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Part I

Overconvergent Eigensymbols

1 Introduction

2 Modular Symbols

We begin by recalling the basic theory of modular symbols and how these sym-
bols relate to modular forms.

2.1 General setup

Let

S0(p) =
{(

a b
c d

)
∈ M2(Z) such that p � a, p | c and ad − bc �= 0

}
.

Fix N some integer prime to p and let Γ := Γ1(Np) be the standard congruence
subgroup of level Np. If V is some Qp-vector space with an S0(p)-action then
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there is an associated locally constant sheaf Ṽ on Y1(Np) and we define the
space of V -valued modular symbols to be

H1
c (Γ, V ) := H1

c (Y1(Np), Ṽ )

the space of one-dimensional compactly supported cohomology classes of Ṽ .
This space naturally has an action of S0(p) and hence is acted on by the

Hecke operators Tl for l � Np and by Uq for q|Np. For example, the Up operator
is given by

φ|Up =
p−1∑
a=0

φ |
(

1 a
0 p

)
.

There also is a natural involution ι on this space given by φ|ι = φ |
(

0 −1
1 0

)
. This

involution gives a decomposition

H1
c (Γ, V ) = H1

c (Γ, V )+ ⊕ H1
c (Γ, V )−

of the space of modular symbols into its plus and minus parts.
If V is a Banach space and if Γ1(Np) acts by unitary operators on V then

H1
c (Γ, V ) is also a Banach space under the norm

||φ|| = sup
D∈∆0

||φ(D)||.

2.2 A concrete description of H1
c (Γ, V )

We now give an explicit description of these space of modular symbols in terms
of certain maps from degree 0 divisors of P1(Q) into V . In section 9, we will
use this description to perform computations in these spaces.

Let ∆0 = Div0(P1(Q)) be the set of degree 0 divisors on P1(Q). Then ∆0

is a left GL2(Q)-module by linear fractional transformations. If we view V as
a right S0(p)-module, the space Hom(∆0, V ) becomes a right S0(p)-module by

(φ|γ)(D) = φ(γD)|γ

where φ : ∆0 −→ V , D ∈ ∆0 and γ ∈ S0(p). Let

HomΓ(∆0, V ) = {φ ∈ Hom(∆0, V ) such that φ|γ = φ for all γ ∈ S0(p)}

the subspace of Γ-invariant maps.

Proposition 2.1. There is a canonical isomorphism

H1
c (Γ, V ) ∼= HomΓ(∆0, V ).

Proof. ?

In what follows we will implicitly identify these two spaces.

3



2.3 Eichler-Shimura theory

With the appropriate choice of V one can recover any space of classical modular
forms of weight greater than one inside the space of V -valued modular symbols.
For k ≥ 0 an integer, consider

Lk = {F (Z) ∈ Qp[Z] such that deg(F ) ≤ k}

as a right S0(p)-module by

(F
∣∣
k
γ)(z) = (d − cZ)k · F

(−b + aZ

d − cZ

)
where γ =

(
a b
c d

)
∈ S0(p) and F ∈ Lk.

Let Sk(Γ1(Np)) (resp. Ek(Γ1(Np))) denote the space of cusp forms (resp.
Eisenstein series) on Γ1(Np). The following theorem describes H1

c (Γ, Lk) in
terms of these spaces of modular forms.

Theorem 2.2 (Eichler-Shimura). There is an isomorphism of S0(p)-modules

H1
c (Γ, Lk ⊗ Qp) ∼= Sk(Γ1(Np)) ⊕ Santi

k (Γ1(Np)) ⊕ Ek(Γ1(Np))

where Santi
k (Γ1(Np)) is the space of antiholomorphic cusp forms.

Proof. See [3, Chapter 8].

3 Distributions

We will ultimately want to study overconvergent modular symbols which are
modular symbols whose values lie in certain spaces of p-adic distributions. In
this section, we will review the basic theory of these distributions.

3.1 Definitions

For each r ∈ |C×
p |, let

B[Zp, r] = {x ∈ Cp | there exists some a ∈ Zp with |x − a| ≤ r}.

Then B[Zp, r] is the Cp-points of a Qp-affinoid variety. For example, if r ≥ 1
then B[Zp, r] is the closed disc in Cp of radius r around 0. If r = 1

p then B[Zp, r]
is the disjoint union of the p discs of radius 1

p around the points 0, 1, . . . , p−1.
Let A[Zp, r] denote the Qp-Banach algebra of Qp-affinoid functions on B[Zp, r].

For example, if r ≥ 1

A[Zp, r] =

{
f(x) =

∞∑
n=0

anxn ∈ Qp[[x]] such that {|an| · rn} −→ 0

}
.
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The norm on A[Zp, r] is given by the supremum norm. That is, if f ∈ A[Zp, r]
then

||f ||r = sup
x∈B[Zp,r]

|f(x)|p.

For r1 > r2, there is a natural restriction map A[Zp, r1] −→ A[Zp, r2] that is
injective, completely continuous and has dense image. We define

A(Zp) = lim−→ s>0A[Zp, s] and A†(Zp, r) = lim−→ s>rA[Zp, s].

(It should be pointed out that these direct limits are taken over sets with no
smallest element and therefore are not vacuous.) We endow each of these spaces
with the inductive limit topology. Then A(Zp) is naturally identified with the
space of locally analytic Qp-valued functions on Zp while A†(Zp, r) is identified
with the space of Qp-overconvergent functions on B[Zp, r]. Note that there are
natural continuous inclusions

A†(Zp, r) ↪→ A[Zp, r] ↪→ A(Zp).

