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Figure 1: The torii of Itsukushima Shrine on Miyajima.
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Chapter I

Affine toric varieties

I.1 2014-09-02

I.1.1 Course information

Course website: http://www.math.wisc.edu/~derman/863.html
Textbook: [CLS].
Grading is entirely based on 6 homework assignments. Homework is required to be done

in groups of 3 to 4. (No exams.)
There will be an AMS session on toric geometry at UW–Eau Claire on September 20–21.

(No funding available. Carpools will be set up.)

I.1.2 Motivation and remarks

We can study varieties X ⊆ Pn extrinsically, or we can study X intrinsically. Embeddings
X ↪→ {toric variety} provide a richer context for extrinsic study.

The whole course will be over C; however, much of the theory works over arbitrary fields,
and almost all over arbitrary algebraically closed fields of any characteristic.

In this course, all varieties are assumed to be integral.

I.1.3 The torus

We define the torus

T := (C∗)n = SpecC[x±1 , . . . , x
±
n ] = SpecC[x1, x

−1
1 , . . . , xn, x

−1
n ].

Points of T correspond to (t1, . . . , tn) with ti ∈ C∗. There is a multiplication map

T × T → T

given by componentwise multiplication, corresponding to the ring map

C[x±1 , . . . , x
±
n ]→ C[y±1 , . . . , y

±
n , z

±
1 , . . . , z

±
n ],

xi 7→ yizi.

7
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Proposition I.1.1 ([CLS], 1.1.1). (1) Let Φ : T1 → T2 be a morphism of tori (i.e., a
morphism of varieties and of groups). Then ϕ(T1) is a torus and is closed in T2.

(2) Let T be a torus and H ⊆ T an algebraic subgroup (i.e., a subvariety and a subgroup).
Then H is a torus.

I.1.4 Characters

Definition I.1.2. A character of a torus T is a map χ : T → C∗ of groups.

Example I.1.3. Let T = (C∗)n and m = (a1, . . . , an) ∈ Zn. Then

χm(t1, . . . , tn) := ta1
1 · . . . · tann

is a character.
Fact I.1.4. All characters arise in the above way. In particular,

M := character lattice of T = HomGrp(T,C∗) ∼= Zn.

I.1.5 Linear actions

Suppose a torus T acts linearly on a finite-dimensional vector space W . Then

W =
⊕
m∈M

Wm

as a T -representation, where

Wm :=
{
w ∈ W

∣∣ t · w = χm(t)w ∀t ∈ T
}
.

Example I.1.5. Let A = C[x±, y±] and T = SpecA = (C∗)2. Then M ∼= Z2 and

A =
⊕

(m1,m2)

A(m1,m2) =
⊕

(m1,m2)∈Z2

C · xm1ym1 .

I.1.6 One-parameter subgroups

Definition I.1.6. A one-parameter subgroup of T is a group homomorphism

λ : C∗ → T.

Example I.1.7. Let T = (C∗)n and u = (b1, . . . , bn) ∈ Zn. Then

λu(t) = (tb1 , . . . , tbn)

defines a one-parameter subgroup.
All one-parameter subgroups arise in this way. We denote

N = HomGrp(C∗, T ) ∼= Zn.
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I.1.7 Duality of lattices

The lattices M and N are dual in the sense that there is a perfect bilinear pairing

M ×N → Z.

There are two ways to define this:

Intrinsic For m ∈M and u ∈ N ,
χm ◦ λu : C∗ → C∗

is a character for C∗, and hence has the form t 7→ t` for some ` ∈ Z. Define the pairing
by

〈m,n〉 := `.

Extrinsic A choice of isomorphism T ∼= (C∗)n induces bases M ∼= Zn and N ∼= Zn. For
m = (m1, . . . ,mn) ∈M and u = (u1, . . . , un) ∈ N , define

〈m,n〉 := (m1, . . . ,mn) · (u1, . . . , un)

to be the dot product.

In summary,

HomZ(M,Z) ∼= N,

HomZ(N,Z) ∼= M.

Moreover, there is a natural isomorphism

N ⊗Z C∗
'−→ T,

u⊗ t 7→ λu(t).

Hence, we can think of T = TN with N being the lattice points inside the torus T .

I.1.8 Affine toric varieties

Definition I.1.8. An affine toric variety is an (integral) affine variety V = SpecA containing
a torus T ∼= (C∗)n as an open subset, such that the action of T on itself extends to an action
T × V → V . (The embedding of the torus is part of the data of the toric variety.)

Example I.1.9. The cuspidal curve V (x3 − y2) ∼= {(t2, t3) | t ∈ C} ⊆ A2 is an affine toric
variety:

C∗ =
{

(t2, t3)
∣∣ t 6= 0

}
⊆ V (x3 − y2).

Example I.1.10. V (xy − zw) ⊆ C4 is a 3-dimensional affine toric variety. The torus is

T :=
{

(t1, t2, t3, t1t2t
−1
3 )

∣∣ ti ∈ C∗
}
,

and the action is

T × V (xy − zw)→ V (xy − zw),

(s1, s2, s3), (x, y, z, w) 7→ (s1x, s2y, s3z, s1s2s
−1
3 w).
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Remark I.1.11. The interesting, hard part of the variety is at the “boundary”, outside the
torus. For example,

P2 \ (C∗)2 = {union of three lines} ,
(P1 × P1) \ (C∗)2 = {union of four lines} .

I.2 2014-09-04
Today: Finishing section 1.1.

I.2.1 Example: A torus action that doesn’t extend

Consider the embedding

(C∗)2 ⊆ A2 ⊆ P2,

(s, t) 7→ (s, t+ s2).

We want to find an action
(C∗)2 × P2 ↪→ P2

extending

(s, t),
[x
z

:
y

z
: 1
]
7→
[
sx

z
:
ty

z
+
s2x2

z2
: 1

]
=
[
sxz : tyz + s2x2 : z2

]
.

But this can’t be extended to [0 : 1 : 0].

I.2.2 Constructing affine toric varieties

Fix a finite set A = {m1, . . . ,ms} ⊆M , and consider the map

ΦA : TN → (C∗)s,
t 7→ (χm1(t), . . . , χms(t)) .

Define YA to be the Zariski closure of the image of ΦA.
Write ZA ⊆M for the sublattice generated by A.

Proposition I.2.1 ([CLS], Prop. 1.1.8). YA is an affine toric variety with character lattice
ZA. (Thus, dimYA = rankZA.)

Example I.2.2. If A =

[
3 2 1 0
0 1 2 3

]
, then

YA = closure of

(
(C∗)2 → C4

(s, t) 7→ (s3, s2t, st2, t3)

)
,

which is the affine cone over the twisted cubic.



I.2. 2014-09-04 11

I.2.3 Toric ideals

Consider the exact sequence
0→ L→ Zs [A]−−→→M.

For any ` = (`1, . . . , `s) ∈ L, we have
∑

i `imi = 0. Define `+ ∈ Zs to consist of all strictly
positive entries of `, and −`− all strictly negative entries, so that ` = `+−`− and `+, `− ∈ Ns.

In particular, X`+ and X`− are both monomials.

Lemma I.2.3. The binomial X`+ −X`− vanishes on YA.

Proof. It’s enough to show that X`+ −X`− vanishes on the torus Φ((C∗)n). We have

ΦA(t) = (tm1 , . . . , tms).

Evaluating X`+ −X`− on this, we get

t`+·[A] − t`−·[A].

But `+ · [A] = `− · [A].

Proposition I.2.4 ([CLS], 1.1.9). The defining ideal of YA ⊆ Cs is〈
X`+ −X`−

∣∣ ` ∈ L〉 .
The proof, which we omit, uses Gröbner bases.

Definition I.2.5. An ideal I ⊆ C[x1, . . . , xs] is toric if I is prime and generated by binomials.

I.2.4 Affine semigroups

Definition I.2.6. A semigroup S is a set with an associative binary operation and an identity
element.

An affine semigroup is a commutative semigroup, finitely generated over N, that can be
embedded into a lattice.

Example I.2.7. Ns and Zs are affine semigroups.

Definition I.2.8. Given an affine semigroup S, we define the semigroup algebra

C[S] :=

{∑
m∈S

cmχ
m
∣∣ cm ∈ C, {m ∈ S : cm 6= 0} finite

}

with the multiplication induced by χm · χm′ := χm+m′ .

Example I.2.9. • C[Nn] = C[x1, . . . , xn].

• C[Zn] = C[x±1 , . . . , x
±
n ].

• If S = 〈2, 3〉 ⊆ Z, then
C[S] = C[t2, t3] ⊆ C[t].
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• If S = NA with A =

[
3 2 1 0
0 1 2 3

]
, then

C[S] = C[s3, s2t, st2, t3] ⊆ C[s, t] ⊆ C[s±, tpm].

Proposition I.2.10 ([CLS], 1.1.14). Let S = NA be an affine semigroup. Then

(1) C[S] is a finitely-generated integral C-algebra.

(2) SpecC[S] = YA.

Proof. Write A = {m1, . . . ,ms} ⊆M . Then C[S] = C[χm1 , . . . , χms ] ⊆ C[M ]. Moreover,

π : C[x1, . . . , xs]→ C[M ],

xi 7→ χmi

corresponds to As ← T on the level of spectra, so

C[YA] = C[x1, . . . , xs]/I(YA) = C[x1, . . . , xs]/(kerπ) = im π = C[S].

I.3 2014-09-09
Theorem I.3.1. Let V be an affine variety. The following are equivalent:

(1) V is affine toric.

(2) V = YA for some A ⊆M .

(3) V is defined by a toric ideal.

(4) V = SpecC[S] for some affine semigroup S.

I.3.1 Cones

Philosophy: Semigroup are bad. Cones are good.
The idea is to study Pic(X)⊗Z Q instead of Pic(X). This is similar to studying rational

homology instead of integral homology.

Definition I.3.2. A convex polyhedral cone in NR = N ⊗Z R is a set

σ = Cone(S) :=

{∑
u∈S

λu · u
∣∣∣∣ tu ∈ R≥0

}
⊆ NR,

where S ⊆ NR is finite. By convention, Cone(∅) = {0}.

Definition I.3.3. A polytope is a set

P = Conv(S) :=

{∑
u∈S

λu · u
∣∣∣∣ λu ∈ R≥0 and

∑
u

λu = 1

}
⊆ NR,

where S is finite.
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Given a polytope P ⊆ NR, define the cone

C(P ) :=
{

(λu, λ) ∈ NR × R
∣∣ u ∈ P, λ ∈ R≥0

}
⊆ NR × R.

The duality M ×N → Z induces a pairing

MR ×NR → R.

Definition I.3.4. Given a cone σ ∈ NR, define the dual cone

σ∨ :=
{
m ∈MR

∣∣ 〈m,u〉 ≥ 0 ∀u ∈ σ
}
.

Note that σ is polyhedral if and only if σ∨ is polyhedral, and σ∨∨ = σ.
For each m ∈MR, we have the linear functional

〈m,−〉 : NR → R,
u 7→ 〈m,u〉 .

So we can define a hyperplane Hm and a closed half-space H+
m by

Hm :=
{
u ∈ NR

∣∣ 〈m,u〉 = 0
}
,

H+
m :=

{
u ∈ NR

∣∣ 〈m,u〉 ≥ 0
}
.

Definition I.3.5. A face of a polyhedral cone is τ = Hm ∩ σ for some m ∈ σ∨, in which
case we write τ � σ.

A facet is a codimension 1 face, and a ray is a dimension 1 face.

Note I.3.6. The intersection of two faces is a face. A face of a face is a face.

We can describe a cone either by rays than span it, or by facets/half-spaces. These are
dual to each other in a precise sense:

Proposition I.3.7 (Fourier–Motzkin duality). Let σ ⊆ NR be a polyhedral cone. Then:

(1) If σ = H+
m1
∩ · · · ∩H+

ms for mi ∈ σ∨, then σ∨ = Cone(m1, . . . ,ms) ⊆MR.

(2) If dimσ = n, then each facet of σ is a half-space from (1).

Given a face τ � σ ⊆ NR, define

τ⊥ :=
{
m ∈MR

∣∣ 〈m,u〉 = 0 ∀u ∈ τ
}
,

τ ∗ :=
{
m ∈ σ∨

∣∣ 〈m,u〉 = 0 ∀u ∈ τ
}

= τ⊥ ∩ σ∨.

We can now formulate a stronger form a Fourier–Motzkin duality:

Theorem I.3.8 (Stronger Fourier–Motzkin duality). With notation as above, τ ∗ � σ∨, and
the map τ 7→ τ ∗ is a bijective, inclusion-reversing correspondence between faces of σ and
faces of σ∨.

Lemma I.3.9. Let σ ⊆ NR be a polyhedral cone. The following are equivalent:
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(1) σ is strongly convex.

(2) {0} is a face of σ.

(3) σ contains no positive-dimensional linear space.

(4) σ ∩ (−σ) = {0}.

(5) dimσ∨ = n.

Definition I.3.10. We say a cone is rational if it has the form Cone(S) ⊆ NR, where S
consists of lattice points.

For a rational cone, we can talk about minimal generators.

Theorem I.3.11. Let σ ⊆ NR be a rational, polyhedral cone. Then

Uσ := Spec(C[σ∨ ∩M ])

is an affine toric variety.

This is the best way to define affine toric varieties. Not all affine semigroups arise in this
way; we’ll see next time that the ones that do are exactly the ones corresponding to normal
affine toric varieties.

I.4 2014-09-11
Approaches to toric varieties:

• YA = im
(

(C∗)n [A]−−→ (C)s
)
, A ⊆M .

