SE (N X) & SPUN ) = {F € SN, x) | (f.9) = 0 ¥g € SPUN. X))}
A form f € Si(N,x) is called new or primitive if f € SPV(N, x).
Proposition IV.4.4. S2*(N, x) is Hecke stable.
Proof. Observe that (f|,T(n),g) = (f, g|lxT*(n)), where T*(n) = x(n)T'(n). O

Corollary IV.4.5. Both SV and S have a basis of eigenvectors for the anemic Hecke
algebra.

Our goal is to show SP*(N, x) has a basis of eigenvectors for the full Hecke algebra.
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IV.4.1 Atkin—Lehner—Li theory
Note IV.A.6. If f =", -, ang™ € Sp(M,x) and d | 5%, then

uana(f) = d> Z ang™,

n>1
so tyv,a(f) has a, = 0 whenever (n,d) = 1.

Lemma IV.4.7 (Main lemma of Atkin-Lehner—Li theory). If f € Si(I', (V)) and a,(f) =0
for all (n, N) =1, then for allp | N, there is a modular form f® € Sy (T, %) such that

f= Z NN ().

p|N

Proof. See §5.7 of Diamond—Shurman or §4.6 of Miyake. m

IV.5 2014-04-11: More about newforms
If fe Se(T'1(N)) with a,(f) =0 for all (n, N) =1, then f is old.
Definition IV.5.1. If f # 0 in M(I'y(N)) and f is an eigenvector for all T € H(N), then f

is called an eigenform. An eigenform f = ano a,q" is normalized if a,(f) = 1. A newform
is a normalized eigenform in SV (I';(N)).

Let f € Si(N,x) be an eigenvector for H™ (N). Then for all n with (n, N) = 1, there
are \,,d, € C such that f|,T(n) = \,f and f|T(n,n) = n*~1d,f. One can check that
X : n+— d, is a Dirichlet character of level N, so f € Sk(NV, x).

For all n with (n, N) = 1, we know a,(f) = Aa1(f). Soif a;(f) = 0, then f is old by the
main lemma. Hence, if f € SPV(NV, x), then a;(f) # 0, so we can normalize to a;(f) = 1
without loss of generality. Then a,(f) = \,.

Form > 1, let g = f|xT'(m) — am(f)f € SEV(N, x). Then g, is also an eigenvector for

T(n) and T'(n,n) whenever (n, N) = 1. We compute a;(gn):

al(gm) = a1 (f'kT(m>) — a1 (am(f)f) = am(f) - am(f) =0.

SO g is both old and new, hence g,, = 0. Thus, f|,T(m) = A\ f (where A, = an,(f)) for
all m > 1.

Theorem IV.5.2. If f € SpV(I'\(N)) with f # 0 is an eigenvector for T'(n) and T'(n,n)
whenever (n, N) =1, then:

(i) f is an eigenform and a multiple of a newform.

(i4) (Multiplicity one): If 0 # fe SpeV(Iy(N)) with the same Hecke eigenvalues for the
full Hecke algebra, then f = cf for some c € C*.

(111) The set of newforms of level N and character x are an orthogonal basis of Sk(N, x).
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We can prove a stronger form of the above “multiplicity one” result:

Theorem IV.5.3. Suppose f,g € Sp™(I't(N)) and D € Zs; such that f, g are eigenvectors
for T(c]uvs?)(N, X) with \,(f) = A\p(g) for all prime p{ ND. Then f = cg for some c € C*.

Theorem IV.5.4. The set {f(tz): f € SPV(M,x), tM | N} is a basis of Sp(N,x).

Theorem IV.5.5. If g € Si(I'y(N)) is a normalized eigenform, then there exists M | N
and f € SV (I'1(M)) such that a,(f) = a,(g) for allpt N. We define cond(g) := M.

IV.5.1 Euler products

Next time, we’ll talk about L-functions properly. Today, we’ll just briefly remark on Euler
products.
Given f =) .,anq", define
> a
L<87 f) = s

s
n>1

When is there an Euler product?

Theorem IV.5.6. Let R be a commutative ring and t(n),d(n) € R such that t(1) = d(1) =1
and d(mn) = d(m)d(n) for allm,n € Zs,. Then the following are equivalent:

(i) t(mn) = t(m)t(n) whenever (m,n) = 1, and t(p)t(p?) = t(p " pd(p)t(p~t) for all

primes p and e > 1.
1

(ii) ) tf;b) = (=t + pdp)p=)"".

n>1 P

IV.6 2014-04-14: L-functions

Let f=3,-0anq" € Mg(N,X). Define

Lis f) ="

s
n>1

The Dirichlet series converges for Re(s) > Cy. Indeed, if |a,| = O(n”), then

Qn

nS

< O?’LV_S,

so it converges absolutely and uniformly on compact subsets of Re(s) > v + 1.

Lemma IV.6.1. If f is a cusp form of weight k, then |a,| = O(n*/?). Otherwise, |a,| =
O(n*=1*2) for all e > 0.

In fact, Deligne proved the following theorem, conjectured by Ramanujan and Petersson:
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Theorem IV.6.2. If f is a newform of level N, then for all n with (n, N) =1,

k-1

la,| =0(n"7).

The idea is to consider z* — a,x — p*~'x(p) = (* — a,)(z — B,). The modular form

is attached to a 2-dimensional Galois representation coming from the /¢-adic cohomology
of a variety; a, and p*~1x(p) are the trace and determinant, respectively, of this Galois

representation. In particular, L(s, f) is a factor in the zeta function of some proper smooth
variety, occurring in H*~!, so the Weil conjectures say that |a,| = |8,| = pkz;l,

There is a converse:

Proposition 1V.6.3. If f : h — C is a holomorphic function such that f|yy = f for all
v €T, then the following are equivalent:

(1) flrew is holomorphic at oo for all o € SLo(Z) (i.e., f € M(T)).