Moreover, the image of each of these maps is dense in its target space.
We now define our distributions modules as dual to these topological vector

spaces. Namely, set D(Zp), D[Zp, r] and D†(Zp, r) to be the space of continu-
ous Qp-linear functionals on A(Zp), A[Zp, r], and A†(Zp, r) respectively, each
endowed with the strong topology. Equivalently,

D(Zp) = lim←− s>0D[Zp, s] and D†(Zp, r) = lim←− s>rD[Zp, s],

each endowed with the projective limit topology.
Note that D[Zp, r] is a Banach space under the norm

||µ||r = sup
f∈A[Zp,r]

f �=0

|µ(f)|
||f ||r

.

for µ ∈ D[Zp, r]. On the other hand, D(Zp) (resp. D†(Zp, r)) has its topology
defined by the family of norms {|| · ||s} for s ∈ |C×

p | with s > 0 (resp. s > r).
By duality, we have continuous linear injective maps

D(Zp) ↪→ D[Zp, r] ↪→ D†(Zp, r).

3.2 The action of Σ0(p)

Let

Σ0(p) =
{(

a b
c d

)
∈ M2(Zp) such that p � a, p | c and ad − bc �= 0

}
be the p-adic version of S0(p). We now define an action of Σ0(p) on the spaces
defined in the previous section. As in the classical case, we will incorporate a
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weight into this action. Fix k a non-negative integer. Let Σ0(p) act on A[Zp, r]
on the left by

(γ ·k f)(x) = (a + cx)k · f
(

b + dx

a + cx

)
where γ =

(
a b
c d

)
∈ Σ0(p) and f ∈ A[Zp, r]. Then Σ0(p) acts on D[Zp, r] on the

right by
(µ

∣∣
k
γ)(f) = µ(γ ·k f).

where µ ∈ D[Zp, r].
These two actions then induce actions on A(Zp),A†(Zp, r),D(Zp) and D†(Zp, r).

To emphasis the role of k in this action, we will sometimes write k in the sub-
script, i.e. Ak(Zp), Dk(Zp), etc.

3.3 An explicit description of D[Zp, 1] and D†(Zp, 1)

In what follows, we will primarily be interested in the distribution modules
D(Zp), D[Zp, 1] and D†(Zp, 1). We are obliged to study D(Zp) since this is the
natural space where p-adic L-functions live. We also study the larger spaces
of distribution D[Zp, 1] and D†(Zp, 1) as one has a bit more freedom in these
spaces to perform certain constructions. In this subsection, we give a concrete
description of the latter two spaces in terms of the sequence of moments attached
to a distribution.

First note {xj}j∈N is dense in A[Zp, r] for r ≥ 1. Thus, any element of
D[Zp, 1] and D†(Zp, 1) is determined by its values on powers of x (i.e. by its
moments). Thus, we have an injective map

D†(Zp, 1) M−→
∞∏

j=0

Qp

that sends µ to the sequence (cj)j∈N where cj = µ(xj). The following proposi-
tion says that the only obstruction to constructing a distribution by specifying
its moments is a growth condition on the sequence of moments.

Proposition 3.1.

1. The image of M is precisely(cj) ∈
∞∏

j=0

Qp where |cj | is o(rj) as j −→ ∞ for each r > 1

 .

2. The map M restricts to give an isomorphism of Banach spaces between
D[Zp, 1] and the space of bounded sequences in Qp (under the sup norm).

Proof. For the first part, let µ ∈ D†(Zp, 1) and r, s ∈ |C×
p | with 1 < s < r.

Then
|µ(xj)| ≤ ||xj ||s · ||µ||s = sj · ||µ||s
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and hence |µ(xj)| is O(sj) as j −→ ∞ and in particular is o(rj).
Conversely, let (cj) be some Qp-sequence that is o(rj) for every r > 1. Take

f ∈ A†(Zp, 1) with f =
∑

j ajx
j . For some r > 1, f ∈ A[Zp, r] and hence

{|aj | · rj} −→ 0 as j −→ ∞. Set µ(f) =
∑

j ajcj which converges since |cj | is
o(rj). Then M(µ) = (cj) and the first claim is proven.

The second claim follow similarly. Note that

||µ||1 = sup
f∈A[Zp,1]

f �=0

|µ(f)|
||f ||1

= sup
j≥0

|µ(xj)|
||xj ||1

= sup
j≥0

|cj | = ||(cj)||.

4 Log-differentials on Wide Open Subspaces

In the previous section, we saw a concrete description of an overconvergent dis-
tributions in terms of its sequence of moments. In this section, we will give
another description of these spaces of distributions in terms of log-differentials.
This later description will be very convenient both theorectically and computa-
tionally.

4.1 Differentials on Wide Open Subspaces

For each r ∈ |C×
p |, let

Wr = W (Zp, r) = P1(Cp) − B[Zp, r].

The space Wr is the standard example of a wide open subspace of P1(Cp). The
ring of Qp-rigid analytic functions A(Wr) on Wr is a topological Qp-algebra
and the space Ω(Wr) of Kahler differentials on Wr is an A(Wr)-module.