• a prime binomial ideal in C[x1, . . . , xs].

• SpecC[affine semigroup]

• σ ⊆ NR rational polyhedral cone. (Note that σ∨ ∩M is an affine semigroup.)

Definition I.4.1. Let σ ⊆ NR be a strongly convex, rational, polyhedral cone.

(1) σ is smooth if its minimal generators can be extended to a lattice basis of N .

(2) σ is simplicial if its minimal generators can be extended to a vector space basis for NR.

Note that smooth cones are also simplicial.

Theorem I.4.2. Let σ ⊆ NR be a rational polyhedral cone. Then

Uσ := SpecC[σ∨ ∩M ]

is an affine toric variety. (The content of this statement is that σ∨∩M is finitely-generated.)
Furthermore,

Uσ = n ⇐⇒ Tn = torus of Uσ ⇐⇒ σ is strongly convex.
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Example I.4.3. If σ = Cone(e1, e2 − e1), then C[σ∨ ∩M ] = C[y, xy] ⊆ C[x±, y±].

Proof. Write Sσ := σ∨ ∩M . By Gordon’s lemma, Sσ is finitely-generated. Thus, Uσ is an
affine toric variety with character lattice Z · Sσ ⊆M , where

Z · Sσ =
{
m1 −m2

∣∣ mi ∈ Sσ
}
.

We claim that M/ZSσ is torsion-free. Indeed, let m ∈ M where km ∈ ZSσ. Then km =
m1 −ms for some mi ∈ Sσ, so

m+m2 =
1

k
m1 +

k − 1

k
m2 ∈ σ∨ ∩M = Sσ.

Hence,
m = (m+m2)−m2 ∈ ZSσ,

proving the claim. Thus, the following are equivalent:

(1) The rank of ZSσ is n.

(2) The character lattice of ZSσ is all of M .

(3) The torus of Uσ is TN .

(4) dimUσ = n.

Moreover, σ is strongly convex if and only if dimσ∨ = n.

Remark I.4.4. All cones in NR henceforth will be strongly convex.

Proposition I.4.5. Let V = SpecC[S]. There are natural bijections between:

(1) Closed points p ∈ V .

(2) Maximal ideals m ⊂ C[S].

(3) Semigroup homomorphisms γ : S → C, where C is considered as a semigroup under
multiplication.

Proof. The equivalence of (1) and (2) is classical algebraic geometry. To show (1) implies
(3), given closed p ∈ V , define

γ : S → C,
m 7→ χm(p).

To show (3) implies (2), for any semigroup homomorphism γ : S → C, since {χm | m ∈ S}
is a C-basis of C[S], this extends to a C-algebra homomorphism χm 7→ γ(m) : C[S] � C,
the kernel of which is a maximal ideal of C[S].
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The advantage of the semigroup homomorphism perspective is that we can see the toric
action intrinsically: given

γ : S → C,
m 7→ γ(m),

the torus acts by

t · γ : S → C,
m 7→ χm(t) · γ(m).

Definition I.4.6. An affine semigroup S is pointed if S ∩ −S = {0}.

I.4.1 Torus-fixed points

For example, 0 ∈ An is fixed by the action of the torus, while (C∗)n has no fixed point.

Proposition I.4.7. (1) SpecC[S] has a torus-fixed point iff S is pointed.

(2) YA ⊆ As has a torus fixed point iff 0 ∈ YA.

Proof. Fix N ∼= Zn, TN ∼= (C∗)n, and M ∼= Zn. Let

γ : S → C,
(m1, . . . ,mn) 7→ γ(m1, . . . ,mn)

represent a point p. Then

t · γ(m1, . . . ,mn) 7→ (tm1
1 tm2

2 · · · tmnn ) · γ(m1, . . . ,mn).

Thus, tγ(m1, . . . ,mn) = γ(m1, . . . ,mn) if and only if either tm1
1 tm2

2 · · · tmnn = 1 or γ(m1, . . . ,mn) =
0. In other words, γ = tγ for all t if and only if

γ(m1, . . . ,mn) =

{
0 if m 6= 0,

1 if m = 0.

This is a semigroup homomorphism iff S is pointed.

Definition I.4.8. S ⊆ M is saturated if for all integer k ≥ 1 and m ∈ M , if km ∈ S, then
m ∈ S.

Example I.4.9. The semigroup ZSσ we saw earlier is saturated.

Theorem I.4.10. Let V be an affine toric variety. The following are equivalent:

(1) V is normal.

(2) V = SpecC[S] for some saturated affine semigroup S ⊆M .

(3) V = SpecC[σ∨ ∩M ], where σ ⊆ NR is strongly convex.
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I.5 2014-09-16
Example I.5.1. Consider the map

(C∗)2 → C4

(s, t) 7→
(
s4, s3t, st3, t4

)
.

Let A = {(4, 0), (3, 1), (1, 3), (0, 4)}. Is NA saturated in ZA? No: (4, 4) ∈ NA, but (2, 2) /∈
NA.

Theorem I.5.2. Let V be an affine toric variety. The following are equivalent:

(1) V is normal.

(2) V = SpecC[S],w here S ⊆M is a saturated affine semigroup.

(3) V = SpecC[σ∨ ∩M ], where σ ⊆ N is a strongly convex cone.

Proof. (3) ⇐⇒ (2) Last time, we showed that σ∨∩M is saturated when σ ⊆ N is strongly
convex.

(2) =⇒ (2) C[S] is integrally closed in its field of fractions. Suppose km = m′ ∈ S. Then
χm ∈ C(S) satisfies the integral equation zk − χm′ = 0. Hence, χm ∈ C[S] since C[S]
is normal.

(2) =⇒ (1) (sketch) Let A be the normalization of C[S]. Note that C[S] ⊆ A ⊆ C[M ].

Idea: C[S] has a Zn = M -grading, i.e.,

C[S] =
⊕
α∈Zn

C[S]α,

where each C[S]α has dimension ≤ 1.

Lemma. A also has a Zn-grading.

Idea: Let a ∈ A \ C[S]. Then each graded component of a lies in A \ C[S]. Induct on
the number of graded components.

Going back to the theorem, we may assume the extension C[S] ⊆ A is generated by
Zn-homogeneous elements, i.e., by monomials χm. Assume χm satisfies

f(z) = zk + ck−1z
k−1 + · · ·+ c0 = 0.

Then, writing c′i for the degree i · α part of ci. Want c′i · (χm)i to have same degrees as
(χm)k. Then χm also satisfies

g(z) = zk + c′k−1z
k−1 + · · ·+ c′0.

Then do something. . . (See [CLS].)

Corollary I.5.3. An affine toric variety V can be realized as V = SpecC[σ∨ ∩M ] for σ a
strongly convex cone iff V is normal.
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I.5.1 Smooth cones

Recall that a rational polyhedral cone σ ⊆ NR is smooth if its minimal generators form part
of a lattice basis.

Theorem I.5.4. Let σ ⊆ NR be a rational, polyhedral, strongly convex cone. Then Y =
SpecC[σ∨ ∩M ] is smooth if and only if σ is smooth.

Definition I.5.5. For an affine semigroup S, a Hilbert basis is a set of minimal semigroup
generators. (Unique if S is pointed?)

Recall: if σ is strongly convex, then Y has a unique torus fixed point pσ ∈ Y . Let H be
the Hilbert basis of Sσ.

Lemma I.5.6. The Zariski tangent space to Y at pσ has dimension |H|.

Proof. Let P = 〈χm | m ∈ Sσ〉 be the maximal ideal of C[Sσ] corresponding to pσ. Say m is
decomposable in Sσ if there exist m′,m′′ ∈ Sσ such that m = m′ + m′′ and m′,m′′ 6= 0; say
m is indecomposable otherwise. Then P/P 2 is naturally spanned by{

χm
∣∣ m is indecomposable in Sσ

}
,

which is in bijection with the set of minimal generators H of Sσ.

Remark I.5.7. In fact, the Zariski tangent space to Y at pσ has a natural basis that’s canon-
ically in bijection with H.

Proof of theorem. Suppose σ is smooth, and write σ = Cone(e1, e2, . . . , er). Then σ∨ =
Cone(e1, . . . , er,±er+1, . . . ,±en), so σ∨ ∩M = Nr ⊕ Zn−r. Hence,

Y = SpecC[x1, . . . , xr, x
±
r+1, . . . , x

±
n ] = Ar × (C∗)n−r,

which is clearly smooth.
Conversely, suppose Y is smooth. Then Y is normal, so we can write Y = SpecC[σ∨∩M ].

Decompose Y into torus orbits. On each torus orbit, the Zariski tangent space has constant
dimension. Since σ is rational, polyhedral, and strongly convex, there is a torus fixed point
pσ.

Claim. pσ is in the closure of each torus orbit.

Granting this, Y is smooth ⇐⇒ Y is smooth at pσ ⇐⇒ |H| = n ⇐⇒ the semigroup
Sσ has n minimal generators ⇐⇒ σ is smooth.

I.6 2014-09-18
Should have done last time:

Proposition I.6.1. Let S ⊆ M be an affine semigroup and Ssat ⊆ M its saturation. Then
C[Ssat] is the normalization of C[S].
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To get an equivalence of categories, we must answer: Let f : X → Y be a map of affine
toric varieties. When should we say that f is a “toric morphism”? Ideas:

• torus-equivariant

• f(TX) ⊆ TY and f |TX → TY is a group homomorphism.

• Comes from a semigroup map.

More precisely:

Definition I.6.2. Write V1 = SpecC[S1] and V2 = SpecC[S2], where Si ⊆ Mi are affine
semigroups. We say f : V1 → V2 is a toric morphism if it is induced by a semigroup
homomorphism f̂ : S2 → S1.

Example I.6.3. Let’s classify toric maps A1 → A2. This means giving a map k[N2] → k[N1]
coming from a semigroup homomorphism f̂ : N2 → N1. Such a map is characterized by
f̂(1, 0), f̂(0, 1) ∈ N, so the set of all such maps is in natural bijection with N2.

Assume gcd(a, b) = 1. Then the toric map f(a,b) : A1 → A2 corresponding to (a, b) ∈ N2

sends A1 to the curve V (xb − ya) = SpecC[ta, tb] ⊆ A2.

Theorem I.6.4. Let V1, V2 be affine toric varieties with tori T1, T2, and let φ : V1 → V2 be
a map of varieties. Then:

(1) φ is toric ⇐⇒ φ(T1) ⊆ T2 and φ|T1 : T1 → T2 is a group homomorphism.

(2) If φ is toric, then φ is torus-equivariant: φ(t · p) = φ(t) · φ(p) for all t ∈ T1, p ∈ V1.

Proof. Write Vi = SpecC[Si]. Then ZSi = Mi is the character lattice of Vi. If φ is toric,
then φ is induced by φ̂ : S2 → S1, which induces a group homomorphism φ̂ : M2 →M1, and
we get commutative diagrams:

C[S2]
φ̂
//

⊆
��

C[S1]

⊆
��

C[M2]
φ̂
// C[M1]

V2 V1
φ
oo

T2

OO

T1

OO

φ|T1oo

Recall that Ti = HomZ(Mi,C∗). Since HomZ(−,C∗) is a functor, φ|T1 is a map of abelian
groups.

Conversely, if φ|T1 : T1 → T2 is a group homomorphism, then φ̂ : M2 → M1 is a group
homomorphism, so φ̂|S2 : S2 → S1 ⊆M1 is a semigroup homomorphism.

It remains to show that a torus map is equivariant. We must show commutativity of the
diagram

T1 × V1
//

(φ|T1
,φ)

��

V1

φ
��

T2 × V2
// V2.

To see this, note that if Vi is replaced with Ti, this just expresses that the torus map induces
a group homomorphism of the torus. Since equivariance holds on a Zariski-dense subset, it
holds everywhere.
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Proposition I.6.5. Let σi ⊆ (Ni)R be a strongly convex, rational, polyhedral cone. Consider
a map φ : N1 → N2. Then φ : T1 → T2 extends to a toric map Uσ1 → Uσ2 (where
Uσi = SpecC[σ∨i ∩Mi]) if and only if φ(σ1) ⊆ σ2.

Example I.6.6. There is a toric map SpecC[y, xy−1] → SpecC[x, y], but not in the other
direction.

Example I.6.7. What if you intersect a semigroup with a sublattice? For example, consider
the inclusions of lattices

(2N)2 ⊆
{

(a, b) ∈ N2
∣∣ a+ b ∈ 2N

}
⊆ N2.

This corresponds to C[x2, y2] ⊆ C[x2, xy, y2] ⊆ C[x, y]; the latter inclusion is the second
Veronese embedding. In fact, every Veronese embedding can be realized by a similar inclusion
of lattices.

I.7 2014-09-23
Setup:

0→ L→ Zs [A]−−→ Zn = M,

A = {m1, . . . ,ms} ⊆M = Zn. How do we actually compute

IL =
〈
xα − xβ

∣∣ α− β ∈ L〉?
Idea: let

J :=
{
xαi − xβi

∣∣ {αi − βi} is a Z-basis for L
}
.

Then V (J) ∩ (C∗)n = V (IL) ∩ (C∗)n. Indeed, on (C∗)n, monomials are invertible, so we can
rescale xαi − xβi to either xαi−βi − 1 or 1− xβi−αi .

Let xα′ − xβ
′ be a generator of IL but not in J . Since α′ − β′ ∈ L, we can write

α′ − β′ =
∑

i ci(αi − βi) for some ci ∈ Z. Hence,

xα
′−β′ − 1 = ±

∏
ci>0

(xαi−βi − 1)ci ·
∏
ci<0

(1− xβi−αi)ci .