(ii) There exists v such that |a,| = O(n").

IV.6.1 Euler products

Does L(s, f) have an Euler product?
Recall from last time:

Theorem IV.6.4. Let R be a commutative ring and t(n),d(n) € R such thatt(1) = d(1) =1
and d(mn) = d(m)d(n) for all m,n € Z>,. Then the following are equivalent:

(i) t(mn) = t(m)t(n) whenever (m,n) = 1, and t(p)t(p®) = t(pHpd(p)t(pt) for all
primes p and e > 1.

(i) » tfﬁ) =T (1~ t)p~ + pd(p)p~>) "

n>1 D

Proof. Suppose (i). Then

t(n) t(p®)
> TS

) |

3
A%

We know ¢(p***) — t(p)t(p°) + pd(p)t(p°~') = 0. So

et sty S L
(t(m tp)?® | tr?) )
p3 p25 p3s
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and adding diagonally the terms with the same p® term in the denominator, everything but

the initial (1) = 1 cancels, yielding

>, ) _ 11 (Z t}%?) =1 =t@pr— +pdpp )"

nS
n>1 p e>0 p
For the converse, see Diamond—Shurman. O

For our application, let R = H(N), and let

t(n) =T(n),
) T(n,n) if (n,N)=1,
dln) = {o if (n, N) > 1.

= Ap)f for all p € &, then

IT = + X(p)pk12s)_1> Y .,
pES (n,2)=1 n

If fe M(N,x) and £ is a set of primes such that f[;T(p)
o

So if f is a newform, then

L(s, f) = [T (0 = a™ + x(p)p" ) .

p

IV.6.2 Analytic continuation and functional equation
f) has analytic continuation, a functional equation, and other

Our next goal is to show L(s,
X), let

analytic properties.
The basic tool is the Mellin transform: Given f =} _,a.q" € My(N

Moo )= M) = [ (10 - ).

Recall that a, = O(n”), so if Re(s) > v + 1, then

/Ooo(f(zt —ao — / Zan ’27””255
dt

= / ane "t (2mn) 5 —
0 t

1 =< ap <, Ldt
~ 2oy (;n_>/o Y
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Remark IV.6.5. There is an inverse Mellin transform: if L(s) = M(F)(s) = [;7(F(s) —
F(00))t*%, then (under analytic assumptions),

c+i00
F(s) — F(oo0) = i/ L(s)t™* ds & MY(L)(s).

- omi

—100

So if we have L(s), we can ask when

is a modular form.

IV.7 2014-04-16

The contents of today’s lecture is given in more detail in Miyake, §4.3 and §4.7.
Let {a,},—, be a sequence in C, and let

f(Z) _ Z an€27rinz

n>0

for z € h.

Fact IV.7.1 (t). If a,, = O(n”) for some v > 0, then the series defining f converges absolutely
and uniformly on compact subsets (of h), so f(z) is holomorphic on . Moreover, writing
z =z + iy, we have |f(2)| = O(y "t asy — 0 and | f(2) — ap| = O(e"?™) as y — oo, both
uniformly in .

Conversely, let f(z) be holomorphic on § such that there exist a, € C with f(2) =
Ym0 @ng" converging absolutely and uniformly on compact subsets, and such that there
exists v > 0 with |f(z)] = O(y™*"!) as y — 0. Then |a,| = O(n¥) (and so |f(z) — ao| =
O(e™™) as y — 00).

Suppose f satisfies the above conditions (). Then

an

L<S>f): -

s
n>1

converges absolutely and uniformly on compact subsets for Re(s) > v + 1.
Let N € Z>,, and define

Anls, f) = (JQV;/;F(S)L(S,ﬁ _ /OOO (f (\/Z—%) - ao) ts%.

0 -1
N 0

We now define the Atkin—Lehner operator: let W, = <
Co(N).

). Then WyTo(N)Wy! =
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Fact IV.7.2. The map f +— f|xWy gives an isomorphism
where G is any of M, S, or £.

Theorem IV.7.3 (Hecke). Let k,N € Zxy, and let f =3, qanq" and g =3 -, buq" be
functions satisfying (1). The following are equivalent:

(A) 9(z) = (flxWn)(2).
(B) Both Ay (s, f) and Ay (s, g) can be analytically continued to all s € C,

AN(Sv f) = ZkAN(k - s,g),

and the function

18 entire and bounded in vertical strips.

Remark 1V.7.4. The proof (which we won’t present here) uses the Phragmén—Lindeldf prin-
ciple: Let F(s) be holomorphic on the vertical strip a < Re(s) < b, and suppose |F(s)| =
0(6‘5‘6) for some 6 > 0. If there are constants M, and M, such that, for all ¢t € R,

|F(a+it)] < M, - (14 [t])7,
[F(b+it)] < M, - (1+t]),

then for all a < o < b,
|F(o +it)] < MO M1 (1 4 |g))odlo)+50-4o)

where ((0) =1 — 7=2.

Corollary IV.7.5. If f € Sp(N,x), then An(s, f) is entire and satisfies

An(s, f) = i"An(k — s, flsWn).

Corollary IV.7.6 (N = 1). Recall that SLy(Z) = <(é D : ((1) _01) = W1>. Letk € Z>s

be even, and suppose f satisfies (). Then f € My(SLo(Z)) if and only if:
e A(s, f) can be analytically continued to all s € C.
o A(s, f) = (=1)"?A(k — s, ).

