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1 2014-09-03: Moduli problems
Given a geometric problem, it’s often better or easier to consider a family of objects instead
of a single object.
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You’ve seen “moduli spaces” before: e.g., Pn is the “moduli space of lines through the
origin” in An+1. Likewise, Grassmannian varieties are moduli spaces of linear subspaces.

1.1 Example: Polygonal billiards

Say that we’re interested in billiards on a polygon. Given a billiard table, is there a periodic
orbit? For rectangles, there is. The question is more interesting for nonstandard tables.

Question (2̃00 years old): Does every triangle has a periodic orbit? If the triangle is
acute, then there is (Fagnano, 1775). For right triangles, there’s a periodic orbit along the
same lines as for rectangles.

Theorem 1.1 (Schwartz, 2008). There’s a periodic billiards orbit on any triangle with largest
angle ≤ 100◦.

Idea: Start with a particular triangle you understand that has a periodic orbit. Perturb
and hope for stability. More precisely, look at some moduli space of all triangles, and try to
cover it with sets of triangles with periodic orbits.

However:

Theorem 1.2 (Hooper). This doesn’t quite work, because every periodic orbit in a right
triangle is unstable.

Theorem 1.3 (Masur, 1986). Any rational polygon has a periodic orbit.

The proof of Masur’s theorem uses the full force of Teichmüller theory (moduli of Riemann
surfaces of high genus).

1.2 Moduli of Riemann surfaces

We’re interested in moduli of Riemann surfaces.
Remark 1.4. One can view geodesic closed loops on Riemann surfaces as arising from periodic
billiard orbits.

Let’s warm up to studying moduli (or “deformations”) of surfaces.
Example 1.5. Consider the “flat” torus: locally, it looks like R2, both topologically and
geometrically. (It has a flat Riemannian metric.) One can construct flat tori by identifying
opposite sides of a parallelogram.

Let’s study the “space” of flat tori, up to isometry. We could always scale the plane,
which is boring; to get rid of this problem, we’ll assume our tori all have area 1.

Theorem 1.6. Every flat torus is obtained from a parallelogram by identifying opposite
sides.

Proof. Take two curves along the torus that intersect exactly once. By a compactness argu-
ment, we can shorten the curves to be locally straight.

Lemma. The straightened loops still intersect exactly once.

Then cut along those curves to obtain a parallelogram.

Now we want to figure out the moduli space of parallelograms. Next time, we’ll go back
and more carefully parametrize parallelograms.
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2 2014-09-05: Deformations of tori
Consider a flat torus T (of area 1) given by a parallelogram with opposite sides identified.
Abstractly, this is a topological torus with a collection of charts T ⊃ U

'−→ V ⊂ R2 where
the overlaps are isometries.

What’s the space of all such flat tori? As a set, we’re interested in flat tori up to isometry.
How do we parametrize this space? If we just start listing tori, then there’s redundancy.

Let’s start again and try to parametrize flat tori in a less naive way:

• Instead of normalizing to area 1, we’ll assume the base lies horizontally and has length
1. The upper-right vertex x + iy ∈ C in the upper-half plane now determines the
parallelogram.

• By slicing parallelograms diagonally, we see another source of redundancy. Thus, we
can restrict to any vertical strip of width 1, say

[
1
2
, 3

2

]
.

• Inversion in the circle of radius 1 centered at 1 ∈ C preserves equivalence classes.

• Reflection across the vertical line y = 1 also preserves equivalence classes.

So, now we parametrize flat tori by points in the region{
z ∈ C

∣∣ 1
2
≤ Re(z) ≤ 1, |z − 1| ≥ 1

}
.

We claim that every flat torus corresponds to a unique point in the above region.

3 2014-09-08: Points at infinity
Recall the fundamental domain corresponding to the moduli space of flat tori (up to isomor-
phism and scaling).

If we just start going up in the fundamental domain (with flat tori normalized to area
1), there’s a preferred loop that starts to get short. So, at ∞, this loop has length zero. So,
∞ “is” that loop! (Likewise, as we go down, we see a different curve get short.)

Moving around, we see certain points “at infinity” correspond to homotopy classes of
loops that are getting short.

When we were finding our fundamental domain, at each stage, we simplified the region in
some nice way, and each one corresponded to a homeomorphism of the region. For example,
there’s inversion and reflection. The homeomorphism corresponding to translation is a “Dehn
twist”: cut open along the “base” and twist by 2π.

In other words, the upper-half plane H is a space of parallelograms, and we have a group
G of (homotopy classes of) homeomorphisms acting on H, and our moduli space is H/G.
We also have points at ∞ corresponding to loops getting short.
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4 2014-09-10: The upper-half plane as a space of metrics
Given a parallelogram P determined by a point ω ∈ H, there is a unique affine map from the
unit square to P that preserves edge labels and orientations. Now, pullback the Euclidean
metric on C along this map and scale to give the unit square area 1. Call that metric Xω.

For any (p, q)-curve γpq (with gcd(p, q) = 1), we can make γpq short by shearing until γpq
is vertical, then take Im(ω)→ 0 along a vertical line, and the length `ωs(γpq)→ 0.

Now, for each (p, q) with gcd(p, q) = 1, we have a point in R ∪ {∞} = ∂H.
Nathan’s question: If we head to R, does some curve necessarily get short? The answer:

No! Let γ be a “foliation” of the flat square T by lines of an irrational slope.1 We can’t say
that γ gets short when Im(ω)→ 0.

Given a closed curve δ, there is a geodesic representative δ∗ with respect to Xω. So δ∗
and γ meet at some angle in Xω.

5 2014-09-12: Geodesics in the upper-half plane
We saw we can shrink any curve, and each curve gave us a point in R∪{∞} = ∂H. Also, we
found points in ∂H where no curve is getting short (in fact, every curve gets long). Think
of ∂H as a circle’s worth of foliations.

Starting from a square torus, as we headed toward some F ∈ ∂H, the metric on the torus
contracts along the corresponding foliation F and expands in the perpendicular direction.
(At least, this is happening at the end of our path.)

Is this the most “efficient” way to shrink F? No — we can “go up” first! If we let ωn be
the metric on the rectangular torus with height

√
n and width 1√

n
, then

`Xωn (γ−n,1) =
√

2n� n.

Going up made the length drop. However, eventually this effect decays.2 Moving up and to
the right and then down again seems like a good way to shrink γ−n,1.

It turns out that the most efficient path is to follow a half-circle centered on the real line,
i.e., moving along geodesics in the hyperbolic plane, H with the metric

ds2 =
dx2 + dy2

y2
.