Since V (J) ∩ (C∗)n = V (IL) ∩ (C∗)n, IL = J : (x1 · . . . · xn)∞.



Chapter II

Projective toric varieties

II.1 2014-09-23, continued

II.1.1 Toric varieties

Definition II.1.1. A toric variety is an (integral) variety X with a dense torus T ⊆ X such
that the action of T on itself extends to an action on X.

Example II.1.2. Let A =

{(
3
0

)
,

(
2
1

)
,

(
1
2

)
,

(
0
3

)}
. Then XA = V (IL) ⊆ P3 is the twisted

cubic.

Example II.1.3. The cone for P1 is the union of two rays σ1, σ2 in opposite directions. The
σi are smooth, strongly convex, rational polyhedral cones, and so is σ1 ∩ σ2. This is a “fan”
structure, which gives gluing data.

When does A = {m1, . . . ,ms} ⊆M product a projective toric variety?

Proposition II.1.4. The following are equivalent:

(1) YA is the affine cone over a projective toric variety (herein denoted XA).

(2) IL is homogeneous.

(3) There exists u ∈ N and k ∈ Z>0 such that 〈mi, u〉 = k for i = 1, . . . , s.

Remark II.1.5. If we set M = Zn, then (3) is equivalent to (1, 1, . . . , 1) being in the row
space of [A] ⊆ Qs.

Proof. (1) =⇒ (2) Straightforward.

(2) =⇒ (3) Let xα − xβ ∈ IL. If deg(xα) 6= deg(xβ), then xα, xβ ∈ IL. But (1, 1, . . . , 1) ∈
YA, giving a contradiction. Hence, xα−xβ is homogeneous, and so, for ` := α−β ∈ L,
we have ` · (1, . . . , 1) = 0 for any ` ∈ L. Consider

0→ L→ Zs →M,

21
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and tensor with Q and dualize to obtain

NQ → Qs ϕ−→ HomQ(LQ,Q)→ 0.

Thus, (1, . . . , 1) ∈ kerϕ, hence there exists ũ ∈ NQ mapping to (1, . . . , 1). Clearing
denominators yields u ∈ N mapping to (k, . . . , k). So u ·mi = k for all i = 1, . . . , s.

II.2 2014-09-25
Continuing from last time, let A = {m1, . . . ,ms} ⊆M .

Proposition II.2.1. The following are equivalent:

(1) YA ⊆ As is the cone over a projective toric variety (denoted XA ⊆ Ps−1).

(2) IL is homogeneous.

(3) There exist u ∈ N and k ∈ Z>0 such that 〈mi, u〉 = k for all i.

It remains to show that (3) implies (1).

Remark II.2.2. Let M = Zn. Then (3) is equivalent to (1, 1, . . . , 1) ∈ Zs lying in the row
space over Q of [A] =

[
m1 . . . ms

]
.

First, we claim YA is a cone. Consider y ∈ YA ⊆ As. Since YA is equivariant with respect
to the TY -action, it follows that YA is equivariant with respect to any 1-parameter subgroup.
Let u ∈ N as in (3) and consider

C∗ λu−−→ (C∗)n

τ 7→ λu(τ).

For t ∈ TY , t · y = (tm1y1, t
m2y2, . . . , t

msys). Hence,

λu(τ) · y = (τ 〈m1,u〉y1, . . . , τ
〈ms,u〉ys) = (τ ky1, . . . , τ

kys).

So YA is equivariant with respect to the dilation action on As. Thus, YA is a cone over a
projective variety XA ⊆ Ps−1.

Claim II.2.3. XA is a toric variety with torus TX = TY /λ
u(C∗).

Elements t, t′ ∈ TY coincide in TX if and only if t′ = λu(τ) · t for some τ ∈ C∗. Write
[y] ∈ Ps−1 for the class of y ∈ As and [t] ∈ TX for the class of t ∈ TY .

Key observation: the map

TX ×XA → XA

[t], [y] 7→ [t · y]

is well-defined.



II.2. 2014-09-25 23

Lemma II.2.4. Let Ui := Ps−1 \ V (xi). Then Ui ∩XA is an affine toric variety.

Certainly, Ui ∩ XA is an affine variety. Note that TY lies entirely in As \
⋃s
i=1 V (Xi).

Hence, TX ⊆ Ps−1 \
⋃s
i=1 V (xi) =

⋂s
i=1 Ui. So

TX ⊆ Ui ∩XA = (Zariski closure of TX in Ui).

Where is the semigroup?1 Identify

Ui
'−→ As−1

[a1, . . . , as] 7→
(
a1

ai
,
a2

ai
, . . . ,

as
ai

)
.

Then Ui ∩XA is the closure of the image of

TX → Ui

t 7→
(
χm1−mi(t), . . . , χms−mi(t)

)
,

and Ai := A−mi = {m1 −mi,m2 −mi, . . . ,ms −mi}. Hence

Ui ∩XA = SpecC[NAi].

The convex hull of A,

P = Conv(A) =

{
s∑
i=1

rimi

∣∣ ri ∈ R≥0,
∑

ri = 1

}
⊆MR

is a polytope in MR.

Theorem II.2.5. (1) dimXA = dimP .

(2) If J = {j ∈ {1, . . . , s} | mj is a vertex of P}, then XA =
⋃
j∈J(XA ∩ Uj).

(3) XA = XA−m for any m ∈M . (“XA only depends on the polytope P = Conv(A).”)

II.2.1 Summary of chapter 2

Here’s what we’ll do on the rest of chapter 2:

• Facts about polytopes2

• Define a toric variety XP for any polytope P .

• Later: a polytope P gives rise to a pair (XP , DP ), where XP is a toric variety and DP

is an ample line bundle on XP .
1Where have all the monoids gone?

Long time passing
Where have all the monoids gone?
Long time ago

2Thanks for signing up for Polytope Facts! You will now receive fun daily facts about POLYTOPES!
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II.3 2014-09-30: Fans and gluing
Here’s the data we need to glue:

• affine schemes {Vα};

• for each pair (α, β), an open subset Vαβ ⊆ Vα;

• isomorphisms gβα : Vβα
'−→ Vαβ satisfying:

(1) gβα = g−1
αβ

(2) cocycle condition

Definition II.3.1. A fan Σ = {σ} in NR is a finite collection of cones σ ⊆ NR satisfying:

(1) Every σ ∈ Σ is strongly convex, rational, and polyhedral.

(2) For all σ ∈ Σ, each face of σ is in Σ.

(3) For all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of σ1 and of σ2.

The support of Σ is |Σ| =
⋃
σ∈Σ σ ⊆ NR. We write

Σ(r) :=
{
σ ∈ Σ

∣∣ dimσ = r
}
.

Recall: Given σ ∈ Σ, we get a (normal) affine toric variety Uσ = SpecC[Sσ] where Sσ =
σ∨ ∩M . If τ � σ, then τ = σ ∩Hm for some m ∈ σ∨, where Hm = {u ∈ NR | 〈u,m〉 = 0}.
Fact II.3.2. If τ = σ ∩Hm, then Sτ = Sσ + Z(−m).

Remark II.3.3. The above fact implies that Uτ = SpecC[Sτ ] = SpecC[Sσ]χm = (Uσ)χm .

Fact II.3.4. If τ = σ1∩σ2, then there existsm ∈ σ∨1 ∩σ∨2 ∩M such that σ2∩Hm = τ = σ1∩Hm

(i.e., we can use the same m).

Remark II.3.5. Hence, Uτ can be considered as a subset of Uσ1 or of Uσ2 . We will use this
to glue.

Lemma II.3.6. Fix a fan Σ ⊆ NR. Then {Uσ}σ∈Σ together with natural inclusion maps
Uσ2 ⊇ Uτ ⊆ Uσ1 for all pairs σ1, σ2 and τ = σ1 ∩ σ2, glues to give a scheme XΣ.

Theorem II.3.7. XΣ is a normal toric variety.

Proof. Since each cone is strongly convex, {0} is a face of σ for all σ ∈ Σ, and hence
U{0} = TN ⊆ Uσ ⊆ XΣ for all σ ∈ Σ. The torus actions are compatible on Uσ1 ∩ Uσ2 for all
pairs σ1, σ2. So they glue to give TN × XΣ → XΣ. The scheme XΣ is integral and normal
since each Uσ is. (See book for separatedness.)

Remark II.3.8. It’s not the case that XA = XrA for all r ∈ N. But it is the case that
XrA = Xr′A for all r, r′ � 0.

Theorem II.3.9. Every normal toric variety equals XΣ for some fan Σ ⊆ NR.
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II.4 2014-10-02: Polytope Facts

One preview theorem:

Theorem II.4.1. Let Σ ⊆ NR be a fan and XΣ the toric variety. Then:

(1) XΣ is smooth ⇐⇒ each σ ∈ Σ is smooth.

(2) XΣ is an orbifold (has finite quotient singularities) ⇐⇒ each σ ∈ Σ is simplicial.

(3) XΣ is proper ⇐⇒ |Σ| = NR.

(4) XΣ is projective ⇐⇒ Σ is the normal fan of a polytope P .

Definition II.4.2. Given u ∈ NR and b ∈ R, let

Hu,b :=
{
m ∈MR

∣∣ 〈u,m〉 = b
}
,

H+
u,b :=

{
m ∈MR

∣∣ 〈u,m〉 ≥ b
}
.

We say Q is a face of P , written Q � P , if Q = P ∩Hu,b and P ⊆ H+
u,b. Call Hu,b a supporting

hyperplane.

Note II.4.3. If P is full-dimensional and F � P is a facet, then F = P ∩ HuF ,−aF , where
(uF ,−aF ) is unique up to scalar multiple.

Fact II.4.4. • P = Conv(vertices of P ).

• If P = Conv(S), then each vertex of P lies in S.

• If Q � P , then Q is a polytope and the faces of Q are exactly those faces of P lying in
Q.

• Every proper face Q ≺ P is the intersection of the facets containing Q.

Usually, P is given as Conv(S), where S is a finite set. If P is full-dimensional, then

P =
⋂

F facet of P

H+
uF ,−aF =

⋃
F

{
m
∣∣ 〈uF ,m〉 ≥ −aF} .

Let P be a d-dimensional polytope.

• P is a d-simplex if P has (d+ 1) vertices.

• P is simple if every vertex is the intersection of precisely d facets.

• P is simplicial if all facets are simplices.

Example II.4.5. An octahedron is simplicial, but not simple. A cube is simple, but not
simplicial.
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Polytopes are combinatorially equivalent if there is a bijection between their faces pre-
serving intersections, inclusions, and dimensions.

Sums or Minkowski sums : Let P,Q ⊆MR be polytopes. Define

P +Q =
{
p+ q

∣∣ p ∈ P, q ∈ Q} .
Multiples: Let r ∈ R and P = Conv(S). Define rP := Conv(rS). If

P =
s⋂
i=1

{〈m,ui〉 ≥ −ai} ,

then

rP =
s⋂
i=1

{〈m,ui〉 ≥ −rai} .

Duals : if P is full-dimensional and 0 ∈ P , then

P ◦ :=
{
u ∈ NR

∣∣ 〈m,u〉 ≥ −1 for all m ∈ P
}
.

Example II.4.6. The dual of the square P = [−1, 1]2 = Conv({(−1, 1), (1, 1), (1,−1), (−1,−1)})
is the diamond

P ◦ =
{

(u1, u2)
∣∣ u1m1 + u2m2 ≥ −1 ∀(m1,m2) ∈ [−1, 1]2

}
= {u1 + u2 ≥ −1} ∩ {u1 − u2 ≥ −1} ∩ {−u1 + u2 ≥ −1} ∩ {−u1 − u2 ≥ −1}
= Conv({(1, 0), (−1, 0), (0, 1), (0,−1)}).

A lattice polytope is a polytope whose vertices are lattice points. If P is a full-dimensional
lattice polytope and F � P is a facet, then F = P ∩HuF ,−aF , where uF ,−aF are chosen to
be integers (and hence unique if written in lowest terms).
Note II.4.7. For any k, ` ∈ N,

(kP ) ∩M + (`P ) ∩M ⊆ ((k + `)P ) ∩M.

Definition II.4.8. P is normal if this is an equality for all k, ` ∈ N, or equivalently if

(P ∩M) + (P ∩M) + · · ·+ (P ∩M)︸ ︷︷ ︸
k times

= (kP ) ∩M.

Recall that C(P ) = Cone(P × {1}) ⊆MR × R.

Claim II.4.9. P is normal ⇐⇒ (P ∩M)×{1} generates the semigroup C(P )∩ (M ×Z).

Proof. Consider the bijection

(kP ) ∩M ←→ C(P ) ∩ (M × {k})
λ 7→ (λ, k).

Let {λ1, . . . , λs} = P ∩ M . Then λ =
∑

i aiλi for some ai ∈ N if and only if (λ, k) =∑
i ai(λi, 1) for some ai ∈ N.
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Theorem II.4.10. Let P ⊆ MR be a full-dimensional lattice polytope of dimension n ≥ 2.
Then kP is normal for all k ≥ n− 1.

Remark II.4.11 (Future picture). P corresponds to a line bundle L on XP , and P ∩ M
corresponds to a basis of H0(L ).

Definition II.4.12. P is very ample if for every vertex m ∈ P , the semigroup

SP,m := N
{
m′ −m

∣∣ m′ ∈ P ∩M}
is saturated in M .