Note that 1/z ∈ A(Wr) and thus dz/z2 ∈ Ω(Wr). However, dz/z /∈ Ω(Wr)
as it has a pole at infinity.

Proposition 4.1. Let r ∈ |C×
p | be greater than or equal to 1. Then we have

the following descriptions of A(Wr) and Ω(Wr):

1. Every function f ∈ A(Wr) has a unique representation in the form

f =
∞∑

j=0

ajz
−j

with each aj ∈ Qp.

2. Every ω ∈ Ω(Wr) has a unique representation in the form

ω =
∞∑

n=1

ajz
−j dz

z

with each aj ∈ Qp.
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3. Conversely, an expression of the form (1) (resp. (2)) represents an ele-
ment of A(Wr) (resp. Ω(Wr)) if and only if for every real number t > r
the coefficient aj satisfy

|aj |p is o(tn) as n −→ ∞.

Proof. Reference...

Note that Σ0(p) preserves Wr and thus acts on A(Wr) and Ω(Wr). Explicitly,
if γ =

(
a b
c d

)
∈ Σ0(p) and f ∈ A(Wr) then

(γ · f)(z) = (γ ·0 f)(z) = f

(
b + dz

a + cz

)
by a weight zero action. This action naturally induces a left action on Ω(Wr)
which we will express as a right action

ω
∣∣
0
γ := γ−1(ω)

for ω ∈ Ω(Wr). (We do this because Σ0(p) naturally acts on distribution spaces
on the right.)

The weight k action of Σ0(p) on Ω(Wr) is a little more complicated and we
will postpone discussion of it until section 4.3.

4.2 Log-differentials

Glenn’s notes.

4.3 Weight k action

We will now discribe the weight k action of Σ0(p) on Ωlog(Wr). Let γ =
(

a b
c d

)
∈

Σ0(p). We will define the action by describing it on δ0 and on z−jdz/z for j > 0.
Namely set

δ0

∣∣
k
γ = akδb/a

and

z−j dz

z

∣∣∣∣
k

γ =

 j∑
r=max(j−k,0)

(
k

j − r

)
ak−j+rcj−rz−r dz

z

 ∣∣∣∣∣
0

γ.

One can equivalently describe this action as follows: for ω ∈ Ω(Wr), consider
ω multiplied by (a + cz)k. This product is no longer a log-differential, but one
can make it into one by throwing away the new terms that appear that are
holomorphic at zero. Then to form ω

∣∣
k
γ simply apply the weight zero action of

γ on this truncated product.
It is not a priori clear that these formulas lead to a well-defined action.

However, this will follow from Theorem 4.2.
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4.4 Relation between log-differentials and distributions

In this section, we will construct an Σ0(p)-equivariant isomorphism between
spaces of log-differentials and spaces of overconvergent distributions.

Set W := W1 = Ωlog(Zp, 1). For ω ∈ Ωlog(W ), define a distribution µω ∈
D†(Zp, 1) by ∫

Zp

fdµω := ρ∂W (fw)

for each f ∈ A†(Zp, 1). Here ρ∂W is the residue around the unit disc of Cp.
Taking the residue of fω is a valid operation because f is overconvergent and
hence defined on some disc of radius strictly larger than 1.

Theorem 4.2. The map

µ : Ωlog(W (Zp, 1)) −→ D†(Zp, 1)
ω �→ µω

is an isomorphism. Moreover, for each integer k ≥ 0 we have that

(µω)
∣∣
k
γ = µω|kγ

for γ ∈ Σ0(p). (That is, µ is a Σ0(p)-equivariant map under its weight k action.)

Proof. In the notes you say that the first part of this theorem is a simple exten-
sion of results of Vishik and Teitelbaum. The second part is essentially just a
computation, but in fact, I found it quite complicated. I typed up several pages
of notes where I nearly checked this, but I ran out of steam at some point.

Under this isomorphism between distributions and log-differentials, the mo-
ments of a distribution correspond to the coefficients of the associated log-
differential. Namely we have the following corollary.

Corollary 4.3. If ω = a0δ0 +
∞∑

j=1

ajz
−j dz

z
∈ Ωlog(W ) then the j-th moment of

µω is aj.

Proof. We have that

µω(xj) =
∫
Zp

xjdµω = ρ∂W (xjω) = aj

since the residue function returns the coefficient of dz/z.

With this equivalence between distributions and log-differentials in hand, we
will tacitly identify these two spaces.
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5 Filtrations on spaces of distributions and log-
differentials

5.1 A Σ0(p)-stable filtration of D[Zp, 1]

Let

Ω0 =
{
µ ∈ D[Zp, 1] with µ(xj) ∈ Zp for all j ≥ 0

}
,

the set of distributions with integral moments. By Proposition 3.1, this subspace
is the unit ball under || · ||1.

The natural filtration Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωr ⊃ · · · defined by

Ωr =
{
µ ∈ Ω0 such that µ(xj) = 0 for 0 ≤ j ≤ r − 1

}
is unfortunately not stable under the weight k action of Σ0(p). Instead we need
to replace Ωr with a larger subspace to produce a filtration compatible with the
action of Σ0(p). This is done in the following proposition.

Proposition 5.1. The subspace

Ω̃r =
{
µ ∈ Ω0 scuh that µ(xj) ∈ pr−jZp

}
is a Σ0(p)-module via its weight k action for any k ≥ 0.