Qo (—1)"‘/2(10
A G AT 4
o As, f)+ P

Furthermore, if ag = 0, then f € S,(SL2(Z)).

15 entire and bounded in vertical strips.
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Proof. By definition, f|y (1) 1 = f. Then f € My (SLs(Z)) iff f|xW1 = f. Apply Hecke’s
theorem with N =1 and f = g. m

To generalize to My(N, x), let f satisfy (1), and let ¢ be a Dirichlet character. Let
fu =2 s ¥(n)a,g™ (which also satisfies (1)) and

Lis. £.0) 1= s, £) = 3 00

Let m,, be the conductor of 9, and let

AN(Svaw) = ]\Nmfb(safw) = (Tn(lg—ﬂ\/sw)sr(s)[’(‘sva ¢)

Lemma IV.7.7. If f, g satisfy (T) and 1 is primitive of conductor m > 1, then the following
are equivalent:

(A)y There is a constant Cy such that fy|xWym2 = Cygy.

(B)y An(s, f,1b) has analytic continuation and is bounded in vertical strips, and
]\N(S7 f7 77D> - ZkCzZJ]\N(k - S, Q,E)

Lemma IV.7.8. Let f € My(N,x), ¢ primitive of conductor m, and M = lem(N, m?, mm,).
Then fy € My(M, x?).

Let & be any set of odd primes and 4 such that, for all p € &, we have (p, N) = 1 and
PN{a+nb:nel}#+
for all a,b > 1 with (a,b) = 1. (For example, we could take & to be all odd primes p{ N.)

Theorem IV.7.9 (Weil’s converse theorem). Let k, N € Z>1, x a Dirichlet character mod N
such that x(—1) = (=1)*, and a,,b, € C both O(n") (for some v >0). Let f =3 ~qanq"
and g =3 _,-,buq". Then f € My(N,x), g € Mi(N,X), and f[xWn = g if and only if:

o An(s, f) and Ax(s, g) satisfy (B).

e For all primitive Dirichlet characters ) of conductorm € P, An(s, f,v) and Ay (s, g, )
satisfy (B)y with

Cy = x(m)y(=N)

where T denotes the Gauss sum.

Furthermore, if L(s, f) is absolutely convergent at s = k — § for any § > 0, then f,g are
cusp forms.
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IV.8 2014-04-21

Theorem IV.8.1. Let f € M(N, x) be a newform. Then there is a number field K¢/Q such
that a,(f) € Ok, for alln > 0. In fact, we can take Ky = Q(a, : n > 1), and Q(x) C K;
and Ky 1is totally real or CM.

Let T := T(N,x) = im(H(N) — Endc(Mi(N,x))). Note that My(N,x,Z[x]) is
Hecke stable (since a,(f|xT(m)) = Zo<d‘(m7n)X(d)d’“_lamn/dz(f)), and it contains a basis
of My(N,x). Hence, T C Endgj(Mi(N, x,Z[x])), recalling that H(N) = Z[T'(n),T(n,n)].
We have proved the following:

Proposition IV.8.2. T is a finitely-generated free Z[x|-module.

Let f be an eigenvector for all T'(m). We can define a homomorphism 6, : T — C by
flsT =0¢(T)f for all T € T. The image of §; is a finite module over Z[x], so it’s in the ring
of integers of some K.

Let K} := Q(a, : n > 1). We want to show that we can take K; = K7, for which it
suffices to show x(d) € K} whenever (d, N) = 1.

Lemma IV.8.3. Let K/Q be a finite extension. If a, € K for alln > 1, then so is ay.

Fact IV.8.4. A number field K/Q has a well-defined complex conjugation iff K is totally real
or CM.

Lemma IV.8.5. For all n with (n,N) =1, a, = a,x(n).
Proof. We have T*(n) = x(n)T'(n), so
an (f, f) = (fleT(n), f) = {f, f1eT"(n)) = {f,X(n)anf) = x(n)an (f, f) - O

Corollary IV.8.6. For all 0 € Auty(C) and all (n,N) =1,

o(an) = o(an)x’(n).
Proof. Apply the above lemma to f°. O]

So for all (n, N) =1,

(@)X’ (n) = o(an) = o(an)x?(n),

so o(a,) = o(a,). Thus, @, is well-defined for (n, N) = 1. The existence of a well-defined
complex conjugation on Ky shows that it is totally real or CM. [
When is K totally real?

Theorem IV.8.7. K is totally real iff a, = x(p)a, for all pt N. In this case, x* = 1.
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IV.8.1 CM forms
Let f € Si(N, x) be a newform, and ¢ a Dirichlet character mod M. Let

fo=>_@n)a.q" € Se(NM? x¢),

n>1

folkT(p) = (p(p)ap)f,  Vpt NM.

Definition IV.8.8. Let ¢ be a non-trivial Dirichlet character. Say f has CM by ¢ if
w(p)a, = a, for all pt NM.

Note IV.8.9. o p2=1

e ¢ corresponds to an imaginary quadratic F'/Q, i.e.,

1 if p split in F,
o(p) = e
—1 if pinert in F.

o If f is a newform, x # 1, and K/ is totally real, then f has CM by its Nebentypus x.
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Chapter V

Automorphic forms

V.1 2014-04-23: Automorphic forms and representations

Today, we will put modular forms into the larger context of automorphic forms and au-
tomorphic representations of SLy(R) and GL2(A). The first step is to go from Si(I") to
automorphic forms on SLy(R) (Gelbart, chapter 2).