II.5 2014-10-07: Line bundles and polytopes
Definition II.5.1. A polytope P is:

• normal if (kP ) ∩M + (`P ) ∩M = ((k + `)P ) ∩M for all k, `.

• very ample if for all vertices m ∈ P , SP,m := N {m′ −m : m ∈ P ∩M} is saturated in
M .

Theorem II.5.2. Normal =⇒ very ample.

Proof. Choose a vertex m0 ∈ P , and let S = SP,m0 . Assume km ∈ S for some k ∈ Z≥1.
Then km =

∑
m′∈P∩M a′m(m′ −m0) for some a′m ∈ N. Pick d so that kd ≥

∑
a′m. Then

km+ kdm0 =

( ∑
m′∈P∩M

a′mm
′

)
+
(
kd−

∑
a′m

)
m0 ∈ kdP.

By normality, m+ dm0 =
∑d

i=1 mi, where mi ∈ P ∩M . So

m = (m+ dm0)− dm0 =
d∑
i=1

(mi −m0)

and mi −m0 ∈ S.

Definition II.5.3. If P is a full-dimensional, very ample, lattice polytope, then XP :=
XA ⊆ P#A−1, where A = P ∩M .

Example II.5.4. If P = Conv {(0, 0), (1, 0), (0, 1)}, then P is very ample, and XP is the
closure of

(C∗)2 → P2,

(s, t) 7→ [1 : s : t].

This is just the identity embedding P2 ⊆ P2 given by O(1).
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Example II.5.5. We have 2P = Conv {(0, 0), (2, 0), (0, 2)}, which is still very ample, and X2P

is the Zariski closure of

(C∗)2 → P5,

(s, t) 7→ [1 : s : t : s2 : st : t2].

This is the Veronese embedding P2 ⊆ P5, given by O(2).

Recall: If P is a full-dimensional lattice polytope, then

P =
⋂

F facet

{
m ∈MR

∣∣ 〈m,uF 〉 ≥ −aF} .
For each vertex v of P , define

Cv := Cone(P ∩M − v) = Cone(
{
m′ − v

∣∣ m′ ∈ P ∩M}),

and σv = C∨v ⊆ NR.
There’s a dimension- and inclusion-reversing correspondence between faces of P and cones

in Σ in NR, sending a face Q � F to

σQ := Cone(uF
∣∣ F contains Q).

Definition II.5.6. The normal fan Σ (or ΣP or Σ(P )) of a full-dimensional lattice polytope
is

Σ =
{
σQ
∣∣ Q � P

}
.

Lemma II.5.7. Σ is a fan.

Theorem II.5.8. Let P be a full-dimensional very ample lattice polytope. Then:

(1) For any vertex mi ∈ P ∩M , we have XP ∩ Ui = Uσi, where σi ⊆ NR is the strongly
convex, rational polyhedral cone σmi (dual to Cmi = Cone(P ∩M −mi)).

(2) The torus of XP∩M is TN .

(3) XP = XΣ, where Σ is the normal fan of P .

Note II.5.9. The normal fan of P is equal to the normal fan of kP for all k ≥ 1.

Corollary II.5.10. If P is a full-dimensional very ample lattice polytope, then XP = XkP

for all k ≥ 1.

What if a full-dimensional lattice polytope P is not very ample? Recall:

• kP is normal for all k ≥ dimP − 1.

• normal =⇒ very ample.

Definition II.5.11. Let P be a full-dimensional lattice polytope. Then:

• As an abstract variety, XP := XkP for any k � 0.
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• XP also has a distinguished map XP → P#(P∩M)−1 whose image is XP∩M .

Later, we’ll prove: For any full-dimensional lattice polytope P , we get a pair (XP , DP ),
where DP is the pullback of OPn(1). This naturally corresponds to pairs (X,A) with X a
projective toric variety and A an ample (but not necessarily very ample) line bundle.

Theorem II.5.12. Let P ⊆MR be a full-dimensional lattice polytope. Then:

(a) XP is normal.

(b) XkP ⊆ P#(kP )∩M−1 is projectively normal if and only if kP is normal.

Proof. Note that XP = XΣ(P ), which is normal. For part (b), recall that YkP∩M is the affine
cone over XkP∩M , and XkP∩M ⊆ Pm is projectively normal ⇐⇒ Y(kP∩M)×{1} is normal
⇐⇒ N({kP ∩M} × {1}) is saturated, which follows if kP is normal.



30 CHAPTER II. PROJECTIVE TORIC VARIETIES



Chapter III

Normal toric varieties

III.1 2014-10-09

III.1.1 Examples

Example III.1.1. The d-dimensional rectangular polytope with opposite diagonal vertices
(0, . . . , 0) and (a1, . . . , ad) corresponds to the embedding (P1)×m ↪→ P

∏
i(ai+1)−1, which comes

from the line bundle O(a1, . . . , ad) on (P1)×m.

Example III.1.2. Consider the polytope P = Conv({(0, 0), (2, 0), (1, 1), (1, 0)}). This gives a
toric surface

XP → P4,

(C∗)2 3 (s, t) 7→ [1 : s : s2 : t : st],

defined by the 2× 2 minors of
[
x0 x1 y0

x1 x2 y1

]
. This is a rational normal scroll.

III.1.2 Smoothness

Definition III.1.3. Let P be a lattice polytope.

(1) Given a vertex v ∈ P and an edge E 3 v, let wE be the first lattice on E after v.

(2) P is smooth if for all v, the vectors{
wE − v

∣∣ E is an edge containing v
}

form a subset of a lattice basis.

Theorem III.1.4. Let P be a full-dimensional lattice polytope. Then XP is smooth ⇐⇒ P
is smooth.

Proof. XP is covered by affines Uv for vertices v of P . It suffices to check that XP ∩ Uv is
smooth for all vertices v.

31
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Recall that Cv = Cone(P ∩M − v) = Cone({m− v | m ∈ P ∩M}) ⊆MR and σv = C∨v .
The variety

XP ∩ Uv = SpecC[N ·
{
m− v

∣∣ m ∈ P ∩M}] = SpecC[σ∨v ∩M ]

is smooth ⇐⇒ σv is smooth ⇐⇒ σ∨v is smooth ⇐⇒ Cv is smooth.

Proposition III.1.5. Let P be a full-dimensional smooth lattice polytope. Then P is very
ample.

Proof. Recall that P is very ample if SP,v = N {m− v | m ∈ P ∩M} is saturated for all v.
Since P is smooth, SP,v is generated by a lattice basis m1, . . . ,mn. Hence, if km ∈ SP,v, then
there are unique ai ∈ N such that km =

∑
i aimi. Also, m =

∑
i bimi for some bi ∈ Z. Thus,

km =
∑

i kbimi. By uniqueness, ai = kbi, so bi ≥ 0, whence m ∈ SP,v.

Conjecture III.1.6. Let P be a full-dimensional smooth lattice polytope. Then P is normal.

Note III.1.7. XP ⊆ P#P∩M−1 is projectively normal ⇐⇒ P is normal.

Theorem III.1.8. XkP ⊆ Pm is projectively normal if k ≥ dimP − 1.

III.1.3 Products

If P ⊆MR and P ′ ⊆M ′
R, then P × P ′ ⊆MR ×M ′

R.

Theorem III.1.9. Assume P, P ′ are very ample, XP ⊆ Pa−1, and XP ′ ⊆ Pb−1. Then

XP×P ′ ∼= XP ×XP ′ ⊆ Pa−1 × Pb−1 Segre−−−→ Pab−1,

and the composition XP×P ′ ↪→ Pab−1 is the embedding given by the polytope P × P ′.

Proof. Note that (P × P ′) ∩ (M ×M ′) = (P ∩M) × (P ′ ∩M ′). Let T ′′ = T × T ′ be the
torus of M ×M ′. The following diagram commutes:

T ′′ // Pab−1

T × T ′ // Pa−1 × Pb−1

88

Theorem III.1.10. For fans Σ ⊆ NR and Σ′ ⊆ N ′R, define

Σ× Σ′ :=
{
σ × σ′

∣∣ σ ∈ Σ, σ′ ∈ Σ′
}
⊆ NR ×N ′R.

Then Σ× Σ′ is a fan, and XΣ×Σ′ = XΣ ×XΣ′.

Example III.1.11. Let ∆n be the standard n-simplex. Then ∆n × ∆m corresponds to the
Segre embedding Pn × Pm ↪→ Pnm+n+m.
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III.1.4 Orbit-cone correspondence

Example III.1.12. Let P = Conv {(0, 0), (1, 0), (0, 1)} be the triangle, corresponding to the
normal fan inNR that corresponds to P2. Points of the latticeN correspond to one-parameter
subgroups of (C∗)2 ⊆ P2. For example, (3, 4) corresponds to

C∗ λ(3,4)

−−−−→ (C∗)2 → P2

u 7→ (u3, u4)

(s, t) 7→ [1 : s : t].

Observe that
lim
u→0

λ(C∗) = lim
u→0

[1 : u3 : u4] = [1 : 0 : 0].

Note: the same computation works for any (a, b) ∈ N with a > 0 and b > 0.

III.2 2014-10-14: Orbit-cone correspondence

Recall: Let σ be a rational polyhedral convex cone in NR. Then:

• Uσ = SpecC[Sσ] = SpecC[σ∨∩M ]. The set of closed points of Uσ are in bijection with
semigroup morphisms Sσ → C.

• If σ is strongly convex, then there is a distinguished point γσ ∈ Uσ corresponding to
the semigroup morphism

m 7→

{
1 if m ∈ Sσ ∩ σ⊥ = σ⊥ ∩M,

0 otherwise.

• γσ is torus-fixed ⇐⇒ σ is full-dimensional.

Definition III.2.1. Let O(σ) be the torus orbit of γσ ∈ Uσ. We have

O(σ) = TN · γσ ⊆ Uσ.

When σ ∈ Σ a fan, this definition always makes sense.

Lemma III.2.2. Let σ be a strongly convex rational polyhedral cone in NR. Then

O(σ) =
{
γ : Sσ → C

∣∣ γ(m) 6= 0 ⇐⇒ m ∈ σ⊥ ∩M
} ∼= HomZ(σ⊥ ∩M,C∗).

Proof. Recall how t ∈ T acts on a semigroup morphism: For γ : Sσ → C, t · γ is defined by
m 7→ χm(t) · γ(m). Let

O′ :=
{
γ : Sσ → C

∣∣ γ(m) 6= 0 ⇐⇒ m ∈ σ⊥ ∩M
}
.

Note that γσ ∈ O′. Also, O′ is closed under the action of the torus T , since O(σ) = T ·γσ ⊆ O′.
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Observe that σ⊥ is the largest vector subspace of MR contained in σ∨. Hence, σ⊥ ∩M
is a subgroup of M and a subsemigroup of Sσ. Restricting γ ∈ O′ to σ⊥ ∩M yields a group
morphism

γ̂ = γ|σ⊥∩M : σ⊥ ∩M → C∗.

Note that γ̂ ∈ HomZ(σ⊥ ∩M,C∗).
Conversely, given γ̂ ∈ HomZ(σ⊥ ∩M,C∗), we get a semigroup morphism γ : Sσ → C by

extending by zero, i.e., setting γ(m) = 0 for all m ∈ Sσ \ (S⊥ ∩M).
We’ve shown that O(σ) ⊆ O′ ∼= HomZ(σ⊥ ∩M,C∗). It remains to show that TN acts

transitively on O′. Note that TN = N ⊗Z C∗ ∼= HomZ(M,C∗). The inclusion σ⊥ ∩M ⊆ M
induces a surjection

TN = HomZ(M,C∗)� HomZ(σ⊥ ∩M,C∗) = O′,

proving the result.

Theorem III.2.3 (Orbit-cone correspondence). Let Σ ⊆ NR be a fan, and XΣ the corre-
sponding toric variety.

(1) There is a bijective correspondence

{cones σ ∈ Σ} ←→ {TN -orbits in XΣ} ,
σ 7→ O(σ).

(2) The above correspondence is dimension-reversing, i.e.,

dimO(σ) = dimNR − dimσ.

(3) If we take orbit closures, then the correspondence is inclusion-reversing, i.e.,

τ � σ ⇐⇒ O(σ) ⊆ O(τ).

Even stronger,
O(τ) =

∐
τ�σ

O(σ).

Proof. See book.

Note III.2.4. We sometimes denote V (σ) := O(σ).

Remark III.2.5. Each orbit closure V (σ) is itself a toric variety. Fix τ ∈ Σ, and define
Nτ := Z 〈τ ∩N〉 ⊆ N and N(τ)R := NR/(Nτ )R. Write σ̄ for the image of σ under the
quotient map NR � N(τ)R. Then

Star(τ) :=
{
σ̄ ⊆ N(τ)R

∣∣ σ � τ ∈ Σ
}
⊆ N(τ)R.

Star(τ) is a fan, and V (τ) = XStar(τ).
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III.3 2014-10-16: Toric morphisms

III.3.1 Example

An example: the cone of a square corresponds to the affine cone of P1 × P1. Let’s classify
V (σ) for σ ∈ Σ:

V (whole thing) = origin in A4

V (pi) = A2 = ̂[0 : 1]× P1 (2-dimensional)

V (σ01) = ̂[0 : 1]× [0 : 1] (1-dimensional)
V (origin) = XΣ

For example, V (p0) ∼= XStar(p0), which comes from

Np0

[ 0 0 1 ]−−−−→ N
π−→ N(p0)→ 0.