The isometries Isom(H) of this space are Möbius transformations, and

Isom+(H) = PSL2(R).

The distance in H between ai+ c and bi+ c (with b > a) is log b
a
.

Observation: log b is the “eccentricity” of the torus Xbi+1 as compared to Xi+1.
1“It’s called a foliation because it’s like a book, but you can never open it.”
2Like Icarus’ wings as he approached the Sun.
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6 2014-09-15
Think of the upper-half plane as a space of flat tori of area 1. There is a group Γ acting
on H that gives us area-1 flat tori up to isometry. Elements of the group correspond to
homeomorphisms.

We can give H the topology from C, and even better, the hyperbolic metric ds2 = dx2+dy2

y2
.

The group Γ+ = PSL2(Z) acts by fractional linear transformations on H by isometries, and
we can consider the quotient spaces H/Γ or H/Γ+. This gives a moduli spaceM(T ), which
is an orbifold.

Exercise 6.1. Think about StabΓ+(Xeπi/3). Hint: T 2 = hexagon/(side pairings). Think about
self-isometries.

Geodesics in H correspond to efficiently “shrinking” the metric, i.e., locally stretching the
flat metric. We can make this local stretching into a metric on H by saying the distance is
log(amount of stretching). For example, local stretching of the form(

et 0
0 e−t

)
has distance t.

6.1 Higher genus

We want to do all this in higher genus; however, there are no flat metrics on a surface of genus
g ≥ 2. But what we really want to classify are Riemann surfaces with complex structure.
(In the genus 1 case, uniformization shows that area-1 flat tori are equivalent to Riemann
tori, i.e., tori with complex structure and holomorphic transition maps.)

7 2014-09-17: Higher genus surfaces
We want to study Riemann surfaces of arbitrary genus.

A Riemann surface is:

(1) a topological surface S of finite type, i.e., a compact surface with finitely many points
removed3 (“punctures”);

(2) a collection of charts on S with holomorphic transition maps.

Morphisms of Riemann surfaces are locally holomorphic smooth maps.
Moduli problem: Given S, what are all the Riemann surfaces homeomorphic to S?

Example 7.1. The Riemann sphere Ĉ is the only Riemann surface homeomorphic to S2.

Example 7.2. The complex plane C is almost the only Riemann surface homeomorphic to
R2; the only other one is the unit disk ∆.

3Caveat: For us, we usually require that a “puncture” is ∆−{0} (where ∆ is the open unit disk) and not
∆− 1

2∆.
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The Riemann mapping theorem says that Ĉ, ∆, and C are the only simply-connected
Riemann surfaces.

If we puncture C, we get C−{w}. They are all equivalent: translations are holomorphic
and act transitively on C. It has no moduli (when considered as a “punctured” surface).

If we puncture again, we get C − {v, w} ∼= C − {0, 1}, a thrice-punctured sphere. Note
that PSL2(C) acts transitively on triples of distinct points in Ĉ.

However, when we puncture four times, we get C− {0, 1, w}, and these are different for
different w. This gives us a moduli space of four-times-punctured spheres, corresponding to
points of C− {0, 1}.

Puncturing Ĉ five times, we get C−{0, 1, w, w′} with w 6= w′; this gives us a 2-dimensional
moduli space.

8 2014-09-19: More about Riemann surfaces
Continuing from last time, let S0,n be the 2-sphere with n punctures. Let M(S0,n) be the
moduli space of (finite-type) Riemann surfaces homeomorphic to S0,n. This is a smooth
complex manifold. Think of it as a “configuration space” of points in Ĉ.

9 2014-09-22: Higher genus, continued
How do we find families of Riemann surfaces homeomorphic to S, i.e., how to find families
of complex structures on S?

We looked at S0,n earlier: S0,n seems to have a space of C-structures of complex dimension
n− 3. (This was known to Riemann in a vague sense.)

For higher genus, let Sg,n be the surface of genus g with n punctures. Given a Riemann
surface X, we can start deleting points, and you will (eventually) get “new” deformations
(aside from some “accidents”, e.g.,M(S1,0) andM(S1,1) both have C-dimension 1).

What about Sg,0 for g > 1? Let’s focus on S = S2,0. Think about how we might find
C-structures.

Problem: S admits no flat metric. One way to see this is to look at the curvature.
Assume we know that Riemannian manifolds live in some Rn. We then think of curvature
as the determinant of the Gauss map. By Gauss–Bonnet,∫

S

κ(x) = 2πχ(S),

so χ(Sg,0) = 2− 2g 6= 0. Hence, there are no flat metrics on Sg,0 for g > 1.
Instead, we use singular flat metrics. For example, for g = 2, take a regular octagon and

identify opposite sides via translations. We get a genus 2 surface X that looks like there’s a
flat metric (inherited from R2), but “too much angle” at a point.

Definition 9.1. A singular flat metric is a metric that’s locally isometric to R2 except at a
finite set, where the angle is an integer multiple of π.

Affine transformations give us new octagons. We get a family of singular flat metrics,
and hence a family of complex structures.
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10 2014-09-24

10.1 Comparison of geometries

Model geometries: Hk (k < 0), Sk (k > 0), and E (k = 0). There are CAT(k) spaces.

10.2 Singular flat metrics, continued

Singular flat metrics are flat metrics at all but a finite set of points, where we have a “cone
point” with some angle απ.

Consider again the octagon with opposite sides identified by translations, giving a surface
S of genus 2. We can obtain new C-structures on S by deforming this octagon, e.g.: Stretch
this octagon with some affine map, get some new flat metric, and hence some new C-
structure.

It would be naive to expect this to give we all C-structures. For example, what about
non-convex octagons?

Theorem 10.1. Look at this family where we start with the regular octagon and do the
simplest thing with affine stretches. Then this family is naturally the hyperbolic plane H.

Moreover (Veech), if we take H/(isomorphism of C-structure), we get a finite-volume
hyperbolic orbifold.

z is a nice coordinate patch, but it isn’t really a well-defined thing on S. On the other
hand, dz is a nice 1-form on S. There is a 1-form ϕ(z) dz on S that looks like dz everywhere
except at p, where it looks like z2 dz.

We can now recover the flat metric: integrating ϕ(z) dz gives a coordinate

ζ(w) =

∫ w

0

ϕ(z) dz,

called the natural parameter. There are well-defined horizontal and vertical directions, so
we pull back the flat metric from C.