Recall: SLy(R)/SO%(R) — b by the map g+ g - i.

The idea: given f : h — C, “lift” this to a map ¢ : SLy(R) — C. Specifically, for
f € Sk(I') (where I' is a congruence subgroup and k is even), define

0r(g9) == f(g-1)j(g,1)"

Then for all v € T, let 2 = g - 4, whence

er(v9) = f(y-(g-9)i(vg,9) 7" = fF(v - 2)j (v, 2) "i(g,9) 7"
= ([l (2)i(g,9) 7" = flg-1)i(g.9) 7" = ¢s(9).

Thus, ¢y is left-I'-invariant.
What properties characterize the image of f — ¢;7?
There are nice coordinates on G := SLy(R): let

a={(5 ) aemal,
= {5 ) ues),

K = S0,(R) = {@ = (COSQ _Sm9> 10 € [o,zw)}.

sinfl  cosf

Note that SO5(R) C SLy(R) is a maximal compact subgroup.
The Iwasawa decomposition of SLy(R) is:

G = NAK.

71
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Let B = N A be the upper-triangular subgroup, called the Borel subgroup. Under the action
SLs(R) C b, B acts transitively: for z =z + iy € b, let

b y1/2 I'y_l/Q
z - 0 y—1/2 .

Then b, -i =z + 1y = 2.

If g = <Z 2) = b,Kkg, then z = g -7 and 6 = arg(ci + d). Then:

Proposition V.1.1. Let f € Sp(T).
(1) @y is left-T'-invariant.

—ik6

(i) ©r(gke) = e ™ ps(g).

(iii) ©¢(g) is bounded and in L*(T\G).
() @y is cuspidal, i.e., for all g € SLy(R) and o € SLy(Z),
1
1 zh
frerle(o )s)eeo
where h is the width of the cusp o - oco.

Proof. (i) Already proven.

(ii) Observe that
o1(gre) = flgra - 1)i(gre, 1) = Flg-1)i(g,1) (e, )" = 0p(g)((sin )i + cos ) ™"

(iii) Note that f € Si(T) iff 4*/2|f(z)| is bounded. For ¢ : SLy(R) — C, define

1 27 0 00 dIdy
dg = —/ / / x,y,0 de.
/Gw(g) 9 =5/ | _oow( y,0) "

r(g) dg = )G = (1, 1) VO(X(D),
\G F\h

(iv) By definition, f is a cusp form <= ao(f|r) = 0 for all & € SLy(Z). Thus, for all

Then
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zeb,
h
0= ao(f]sar) = / (flea)(@ + 2) de
0
1
_ h/ (Flec)(h + 2) da
0

= h/o fla- (hx + 2))j(a, he + 2) " dx

[l e )
= hjlg,i)™* /01 0 (a ([1) hlx) gi) dz. 0

Si(7) = L*(T\G)
f= s
A function f is holomorphic <= 0;f = 0, where

1 /0 0
0 == (= +ie).
2 (8x * Z@y)
To characterize the image of the above map, we now define the Laplace—Beltrami operator

on SLy(R): in terms of (z,y,0),
A = —y? ((93 + 3;) — y0x0y.

So we have a map

Facts:
e A is self-adjoint.

e A is non-negative.

e A commutes with R(g) for all g € G, where R denotes the right regular representation
of G on L*(T'\G), i.e., forall g € G and ¢ : G — C in L?

(R(g9)¢)(h) = ¢(hg).

This is a unitary representation of G.
Theorem V.1.2. Let

AZ(T) = {gp € L*(T\G) : ¢ satisfies (i) to () above, and Ap = —g (— - 1) gp} :

Then the map f v+~ @y is an isomorphism Si(I') = A%(T).
Proof sketch. If g = b,kg, then ¢s(g) = yF2 f(2)e" ™ so

(Aps)la) = () @+ &) f+ (. ooef — 5 (5 1) er a
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V.1.1 Automorphic forms

Let us generalize the above situation.

Definition V.1.3. An automorphic form on G = SLy(R) of level I' is a map ¢ : G — C
such that:

(0
(i

) ¢ € C®(G,C).
)

(ii)  is right K-finite, i.e., g — p(gk) for k € K span a finite-dimensional vector space.
) ¢
) ¥

©(vg) = ¢(g) for all v € T.
(iii) o is slowly increasing, i.e., |p(z,0)] = O(y") for some N as y — co.
is an eigenfunction for A.

(iv

We say ¢ is cuspidal if

1
(v) / % (a <(1) hf) g) dx = 0 for all ¢ € G and « € SLy(Z), where h is the width of
0

V.2 2014-04-25: Adelic stuff
Define the ring of adeles of QQ by
/
A=Rx [ Q.
p
where the product is the restricted direct product

A def H Q, def { c H Q, : b, € Z, for all but finitely many p} .

We also define the ideles GL;(A) = A*.

A Hecke character of Q is a continuous map v : A* — C* such that ¢(Q*) = 1. The
idele class group is Q*\A*.

We have a strong approximation theorem

= Q*R%,Z%,

so x : (Z/N)* — C* induces a Hecke character x4, and every ¢ is equal to x4 ||, dele® for
some x and some s € C, where

EEN lep|

for z € A*.
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Let G = GLy. We will study

GA = GL2( ) GL2 X H GL2 Qp

Let N € Z>1, and let K,o(N) C G, := GLy(Q,) be the compact open subgroup

M ={(¢ 1) co@)c=0 moam}.

Let Kyo(N) = [, Kpo(N) < Gy := GLa(Ay). Then we have a strong approximation
theorem:
Ga = GoGL K o(N).