III.3.2 Toric morphisms

Recall that a map φ : V1 = SpecC[S1] → V2 = SpecC[S2] between affine toric varieties
is toric if it’s induced by a semigroup homomorphism S2 → S1, or equivalently, if φ maps
T1 into T2 and φ|T1 : T1 → T2 is a group morphism. The latter definition is the one that
generalizes nicely.

Definition III.3.1. Let XΣ1 , XΣ2 be normal toric varieties with Σi ⊆ (Ni)R a fan. A
morphism φ : XΣ1 → XΣ2 is toric if φ sends T1 into T2 and if φ|T1 : T1 → T2 is also a group
morphism.

Corollary III.3.2. Any toric morphism is equivariant, i.e., the following diagram com-
mutes:

T1 ×XΣ1

toric action //

(φ,φ)

��

XΣ1

φ

��

T2 ×XΣ2 toric action
// XΣ2

Proof. Since φ|T1 : T1 → T2 is a group homomorphism, the diagram commutes on a dense
subset, hence everywhere.

Definition III.3.3. For i = 1, 2, let Σi ⊆ (Ni)R be fans. Let Φ : N1 → N2 be a Z-linear
map, and let ΦR : (N1)R → (N2)R be the induced map. We say Φ is compatible with Σ1 and
Σ2 if for all σ1 ∈ Σ1, there exists σ2 ∈ Σ2 such that ΦR(σ1) ⊆ σ2.

Theorem III.3.4. Let Σ1 ⊆ (Ni)R be fans for i = 1, 2.

(1) If Φ : N1 → N2 is a Z-linear map that is compatible with Σ1 and Σ2, then there is a
toric morphism φ : XΣ1 → XΣ2 such that

φ|T1 = Φ⊗ 1 : N1 ⊗Z C∗ → N2 ⊗Z C∗.
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(2) Conversely, if φ : XΣ1 → XΣ2 is a toric morphism, then φ induces a Z-linear map
Φ : N1 → N2 that is compatible with Σ1 and Σ2.

Proof. (1) For all σ1 ∈ Σ1, there exists σ2 ∈ Σ2 where ΦR(σ1) ⊆ σ2. Hence, Φ∗R(σ∨2 ) ⊆ σ∨1 ,
and so the map σ∨2 ∩M2 → σ∨1 →M1 induces a toric morphism Uσ1 → Uσ2 . Then glue
these.

(2) φ|T1 is a group homomorphism, so Φ : N1 → N2 is Z-linear. Take σ1 ∈ Σ1. By the orbit-
cone correspondence, σ1 corresponds to an orbit O(σ1) ⊆ Σ1. By equivariance, there
is a T2-orbit containing φ(O(σ1)), i.e., there exists σ2 ∈ Σ2 with φ(O(σ1)) ⊆ O(σ2).

By reversing the argument in (1), it suffices to show that φ|Uσ1
(Uσ1) ⊆ Uσ2 . Note that

Uσ1 =
⋃
τ1�σ1

O(τ1). Also, φ(O(τ1)) ⊆ O(τ2) for some τ2 ∈ Σ2.

Since τ1 � σ1, O(σ1) ⊆ O(τ1). So O(σ2) ⊇ φ(O(σ1)) ⊆ φ(O(τ1)) ⊆ O(τ2). Hence
by equivariance, O(σ2) ⊆ O(τ2) =

⋃
τ2�ρO(ρ). This implies τ2 � σ2. Hence, Φ is

compatible with Σ1,Σ2.

III.3.3 Blowups

Given a fan Σ ⊆ NR, we say another fan Σ′ ⊆ NR is a refinement of Σ if every cone in Σ′ is
contained in a cone of Σ and |Σ| = |Σ′|.

Note III.3.5. In this case, we get a map XΣ′ → XΣ.

Definition III.3.6. Let Σ be a fan in NR = Rn. Let σ = Cone(u1, . . . , un) be a smooth
cone in Σ. Let u0 := u1 + · · ·+ un, and let

Σ′(σ) =


cones generated by subsets of
{u0, . . . , un} not containing

{u1, . . . , un}

 .

Then Σ∗(σ) := (Σ \ {σ}) ∪ Σ′(σ) is a fan called the star subdivision of Σ along σ.

Theorem III.3.7. The induced toric morphism φ : XΣ∗(σ) → XΣ is the blowup of XΣ at the
distinguished point γσ (i.e., at the smooth point V (σ)).

III.4 2014-10-21: Bundles

Recall: a fan Σ′ ⊆ NR is a refinement of a fan Σ ⊆ NR if |Σ′| = |Σ| and for all σ′ ∈ Σ′, there
exists σ ∈ Σ with σ′ ⊆ σ.

Idea: Refining Σ corresponds to blowing upXΣ. (For example, we can even study blowups
at non-reduced ideals this way, such as blowing up A2 at (xa, yb).)

Question: What does a vector bundle, projective bundle, or fibration of normal toric
varieties look like at the level of fans? In particular, we look at a toric morphism φ : XΣ →
XΣ′ whose fibers are all isomorphic to XΣ0 .
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Let Φ : N � N ′ be Z-linear. Let Σ ⊆ NR and Σ′ ⊆ N ′R be fans compatible with Φ,
yielding a toric morphism XΣ → XΣ′ . Let N0 = ker Φ, so

0→ N0 → N
Φ−→ N ′ → 0

is a short exact sequence, which splits. Define

Σ0 :=
{
σ ∈ Σ

∣∣ σ ⊆ (N0)R
}
⊆ (N0)R.

Let XΣ0,N0 be the toric variety associated to Σ0 ⊆ (N0)R.
Question: When is φ : XΣ → XΣ′ a XΣ0,N0-bundle over XΣ′? In other words, when is

there an open cover {Vα} of XΣ′ where φ−1(Uα) ∼= Uα ×XΣ0,N0 for all α?

Definition III.4.1. We say that Σ is split by Σ′ if there is a subfan Σ̂ ⊆ Σ where:

(1) Φ maps each cone σ̂ ∈ Σ̂ bijectively to a cone σ′ ∈ Σ′ such that Φ(σ̂ ∩ N) = σ′ ∩ N ′
and σ̂ 7→ σ′ is a bijection Σ̂→ Σ′.

(2) Given σ̂ ∈ Σ̂ and σ0 ∈ Σ0, we have that σ̂ + σ0 ∈ Σ, and every cone in Σ arises in this
way.

Remark III.4.2. This is like a “twisted” product. For example, Σ1 × Σ2 is split by Σ1.

Theorem III.4.3. If Σ is split by Σ′, then φ : XΣ → XΣ′ is an XΣ0,N0-bundle.

We’ll prove this next time.

III.4.1 Hirzebruch surfaces

Definition III.4.4. A Hirzebruch surface is a P1-bundle over P1, i.e., P(O ⊕O(a))→ P1.

Remark III.4.5. Hirzebruch surfaces are always toric.

What are all smooth fans Σ ⊆ R2 with 3 rays and |Σ| = R2? Without loss of generality,
(1, 0) and (0, 1) are two of the points defining rays. To meet the condition on the support,
the third point must be (a, b) with a, b < 0. Also, for Σ to be smooth, (1, 0), (0, 1), (a, b)
must be a lattice basis, so |a| = |b| = 1.

What about smooth fans Σ ⊆ R2 with 4 rays and |Σ| = R2? Two points are (1, 0)
and (0, 1), and the remaining two, by determinant considerations, are ρ = (−1, b) and
ρ′ = (a,−1). Also,

det

[
−1 a
b −1

]
= 1− ab = ±1,

so ab = 0 (whence b = 0 without loss of generality) or ab = 2 (whence (a, b) is one of the
following: (2, 1), (1, 2), (−2,−1), (−1,−2)). This gives a complete list.
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III.5 2014-10-23: Proper toric varieties

III.5.1 Split fans, continued

Recall from last time:

Theorem III.5.1. If Σ is split by Σ′ and Σ0, then φ : XΣ → XΣ′ is an XΣ0,N0-bundle, i.e.,
φ−1(Uσ′) ∼= Uσ′ ×XΣ0,N0 for all σ′ ∈ Σ′.

Proof. Fix σ′ ∈ Σ′, and let Σ(σ′) = {σ ∈ Σ | Φ(σ) ⊆ σ′}. Then φ−1(Uσ′) = XΣ(σ′). We need
to show that XΣ(σ′) = Uσ′ ×XΣ0,N0 .

Note that Σ(σ′) is split by Σ0∩Σ(σ′) and {τ ′ ∈ Σ′ | τ ′ � σ′} (where Σ̂ Σ̂∩Σ(σ′)). We
can now reduce to the case where Σ′ = {τ ′ � σ′}, Σ = Σ(σ′), and so on.

Consider the short exact sequence of Z-modules 0 → N0 → N → N ′ → 0. We have a
splitting ν̄ : N ′ → N that induces an isomorphism N ∼= N ′ × N0, and we want a splitting
ν̄ inducing Σ ∼= Σ′ × Σ0. For all τ̂ ∈ Σ̂, this maps bijectively to τ ′ ∈ Σ′. Furthermore, the
map is bijective on lattice points!

Let σ̂ 7→ σ′. Let N̂ ⊆ N be the sublattice spanned by σ̂ ∩ N . Let N ′′ ⊆ N ′ be the
sublattice spanned by σ′ ∩N ′ ⊆ N ′.

Let ν̄ be any splitting that identifies N ′′ with N̂ . This works.

III.5.2 Proper varieties

Definition III.5.2. A variety X is proper (or complete) if for all Z, the induced map
X × Z → Z is closed in the Zariski topology.

Proposition III.5.3. Let σ ⊆ NR be a strongly convex, rational polyhedral cone, and let
u ∈ N . Then u ∈ σ if and only if limt→0 λ

u(t) exists in Uσ.

Proof. Given u ∈ N , limt→0 λ
u(t) exists in Uσ = SpecC[Sσ] ⇐⇒ limt→0 χ

m(λu(t)) exists
in C for all m ∈ A ⇐⇒ limt→0 t

〈m,n〉 exists in C for all m ∈ Sσ ⇐⇒ 〈m,u〉 ≥ 0 for all
m ∈ σ∨ ∩M ⇐⇒ u ∈ (σ∨)∨ = σ.

Theorem III.5.4. Let XΣ be a normal toric variety. The following are equivalent:

(1) XΣ is compact in the Euclidean topology.

(2) The limit limt→0 λ
u(t) exists in XΣ for all u ∈ N .

(3) |Σ| = NR.

(4) XΣ is proper.

Remark III.5.5. Criterion (2) can be thought of as a vastly strengthened analogue of the
valuative criterion: it says that we only need to check torus-equivariant copies of C∗.
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Proof. By Serre’s GAGA theorem, (1) and (4) are equivalent.
We first show that (1) implies (2): Suppose XΣ is compact, and fix u ∈ N . A sequence

tk ∈ C∗ converging to 0 yields a sequence {λu(tk)}k∈N in XΣ. Since XΣ is compact, there
is a convergent subsequence, so passing to this, limk→∞ λ

u(tk) = γ ∈ XΣ =
⋃
σ Uσ. Assume

γ ∈ Uσ. Take m ∈ σ∨ ∩M . Then χm is a regular function on Uσ, so

C 3 χm(γ) = lim
k→∞

χm(λu(tk)) = lim
k→∞

t
〈m,u〉
k .

Thus 〈m,u〉 ≥ 0 for all m ∈ σ∨ ∩M , whence u ∈ (σ∨)∨ = σ. By Proposition III.5.3, it
follows that limt→0 λ

u(t) exists in Uσ ⊆ XΣ.
Now we show (2) implies (3): For all u ∈ N , the limit limt→0 λ

u(t) exists in Uσ ⊆ XΣ for
some σ, so u ∈ σ by Proposition III.5.3. Thus, |Σ| = NR.

It remains to show that (3) implies (1). We’ll prove this next time.

III.6 2014-10-28: Proper morphisms

III.6.1 Proper toric varieties, continued

Last time, we began proving:

Theorem III.6.1. Let XΣ be a normal toric variety. The following are equivalent:

(1) XΣ is compact in the Euclidean topology.

(2) The limit limt→0 λ
u(t) exists in XΣ for all u ∈ N .

(3) |Σ| = NR.

(4) XΣ is proper.

The equivalence of (1) and (2) is Serre’s GAGA. Last time, we showed that (1) =⇒ (3)
=⇒ (4).

We now show (4) =⇒ (1): Induct on n = dimNR. For n = 1, the only complete
fan in NR corresponds to XΣ = P1

C. Assume the statement for all lower-dimensional fans.
Let γk ∈ XΣ be a sequence of cones. The fan XΣ is the union of a finite number of torus
orbits. We may assume γk ∈ O(τ) for some τ ∈ Σ. If τ 6= {0} (so O(τ) 6= TN), then
γk ∈ O(τ) ⊆ V (τ) = XStar(τ). After checking that |Σ| = NR =⇒ |Star(τ)| = N(τ)R, the
statement holds by induction (so τ = {0}).

So we now have γk ∈ TN = HomZ(M,C∗). Define

L : TN = HomZ(M,C∗)→ NR = HomZ(M,R)

(m 7→ γ(m)) 7→ (m 7→ log |γ(m)|).

Given γ ∈ TN , we get L(γ) ⊆ NR. If L(γ) ∈ −σ for σ ∈ Σ, and if m ∈ σ∨ ∩ M , then
log |γ(m)| = 〈m,L(γ)〉 ≤ 0 and |γ(m)| ≤ 1, so γ(m) ∈ (unit disk).