11 2014-09-26
We found a 1-form ϕ that looks like dz away from p, and at p, it looks like z2 dz. Hence, a
flat metric induces a C-structure and a holomorphic 1-form ϕ.

Now, given a C-structure, i.e., a Riemann surface X ∼= S and a holomorphic 1-form ϕ,
we obtain a flat metric by integration:

ζ(w) =

∫ w

0

ϕ(z) dz

is a “coordinate”, called the natural parameter (actually a coordinate away from zeros of ϕ).
At a zero, it’s a “branched” coordinate.

We can use ζ to pull back the flat metric on C to get a singular flat metric on X. Not
only that, but we can pull back the “horizontal” and “vertical” dilations. And, moreover,
these horizontal and vertical foliations are “orientable”.
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12 2014-09-29
Given a Riemann surface X, a holomorphic quadratic differential q on X is a holomorphic
section of the (symmetric) square of the holomorphic cotangent bundle. (Given X, there are
a lot of these. They form a vector space of C-dimension 3g − 3 when X ∼= Sg,0.)

What’s the Teichmüller space of S? It’s supposed to capture moduli of S, but intelligently
parametrized.

As a set, what is it? Fix a topological oriented surface S. A marked Riemann surface is a
pair (X, f) where X is a Riemann surface and f : X → S is a homeomorphism. Two marked
Riemann surfaces (X, f) and (Y, g) are Teichmüller-equivalent if there is an isomorphism of
Riemann surfaces (i.e., a biholomorphic homeomorphism) η : X → Y such that η is isotopic
to g ◦ f−1.

Proposition 12.1 (Alexander’s trick). Let D2 be a closed disk, and let f : D2 → D2 be a
continuous map such that f |∂D2 = id. Then f is isotopic to the identity map.

Shrink all of the “bad” part of the map to a point. This is related to the “bachelor’s
unknotting”: maps S1 → S3 up to isotopy in the topological category are trivial.

Theorem 12.2 (Baer–Epstein). Given closed surfaces X, Y , two homeomorphisms f, g :
X → Y are homotopic if and only if they’re isotopic.

The Teichmüller space for fixed S is {(X, f)} /(Teichmüller equivalence). To get a topol-
ogy, look at the map g ◦ f−1 and measure the deviation from being holomorphic.

Biholomorphic means conformal (“angle-preserving”); infinitesimally, it means the deriva-
tive preserves circles. Given a diffeomorphism, infinitesimal S1’s go to ellipses, and the
“eccentricity” measures deviation from being conformal.

13 2014-10-01: Teichmüller space
Let S be a closed oriented surface. One way to move around in Teichmüller space T (S)
would be this: Given f : S → X, we could simply change f to a different homeomorphism.
This gives some potentially large set of points in T (S).

For example, consider X with a flat metric, cut along a geodesic loop γ, twist 360◦, and
glue back together.

This usually won’t usually give us the same point, but it could. If the homeomorphism
induces an isomorphism of X, then you’ll get nowhere in T (S).

Aside 13.1. Alternative to marking is to think of T (S) as being a set of atlases on S up to
isomorphisms isotopic to idS.

This is a space?
Given a quadratic differential q on X, we can deform the C-structure by using a natural

parameter ζ and applying a Teichmüller deformation
(
et 0
0 e−t

)
.

If we fix a marking, this changes the Teichmüller class. The distance is supposed to be t.
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14 2014-10-03
Understanding the moduli spaceM(S) = {Riemann surfaces homeomorphic to S} /(isomorphism)
is hard, since the parametrization is often redundant. So, instead, we study Teichmüller space
T (S), the moduli space of marked Riemann surfaces homeomorphic to S, which maps to
M(S) by forgetting markings.

The space Diff+(S) of orientation-preserving diffeomorphisms up to isotopy “acts” on
T (S), and this action factors through

Diff+(S)/Diff0(S) ∼= Mod(S),

where Diff0(S) is the space of diffeomorphisms isotopic to idS and Mod(S) is the mapping
class group, defined by

Mod(S) = π0 Diff+(S) = π0 Homeo+(S),

where the latter equality is a theorem. We have

M(S) = T (S)/Mod(S).

Example 14.1. T (T 2) = H is the space of marked flat metrics on T 2 = S1× S1. This has an
action of the modular group PSL2(Z), and the quotient isM(S) = PSL2(Z)/H.

Theorem 14.2 (Fricke, Klein). Mod(S) acts properly discontinuously on T (S).

Theorem 14.3. For g ≥ 2, T (S) is a C-domain of C-dimension 3g−3, i.e., is homeomorphic
to R6g−6.

Theorem 14.4 (Royden). For g ≥ 2, Mod(S) is the entire group of biholomorphic auto-
morphism of T (S).

What is the topology on T (S)? We’d like to measure the failure of conformality of a home-
omorphism f : X → Y . We could locally measure the eccentricity of ellipses, and take the
distance to be the infimum over homotopy classes of f of 1

2
log(maximum eccentricity of f).

Let f : Ω → C be a C1 embedding from a domain Ω ⊆ C. From the perspective of
complex analysis, f being conformal is the same as fz = 0, where

fz =
1

2

(
∂

∂x
− i ∂

∂y

)
f,

fz =
1

2

(
∂

∂x
+ i

∂

∂y

)
f.

One can check that, for z ∈ Ω, the eccentricity Kf (z) is given by

Kf (z) =
|fz|+ |fz|
|fz| − |fz|

.

In general, we don’t have fz = 0, but fz = µ(z)fz for some µ with ‖µ‖∞ < 1. Define

K(f) := ‖Kf (z)‖∞ ,
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the dilatation of f .
Given a diagram

S
m1 //

m2
��

X

f
��

Y

with f a C1-diffeomorphism, we define the Teichmüller metric by

dT (S)

(
(X,m1), (Y,m2)

)
= inf

homotopy
classes of f

1
2

log(K(f)).

Definition 14.5 (Regularity). A homeomorphism f : X → Y is K-quasiconformal if:

(1) f has locally integrable distributional derivatives fz, fz.

(2) |fz| ≤ k |fz|, where k = K−1
K+1

.

To explain the idea of distributional derivatives, recall integration by parts (the product
rule):

uf =

∫
uf ′ +

∫
u′f.

If there’s an f ′ ∈ C1 satisfying this for all smooth test functions u, then f ′ is called the
distributional derivative of f .

Theorem 14.6 (Teichmüller). The homotopy class of f contains a unique “extremal” quasi-
conformal map (realizing the distance), and this extremal map is a “Teichmüller map” (i.e.,
a Teichmüller deformation for some quadratic differential q on X).