Note that T'o(N) = Go N GL K¢ o(N).
Let f € Sp(N, x), and let p; : G4 — C be given by

07(9) = f(goo - 1)5(goer 1) " xa(Ko),
where g = vgooko.
Note V.2.1. Let Z, := center of Gy = {(8 2) ta € AX}. Then

Go\Ga/(ZaKKo(N)) = To(N)\SLy(R)/SO2(R) = Yo(N).
Definition V.2.2. An automorphic form on GLy(Q) is a function ¢ : G4 — C such that:
(0
(i

) ©(79scko) is smooth as a function of gu..
)

(ii) ¢ is right K = K, K s-finite.
) ¢

©(v9) = ¢(g) for all v € Gy.

is slowly-increasing, i.e., for all ¢ > 0 and compact C' C Gy, there is a constant M

Such that
e (6 1)9) =ota

for all a € A* with |a|] > cand all g € C.

(iii

(iv) ¢ is Z-finite as a function of g...
(v) There is a Hecke character ¢ such that ¢(zg) = ¥(2)¢(g) for all z € Z, and g € G,.

Remark V.2.3. To explain (iv), let g = gl,(R) be the Lie algebra. Any X € g acts as a first-
order differential operator on C*°(GLy(R)). Given a Lie algebra g, we have the “universal
enveloping algebra” U(g), a unital associative algebra.

The representation theory of g is given by the representation theory of U(g). Elements
of U(g) are higher-order differential operators on C*(GLy(R)), and

Z = center of U(g).
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Let A(G) be the set of automorphic forms on GL(Q).

Definition V.2.4. An automorphic form ¢ € A(G) is cuspidal if
1 =
(0 1)o)oees
Lo (o

Definition V.2.5. An automorphic representation of GLy(Q) is (roughly speaking) an ir-
reducible constituent of GLy(A) ¢ A(GLs).

for all but finitely many g.

Definition V.2.6 (Admissible representations). Say G is a locally profinite group (like G¢
or Gp), and 7 : G — GL(V) is a representation of G on some C-vector space V. We say 7 is
smooth if it is locally constant, i.e., for all v € V| there is a compact open subgroup K < G
such that Kv =v.

We say 7 is admissible if 7 is smooth and dime V& < oo for all compact open K < G.

Fact V.2.7. A(G)|g, is admissible.

The Hecke algebra is the algebra H(G) = C°(G, Z), consisting of smooth, compactly
supported functions G — Z with the operation given by convolution:

(1% @2)(9) = /GQD1($)902(93_19) dz.

Inside H(G,), the characteristic function of the double coset K, o(V) ((1) g) K, o(N) corre-

sponds to T'(p), and that of K, (V) (g 2) K, o(N) corresponds to T'(p,p).
If 7 is an admissible representation of G, and ¢ € H(G), then 7 induces an action of
H(G) on 7 given by

7T(90)-v=/G<P(9)7T(g)~vdcg-

There’s also a Hecke algebra at oo, basically U(g).

Remark V.2.8. (1) Admissible representations of G, or Gy correspond to admissible rep-
resentations of H(G,) or H(Gy). (The Hecke algebra is like a group ring construction.)

(2) H(Ga) = (QH(G,)) @ H(Goo).

(3) Fact: for any irreducible admissible representation 7 of (g, K« ) X Gy, there exists 7
admissible of (g, K ) and 7, admissible of G, such that

/
W%Wm®®ﬂp.
p
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Elliptic curves

VI.1 2014-04-28: Algebro-geometric perspective

Recall that A (I") are sections of Ql;(/(QF) over X(T).

To view modular forms over Z, we want to define X (I') over Z. The idea is that X (1)
parametrizes elliptic curves over C, so to define X (1),z, we write down a “moduli problem”
of elliptic curves over Z and show it is “represented” by some curve.

Let S be a scheme, and let Sch,s be the category of schemes over S. By the Yoneda

Lemma, Sch,s embeds into Fun(;g, i.e., we can identify X € Sch/g with its functor of points
X.

Example VI.1.1. Let S = SpecZ, X = SpecZ[t,t™!], R any ring, and T = Spec R. Then
X(T) = Homgen(T, X) = Hompings(Z[t, t '], R) = R*.

We could ask if there is X € Sch/z such that X (Spec R) = R*. Indeed, there is; X is usually
denoted G,, and called the “multiplicative group”. In other words, the functor Spec R — R*
is representable by X = Spec Z[t,t™'].

Over C, an elliptic curve is a genus 1 compact Riemann surface, i.e., a compact smooth
algebraic curve of genus 1. Recall:

genus(X) = dimc(differentials).

Definition VI.1.2 (Dimension and relative dimension). Given an S-scheme X — S, the
relative dimension of X at s € S is dim X, where X, := X Xg s is the fiber over s. If this
is independent of s, we say X has relative dimension dim Xj.

Definition VI.1.3. An S-scheme f : X — S is smooth of relative dimension n if
(i) f is locally of finite presentation.
(ii) f has relative dimension n.

(iii) The sheaf of relative differentials Qx/g is locally free of rank n.

If n =1, we call X a smooth curve.

7
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Definition VI.1.4. An elliptic curve 7 : E — S is a proper smooth curve such that:

(i) For any Spec(k) = S (where k is an algebraically closed field), E := E x g Spec(k) is
connected, and dimy 7. B/ Spec(R) = 1.

(ii) There is a section 0: S — E.

V1.2 2014-04-30: Elliptic curves

Let 7 : E — S be an elliptic curve with identity 0 : S — E, i.e., for all Spec(k) — S, Ej, is
connected and 7,2 B/ Speck is 1-dimensional. Hence, F is a commutative group scheme over
S.