Proof. Let µj be the distribution defined by µj(xs) = δjs. To prove this propo-
sition, it suffices to check that

µj

∣∣
k
γ ∈ Ω̃r for j ≥ r

and
pr−jµj

∣∣
k
γ ∈ Ω̃r for 0 ≤ j < r.

In the first case, by definition it suffices to check that

(µj

∣∣
k
γ)(xs) ∈ pr−sZp for 0 ≤ s ≤ r.

In the second case, it suffices to see that

pr−j(µj

∣∣
k
γ)(xs) ∈ pr−sZp for 0 ≤ s ≤ r

for which it is enough to see that

(µj

∣∣
k
γ)(xs) ∈ pj−sZp for 0 ≤ s ≤ j.

In fact, it suffices to check this last condition in both cases since in the first case
j ≥ r. For 0 ≤ s ≤ j we have

(µj

∣∣
k
γ)(xs) = µj

(
(a + cx)k−s(b + dx)s

)
= µj

(( ∞∑
m=0

(
k − s

m

)
ak−s−mcmxm

) (
s∑

m=0

(
s

m

)
bs−mdmxm

))

=
s∑

m=0

(
k − s

j − m

)(
s

m

)
ak−s−j+mbs−mcj−mdm
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which is divisible by cj−s and thus divisible by pj−s. (Note that the potentially
negative exponent on the a term is irrelevant since a ∈ Z×

p .)

Remark 5.2. Arguing as in the above proof, we have in general that

(µj

∣∣
k
γ)(xs) =

min(j,s)∑
m=0

(
k − s

j − m

)(
s

m

)
ak−s−j+mbs−mcj−mdm.

Although Ωr is not stable under the weight k action of Σ0(p) for general
r, Ωk+1 is in fact a Σ0(p)-module. This is true since Ωk+1 is the kernel of a
natural Σ0(p)-equivariant map (defined later) from Ω0 to Lk. Nonetheless, we
check this claim directly below.

Proposition 5.3. The subspace Ωk+1 is a Σ0(p)-module under its weight k
action.

Proof. It suffices to see that

µj

∣∣
k
γ ∈ Ωk+1 for j ≥ k + 1

and thus we must check that (µj

∣∣
k
γ)(xs) = 0 for 0 ≤ s ≤ k. We have

(µj

∣∣
k
γ)(xs) = µj

(
(a + cx)k−s(b + dx)s

)
which is indeed zero since it equals the j-th coefficient of a polynomial of degree
k with k < j.

The subspace Ωk+1 thus inherits an induced filtration which will be of in-
terest to us in section 8. For r ≥ k + 1 set

Ω̃0
r = Ωk+1 ∩ Ω̃r

which is a Σ0(p)-module.

Lemma 5.4. If µ ∈ Ω̃0
r and γ ∈ Σ0(p) with det(γ) = p then µ

∣∣
k
γ ∈ prΩk+1.

Proof. Arguing as in Proposition 5.5, we need to check that

(µj

∣∣
k
γ)(xs) ∈ pjZp for all s.

From Remark 5.2, we have that

(µj

∣∣
k
γ)(xs) =

min(j,s)∑
m=0

(
k − s

j − m

)(
s

m

)
ak−s−j+mbs−mcj−mdm.

Since det(γ) = p, p|c and a ∈ Z×
p we have that p|d. Thus pj |cj−mdm and

therefore (µj

∣∣
k
γ)(xs) ∈ pjZp proving the claim.
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5.2 A Σ0(p)-stable filtration of Ωlog(W )

In this section we repeat the results of the previous section but now in the
language of log-distributions. Let

Ω0 =

ω = a0δ0 +
∞∑

j=0

ajz
−j dz

z
∈ Ωlog(W ) with aj ∈ Zp for all j ≥ 0

 ,

the set of log-differentials with integral coefficients.
The natural filtration Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωr ⊃ · · · defined by

Ωr =

ω = a0δ0 +
∞∑

j=0

ajz
−j dz

z
∈ Ω0 such that aj = 0 for 0 ≤ j ≤ r − 1


is also not stable under the weight k action of Σ0(p). Instead we need to replace
Ωr with a larger subspace to produce a filtration compatible with the action of
Σ0(p). This is done in the following proposition.

Proposition 5.5. The subspace

Ω̃r =

ω = a0δ0 +
∞∑

j=0

ajz
−j dz

z
∈ Ω0 with aj ∈ pr−jZp


is a Σ0(p)-module via its weight k action for any k ≥ 0.

Before proving this propostion, we begin with a few lemmas.

Lemma 5.6. For j ≥ 0 and γ ∈ Σ0(p) we have that

z−j dz

z

∣∣∣∣
0

γ =
∞∑

r=0

bsz
−s dz

z

where

bs =


(

b

a

)s+1

j = 0

det(γ)
(−1

a

)j+s min(j,s)−1∑
m=0

(
j − 1
m

)( −j − 1
s − 1 − m

)
ambs−1−mcj−1−mdm j > 0

.
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Proof. For j > 0 we have

z−j dz

z

∣∣∣∣
0

γ = γ−1 ·0
(

z−j dz

z

)
=

(−b + az

d − cz

)−(j+1)

d(γ−1)

= (det γ)(d − cz)j−1(−b + az)−(j+1)dz

= (det γ)
(

d

z
− c

)j−1 (−b

z
+ a

)−(j+1)
dz

z2

= (det γ)

(
j−1∑
m=0

(−1)j−m−1

(
j − 1
m

)
cj−m−1dmz−m

)
·( ∞∑

m=0

(−1)m

(−j − 1
m

)
a−j−m−1bmz−m

)
dz

z2
.