Since |Σ| = NR, we can assume L(γk) lies in −σ for some σ ∈ Σ. Thus γk is a map
M → (closed unit disk in C) for all γk. Since the closed unit disk is compact, there is a
subsequence converging to a map γ∞ sending σ∨ ∩M to the closed unit disk, thus γ∞ ∈
Uσ.
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III.6.2 Proper morphisms

A morphism of algebraic varieties φ : X → Y is proper if it is universally closed, i.e., if for
all ψ : Z → Y , the mapping φ′ : X ×Y Z → Z is a closed mapping in the Zariski topology.

Example III.6.2. The projection A1×P1 → A1 is proper. On the other hand, the projection
A1 × P1 → P1 isn’t proper.

Remark III.6.3 (Proper implies proper fibers). A necessary condition for a morphism being
proper is that all of its fibers are proper. However, this isn’t sufficient — for example,
consider an open embedding.

Remark III.6.4 (Topological analogue). A continuous map of topological spaces f : X → Y
is proper if f−1(T ) is compact for all compact T ⊆ Y .

Theorem III.6.5. Let φ : XΣ → X ′Σ be a toric morphism of normal toric varieties induced
by Φ : N → N ′. The following are equivalent:

(1) φ is proper as a continuous map of topological spaces.

(2) φ is proper as a morphism of algebraic varieties.

(3) Φ̄−1
R (|Σ′|) = |Σ|.



Chapter IV

Divisors on toric varieties

IV.1 2014-10-28: Weil and Cartier divisors

IV.1.1 Weil divisors

Let X be a normal toric variety. The divisor group of X is

Div(X) =
⊕
P⊆X

Z · [P ],

where P ranges over a codimension 1 closed subvarieties of X. Let K(X) denote the function
field of X, given by K(X) = Frac(A) = A(0), where U = Spec(A) ⊆ X is an affine open
subset.

For f ∈ K(X)∗, we define an element div(f) ∈ Div(X) by

div(f) :=
∑

P⊆X codim 1

vP (f) · [P ],

where the valuation vP (f) ∈ Z is defined as follows: If U = Spec(A) contains P , then
P ∩ U ⊆ U is a closed subvariety of codimension 1, so P ∩ V = V (p) ⊆ U for some prime
ideal p ∈ Spec(A), for which Ap = OX,P . Since X is normal, X is smooth in codimension 1,
so Sing(X) ⊆ X has codimension ≥ 2, hence P ⊆ X is generically smooth. Thus, OX,P is a
1-dimensional regular local ring, hence a DVR. Let vP be the associated valuation

vP : K(X)∗ → Z.

A regular function f = g
h
can be restricted to U , and vP (f) is the multiplicity of V (g|U)

along P , which can also be computed as minx∈P {multiplicity of g|U at P}.
We have vP (f) 6= 0 for only finitely many P , so div(f) is indeed a well-defined element

of Div(X). We define

Div0(X) =
{

div(f)
∣∣ f ∈ K(X)∗

}
⊆ Div(X).

A Weil divisor is an element of Div(X), and the divisor class group of X is the quotient
group

Cl(X) =
Div(X)

Div0(X)
.

41
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Example IV.1.1. Consider A1
C = SpecC[t]. The divisor group is

Div(A1) =
⊕
α∈C

Z · [α].

For any nonzero g, h ∈ C[t],

div

(
g(t)

h(t)

)
= div

(
(t− α1) · · · (t− αr)
(t− β1) · · · (t− βs)

)
=

r∑
i=1

[αi]−
s∑
j=1

[βj].

In particular, div(t− α) = [α], so Cl(A1) = 0.

Remark IV.1.2. The divisor class group is difficult to compute in general, but very easy to
compute for toric varieties.

IV.1.2 Cartier divisors

A divisor Z ∈ Div(X) is a Cartier divisor if Z is locally defined by a single function, i.e.,
there is an open cover {Ui} of X such that Z|Ui = div(fi) for all i and some fi ∈ K(X)∗.

Example IV.1.3. Consider the cone X = V (xz−y2) ⊆ A3. The line V (x, y) is a codimension
1 closed subvariety of X, but it’s not locally principal (scheme-theoretically).

Let CDiv(X) ⊆ Div(X) be the group of Cartier divisors, which contains Div0(X) by
construction. The Cartier class group is

CaCl(X) =
CDiv(X)

Div0(X)
.

In all reasonable cases (including everything we do in this class), CaCl(X) = Pic(X) is equal
to the Picard group.

IV.2 2014-10-30: Class groups

IV.2.1 The class group of P2

Let’s compute Cl(P2) = Div(P2)/Div0(P2). We have

Div(P2) =
⊕
P⊆P2

codim 1, irred.

Z · [P ].

Recall that

{ codim. 1
irreducible

subvarieties of P2

}
←→


homogeneous, codim
1 prime ideals in

C[x, y, z]

←→


homog. irred.
polynomials in
C[x, y, z], up to
scalar multiples

 .
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Also,

Div0(P2) =
{

div(f)
∣∣ f ∈ K(P2)∗

}
⊆ Div(P2),

K(P2) =

{
f

g

∣∣ f, g ∈ C[x, y, z] homogeneous, deg f = deg g

}
.

Write f = fa1
1 · · · aarr and g = gb11 · · · gbss with fi, gj irreducible. Note that

r∑
i=1

ai deg(fi) =
s∑
j=1

bj deg(gj).

Write Vi = V (fi) and Zj = V (gj). Then

div

(
f

g

)
=

r∑
i=1

ai[Vi]−
s∑
j=1

bj[Zj] ∈ Div0(P2).

Note IV.2.1. There is a Z-linear map

deg : Div(P2)→ Z,
[P ] 7→ degP = deg f where P = V (f).

Note that Div0(P2) ⊆ ker(deg). We have an exact sequence

Div0(P2)→ Div(P2)
deg−−→ Z→ 0.

Hence, if we show this is exact in the middle, then Cl(P2) = Z. This means showing that
any divisor of degree zero is principal. (See Hartshorne for the proof.)

IV.2.2 Miscellany on class groups

• If X = SpecA and A is a UFD, then Cl(X) = 0, e.g., Cl(An) = 0 and Cl(TN) = 0.

• If X is smooth, then Cl(X) = Pic(X).

• If D ⊆ X is a prime Weil divisor, then there is a right exact sequence

Z→ Cl(X)→ Cl(X \D)→ 0.

1 7→ [D]

• If D1, . . . , Dn are distinct prime Weil divisors on X, then there is a right exact sequence

Zn → Cl(X)→ Cl
(
X \

⋃
i

Di

)
→ 0.

ei 7→ Di

Example IV.2.2. LetD be an elliptic curve in P2. Then the corresponding map Z→ Cl(P2) =
Z has degree 3, so Cl(P2 \D) = Z/3Z.
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Definition IV.2.3. A divisor in Div(X) is effective if all coefficients are nonnegative. The
class of divisor in Cl(X) is effective if it is the image of an effective divisor.

From a Weil divisor, we get a subsheaf of K(X). A subsheaf of K(X) assigns a subset
of K(X) to each open set U ⊆ X. In particular, we define the subsheaf OX(D) by

OX(D)(U) =
{
f ∈ K(X)∗

∣∣ div(f) +D|U is effective in Cl(U)
}
.

Example IV.2.4. If D is a prime divisor (or more generally, an effective divisor) on An, then
if D = V (fD), we have

OX(−D)(An) =

{
div

f

g
−D effective

}
= 〈fD〉 · C[x1, . . . , xn] ⊆ K(An).

Remark IV.2.5. D is Cartier ⇐⇒ OX(D) is a line bundle.

IV.2.3 Toric varieties and divisors

Let XΣ be an n-dimensional normal toric variety. Let Σ(1) be the rays of the fan Σ, i.e., the
codimension 1 torus orbits. If ρ ∈ Σ(1) is a ray, we get a Weil divisor Dρ = V (ρ).

As we argued before, OXΣ,Dρ is a DVR with a valuation vρ. For example, if XΣ = A2 and
Dρ = V (x1), then OA2,Dρ = C[x1, x2]〈x1〉 has valuation vρ : K(A2)∗ → Z given by vρ(fg ) = m,
where f

g
= xm1

f ′

g′
and f ′, g′ aren’t divisible by x1.

Recall that uρ ∈ N is the ray generator of ρ and χm : TN → C∗ is a rational function on
XΣ.

Proposition IV.2.6. vρ(χm) = 〈m,uρ〉.
Proof. Since uρ is primitive, we extend to a lattice basis e1 = uρ, e2, . . . , en of N . So

Uρ = SpecC[x1, x
±
2 , . . . , x

±
n ] = A1 × (C∗)n−1.

So Uρ ∩Dρ = V (x1) ⊆ Uρ. It turns out that

OXΣ,Dρ = C[x1, x
±
2 , . . . , x

±
n ]〈x1〉 = C[x1, x2, . . . , xn]〈x1〉.

If f, g ∈ C[x1, . . . , xn] and f
g

= x`1
f ′

g′
with x1 - f ′ and x1 | g′, then v`(fg ) = `.

Let m1, . . . ,mn be the dual basis of M . Then xi = χmi , and

χm = x
〈m,e1〉
1 x

〈m,e2〉
2 · · · x〈m,en〉n = x

〈m,uρ〉
1 x

〈m,e2〉
2 · · ·x〈m,en〉n .

Thus, vρ(χm) = 〈m, e1〉 = 〈m,uρ〉.

Proposition IV.2.7. For all m ∈M , div(χm) =
∑
ρ∈Σ(1)

〈m,uρ〉 · [Dρ].

Proof. Note that X \
⋃
ρ∈Σ(1)Dρ = TN . If P ⊆ X where [P ] has a nonzero coefficient in

div(χm), then the same holds in TN if P is notDρ for some ρ. Identify TN = SpecC[x±1 , . . . , x
±
n ]

and χm = xm1
1 · · ·xmnn . Then

div(χm) =
n∑
i=1

mi · [V (xi)] = 0

in TN .
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IV.3 2014-11-04: Toric class groups and Picard groups

IV.3.1 Class groups of toric varieties

Our goal is to compute Cl(XΣ). Let uρ be the first lattice point on the ray ρ. Recall that,
for m ∈M , div(χm) =

∑
ρ 〈m,uρ〉Dρ.

Write DivT (XΣ) :=
⊕

ρ Z ·Dρ ⊆ Div(X).

Theorem IV.3.1. We have an exact sequence

M → DivT (XΣ)→ Cl(XΣ)→ 0

m 7→ div(χm)

which is exact on the left if and only if {uρ | ρ ∈ Σ(1)} spans NR.

Proof. Note that Cl(T ) = 0 since T = SpecC[x±1 , . . . , x
±
n ] is a UFD. Since T = XΣ \

⋃
ρDρ,

we have an exact sequence

DivT =
⊕
ρ

Z→ Cl(XΣ)→ Cl(T ) = 0.

So we have a surjection DivT (XΣ) � Cl(XΣ). The composition M → DivT (XΣ) → Cl(X)
is zero. Assume [

∑
ρ aρDρ] = 0 in Cl(XΣ) (where aρ ∈ Z). Then div(f) =

∑
ρ aρDρ for some

f ∈ K(X)∗. Since div(f)|T = 0 in Div(T ), f is a unit on the torus, so f = cχm for some
m ∈M and c ∈ C∗.

Let {e1, . . . , en} be a basis for M ∼= Zn, and choose a dual basis for N . Label rays
ρ1, . . . , ρr. This realizes M → DivT (XΣ) as an integer matrix

Φ : Zn → Zr,

ei 7→
r∑
j=1

〈
ei, uρj

〉
Dρj .

Example IV.3.2. The fan of P2 has rays generated by (1, 0), (0, 1), (−1,−1). Its class group
is

Cl(P2) = coker

Z2

[
1 0
0 1
−1 −1

]
−−−−−−→ Z3

 = Z.

Example IV.3.3. The fan of a Hirzebruch surface has rays generated by (1, 0), (0, 1), (0,−1), (−1, a).
Its class group is

Cl(Hirzebruch surface) = coker

Z2

 1 0
0 1
0 −1
−1 a


−−−−−−→ Z4

 = Z2.

Example IV.3.4. The fan with rays generated by (0, 1), (d,−1) corresponds to the cone over

P1 |O(d)|−−−−→ Pd. Its class group is coker

[
d −1
0 1

]
= Z/dZ.



46 CHAPTER IV. DIVISORS ON TORIC VARIETIES

IV.3.2 Picard groups of toric varieties

Write CDivT (XΣ) for the subgroup of torus-invariant Cartier divisors.

Note IV.3.5. If D is a Cartier divisor, then D is also a Weil divisor, so D ∼
∑

ρ aρDρ for
some aρ ∈ Z.

Corollary IV.3.6. We have an exact sequence

M → CDivT (XΣ)→ Pic(XΣ)→ 0

m 7→ div(χm)

which is exact on the left if and only if {uρ | ρ ∈ Σ(1)} spans NR.

Remark IV.3.7. Locally principal doesn’t necessarily imply principal on every open affine
set. For example, let C ⊆ A2 be a plane curve of degree d > 1, and let P ∈ C be a
point. Then P is locally principal, but not principal. Indeed, let ` = V (f) be a line
transverse to C at P . Then ` ∩ C = {P,Q1, . . . , Qd−1} contains points other than P , and
div(f |C) = [P ]+[Q1]+· · ·+[Qd−1]. However, div(f |U) = [P ], where U = C−{Q1, . . . , Qd−1}.

However, on toric varieties, the situation is nice:

Theorem IV.3.8. Let D =
∑

ρ aρDρ on XΣ. The following are equivalent:

(1) D is Cartier.

(2) D is principal on Uσ for all σ ∈ Σ.