Given £ = S, let w := wg/s = MSllp/s; this is an invertible Os-module. By Serre
duality, m,Qp/g = R'7,.0p.

VI.2.1 Geometric definition of modular forms of level 1

This definition is due to Katz.

Definition VI.2.1. Let k € Z. A (meromorphic) modular form of weight & (and level 1)
is a rule f which assigns to any E/S an f(E/S) € H°(S,w®*) = T'(S,w®*) satisfying the
following properties:

(i) isomorphism independence: if E — E’ (as S-schemes), then f(E/S) = f(E'/S).
(ii) independence of base change: if g : 8" — S, then f(E/S) = f(Eg¢/S").
Let Ag(SLy(Z),Z) be the Z-module of such rules.
Remark VI1.2.2. o If we fix Sy = Spec Ry and consider S over Sy, then we get Ay (SLa(Z), Ry).

e If A is a commutative ring that is flat over Z, then
Ar(SLy(Z), A) = Ax(SLa(Z),Z) @7 A.

o A(SLo(Z),C) = Ac(SLa(Z)).

Here is an equivalent definition:

Definition VI1.2.3. Consider pairs (F/R,w) with R a ring, E an elliptic curve over R, and
w a nowhere vanishing section of w. Say ¢ : (E,w) — (E',w') if ¢ : E — E and w = ¢*w/.
Then we define A, (SL2(|Z),Z) to be the set of rules (F/R,w) — f(F,w) which are:

(i) isomorphism independent;
(ii) invariant under base change;

(iii) for all A € R*, f(E, \w) = A" f(E,w).
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V1.2.2 Tate curves
The behavior at infinity is described by Tate curves. Let

Erate/a(q) * Y + 2y = 2° = ba(g)a — bs(q),
where by, b3 € ¢qZ[q] are defined by

3
n
ba(q) =5 70

n>1 qn
™m® +5n% "
= 12 1—gq

The discriminant and j-invariant of the Tate curve are

A(FEtate) = q H (1- qn)24,
. 1
§(Erate) = — + T44 4 1968844 + . . .
q

Geometrically, we can think of Z((¢)) as a formal neighborhood of the cusp of SLy(Z)\b,
and Emae is an elliptic curve over that neighborhood. If f € Ax(SLy(Z), Ro), then its
g-expansion i8 f(Erate, Wean) € Z((q)) ®z Ro, where wean = df is the “canonical differential”.

Aside V1.2.4. Say FE is an elliptic curve over Z, with multiplicative reduction. Then Tate’s
uniformization theorem says that £ = Qy/ q” for some ¢. (This is a p-adic, multiplicative
analogue of a complex torus C/A.)

VI.2.3 Moduli

Let
B:{(wl,wg)ECX XCXIﬂEh}.

w1
If w= (w1,ws), and if v € SLy(Z), then

()
£ /C* 2 SLy(Z)\B/C* = SLy(Z)\b.

Take I' = T'o(NN). What does I'\h parametrize?
B ~fa D ;L -
Let A = Awy,ws), v = (Nc d),andw —vw—<

We have

awy + bwo ©
Newy, + dwsy )’

o _ s
N =N (mod A).

We have (d, N) = 1, so %2 and % generate the same cyclic subgroup of order N in C/A.
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Lemma VI.2.5. T'((N)\B = %4 (N) :={(A,Cn) | Cy C A cyclic of order N}.

Call the choice of Cy < FE (cyclic of order N) a level I'y(N)-structure.

The following is due to work of Deligne-Rapoport, Drinfeld, and Katz—Mazur. Given
E 5 S, we can define Cy < E. To formalize this, let (Ell) be the category whose objects
are elliptic curves £ — S, and whose maps are commutative squares

E——F

| ]

S'— S
such that £ =2 E xg 5. A “moduli problem” is a contravariant functor
P : (Ell) — (Sets).
An element of P(E/S) is called a level P structure on E/S.

Definition VI.2.6. Ay(P,Z) is a rule that assigns to (E/S,a € P(E/S)) some f(E,a) €
H°(S,w®*) independent under isomorphism and base change.

Say P is representable, i.e., Ep — Mp and ap € P(Ep, Mp) such that any (E/S, a) is
a “pullback” of (Ep/Mp,ap), i.e., E = Ep X, S. Then there is an isomorphism
(V2 Ak(P,Z) i> HO(MP, (ggp/MP)®k),
o(f) = f(Ep/Mp,ap)  Vf € A(P,Z).

VI.3 2014-05-05: Galois representations attached to mod-
ular forms

Say f is a newform in Si(N, x). Then

L(s, f)= H (1 —a,pt + X(p)pk—1_zs)—1 .

p

This looks like the L-function of a 2-dimensional Galois representation. B
If Ais an abelian variety of dimension g (e.g., if g = 1, then FE is an elliptic curve). If k
is algebraically closed and (n,char k) = 1, then

A(k)[n] = (Z/nZ)*.

If A is defined over Q, and Gg := Gal(Q/Q) acts on A(Q) and A(Q)[n] for all n, then for ¢
prime, we define the (-adic Tate module of A to be
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Note that T;(A) = Zig as modules. So we get a 2g-dimensional Galois representation
PAYL: GQ — GL(T@(A)) = G’LQQ(ZZ).