15 2014-10-06: Quasiconformal maps
Definition 15.1 (quasiconformal). Let K ≥ 1. A homeomorphism f : X → Y between
Riemann surfaces is K-quasiconformal if f has locally integrable distributional derivatives
fz and fz, and |fz| ≤ k |fz|, where k = K−1

K+1
.

Note that conformal is the same as 1-quasiconformal, and if K ′ ≥ K, then all K-
quasiconformal maps are K ′-quasiconformal.

There’s an equation fz = µ(z)fz for some µ(z) ∈ L∞(X) with ‖µ‖∞ < 1; µ is called the
“complex dilatation”.

The dilatation of f is the smallest K for which f is K-quasiconformal.
Given Riemann surfaces X and Y and a quasiconformal map f : X → Y , we say that f

is extremal if its dilatation is minimal in its homotopy class.

Theorem 15.2 (Teichmüller). Given marked Riemann surfaces α : S → X and β : S → Y ,
there is a unique extremal map f : X → Y homotopic to βα−1. Moreover, f comes from a
Teichmüller deformation for some holomorphic quadratic differential q on X.

11



The space of all holomorphic quadratic differentials on X is a vector space Q(X). By
the Riemann–Roch theorem, Q(X) is finite-dimensional of complex dimension 3g − 3.

Let Q1(X) be the unit ball in Q(X). Then

T (S) ∼= cone on Q1(X) ∼= R6g−6.

Not only is T (S) ∼= R6g−6, but T (S) is a smooth manifold whose cotangent space is Q(X).
The complex dilatation more properly measures the deformations of a C-structure. The
tangent space is

TX T (S) = {differentials of type (−1, 1)} ,

called the space of Beltrami differentials . (Example: dz
dz
.)

16 2014-10-08: Teichmüller’s theorem
Why would we hope for Teichmüller’s theorem? Consider Grötzsch’s problem for a rectangle:
Let f be a C1 homeomorphism between rectangles (0, a, ib, a + ib) and (0, a′, ib′, a′ + ib′) in
the complex plane; assume f preserves vertices and their order.

There’s an affine map f0 = a′

a
x + i b

′

b
y between the same rectangles. Does f0 minimize

the dilatation, and is it the unique extremal f?

Theorem 16.1 (Grötzsch). K(f) ≥ K(f0), with equality iff f = f0.

Proof. First, a′ ≤
∫
α
|fx| dx. Recall: Kf (z) = |fz |+|fz |

|fz |−|fz | , |〈x, y〉| ≤ ‖x‖ ‖y‖ (with equality iff
x = cy), and Jf (z) = |fz|2 − |fz|2. Integrate

a′b ≤
∫∫

R

|fx| dx dy =

∫∫
R

|fz + fz| dx dy

≤
∫∫

R

|fz|+ |fz| dx dy =

∫∫
R

Kf (z)1/2 · Jf (z)1/2 dx dy

≤

√∫∫
R

Kf (z) dx dy

∫∫
R

Jf (z) dx dy.

Hence,

(a′b)2 ≤
∫∫

R

Kf (z) dx dy

∫∫
R

Jf (z) dx dy ≤ abK(f)a′b′.

So K(f) ≥ a′b
ab′

= a′/a
b′/b

= K(f0).
Now suppose we have equality. The first inequality being an equality implies that f =

u(x) + iv(y), so Jf (z) = uxvy. Also, Kf (z) = ux
vy
. Equality in Cauchy–Schwarz implies

Kf (z) = cJf (z), so Kf (z), Jf (z) are constant. Hence ux, vy are constant, so f is affine.
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17 2014-10-10: Teichmüller’s uniqueness theorem
Theorem 17.1 (Uniqueness). If f0 : X → Y is a Teichmüller map (i.e., a quasiconformal
map coming from a Teichmüller deformation corresponding to some quadratic differential
qX and some t ∈ R) and f : X → Y is a quasiconformal map homotopic to f0, then
K(f) ≥ K(f0), with equality if and only if f = f0.

Remark 17.2. Recall the inequality et Area(R) = etab ≤
∫∫

R
|fX | dA from the proof of

Grötzch’s theorem, discussed last time. An analogue of this is key to the Teichmüller unique-
ness theorem: √

K0 AreaqX (X) ≤
∫
X

|fx| dA.

Once we have this, the argument is essentially the same, integrating over X instead of R
and using Cauchy–Schwarz.

Setup: Let X, qX , t be as above, and let qY be the quadratic differential giving the flat
metric on Y .

For p ∈ X, let αp,L be a horizontal arc in X through p, with length L on both sides of p.
Consider

`qY (f(αp,L)) =

∫ L

−L
|fx| dx ≥ 2L

√
K(f0)−M.

Hence,

(2L
√
K(f0)−M) · Area(X) ≤

∫
X

∫ L

−L
|fx| dx dA =

∫ L

−L

∫
X

|fx| dAda = 2L

∫
X

|fx| dA.

Dividing by 2L and taking L→∞ yields the desired inequality.

18 2014-10-13
Teichmüller’s theorem is often stated as two theorems: the existence theorem that there’s an
extremal Teichmüller map, and the fact that it’s unique. The proof of uniqueness is morally
the same as the proof of Grötszch’s theorem for rectangles.

There will be some quasiconformal map homotopic to f , namely, any smooth map in the
homotopy class. (By compactness, smooth homeomorphisms on compact surfaces are quasi-
conformal.) We could try taking a sequence fn ' f with dilatations tending to infg'f K(g),
and try to find a limiting map.

What do we do instead? We’ll think of T (S) from a different perspective: By uniformiza-
tion, we can think of T (S) as a space of hyperbolic metrics on S.

The uniformization theorem says that, for g ≥ 2, given a Riemann surface X ∼= Sg,0,
there is a discrete group of isometries Γ acting freely on H, such that X ∼= H/Γ.

What are the isometries of H? We’ll seen all of the isometries: Isom(H) is generated by
inversions in the circles perpendicular to R, and Isom+(H) = PSL2(R).
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19 2014-10-15: Hyperbolic surfaces
Previously, we talked about Teichmüller’s uniqueness theorem. Existence is tougher.

We’d like the space of all Teichmüller deformations of X to be all of T (S), i.e., we want
to hit all (marked) Riemann surfaces. To see this, we introduce hyperbolic geometry!
Theorem 19.1 (Uniformization). Every Riemann surface Y of genus g ≥ 2 is isomorphic
(as a Riemann surface) to a hyperbolic surface.