(3) For each cone σ ∈ Σ, there exists mσ ∈M such that 〈mσ, uρ〉 = −aρ for all ρ.

(4) For each maximal cone σ ∈ Σ, there exists mσ ∈ M such that 〈mσ, uρ〉 = −aρ for all
ρ.

Proof. Trivially, (2) =⇒ (1). Moreover, (2) is equivalent to the existence of mσ ∈ M such
that

D|Uσ = div(χ−mσ) =
∑
ρinσ(1)

〈−mσ, uρ〉Dρ.

But also D|Uσ =
∑

ρ∈σ(1) aρDρ, so (2) ⇐⇒ (3).
Trivially, (3) =⇒ (4). Also, (4) =⇒ (3) because if mσ works for σ, then it works for

any face of σ. Finally, (1) =⇒ (2) is implied by the following proposition.

Proposition IV.3.9. Let σ ∈ Σ. Then:

(1) Every torus-invariant Cartier divisor on Uσ is trivial.

(2) Pic(Uσ) = 0.

Example IV.3.10. Consider a cone XΣ, and let XΣ0 be the cone with the singular point
removed. Then Cl(XΣ) = Cl(XΣ0) = Pic(XΣ0) = Z/dZ, but Pic(XΣ) = Pic(Uσ) = 0.
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Example IV.3.11. Consider XΣ = Cone(P1 × P1) = V (xz − yw) ⊆ C4, where Σ has rays
(e1, e2, e1 + e3, e2 + e3). Then

Cl(XΣ) = coker

Z3

[ 1 0 0
0 1 0
1 0 1
0 1 1

]
−−−−−→ Z4

 = Z

is generated by Dρ for any ray ρ. However, Pic(XΣ) = 0; this is an exercise in the book.

Theorem IV.3.12. The following are equivalent:

(1) Cl(XΣ) = Pic(XΣ).

(2) XΣ is smooth.

Theorem IV.3.13. The following are equivalent:

(1) The index of Pic(XΣ) in Cl(XΣ) is finite.

(2) XΣ is simplicial.

IV.4 2014-11-06: Cartier divisors, continued

IV.4.1 Smooth and simplicial toric varieties

Recall that a divisor D =
∑

ρ aρDρ on XΣ is Cartier if for each maximal cone σ ∈ Σ, there
is mσ ∈M with 〈mσ, uρ〉 = −aρ for all ρ ∈ σ(1). We call {mσ}σ the Cartier data.

Theorem IV.4.1. Let XΣ be a normal toric variety. The following are equivalent:

(1) Every Weil divisor is Cartier.

(2) Cl(XΣ) = Pic(XΣ).

(3) XΣ is smooth.

The easy part is (1) ⇐⇒ (2). Let’s show that (3) implies (2). Fix σ. Without
loss of generality, σ = Cone(e1, . . . , ek). Then D|Uσ =

∑k
i=1 aiDi, where Di is the divisor

corresponding to the ray Cone(ei) � σ. Extend e1, . . . , ek to a basis e1, . . . , en and choose a
dual basis for M = Zn. Choose mσ = (a1, . . . , ak, 0, . . . , 0). So D is Cartier.

Now we show (2) implies (3). Choose σ ∈ Σ with rays ρ1, . . . , ρs. Consider the map

M → Zs =
s⊕
i=1

Z · [Di] = DivT (Uσ)

m 7→ div(χ−m).

This map is an n × s matrix whose rows correspond to Uρi for i = 1, . . . , s. This map is
surjective if and only if the Uρi can be extended to a lattice basis of M . By (2), the map is
surjective and hence σ is a smooth cone.

There’s a variant of this for simplicial toric varieties:
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Theorem IV.4.2. Let XΣ be a normal toric variety. The following are equivalent:

(1) Every Weil divisor is Q-Cartier.

(2) Pic(XΣ) has finite index in Cl(XΣ).

(3) XΣ is simplicial.

IV.4.2 Polytope divisors

Recall that a full-dimensional lattice polytope P ⊆MR has a canonical presentation

P =
{
m ∈MR

∣∣ 〈m,uF 〉 ≥ −aF ∀ facets F � P
}
.

From P , we build a normal fan ΣP to get a toric variety XP := XΣP . Since |ΣP | = NR, XP

is always proper.
Ray generators of ΣP correspond to facets normal to uF ; let DF be the corresponding

divisor on XP . Let
DP :=

∑
F facet of P

aFDF .

This is a torus-invariant Weil divisor on XP .

Proposition IV.4.3. DP is a Cartier divisor.

Proof. A vertex v ∈ P corresponds to a maximal cone σv ∈ ΣP . Since v is a vertex,
〈v, uF 〉 = −aF for all v ∈ F . Since v ∈M , we choose {v}σv as our Cartier data.

So each full-dimensional lattice polytope P corresponds to a pair (XP , DP ) where XP is
a proper normal toric variety and DP is a Cartier divisor on XP .

IV.4.3 Support functions

Definition IV.4.4. Let Σ ⊆ NR be a fan.

(1) A support function is a function φ : |Σ| → R that is linear on each σ ∈ Σ.

(2) φ is integral with respect to N if φ(Σ ∩ N) ⊆ Z. The space of all integral support
functions on Σ is denoted SF(Σ, N).

Theorem IV.4.5. Let Σ ⊆ NR be a fan.

(1) Let D =
∑

ρ aρDρ with Cartier data {mσ}σ. Then the function

φD : |Σ| → R
u 7→ 〈mσ, u〉 ∀u ∈ σ

is a well-defined element SF(Σ, N).

(2) φD(uρ) = −aρ for all ρ ∈ Σ(1).
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(3) D 7→ φD is a group isomorphism CDivT (XΣ)
'−→ SF(Σ, N).

Proof. (1) The map is well-defined because each mσ in the Cartier data is unique modulo
σ⊥ ∩M . Clearly φD is linear on each σ and is integral.

(2) By the definition of Cartier data, 〈mσ, uρ〉 = −aρ for all ρ ∈ σ(1).

(3) The map D 7→ φD is a group homomorphism. Part (2) implies injectivity. For surjec-
tivity, take φ ∈ SF(Σ, N) and fix σ ∈ Σ. Since φ is integral, the map φ|σ∩N : σ∩N → Z
is N-linear, and extends to a Z-linear map φ|span(σ)∩N : span(σ) ∩N → Z.
Since HomZ(Nσ,Z) = M/M(σ), there exists mσ ∈ M where φ(u) = 〈mσ, u〉 for all
u ∈ Σ ∩N . Thus we recover the Cartier data {mσ}σ.

Proposition IV.4.6. Let P ⊆ MR be a full-dimensional lattice polytope with normal fan
ΣP . Consider the function

φP : |Σ| → R
φP (u) = min {〈m,u〉 : m ∈ P} .

Then φP ∈ SF(Σ, N) corresponds to DP , i.e., φP = φDP .

IV.5 2014-11-11
Recall that a Weil divisor D induces a sheaf OX(D), which is a line bundle iff D is Cartier.
Let’s consider the case where XΣ is smooth, hence all divisors are Cartier. On XΣ, let
D =

∑
ρ aρDρ. Let

Γ(XΣ,OX(D)) = {global sections of OX(1)} ⊆ K(X)∗.

The set PD := {m ∈MR | 〈m,uρ〉 ≥ −aρ for all ρ ∈ Σ(1)} ⊆ MR is an intersection of half-
spaces, hence a polyhedron. However, it may fail to be a polytope, or it may be a non-lattice
polytope.
Example IV.5.1. Let X = A1 and Σ the usual fan for A1. Let D = 0. Then

PD =
{
m ∈ R

∣∣ 〈m, 1〉 ≥ 0
}

= R≥0.

Theorem IV.5.2. The set {χm | m ∈ PD ∩M} is a C-basis for the global sections of OXΣ
(D).

Example IV.5.3. Consider P2 with the fan Σ with rays ρ0, ρ1, ρ2 generated by points (1, 0), (0, 1), (−1,−1).
Let D = D0 +D1 +D2 be the corresponding divisor. Then

PD =
{

(m0,m1)
∣∣ m0 ≥ −1,m1 ≥ −1,−m0 −m1 ≥ −1

}
.

A basis of Γ(P2,OX(D)) is

1

xy

{
1, x, y, x2, xy, y2, x3, x2y, xy2, y3

}
⊆ K(P2) = C(x, y).

We have degD = 3 and OP2(D) = OP2(3).
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IV.5.1 Digression on projective space

What is PnC?

• The space of lines in An+1 through the origin.

• Points in An+1 \ {0} modulo C∗.

• ProjC[x0, . . . , xn], whose points correspond to homogeneous prime ideals not contain-
ing the irrelevant ideal.

• The CW-complex An ∪ An−1 ∪ · · · ∪ A0.

• Gluing together a bunch of copies of An.

• XΣ defined via gluing.

• Subvarieties of Pn correspond to homogeneous prime ideals in C[x0, . . . , xn] that don’t
contain the irrelevant ideal.

Let’s consider the toric variety P1 × P1 with its usual fan. We have

P1 × P1 =

(
A2 − {0}

C∗

)
×
(
A2 − {0}

C∗

)
.

Give the first A2 coordinates (x0, x2) and the second coordinates (x1, x3). Then

P1 × P1 =
A4 − V (x1, x3)− V (x0, x2)

(C∗)2
,

where the action of (λ, µ) ∈ (C∗)2 on (x0, x1, x2, x3) ∈ A4 is (λx0, µx1, λx2, µx3).

Aside IV.5.4. The following are equivalent:

(i) a (C∗)2-action on S = C[x0, x1, x2, x3] that respects multiplication and addition.

(ii) a Z2-grading of S, i.e., S =
⊕

α∈Z2 Sα respecting multiplication and addition.

If deg(xi) = (ai, bi) ∈ Z2, then we get a (C∗)2-action on S by (λ, µ) · xi = λaiµbixi. Since
deg(xixj) = deg(xi + deg(xj), this respects the ring structure.

Conversely, given (C∗)2 	 S, decompose into irreducible representations, and get S =⊕
α∈Z2 Sα, the Z2-grading.

IV.5.2 Hirzebruch surfaces as quotients

Consider the Hirzebruch surface XΣ with rays generated by (1, 0), (0, 1), (0,−1), (−1, 3). Let
S = C[x0, x1, x2, x3]. We have exact sequences

0→M → DivT (XΣ) = ZΣ(1) → Cl(XΣ)→ 0,

0← N ← ZΣ(1) ← Cl(XΣ)∗ ← 0.
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In our example, the latter is

0 Z2oo Z4

[
1 0 −1 0
0 1 3 −1

]
oo kernel = Cl(XΣ)∗

[ 1 0
0 1
1 0
3 1

]
oo 0.oo

We have deg(x1) = (1, 0), deg(x2) = (0, 1), deg(x3) = (1, 0), and deg(x4) = (3, 1). Since
V (x1, x3) and V (x2, x4) are empty in XΣ, so (x1, x3) ∩ (x2, x4) is the “irrelevant ideal” for
XΣ. So

XΣ =
{(x1, x2, x3, x4)} − {x1 = x3 = 0} − {x2 = x4 = 0}

equivalence induced by (C∗)2-action
.
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Chapter V

Quotients

V.1 2014-11-13: Quotients
Let G be a group and G×X → X an action. What is the quotient X/G?

V.1.1 Topological quotients

For X a topological space and G × X → X continuous, X/G is defined in the category of
topological spaces so that points of X/G correspond to G-orbits in X, there is a surjective
map

π : X → X/G

x 7→ G · x,

and U ⊆ X/G is open ⇐⇒ π−1(U) ⊆ X is open.

V.1.2 Affine quotients

For X = SpecR a variety and G×X → X a morphism of varieties, we want to define this
via regular functions. If f ∈ R, g ∈ G, and x ∈ X, we define

g · f : X → C,
x 7→ f(g−1x).

Let RG ⊆ R be the ring of G-invariant functions. For f ∈ RG, there is a well-defined map

f̄ : X/G→ C,
G · x 7→ f(x),

where X/G is a suitable quotient object. In the affine case, we can define X/G = Spec(RG).
Example V.1.1 (Fairly good quotient). Let X = A2 = SpecC[x, y]. Let G = {±1} act by
−1 · (x, y) = (−x,−y). Then

C[x, y]G = C[x2, xy, y2] =
C[a, b, c]

〈ac− b2〉
,
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and we have a surjective map

A2 → V (ac− b2) ⊆ A3 = SpecC[a, b, c],

(x, y) 7→ (x2, xy, y2).

Point of V (ac− b2) are in bijective correspondence with G-orbits of A2.
However, this isn’t as nice as it might seem — the quotient isn’t smooth, and the quotient

map isn’t flat (there are fibers of different dimensions).

Example V.1.2 (Not as good). Consider C∗ acting on C4 = SpecC[x1, . . . , x4] by

λ · (x1, x2, x3, x4) = (λx1, λx2, λ
−1x3, λ

−1x4).

We have C[x1, . . . , x4] = C[x1x3, x1x4, x2x3, x2x4]. Our quotient map is

π : C4 → SpecC[x1x3, x1x4, x2x3, x2x4] = V (ad− bc) ⊆ C4 = SpecC[a, b, c, d].

Again, π is surjective. Also, if p ∈ V (ad − bc) \ {0}, then π−1(p) corresponds to a single
C∗-orbit.

However, π−1(0) is the union of all C∗-orbits contained in C2×{(0, 0)}∪{(0, 0)}×C2 ⊆ C4.
So we lose the bijection between G-orbits of X and points of X/G. This is bad.