Let p # ¢ be prime. Define

Pap(z) & det (1 — zpao(Frob,)|[Va(A)) .
Here, Vy(A) := T;(A) ®z, Q,, and an embedding Q — Q, induces an inclusion Gy, — Gq.
There is an exact sequence
1 — 1, = Gqg, = Gr, — 1,

and Gy, = 7 = (a — aP), the profinite completion of the free cyclic group generated by the
Frobenius map Frob,, : a — a?. Hence, Frob, is well-defined in Gg, up to the inertia group
I

-
Moreover, the inclusion Gg — Gg, is well-defined up to conjugation, so Frob, is well-
defined in Gg up to inertia and conjugation. Since I, acts trivially on V;(A)% (by definition),

and characteristic polynomials are invariant under conjugation, Py ,(z) is well-defined.
Theorem VI.3.1. Py ,(z) is independent of ¢ (assuming ¢ # p).

Ezample V1.3.2. Let E be an elliptic curve, and assume pa ¢ is unramified at p, i.e., Vy(A4)%r =
Vi(A). Then
det(1 — z - pay(Frob,)) = 1 — a,r + pa?,

where a, = p+ 1 — #E(F,). Furthermore, if N is the conductor of £ and p | N, then
Pg,(x) =1—ayz,

where a, = 0if p* | N (additive reduction), and a, = +1 otherwise (multiplicative reduction);
a, = 1 corresponds to split multiplicative reduction, and a, = —1 nonsplit.

Returning to the general case, define
def _g\—1
L(s, A) = [[ Paso™) "
p

For example, if A = E, then

Ls. B) = [T (1™ + An(p)p* )",

where 1 is the trivial Dirichlet character mod N.
For an elliptic curve E/F,, the numbers #E(FF,») can be put together into a generating
series Z(x, Er,). Weil proved that

1 —a,x + 22

A B = 0 )
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WEeil also proved the Riemann hypothesis for elliptic curves, i.e., |a,| = |5,] = p'/2, where
1—ayz+2° = (1—a,r)(1 - Byz).
This generating function is closely related to the L-function:
L(s,Em,) = Z(p™*, Eyp,).
We can attach Galois representations to newforms:

Theorem VL.3.3. If f =3 ., a.q" € Sp(N,x) is a newform, then for all primes (, there
s a continuous, irreducible Galois representation

pre: Gg — GLa(Qy),
unramified at p for all p4 ¢N, such that

pr,up(x) =1- apT + X(p)pkilx?

Remark V1.3.4. The Galois representation p¢, is uniquely defined by the collection of poly-
nomials {P,,,,:pt¢N}. This is because {Frob, : p{ (N} is dense in Gg (by Cebotarev
density), and we can recover an irreducible representation from characteristic polynomials.

This was proved for k = 2 by Eichler, Shimura, and Igusa: the Hecke operators have a
geometric interpretation as well. Let J;(N) = Jac(X;(N)/Q) over Q. The Hecke algebra T
acts on Ji(NN). For all p { {N, by the Eichler-Shimura congruence, py,(n),«(Frob,) satisfies
a? = T(p)z + T(p,p).

Under this correspondence, f «— A;: T — Ky = Q(a,). Let Iy :=ker \;. Then

T/I; = Zla,] =: Oy,

and Ay := J1(N)/I;Ji(N) is an abelian variety of dimension d; := [Kf : Q]. Then psy :=
Ti(Ay) is a 2ds-dimensional Z,-module, and hence a 2-dimensional O-module.

VI.4 2014-05-07: Galois representations of higher weight

The following construction of Galois representations for k£ > 2 is due to Deligne and Shimura
(unpublished).
Let &€ =+ X(N) be the universal elliptic curve over Q, and consider the Kuga-Sato
variety
g(n) I:ig XX (N) " XX (N) E.

J/

Vv
n copies

Deligne defines a “canonical desingularization” ™. Consider the Galois representation
Hi(ER xqQ,Qu)

with actions of Gg and Tl(N). Let pye be the piece on which T, (V) acts like it acts on f.
For k = 2, we have £©) = X;(N) and

H(X1(N), Q)Y = Ty(J1(N)).
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Note V1.4.1. This attaches a motive M(f) to f. (Deligne looked at

Hg, (X1(N), Sym* ™ R'7.(Qy)),

which is isomorphic.)
For k£ = 1, this is a theorem of Deligne-Serre by looking at congruences with higher

weight forms.
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Chapter VII

Generalizations of modular forms

VII.1 2014-05-07, continued

For the rest of today, we’ll talk about some classical generalizations of modular forms.

VII.1.1 Hilbert modular forms

Let F' be a totally real number field of degree d, let oq,...,04 : I — R be the d distinct
embeddings into R, and let Op be its ring of integers. This yields

QLo (Op) C GLy(F) 15 GLy(R)™
If a € F, we say a is totally positive (denoted a > 0) if o;(a) > 0 for all 7. Let
GL3 (F) := {a € GLy(F) : det(a) > 0} .
If o € GLy (F) and z = (21,...,24) € b?, let

-z = (Uz‘(Oé) : Zi)i:l ..... ds
Jla, z = Hj(ai(a),zi).

For k = (ki,...,kq) € Z% and a € F, let

For f:h? — C, let
(flsa)(2) = det(a)*2j(a, 2) f(a - 2)

for a € GLj (F).
Let I' < SLy(Op) be a subgroup of finite index.

Definition VII.1.1. A Hilbert modular form of weight k and level I is a function f : h¢ — C
such that:

85
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(i) f is holomorphic.
(i) flgy=f forall vy €T.

(iii) f|ra is holomorphic at oo for all « € GL] (F), in the following sense: Let

Mp::{me(’)F:<(1) T)EF}’

My :={v e F :Trpg(vm) € ZVm € Mr} .