What’s a hyperbolic surface? Let S = Sg,0 be a closed surface of genus g ≥ 2. A
hyperbolic structure on S is a homeomorphism S ∼= H/Γ, where Γ is a discrete torsion-free
subgroup of Isom+(H) ∼= PSL2(R). In other words, a hyperbolic surface is a Riemann surface
(S, g) such that g has constant curvature −1.

Hence, the universal cover (S̃, g̃) of (S, g) with the pullback metric is isometric to H, and
the deck group is Γ ∼= π1(S).
Lemma 19.2. H/Γ ∼= S.

Think of hyperbolic metrics on S as faithful representations

ρ : π1(S)→ PSL2(R)

with discrete image, called the holonomy representation of the hyperbolic structure.
Exercise 19.3. Show that T 2 doesn’t admit a hyperbolic structure.

Given a holonomy representation ρ : π1(S) → PSL2(R), how do we deform it? Try to
perturb the generators.
Theorem 19.4 (Poincaré). A “small” deformation of a holonomy representation ρ : π1(S)→
PSL2(R) produces a holonomy representation ρ′ : π1(S)→ PSL2(R).

The set of holonomy representations H(S) is naturally a topological space, with topology
induced by the inclusion

H(S) ⊂ R(S) := Hom(π1(S),PSL2(R)) ⊂ PSL2(R)2g = Hom(Fg,PSL2(R)).

Theorem 19.5. H(S) is a connected component of R(S).
What does R(S) look like?
• R(S) has 4g − 3 topological components, which we label by integers 2 − 2g through

2g − 2, corresponding to the Euler numbers of each component.

• R(S) is a real algebraic variety with two irreducible components.

• Each topological component contains a faithful representation. In particular:
Theorem 19.6 (Deblois–Kent). Faithful representations are dense in R(S).

• Each algebraically irreducible component has the same dimension, and the singular
locus is contained in the 0 component. All the components except for 0 are manifolds.

• The k-th component Rk is homeomorphic to R−k, but with the opposite orientation.
As for H(S), we have

H(S) = H−(S) tH+(S),

where H−(S) is the 2− 2g component of R(S), and H+(S) is the 2g − 2 component.

14



20 2014-10-17: Hyperbolic surfaces, continued
Consider the Poincaré disk model, i.e., the open unit disk ∆ with the metric

ds2 = 4
dx2 + dy2

(1− (dx2 + dy2))2
.

This is isomorphic to the upper-half plane H with the metric ds2 = dx2+dy2

y2
. Geodesic lines

in ∆ are straight lines through the center or circular arcs perpendicular to the boundary.
For g ≥ 2, consider a regular 4g-gon in ∆, whose boundary is given by 4g geodesics. We

can continuously vary the polygon with a parameter 0 ≤ θ < (4g−2)π
4g

, the interior angle. This
proves:

Lemma 20.1. There exists a regular geodesic 4g-gon in H with all angles 2π
4g
.

Identifying opposite sides now yields a hyperbolic metric on a surface of genus g.
We can get more hyperbolic surfaces by gluing polygons together, using pants decompo-

sitions . Let P be a pair of pants with boundary components A,B,C. We want to build a
hyperbolic metric on P such that the boundary components are locally geodesic. Moreover,
we want to be able to specify lengths.

Every S = Sg,0 has a topological “pants decomposition”. This would give us lots of
hyperbolic metrics on S.

21 2014-10-20: Existence of hyperbolic structures
Let’s continue with pants decompositions and Fenchel–Nielsen coordinates.

Lemma 21.1. Any surface Sg,0 admits a pants decomposition. Every such decomposition
has 2g− 2 pairs of pants. (Computing the number of distinct pants decompositions up to the
action of Mod(S) is difficult and open.)

Idea: Use the pants as building blocks for hyperbolic structures.

(1) Show how to build hyperbolic structures on S from hyperbolic structures on pants.

(2) Show every hyperbolic structure is like this.

We want a hyperbolic metric on a pair of pants P that has a locally geodesic boundary.

Definition 21.2. A submanifold N of a Riemannian manifold M is totally geodesic if every
local geodesic tangent to N lies in N .

If boundary components of two pairs of pants have the same length, we can glue —
in fact, we have a continuous family of gluings (given by the angle at which we glue the
boundaries).

Between any two of the three boundary components, there is a unique minimal geodesic
arc that intersects the boundaries at right angles. We can determine whether two gluings
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are the same by looking at the angle between the points on the shared boundary where these
special arcs intersect the boundary on each pair of pants.

How do we build a hyperbolic metric with geodesic boundary? First, choose boundary
lengths 2A, 2B, 2C ≥ 0. If we choose the three special arcs described above, then this will
determine a hyperbolic metric. So, it remains to describe a right-angled hexagon R with
ordered side lengths A, ∗, B, ∗, C, ∗. We can do this using bananas.
Exercise 21.3. This hexagon is uniquely determined (up to isometry) by A,B,C.

22 2014-10-22: Fenchel–Nielsen coordinates
Given two marked Riemann surfacesX, Y , how do we determine dT (S)(X, Y ), the Teichmüller
distance?

Using Fenchel–Nielsen coordinates on H(S), a pants decomposition of (say) S4,0 is given
by 9 arcs. To give a hyperbolic structure, we give a length and a “gluing angle” for each arc,
so there are 18 degrees of freedom for giving a hyperbolic metric.

Note that a 360◦ gluing gives an isometric surface. However, we still have a continuous
family of hyperbolic metrics, looking something like R9

+ × (S1)9.
It turns out that if we pass to the universal cover W of R9

+ × (S1)9, then we get a
homeomorphism T (S) ∼= W . The resulting coordinates R9

+ × R9 are called Fenchel–Nielsen
coordinates . In particular, we have maps

T (S)
'−→ W � R9

+ × (S1)9 = T (S)/Z9 �M(S) = T (S)/Mod(S).

Note that the Z9 is generated by Dehn twists around the pants-curves. Although Mod(S) is
generated by Dehn twists, there are Dehn twists that don’t come from the arcs in the pants
decomposition. (In particular, Mod(S) has torsion.)

Even better:

Theorem 22.1 (Nielsen realization, Kerckhoff). If G ≤ Mod(S) is finite, then there exists
X ∈ T (S) such that g(X) = X for all g ∈ G.

Why does this method get every hyperbolic surface homeomorphic to S? Because, given
an essential simple closed curve γ in a hyperbolic surface X, γ is homotopic to a (local)
geodesic.