Example V.1.3 (Really bad). Let C∗ act on An+1 by λ · (x0, . . . , xn) = (λx0, . . . , λxn). Then
C[x0, . . . , xn]C

∗
= C, so π : An+1 → SpecC.

Remark V.1.4. Another problem: RG can fail to be a finitely-generated C-algebra. (Hilbert
14, answered by Nagata.)

Lemma V.1.5. Let G act on X = Spec(R) so that RG is a finitely-generated C-algebra.
Then:

(1) The natural map π : X → Spec(RG) satisfies a universal property: For any affine
scheme Z = Spec(S) and any morphism ϕ : X → Z such that ϕ(g · x) = ϕ(x) for all
g ∈ G and all x ∈ G, there exists a unique morphism ψ : Y → Z such that ϕ = ψ ◦ π.

(2) If X is irreducible, then Y is irreducible.

(3) If X is normal, then Y is normal.

V.1.3 Good categorical quotients

Is there a better X/G for X not necessarily affine? For example, can we interpret Pn =
(An+1 − {0})/C∗ as a statement about quotients of varieties?

We will define a good categorical quotient X // G defined by two properties (if it exists):

• Given a G-equivariant morphism ϕ : X → Z (i.e., ϕ(gx) = ϕ(x) for all g ∈ G, x ∈ X),
ϕ factors uniquely through π : X → X // G.

• The morphisms G×X → X
π−→ X //G are the same whether G×X → X is the group

action or the projection map.
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Remark V.1.6. Good categorical quotients may not always exist. When they exist, though,
they have nice properties.

Good properties of good categorical quotients:

• U ⊆ X // G is open ⇐⇒ π−1(U) ⊆ X is open.

• U ⊆ X // G is nonempty and open, then π : π−1(U) → U is also a good categorical
quotient.

V.1.4 Good geometric quotients

A good geometric quotient is a good geometric quotient with the additional property that
points in X // G bijectively correspond to G-orbits. The main cases are where GLn, a finite
group, a torus, or a reductive algebraic group act on X.

Here’s a case of interest: Suppose X =
⋃
α Spec(Rα). We can try to build a good

geometric quotient by gluing Spec(RG
α ).

Example V.1.7. Consider C2 − {0} = SpecC[x±0 , x1] ∪ SpecC[x0, x
±
1 ], and let C∗ act by

dilations. Then C[x±0 , x1]C
∗

= C[x1

x0
] and C[x0, x

±
1 ]C

∗
= C[x0

x1
], and gluing yields (C2 − {0}) //

C∗ ∼= P1, a good geometric quotient.

V.1.5 Stack quotients

There’s another perspective on quotients (and more generally, on algebraic geometry) due
to Grothendieck: We think of a geometric object via the category of sheaves on it. (This is
closely tied to the philosophy of derived categories.) Rather than specifying the quotient as
a geometric object, we can specify the category of sheaves on it.

Building from this, a sheaf on X/G should be a G-equivariant sheaf on X, i.e., a sheaf on
X with a G-action. There typically isn’t a scheme whose category of sheaves is this category;
this motivates stacks, which are geometric objects which can have such categories of sheaves.
We have a stack quotient [X/G] such that the category of coherent sheaves on [X/G] is the
category of coherent sheaves on X with a G-action.

V.2 2014-11-25: Toric varieties as quotients
We want to consider toric varieties XΣ as (some variety)// (some group). What’s the group?
Let NR be a fan. If the rays of Σ span NR, we get a short exact sequence

0→M → ZΣ(1) → Cl(XΣ)→ 0.

Apply HomZ(−,C∗) to get

1→ G→ (C∗)Σ(1) → TN → 1.

Theorem V.2.1. (a) Cl(XΣ) is the character group of G.

(b) G is isomorphic to a product of a torus and a finite abelian group. (G is reductive.)
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(c) Given a basis e1, . . . , em of M , we have

G =

{
(tρ) ∈ (C∗)Σ(1)

∣∣ ∏
ρ

t〈m,uρ〉ρ = 1 ∀m ∈M

}

=

{
(tρ) ∈ (C∗)Σ(1)

∣∣ ∏
ρ

t〈ei,uρ〉ρ = 1 ∀i = 1, . . . , n

}
.

Proof. Since Cl(XΣ) is a finitely-generated abelian group, Cl(XΣ) ∼= Z` ×H for some finite
abelian group H. Then

G = Hom(Cl(XΣ),C∗) = (C∗)` × Hom(H,C∗).

This proves (b). Note that α ∈ Cl(XΣ) yields a character on G by g 7→ g(α) ∈ C∗, giving
(a). For (c), note that M → ZΣ(1) is m 7→ (〈m,uρ〉)ρ.

The group G is determined entirely by Σ(1).

V.2.1 Quotient construction

Let S := C[xρ : ρ ∈ Σ(1)]. This is the Cox ring of XΣ. Given σ ∈ Σ, we write xσ̂ :=
∏

ρ/∈σ xρ,
and define

B(Σ) :=
〈
xσ̂
∣∣ σ ∈ Σ

〉
⊆ S,

the irrelevant ideal .
The group G acts on S by the action as a subgroup of (C∗)Σ(1).
The toric variety of the fan we are going to build is CΣ(1) \V (B(Σ)). Let {eρ | ρ ∈ Σ(1)}

bet he standard basis of ZΣ(1). For each σ ∈ Σ, let σ̃ = Cone(eρ | ρ ∈ σ).

Theorem V.2.2. Let Σ̃ = {σ̃} ⊆ RΣ(1). This is a fan.

(1) XΣ̃ = CΣ(1) \ V (B(Σ)).

(2) The map eρ 7→ uρ defines a map of lattices ZΣ(1) → N that is compatible with Σ̃ and
Σ.

(3) The resulting toric morphism π : CΣ(1) \ V (B(Σ))→ XΣ is constant on G-orbits.

Proof. (1) Start with the full fan for CΣ(1) (all subsets of {eρ}). Removing faces from the
fan corresponds to removing torus orbits from CΣ(1), which corresponds to removing
orbit closures of all minimal non-cones of Σ̃. One can check that we’ve removed exactly
V (B(Σ)).

(2) This is a straightforward verification.

(3) On tori, we have the map π : (C∗)Σ(1) → TN from earlier. For g ∈ G and x ∈
CΣ(1) \ V (B(Σ)), since the morphism is toric,

π(g · x) = π(g) · π(x) = π(x)

since π(G) = 1.
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V.2.2 Good geometric quotients

Recall: A good categorical quotient X // G is a good geometric quotient if there is also a
bijection between G-orbits in X and points of X // G.

Theorem V.2.3. Suppose XΣ has no torus factors.

(1) π : CΣ(1) \ V (B(Σ)) → XΣ is an almost geometric quotient for the action of G (i.e.,
a good categorical quotient and there is a dense open set U0 ⊆ X where G · x is closed
for all x ∈ U0).

(2) π is a good geometric quotient if and only if XΣ is simplicial.

V.2.3 Global coordinates

For example, on P(1, 1, 2), we can view points as [x0 : x1 : x2] with the equivalence relation
[x0 : x1 : x2] ∼ [λx0 : λx1 : λ2x2] for λ ∈ C∗.

On a Hirzebruch surface, points are given by [x1 : x2 : x3 : x4] with equivalence relation
[x1 : x2 : x3 : x4] ∼ [λx1 : µx2 : λx3 : λaµx4] for all λ, µ ∈ C2. The weights are the kernel of
the ray matrix [

1 0 1 a
0 1 0 1

]
.

Another example: Bl0(C2). We have an exact sequence

0→ Z

[
1
1
1

]
−−−→ Z3 [ 1 0 1

0 1 1 ]
−−−−−→ N.

The coordinates are [x : y : t] ∼ [λx : λy : λ−1t] for all λ ∈ C∗, where (x, y) 6= (0, 0).

V.3 2014-12-02
Recall that the Cox ring has a Cl(X)-grading. Let β ∈ Cl(X) and f ∈ Sβ. Let x ∈ Spec(S) =
C#Σ(1). Then

f(g · x) = χβ(g) · f(x).

Note that {x | f(x) = 0} is a union of G-orbits, so {π(x) | f(x) = 0} ⊆ XΣ is well-defined.

Theorem V.3.1. (1) If I ⊆ S is a homogeneous prime ideal, then VX(I) := {π(x) ∈ X | f(x) = 0}
is a closed subvariety of XΣ.

(2) All closed subvarieties arise in this way.

(3) The analogous statement for ideals and subschemes is true.

V.4 2014-12-04 [missing]
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Chapter VI

Various topics

VI.1 2014-12-09: Maps into projective space

How do we give a map V → Pn?
To give a map V → A1 is the same as giving a regular function f ∈ Γ(V,OV ). Likewise,

to give a map V → An is the same as giving regular functions (f1, . . . , fn).
Giving a map V → An − {0} is the same as giving regular functions (f1, . . . , fn) such

that (f1(v), . . . , fn(v)) 6= (0, . . . , 0) for all v ∈ V .
What about V → (An − {0})/C∗ = Pn?

Fact VI.1.1. A map π : V → Pn is equivalent to the following data:

(1) a Cartier divisor D ∈ Pic(X) where OV (D) = π∗OPn(1);

(2) n+1 global sections s0, . . . , sn ∈ H0(V,OV (D)) where si = π∗xi and {s0 = s1 = · · · = sn = 0} =
∅ ⊆ V . (A Cartier divisor that admits such a set of global sections is called base-point-
free.)

Two follow-ups for XΣ:

(1) Clarify XΣ → Pn.

(2) Classify maps V → XΣ.

VI.1.1 Maps from toric varieties into projective space

Given D ∈ Pic(X), we get a polytope PD and {mσ}σ∈Σ(n).

Theorem VI.1.2. Let XΣ be n-dimensional such that all maximal cones of Σ have dimension
n. Then D is base-point-free if and only if the Cartier data {mσ} satisfies mσ ∈ PD for all
σ ∈ Σ(n).
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VI.1.2 Maps into toric varieties

A map π : V → XΣ is equivalent to the following data:

(1) a group homomorphism Dρ 7→ Lρ : Pic(XΣ)→ Pic(V );

(2) sρ ∈ H0(V, Lρ) for all ρ ∈ Σ(1), where
⋂
ρ/∈σ {sρ = 0} = ∅ ⊆ V for all σ ∈ Σ.

VI.1.3 Ample and very ample divisors

A divisor D ∈ Pic(V ) is very ample if D is base-point-free and there exist sections s0, . . . , sn
such that v 7→ [s0(v) : · · · : sn(v)] : V → Pn is a closed embedding. A divisor D is ample if
kD is very ample for some k ≥ 1.

On Pn, O(d) is base-point-free ⇐⇒ d ≥ 0, and O(d) is ample ⇐⇒ O(d) is very ample
⇐⇒ d > 0.

Theorem VI.1.3. If D is an ample divisor on a smooth projective toric variety XΣ, then
D is very ample.

Remark VI.1.4. This is vacuously true for proper varieties that aren’t projective (since such
varieties have no ample divisors). The theorem can fail for singular projective toric varieties.

Theorem VI.1.5. Let D be an ample (or nef) divisor on XΣ. Then H i(X,OX(D)) = 0 for
all i > 0.

Corollary VI.1.6. A normal toric variety is locally Cohen–Macaulay.

Theorem VI.1.7 (Toric Chow lemma and resolution of singularities). If XΣ is complete,
then there is a refinement Σ′ of Σ such that π : XΣ′ → XΣ is birational and XΣ′ is smooth
and projective.

VI.1.4 Euler sequence and canonical divisors

If XΣ is smooth and has no torus factors, then there is an exact sequence

0→ Ω1
XΣ
→

⊕
ρ∈Σ(1)

OX(−Dρ)→ Pic(X)⊗Z OX → 0.

Corollary VI.1.8. The canonical bundle is ωXΣ
= OX(

∑
ρ∈Σ(1)−Dρ).

Example VI.1.9. ωPn = O(−n− 1).

Example VI.1.10. ωPa×Pb = O(−a− 1,−b− 1).

Example VI.1.11. ωP(q1,...,qn) = O(
∑

i−qi).

Example VI.1.12. ωHa = O(a− 2,−2).
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VI.2 2014-12-11: Mori dream spaces and T -varieties

VI.2.1 Mori dream spaces

Let X be a smooth projective variety. We have

Cox(X) :=
⊕

L∈PicX

H0(X,L).

For toric varieties, this is nice, but in general (e.g., for an elliptic curve E, for which Pic(E) ∼=
E ⊕ Z), it might be wildly non-Noetherian.

Definition VI.2.1. A smooth projective variety X is a Mori dream space if Cox(X) is a
finitely-generated C-algebra.

Example VI.2.2. Smooth projective toric varieties are Mori dream spaces.

Example VI.2.3. Projective vector bundles over smooth projective toric variety are Mori
dream spaces.

Example VI.2.4. Del Pezzo surfaces are Mori dream spaces.

VI.2.2 T -varieties

Let X be a variety with a torus action (C∗)k ×X → X, where dimX = n ≥ k. (Maybe we
also require an embedding (C∗)k ↪→ X.) The complexity of a T -variety is n− k.

The complexity of a T -variety measures the balance between combinatorics and algebraic
geometry. For n−k = 0 (i.e., toric varieties), all the geometry is encoded in the fan. On the
other end, the affine cone of any n-dimensional projective variety is a T -variety of complexity
n (because affine cones have a C∗-action).

Essentially, the study of T -varieties of complexity n − k amounts to combinatorics plus
(n− k)-dimensional algebraic geometry.
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