Then f satisfying (i) and (ii) can be written as

&)= Y aermimes),
veMY

where Tr(vz) == Y0 0:(v) 2.

We say f is holomorphic at oo if a, = 0 unless v =0 or v > 0.
Theorem VII.1.2 (Kécher’s principle). If d > 2, if f satisfies (i) and (ii), then it satisfies
(iii).

Definition VII.1.3. As before, f is a cusp form if ao(f|ra) = 0 for all a.
If k= (k,k,... k), wesay [ has parallel weight k.

Theorem VII.1.4. Some facts about Hilbert modular forms:

dime M (') < 0.

My(T') = C.

So(T) = 0.

If ki <0 for some i and k # 0, then Mg(I") = 0.

o [fk is not parallel, then My(I") = Si(T).

Remark VII.1.5. In the representation theory of GLy(Q), every irreducible representation is
of the form Sym™ Q2 ® det*" for some ko, k1. The weight of the representation is (ko, k1),
@X

0 Q

corresponding to characters of the maximal torus ( ) . In our context, only kg—Fk; =:

k matters; this is the weight k& of a modular form.

For Hilbert modular forms, the weights of Resp/g GL2(F') correspond to (ko, . .., kq), and
k= (ki — ko, ko —ko,...,kq— ko).

Let Y/(T) := I'\h%; this is a d-dimensional complex manifold and a d-dimensional algebraic
variety over C. Moreover, Y (1) parametrizes principally polarized d-dimensional abelian
varieties with RM (real multiplication) by Op, i.e., a triple (A, A, ¢) with A a d-dimensional
abelian variety, A : A — AY, and ¢ : Op — End(A).

If k is paritious (i.e., k; = k; mod 2), then we get a Galois representation

Pr.e: GF — GLQ(@)

(Wiles, Taylor, Carayol, Blasius—Rogowski, Ohta, Janis, Tunnell-?).
Next time, we’ll talk about Siegel modular forms and other generalizations.
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VIL.2 2014-05-09: Siegel modular forms, CFT, and Lang-
lands

VII.2.1 Siegel modular forms

Let Spyy(R) = {& € GLyy(R) : o Ja = J}, where J = ( OI %’) (Note that Spy(R) =
Ty

SLy(R), so the g = 1 case recovers classical modular forms.) This has a maximal compact
subgroup Ky, := Ogy(R) N Sp,,(R).
The Siegel upper-half space of degree g is
Spyy(R) /Koy 2 by :={Z =X +iY € My(C): Z" =Z and Y > 0}.

This is a % g(g + 1)-dimensional complex manifold with an action of Sp,,(R) by

<é g) +Z=(AZ+B)(CZ+ D).

Congruence subgroups are defined by
I(N):={y €8Spyy(Z): 7y =1y mod N}.
Definition VII.2.1. A Siegel modular form is a function f : h, — C such that:
(i) f is holomorphic.

(ii) flgy = f for all v € ', where

(e (z) = 35(7,2) " f (- 2)

j ((’é g) ,Z) — det(CZ + D).

(iii) If g =1, then f is holomorphic at co. (If g > 2, this is automatic.)

and

We get a Fourier expansion

f(Z) = ag + z:aQeQTriTr(QZ)7
Q>0

where () ranges over positive-definite, symmetric g X g matrices such that the associated
quadratic form (z1,...,2,)Q(z1,...,7,)" has integer coefficients.

Let Y(I') :== I'\h,. Then, in particular, Y (1) parametrizes all principally polarized abelian
varieties of dimension g.

We also have a notion of Eisenstein series. For SLy(R), Dirichlet characters ¢, yield
E;D’w. For g = 2, given a Siegel modular form f, we have an attached Galois representation

pr: Gg — GSpy(Qy).
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VII.2.2 Class field theory

Let F' be a number field (or a global field). Let Ag be the ring of adeles of F, and let
Crp := F*\Aj} be the idele class group.
Class field theory consists of an Artin reciprocity map
recr : Cp — G% = maximal abelian quotient of Gal(F'/F)
p — Frob,

with dense image. We can think of this as a bijection

continuous characters finite order continuous
x: Gp — C~* characters Cp — C* '

(Similarly, if F is a local field, an analogous statement is true with Cp := F*.)

What if we consider all continuous characters, rather than only those of finite order?
Class field theory provides the Weil group of F', a group Wr with a map ¢p : Wr — G
with dense image.

Let E/F be a finite extension. Then Wg = ' (Gg). Define the relative Weil group

Wgip = Wg/[Wg, Wg].
If E/F is Galois, we obtain a short exact sequence
1= Cg— Wgyp— Gal(E/F) — 1.
Now the reciprocity map provides a topological isomorphism
recp : Op — W;b,
giving a bijection
{ 1-dimensional irreducible } PN { 1-dimensional irreducible } ‘

representations of C'p representations of Wg

VII.2.3 Langlands reciprocity

What if we look at higher-dimensional irreducible representations of Wr? Langlands con-
jectured a bijection

automorphic irreducible n-dimensional irreducible
representations of GL,, (Ap) representations of Wr '

Langlands proved this conjecture for F' = R and G = GL; or any reductive group over
R, giving a natural correspondence

admissible representation of
G(R)

where LG denotes the Langlands dual of G. Langlands predicted that generalizing this
correspondence should provide insight into global and local fields.

Here’s the general idea: The collection of automorphic representations of G(Ag) should
be a neutral Tannakian category. As such, there should exist a group Lp (with a map Ly —
Wpg — GF), the Langlands group, such that this category is the category of representations
of LF

«— {p: Wr = *G(C)},
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