23 2014-10-24
We’ve been talking about building hyperbolic structures directly from polygons and pants.

Since an essential simple closed curve has a (local) geodesic representative, we can pick
a pants decomposition of a hyperbolic surface X, then isotope to a geodesic pants decompo-
sition.

We got started by wanting to prove Teichmüller’s theorem. We want to show existence of
a Teichmüller mapping between any X and Y . The space CQ′(X) ∼= R6g−6 is homeomorphic
to H(S), the space of oriented hyperbolic structures on S, by uniformization:

u : CQ′(X)
'−→ H(S).
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We want to show that this is indeed surjective. Teichmüller’s uniqueness theorem implies that
u is injective. We’ll show thatH(S) ⊂ R6g−6 is connected. Then we show that u is continuous
and proper (inverse images of compact sets are compact). By Brouwer’s invariance of domain,
it follows that u is a homeomorphism.

Let’s think about holomorphic representations. Consider Hom(π1(S),PSL2 R) with the
compact open topology (the topology of convergence on generators), where we think of π1(S)
as a discrete group and PSL2 R = Isom+(H).

It would be nice if H(S) ⊂ R(S). But we can always conjugate the image of a representa-
tion ρ by A ∈ PSL2 R to get a (possibly different) representation ρA ∈ R(S). But H/ρ(π1(S))
is isomorphic to H/ρA(π1(S)), so these representations give the same holomorphic structure.
So we really need to work with R(S)/PSL2 R, where PSL2 R acts by conjugation.

What is R(S)? We have

π1(S) =
〈
a1, b1, . . . , ag, bg

∣∣ wg := [a1b1] · · · [ag, bg] = 1
〉
.

Then
R(S) = ker

(
Hom(F2g,PSL2 R) = (PSL2 R)2g wg−−→ PSL2 R

)
.

So dimRR(S) = 6g−3, and quotienting by PSL2 R reduces the dimension by 3 again (because
PSL2 R ∼= H× S1 has real dimension 3). This quotient map is bad, but one can check that
it’s fine over H(S).

Let’s look at this naively. First, notice that elements A ∈ PSL2 R fall into three types:

elliptic |tr(A)| < 2. Elliptic elements are conjugate in PSL2 R to “rotations”, and are
conjugate in PSL2 C to rotations around the origin.

parabolic |tr(A)| = 2. Parabolic elements are conjugate in PSL2 R to z 7→ z + c.

hyperbolic |tr(A)| > 2. Hyperbolic elements are conjugate in PSL2 R to z 7→ λz.

Lemma 23.1. If ρ : π1(S)→ PSL2 R is discrete and faithful, then ρ(g) is hyperbolic or the
identity for all g ∈ π1(S).

The hard part is showing that there are no parabolic elements since S is compact.
What are good coordinates for H(S)? Take a discrete faithful representation ρ : π1(S)→

PSL2 R, and consider ρ(a1), ρ(b1), . . . , ρ(ag), ρ(bg).

24 2014-10-27
Let’s show that Γ = ρ(π1(S)) is “purely hyperbolic”, as stated in the lemma last time. We
want to normalize Γ. Let αi = ρ(ai) and βi = ρ(bi), where we have presented π1(S) as

π1(S) =
〈
a1, b1, . . . , ag, bg

∣∣ wg := [a1b1] · · · [ag, bg] = 1
〉
.

A hyperbolic element A ∈ PSL2 R is determined by its (ordered) fixed points and a real
number λ.

(1) First step of normalization: Conjugate Γ in PSL2 R so that βg fixes 0 and ∞.

17



(2) Second step: Conjugate so that αg has fixed points λ > 0 and − 1
λ
.

Lemma 24.1. After this normalization, Γ is now completely determined by the 6g − 6 real
parameters ϕ−i , ϕ

+
i , λi,α, ψ

−
i , ψ

+
i , λi,β, where i ≤ 1 ≤ g − 1.

So this allows us to explicitly consider H(S) ⊂ R6g−6. This uses a lemma:

Lemma 24.2. In a discrete subgroup of PSL2 R, two hyperbolic elements share a fixed point
only if they share a power.

25 2014-10-29: Beltrami differentials
We saw last time that H+(S) ⊂ R6g−6, where we think of H(S) as the space of normalized
orientation-preserving holonomy representations of hyperbolic metrics on S = Sg,0.

Lemma 25.1. None of the αi, βi for 1 ≤ i ≤ g − 1 stabilize ∞.

Lemma 25.2. The topology that H+(S) inherits from R6g−6 is the same as the topology
inherited from Hom(π1(S),PSL2 R).

Consider the “Teichmüller existence” question: Why is CQ′(X)
u−→ H+(S) surjective?

The hardest part is continuity. Let’s go back to deformations of Riemann surfaces. We’ve
seen Teichmüller deformations: a quadratic differential gives a flat metric with horizontal

and vertical foliations, and we stretch by
(
et 0
0 e−t

)
, giving a new conformal structure.

Eventually, one shows that Q(X) is T ∗X T (S), but we now want to consider the tangent
space. This is a space of Beltrami differentials .

While a quadratic differential looks like ϕ(z) dz2, a Beltrami differential looks like µ(z)dz
dz
,

where µ(z) is a function in L∞ with ‖µ‖∞ < 1.
Consider a Riemann surface X with some fixed hyperbolic metric on it, and a uniformiza-

tion X = H/ΓX . A Beltrami differential is an L∞ function like this such that

µ(z) = µ(γz)
γ′(z)

γ′(z)
,

where γ ∈ ΓX .
Forget about X and ΓX for a moment. On the unit disk ∆, given µ(z) ∈ L∞(∆) with

‖µ‖∞ < 1, consider the differential equation fz = µ(z)fz. (If µ = 0, then f is holomorphic.)

Theorem 25.3 (Morrey). Let µ ∈ B(∆) = (L∞(∆))′. Then fz = µ(z)fz has a homeo-
morphic solution f : ∆ → ∆ (i.e., f extends to a homeomorphism ∆ → ∆), unique after
normalizing to fix −1, i, 1.
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26 2014-10-31: The Beltrami equation
Given a C-valued L∞ function µ with ‖µ‖∞ < 1, we consider the Beltrami equation

fz = µ(z)fz.

There is a homeomorphic solution fµ, and any homeomorphic solution is quasiconformal
and will extend to a homeomorphism of Ω → Ω. Moreover, this solution is unique after
normalizing to fix 3 points on ∂Ω, or to fix ∞ and 1 when Ω = C.