Computing the coefficient of z−r dz
z in this product yields the formula of the

lemma.
For j = 0 we have

δ0

∣∣
0
γ = δ b

a
= δ0 − (δ b

a
− δ0) = δ0 + det

(
1 0
a b

)
dz

z(az − b)

= δ0 +
b

a
(1 − b

a
z−1)−1 dz

z2
= δ0 +

∞∑
m=1

(
b

a

)m+1

z−m dz

z

which has the correct coefficient of z−rdz/z.

Lemma 5.7. The subspace Ω̃r is a Σ0(p)-module via its weight 0 action.

Proof. We need to check that

pmin(r−j,0)z−j dz

z

∣∣∣∣
0

γ ∈ Ω̃r

for all j ≥ 0. Let z−j dz
z

∣∣
0
γ =

∑∞
s=0 bsz

−s dz
z . Looking at the formulas of Lemma

5.6, we see that for 0 ≤ s ≤ j, we have that bs is divisible by cj−s and thus by
pj−s. (Note that we are using that a ∈ Z×

p .)
If j > r we are done since then pr−s divides bs. For j ≤ r, we have that

pr−jbs is divisible by pr−jpj−s = pr−s and again we are done.

Proof of Prop 5.5. We need to check that

pmin(r−j,0)z−j dz

z

∣∣∣∣
k

γ ∈ Ω̃r

for all j ≥ 0. By definition

z−j dz

z

∣∣∣∣
k

γ =

 j∑
m=max(j−k,0)

(
k

j − m

)
ak−j+mcj−mz−m dz

z

 ∣∣∣∣∣
0

γ.

13



By Lemma 5.7, we know that

pmin(r−m,0)z−m dz

z

∣∣∣∣
0

γ ∈ Ω̃r.

So for j > r we have that cj−mz−m dz
z

∣∣
0
γ ∈ Ω̃r and thus z−j dz

z

∣∣
k
γ ∈ Ω̃r.

For j ≤ r we have that pr−jcj−mz−m dz
z

∣∣
0
γ ∈ Ω̃r and thus pr−jz−j dz

z

∣∣
k
γ ∈ Ω̃r

which proves the proposition.

Although Ωr is not stable under the weight k action of Σ0(p) for general
r, Ωk+1 is in fact a Σ0(p)-module. This is true since Ωk+1 is the kernel of a
natural Σ0(p)-equivariant map (defined later) from Ω0 to Lk. Nonetheless, we
check this claim directly below.

Proposition 5.8. The subspace Ωk+1 is a Σ0(p)-module under its weight k
action.

Proof. I was surprised that this claim is not obvious from direct computations.
I did work this out, but it took lots of computations and some funny identities
with binomial coefficients.

The subspace Ωk+1 thus inherits an induced filtration which will be of in-
terest to us in section 8. For r ≥ k + 1 set

Ω̃0
r = Ωk+1 ∩ Ω̃r

which is a Σ0(p)-module.

Lemma 5.9. If µ ∈ Ω̃0
r and γ ∈ Σ0(p) with det(γ) = p then µ

∣∣
0
γ ∈ prΩ1.

Proof. We need that for all j ≥ 1

pmin(r−j,0)z−j dz

z

∣∣∣∣
0

γ ∈ prΩ1.

From Lemma 5.6, we can see that pj divides each coefficient of z−j dz
z

∣∣
0
γ. Each

coefficient of z−j dz
z

∣∣
0
γ is given by a sum where in each term of the sum there

appears cj−m−1dm. Since p divides both c and d this accounts for j − 1 powers
of p. The last factor of p comes from the det(γ) term appearing in the formula
outside of the sum.

Thus if j > r we are done. If j ≤ r we then have that pr−jpj divides
pr−jz−j dz

z

∣∣
0
γ and we are again done.

Lemma 5.10. If µ ∈ Ω̃0
r and γ ∈ Σ0(p) with det(γ) = p then µ

∣∣
k
γ ∈ prΩk+1.

Proof. We need that for all j ≥ k + 1

pmin(r−j,0)z−j dz

z

∣∣∣∣
0

γ ∈ prΩk+1.
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Note that from Proposition 5.8, it is enough to check that this log-differential
is in prΩ1. We have that

z−j dz

z

∣∣∣∣
k

γ =

 j∑
m=j−k

(
k

j − m

)
ak−j+mcj−mz−m dz

z

 ∣∣∣∣∣
0

γ.

From Lemma 5.6,

z−m dz

z

∣∣∣∣
0

γ ∈ pmΩ1.

Thus

cj−mz−m dz

z

∣∣∣∣
0

γ ∈ pjΩ1.

Then, as always, considering either j > r or j ≤ r yields the result.

6 Overconvergent modular symbols

In this section, we consider Dk-valued modular symbols where Dk = Dk(Zp),
Dk[Zp, 1] or D†

k(Zp, 1). Such modular symbols will be referred to as overcon-
vergent modular symbols.

6.1 Changing the distribution module

In this subsection, we will see that when seeking Up-eigenvectors in H1
c (Γ,Dk),

it does not matter which one of the above three distribution modules is used.
First note that Up is well behaved on these possibly infinite dimensional spaces.