Theorem 26.1 (Morrey). The solution fµ to the Beltrami equation depends continuously
on µ.

Theorem 26.2 (Ahlfors–Bers). In fact, fµ depends real-analytically on µ.

Instead, let’s look for solutions fµ : Ĉ→ Ĉ to the Beltrami equation that are 0 on Ĉ \Ω,
no longer requiring the solution to be homeomorphic on the unit disk. This no longer sends
the unit circle to itself; instead, fµ sends the unit circle ∆ to some Jordan curve, bounding
a region Ω.

So we now have a solution fµ defined on the whole Riemann sphere, and conformal on
Ĉ \∆.

Theorem 26.3 (Ahlfors–Bers). fµ depends C-analytically on µ.

The Riemann mapping theorem implies existence of a homeomorphism f : ∆→ Ω with
fz = 0. Furthermore, we can normalize to prescribe 3 values on ∂∆. Morrey really proves
that we can do this with any µ, and Ahlfors–Bers shows that there’s a nice dependence on
the parameters.

All of this goes through if we demand that

µ(z) = µ(γz)
γ′(z)

γ′(z)

for all γ ∈ Γ, where Γ is a discrete subgroup of PSL2 C. Define B(Γ) to be the set of Beltrami
differentials for Γ, i.e., all µ ∈ L∞ such that ‖µ‖∞ < 1 and µ satisfies the above equation.

What does this have to do with Teichmüller theory? Let X = H/ΓX and Y = H/ΓY be
hyperbolic surfaces, and let F : X → Y be a quasiconformal map. Then ΓX and ΓY act on
H, and F lifts to a map F̃ : H→ H that is compatible with these actions.

27 2014-11-03
Marked quasiconformal homeomorphisms X → Y correspond to quasiconformal conjugacies
ΓX → ΓY .

Fix a Fuchsian group ΓX ∼= π1(X) ∼= π1(S), where X = H/ΓX . Consider all quasiconfor-
mal conjugates ΓµX := fµΓXf

−1
µ as µ ranges over

B(ΓX) =

{
µ
∣∣ µ(z) = µ(γz)

γ′(z)

γ′(z)

}
.
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Since fµ depends continuously on µ, we get a continuous map B(ΓX) � H+(S). Using this
gives us connectivity of H+(S).

By Teichmüller’s uniqueness theorem, the restriction of this map to CQ(X)′ ⊂ B(ΓX) is
injective, giving an injection CQ(X)′ ↪→ H+(S). Invariance of domain implies that this map
is open. However, this map is also closed, so it maps onto a connected component, hence is
a homeomorphism.

28 2014-11-05: Teichmüller’s existence theorem
Let D(X) be the space of all quasiconformal deformations, CQ1(X) all Teichmüller de-
formations, H+(S) ⊂ R6g−6 all normalized holonomy representations of Fuchsian groups
isomorphic to π1(S) and compatible with the orientation, and u : CQ1(X) → H+(S) the
map given by uniformization. Lift u to a map ũ : D(X)→ H+(S).

We want u to be surjective, and this will give us Teichmüller existence. Every (marked)
Y can thus be obtained from X by a Teichmüller deformation.

Picture: Given a quasiconformal map f : X → Y , we get an equivariant quasiconformal
map f̃ : H→ H and an equation

f̃z = µ(z)f̃z (28.1)

with µ(z) ∈ (L∞(H))1 such that

µ(z) = µ(γz)
γ′(z)

γ′(z)
(28.2)

for all γ ∈ ΓX . Conversely, given µ ∈ B(Γ) = {‖µ‖∞ < 1, (28.2) holds}, there is a solution
f : H→ H to (28.1) that is unique once normalized, and this descends to a quasiconformal
map f : X → Xµ.

Note that D(X) = B(ΓX) is a ball about 0 in a vector space, hence is connected. Hence,
H+(S) is connected, i.e., for any marked Y , there is a smooth quasiconformal map X → Y
in the correct homotopy class. Also, u is injective.

Now the hard part is over: Solutions fµ depend continuously on µ. Representations
depend continuously on fµ (representations are changing by quasiconformal conjugacies), so
the maps u are continuous.

By invariance of domain, u : CQ1(X) ↪→ H+(S) ⊂ R6g−6 is open. The last piece is to
show that u is proper, hence closed (because the codomain is a nice Hausdorff space). Since
H+(S) is connected, we’re done.

29 2014-11-07: Analytic point of view
The idea for properness of the uniformization map u : CQ1(X) → H+(S) is that, given
a compact set C ⊂ H+(S), the Teichmüller distance dT (X, Y ) is bounded over C . This
completes our sketch of the proof of Teichmüller’s existence theorem.
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Let’s talk about an alternative definition of Teichmüller space. Let Γ ⊂ PSL2 R be a
discrete subgroup. Take the space of Beltrami differentials

BΓ(X) =

{
µ(z) ∈ L∞(H)

∣∣ ‖µ‖∞ < 1, µ(z) = µ(γz)
γ′(z)

γ′(z)
∀γ ∈ Γ

}
,

and let fµ : H→ H be the normalized solution to the Beltrami equation fz = µfz. Say that
µ ∼T ν (called Teichmüller equivalence) iff ∂fµ = ∂fν (i.e., fµ and fν have the same values
on the boundary). We now define Teichmüller space as T (Γ) := B(Γ)/∼.
Remark 29.1. If we lift a Dehn twist to the universal cover, we get a map with interesting
behavior on the boundary. On the other hand, a quasiconformal map supported on a small
piece of the space doesn’t lift to interesting behavior on the boundary.

We could also use the normalized solution fµ : Ĉ → Ĉ, where we begin with µ on H,
then extend it by 0 to Ĉ. Then fµ ∼ f ν iff fµ|R = f ν |R. There’s a theorem that this gives
the same thing.

If H/Γ ∼= S, we get Teichmüller space T (S). But, we could also take Γ = 1 and get the
universal Teichmüller space T (1) = T (H) = T (∆). This has the property that T (Γ) ⊂ T (∆)
for all Γ.

The C-vector space structure on L∞(H) descends to a complex structure on T (Γ).
Conjugating ΓX by fµ gives a new Fuchsian group Γµ ⊂ PSL2 R. On the other hand,

conjugating by fµ gives a discrete subgroup Γ′µ ⊂ PSL2 C, not necessarily lying in PSL2 R.
The subgroup Γ′µ fixes some Jordan curve.