Proposition 6.1. For Dk = Dk(Zp), Dk[Zp, 1] and D†
k(Zp, 1), Up is a com-

pletely continuous operator on H1
c (Γ,Dk).

Proof. See [?].

As Up is a completely continuous operator, its finite slope subspaces are finite
dimensional. The following proposition states that these finite slope subspaces
are the same for each choice of Dk.

Proposition 6.2. The natural maps

H1
c (Γ,Dk(Zp)) −→ H1

c (Γ, Dk[Zp, 1]) −→ H1
c (Γ,D†

k(Zp, 1))

are isomorphisms when restricted to any finite slope subspace of Up.

Proof. See [?].
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6.2 Comparison theorem

There is a natural map from overconvergent modular symbols to classical mod-
ular symbols. Namely, we have a map

Dk
ρk−→ Lk

given by

µ �→
k∑

j=0

(−1)k−j

(
k

j

)
µ(xk−j)Zj .

This map is equivariant for the action of Σ0(p) and hence induces an equivariant
map

H1
c (Γ,Dk)

ρk−→ H1
c (Γ, Lk)

which will again be denoted by ρk and called the specialization map. Note that
the kernel of specialization is H1

c (Γ,Ωk+1) ⊗ Qp when Dk = Dk[Zp, 1].
While H1

c (Γ,Dk) appears to be much larger than the classical space of mod-
ular symbols, the specialization maps becomes an isomorphism when restricted
to the subspace where Up acts with slope less than k + 1. Let D(<h)

k denote the
subspace of Dk where Up acts with slope less than h.

Theorem 6.3. For Dk = Dk(Zp), Dk[Zp, 1] or D†
k(Zp, 1),

H1
c (Γ,Dk)(<h) ρ−→ H1

c (Γ,Qp)(<h)

is an isomorphism of Σ0(p)-modules for h < k + 1.

Proof. See [?].

6.3 p-adic L-functions arising from Hecke-eigensymbols

Theorem 6.3 can be viewed as an equivariant construction of p-adic L-functions.
Namely, let f be an eigenform of weight k + 2 and level N (p � N) such that
f |Tl = alf for l � N and f |Uq = aqf for q|N . Let fα be a p-stabilized form of f
of level Np so that fα|Up = αfα with α a root of x2 − apx + pk+1.

To view fα as a p-adic object, we must fix an embedding of Q ↪→ Qp. Then
let K be the finite extension of Qp generated by the images of the al and α
under this map. Let OK be the ring of integers of K.

By Theorem 2.2, there is a two dimensional subspace of H1
c (Γ, Lk ⊗K) with

the same Hecke-eigenvalues as fα. Fix φf,α with these eigenvalues such that
φf,α|ι = φf,α and ||φf,α|| = 1 (so in particular φf,α ∈ H1

c (Γ, Lk ⊗OK)+).
If ordp(α) < k+1 then by Theorem 6.3 there is a unique Hecke-eigensymbol

Φf,α ∈ H1
c (Γ,D(Zp) ⊗OK)(<k+1)

with the same Hecke-eigenvalues as φf,α such that ρ(Φf,α) = φf,α. Consider
the OK-valued distribution

µf,α = Φf,α ({0} − {∞})
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obtained by “integrating” from {0} to {∞}. Then since Φf,α|Up = αΦf,α and
since Φf,α lifts φf,α, it is a straightforward computation to verify that µf,α is
precisely the Mazur-Tate-Teitelbaum p-adic L-function attached to f and α.

This construction fails precisely when both ap is a unit and when we consider
the root β of x2 − apx + pk+1 with slope k + 1. In this case, Theorem 6.3 does
not apply and we do not know a priori that there is any eigensymbol with the
same eigenvalues as fβ . We also do not know the uniqueness of such a symbol if
it existed. The remainder of this part of the paper will focus upon this highest
slope case.

7 Forming a β Hecke-eigensymbol

7.1 Lifting φf,β

Assume that ap is a unit and let β be the root of slope k +1 of x2 −apx+ pk+1.
Let φf,β ∈ H1

c (Γ, Lk ⊗ OK)ε be the modular symbol corresponding to fβ with
ε = ±1. The following proposition guarentees that we can lift φf,β to some
overconvergent symbol.

Proposition 7.1. There exists Φ ∈ H1
c (Γ,D†(Zp, 1) ⊗ K)ε such that ρ(Φ) =

φf,β.

Proof. I don’t know the proof of this. I think you said it was something like the
H2 term is small (maybe just composed of Eisenstein elements).

Remark 7.2. In section 9.3, we will give an alternative proof of this fact which
is completely explicit.

The space H1
c (Γ,D†(Zp, 1)) is not a Banach space and can be a bit unwieldy

to work in. However, we can use the Up operator to force our modular symbols
to take values in D[Zp, 1].

Lemma 7.3. If µ ∈ D†(Zp, 1) then µ
∣∣
k

(
1 a
0 p

)
∈ D[Zp, 1].

Proof. Let γa =
(

1 a
0 p

)
. We have

(µ
∣∣
k
γa)(xj) = µ

(
(a + px)j

)
=

j∑
k=0

(
j

k

)
aj−kpkµ(xk).

But
{
pkµ(xk)

}
is bounded by Proposition 3.1 and thus (again by Proposition

3.1) µ
∣∣
k
γa ∈ D[Zp, 1].

Corollary 7.4. There exists Φ ∈ H1
c (Γ, D[Zp, 1] ⊗ K)ε such that ρ(Φ) = φf,β.

Proof. By Proposition 7.1, let Ψ ∈ H1
c (Γ,D(Zp, 1)⊗K)ε such that ρ(Ψ) = φf,β .

Now set Φ = 1
β Ψ|Up. Then

ρ(Φ) =
1
β

ρ(Ψ)|Up =
1
β

φf,β |Up = φf,β
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since φf,β is β-eigenvector for Up. Now, for D ∈ ∆0,

Φ(D) =
1
β

(Ψ|Up)(D) =
1
β

p−1∑
a=0

Ψ(γaD)
∣∣
k
γa ∈ D[Zp, 1] ⊗ K

by Lemma 7.3. Therefore, Φ ∈ H1
c (Γ, D[Zp, 1] ⊗ K)ε.

Remark 7.5. It will not in general be possible to lift φf,β to an element of
H1

c (Γ,Ω0 ⊗OK).

7.2 Slope k + 1 subspace of lifts of φf,β

Our task now is to refine our lift of φf,β to a Hecke-eigensymbol. Let

X = {Φ ∈ H1
c (Γ, D[Zp, 1] ⊗ K)ε | ρ(Φ) = c · φf,β for some c ∈ K}.

Note that X contains the ε-part of the kernel of specialization. However, by
Corollary 7.4, there is some modular symbol in X not in the kernel of special-
ization.

One must take some care in trying to simultaneously diagonalize the action of
the Hecke algebra on X since it is most likely an infinite dimensional space. We
will accomplish this diagonalization by restricting to the “slope k +1” subspace
of X for the operator Up. This subspace is finite dimensional since Up is a
completely continuous operator.

Lemma 7.6. We have that H1
c (Γ,Ωk+1)|Up ⊆ pk+1H1

c (Γ,Ωk+1).

Proof. Take Φ ∈ H1
c (Γ,Ωk+1) with ||Φ|| = 1. Then

(Φ|Up)(D) =
p−1∑
a=0

Φ(γaD)
∣∣
k
γa ∈ pk+1Ωk+1

by Lemma 5.4.

Proposition 7.7. There is no eigenvalue of Up in X with slope less than k+1.

Proof. If some Up-eigenspace intersects the kernel of specialization then by
Lemma 7.6, its eigenvalue has slope at least k + 1. If some eigenspace spe-
cializes to c ·φf,β with c �= 0 then necessarily its eigenvalue is β which has slope
k + 1.

The following is a general proposition about completely continuous operators
on Banach spaces.

Proposition 7.8. If U is a completely continuous operator on a Banach space
H then there is a decomposition

H = H(≤h) ⊕ H(>h)

such that p−hU is topologically nilpotent on H(>h). Moreover, H(≤h) is a finite
dimensional space on which U acts invertibly and where {pnhU−n} is a bounded
sequence of operators.
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Proof. See [?].

Applying the above proposition with H = X and h = k + 1 yields

X = X(≤k+1) ⊕ X(>k+1)

with X(≤k+1) finite dimensional. Note that by Proposition 7.7, X(≤k+1) is
composed entirely of pseudo-eigenspaces of slope exactly k + 1.

Remark 7.9. I had hoped that from this I could conclude that ||Up||X(≤k+1) ≤
1

pk+1 and hence u = Up/pk+1 preserves its unit ball. Then one knows explicitly
how to project onto this space; namely map v to limn v|un!. But this now seems
not to work. For example, take V = Q2

p and U =
( p 1

0 p

)
. On this space ||U || = 1

but it is a generalized eigenspace of slope 1.

Lemma 7.10. We have that ρ(X(>k+1)) = 0.

Proof. Since Up/pk+1 is topologically nilpotent on X(>k+1), it must also be
topologically nilpotent on ρ(X(>k+1)). But since β/pk+1 is a unit, Up/pk+1 is
not topologically nilpotent on φf,β . Hence, ρ(X(>k+1)) must vanish.

7.3 Forming the β-Hecke eigensymbol

We begin with a general lemma from linear algebra.

Lemma 7.11. Let V and W be finite dimensional vector spaces over a field K.
Let {Ai} be a countable family of commuting operators on these spaces and let
f : V −→ W be a linear map equivariant for each Ai. If there is some w ∈ W
such that w|Ai = λiw for each i with λi ∈ K then there is some v ∈ V such
that v|Ai = λiv for each i.

Proof. Replacing W with K · w and V with f−1(K · w), we may assume that
W is one dimensional and f is surjective. Then write V = ⊕jVj with each
Vj a simultaneous eigenspace for all the Ai. Since f is non-zero and W is
itself a simultaneous eigenspace for the family {Ai}, one of the Vj must be a
λi-eigenspace for each Ai. Since all of the λi are in K, Vj has some bonafide
eigenvector v which proves the lemma.

Remark 7.12. One cannot in general find such an {Ai}-eigenvector which
maps to w. The set of all such eigenvectors with the same eigenvalues as w
might lie entirely within the kernel of f .

Theorem 7.13. There exists some Φf,β ∈ H1
c (Γ,D(Zp) ⊗ K)ε with the same

Hecke-eigenvalues as fβ.