30 2014-11-10 [missing]

31 2014-11-12: Geometry of Teichmüller space
Let S = Sg,0, g ≥ 2. Teichmüller space T (S) is a uniquely geodesic metric space homeomor-
phic to R6g−6.

What does T (S) look like geometrically? We can ask global questions, like:

• Is T (S) hyperbolic in any sense?

• What is Isom(T (S))? It’s the mapping class group Mod(S) acting by changing mark-
ings. (Royden)

• Given X and Y , can we “find” the geodesic between them?

• What does it mean to leave a compact set?

• Is T (S) isometric (or quasi-isometric) to something we know?

Also, local questions:

• Is T (S) homogeneous, i.e., does it look the same at any two pointsX, Y ? No, it’s highly
non-homogeneous: If X and Y have small isometric neighborhoods, then gX = Y for
some g ∈ Mod(S).
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• Are metric balls convex?

• Is the metric Riemannian? No, but it is Finsler , i.e., there’s a Minkowski norm on
each tangent space.

There’s an open problem related to convexity of metric balls.

Definition 31.1. The convex hull of a subset is the smallest convex set containing it.

Open problem: Can the convex hull of 3 points be all of T (S)?
The local behavior is very hard to study, and we’ll mostly ignore it. Let’s try to describe

the metric globally. Think of T (S) as a space of hyperbolic surfaces with geodesics given by
analysis (Teichmüller deformations and flat metrics).

Theme: Use simple closed curves on the surface (e.g. geodesics on hyperbolic surface).
Consider the moduli spaceM(S) = T (S)/Mod(S). Let

Mε(S) =
{
X ∈M(S)

∣∣ inf `(γ) ≥ ε
}
,

where γ ranges over essential simple closed curves on S. (A simple closed curve is essential
if it doesn’t contract to a point or a puncture.) We call this the “ε-thick part ofM(S)”.

Theorem 31.2 (Mumford). Mε(S) is compact.

So, leaving every compact set inM(S) means some curve is getting short.

32 2014-11-14: Grothendieck’s perspective
What is a deformation of Riemann surfaces? Think of it as a family of varieties (given, in a
simple case, by moving the coefficients of a defining equation around).

We can also add more constraints, such as the varieties all being homeomorphic, all
algebraic curves, etc. What is a family? A family of Riemann surfaces is a holomorphic
fibration over a C-manifold (or variety) with curves as fibers.

A moduli space is a classifying space for families. Studying families of curves is equivalent
to studying maps into the moduli space.

Grothendieck’s “Lego” perspective is to piece together moduli problems from pieces of
smaller complexity curves. There’s some even more universal moduli space coming from
piecing together data from all Riemann surfaces at once.

In a Riemann surface, let a curve γ get short. Actually, contract its length all the way
to zero, and make γ part of a pants decomposition. This attaches a copy of T (Sg−1,n+2) at
the boundary of T (Sg,n). This doesn’t compactify T (S), but it gives a “bordification”.

Grothendieck uses this perspective in “Esquisse d’un Programme” to approach the inverse
Galois problem using what he referred to as anabelian geometry .

22



32.1 Short curves

The boundary components mentioned above intersect in a complicated way that’s tracked
by a simplicial complex.

If we have a loop γ in X that is short, i.e., `X(γ) is small, then γ has a wide collar in X.

Lemma 32.1 (Keen–Halbern collar lemma). For any γ, there is a collar of width

arcsinh

(
1

sinh( `
2
)

)
.

33 2014-11-17: Collars
Lemma 33.1 (Collar lemma, Keen–Halpern). In a hyperbolic surface, short geodesics have
big collars. (Long geodesics have “shallow” collars.)

By a “collar”, we mean a tubular neighborhood of the curve that can be deformation-
retracted to the curve.

In both cases, we can bounds the “width” or “depth” of the collar in terms of length, as
stated last time.

Corollary 33.2. If two embedded geodesic loops γ and δ intersect and γ 6= δ, then they can’t
both be short.

There’s no reason we’ll have a short curve. On the other hand, there are always “moderate-
length” curves:

Theorem 33.3 (Bers). Let n ∈ N. There there is a constant B = B(n) such that, if X is a
compact surface of genus g ≤ n, then there is a geodesic loop γ in X such that `X(γ) ≤ B.

34 2014-12-01: Thin-parts and the curve complex
Given a closed surface S (possibly with punctures), there is a simplicial complex C (S) defined
as follows: The 0-skeleton is

C (0)(S) = {isotopy classes of essential simple closed curves in S} ,

and the k-skeleton C (k)(S) is defined by declaring that γ0, . . . , γk span a k-simplex if they
can be realized disjointly.
Remark 34.1. C (S) is a flag complex , i.e., C (S) is determined by its 1-skeleton C (1)(S).
Remark 34.2. C (S) is finite-dimensional. Indeed, once we lay down enough curves to give
a pants decomposition, any essential simple closed curve will either be isotopic to or have
nonempty intersection with one of the curves in the pants decomposition. In particular, the
dimension of C (S) is one less than the number of curves in a pants decomposition.
Remark 34.3. C (S) is not locally finite; Dehn twists can produce infinite families of isotopy
classes of curves that are disjoint from a given curve. Nor is C (S) locally compact.
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Remark 34.4. The mapping class group Mod(S) acts simplicially on C (S), giving a quotient
C (S)/Mod(S), which is compact because, up to Mod(S), there are only finitely many pants
decompositions.

Theorem 34.5 (Serre–Ivanov). The subgroup Γ3(S) := ker(Mod(S)→ Sp2g(Z/3Z)) is pure,
i.e., if γ ∈ Γ3 fixes a simplex of C (S), then γ fixes the simplex pointwise.

So far, we’re considering C (S) as a complex with the weak topology. This leads to
theorems such as:

Theorem 34.6 (Harer). With the weak topology, C (S) is homotopy equivalent to a nonempty
wedge of spheres, all of the same dimension.

This tells us things about Mod(S), M(S), etc. For example, the stabilizers in Mod(S)
are mapping class groups of subsurfaces.

There’s also a metric topology on C (S). Any simplicial complex K has an induced path
metric: distances are given by the shortest length of any piecewise-linear path in K. (In
other words, we consider each simplex to be a regular Euclidean simplex, and glue together
these metric spaces.)

Theorem 34.7. This metric topology on C (S) is weakly equivalent to the weak topology.

Theorem 34.8 (Kobayashi). With the metric topology, C (S) is an infinite-diameter metric
space.
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