Proof. First apply Corolllary 7.4 to find Ψ ∈ H1
c (Γ, D[Zp, 1] ⊗ K)ε such that

ρ(Ψ) = φf,β . Then write
Ψ = Ψ0 + Ψnil
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with Ψ0 ∈ X(≤k+1) and Ψnil ∈ X(>k+1). By Lemma 7.10, ρ(Ψnil) = 0 and hence,
ρ(Ψ0) = φf,β . Then applying Lemma 7.11 with V = X(≤k+1), W = H1

c (Γ, K)
and {Ai} = {Uq} ∪ {Tl} ∪ {ι} yields Φf,β ∈ H1

c (Γ, D[Zp, 1] ⊗ K) with the
correct eigenvalues. Then Proposition 6.2 implies that Φf,β actually lies in
H1

c (Γ,D(Zp))ε since it is a Up-eigensymbol.

8 Can Φf,β be in the kernel of specialization?

In this section, we will form a sufficient condition for Φf,β not to be in the kernel
of specialization.

Lemma 8.1. If Φ ∈ H1
c (Γ,Ω0) such that ||Φ|| = 1 and Φ|Up = λΦ with

ordp(λ) = r ≥ k + 1 then Φ �∈ H1
c (Γ, Ω̃0

r+1).

Proof. Assume that Φ ∈ H1
c (Γ, Ω̃0

r+1). Since ||Φ|| = 1 there is some D ∈ ∆0

such that ||Φ(D)|| = 1. Then

Φ(D) =
1
λ

(Φ|Up)(D) =
1
λ

p−1∑
a=0

Φ(γaD)|γa.

By Lemma 5.4, Φ(γaD)|γa ∈ pr+1Ω0 since Φ(γaD) ∈ Ω̃r+1 and hence Φ(D) ∈
pΩ0. This contradicts the fact that ||Φ(D)|| = 1.

Let π be some uniformizer in OK . Then for some r, ||πr ·Φβ || = 1. Hence, if
Φβ is in the kernel of specialization, by the above lemma, the image of πr ·Φβ is
non-zero in H1

c (Γ, (Ωk+1/Ω̃0
k+2)⊗OK). We will now examine this latter module.

Lemma 8.2. Let ψ be the character on Σ0(p) that sends
(

a b
c d

)
to dk+2 · det−1

= dk+2 · (ad − bc)−1. We have that

Ωk+1/Ω̃0
k+2

∼= Z/pZ(ψ)

as Σ0(p)-module where Σ0(p) acts on Z/pZ(ψ) via the character ψ.

Proof. As a set it is clear that Ωk+1/Ω̃0
k+2

∼= Z/pZ. To see the Σ0(p)-action,

note that the distribution µ defined by µ(xj) =

{
1 j = k + 1
0 j �= k + 1

generates Ωk+1/Ω̃0
k+2.

Now, if γ =
(

a b
c d

)
then

(µ
∣∣
k
γ)(xk+1) = µ

(
(a + cx)−1(b + dx)k+1

)
= a−1µ

((
1 − c

a
x +

c2

a2
x2 − . . .

)
(b + dx)k+1

)
=

1
a

k+1∑
j=0

(
k + 1

j

) ( c

a

)j

dk+1−j

≡ dk+1

a
≡ dk+2

ad
≡ dk+2(ad − bc)−1 (mod p)
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which proves the claim.

Proposition 8.3. Let Φ be some overconvergent Hecke-eigensymbol with ||Φ|| =
1 and with the same Hecke-eigenvalues as fβ. If Φ is in the kernel of specializa-
tion then there is a system of eigenvalues occuring in Mk+2(Γ1(Np), ωk+2,C)
that is congruent to {lal} mod π. (Here ω is the Teichmuller character mod p.)

Proof. By Lemma 8.1, the image of Φ in H1
c (Γ, (Ωk+1/Ω̃0

k+2)⊗OK) is non-zero
and by Lemma 8.2 this later space is isomorphic to H1

c (Γ,OK/pOK(ψ)) with
ψ = dk+2 · det−1. Then, twisting away the determinant and reducing mod π,
we see that the system of eigenvalues {lal} appears in H1

c (Γ,OK/πOK(dk+2)).
Then by ?? this system of eigenvalues occurs in Mk+2(Γ1(Np), ωk+2,OK/πOK).
Finally, by [1, Corollary 1.2] this system of eigenvalues appears in Mk+2(Γ1(Np), ωk+2,C).

Corollary 8.4. Let φf,β be the modular symbol corresponding to fβ in H1
c (Γ, Lk)ε.

If there is no system of eigenvalues in Mk+2(Γ1(Np), ωk+2,C) congruent to
{lal} mod π then there is a unique Hecke-eigensymblol Φf,β ∈ H1

c (Γ,D(Zp)⊗K)ε

such that ρ(Φf,β) = φf,β.

Proof. By Theorem 7.13, there is some eigensymbol Φf,β ∈ H1
c (Γ,D(Zp) ⊗

K)ε with the same Hecke-eigenvalues as φf,β . Then by our assumptions on
Mk+2(Γ1(Np), ωk+2,C) and by Proposition 8.3, ρ(Φf,β) �= 0.

By Theorem 2.2, any element of H1
c (Γ, Lk ⊗ OK)ε with the same Hecke-

eigenvalues as fβ is a scalar multiple of φf,β . So by rescaling Φf,β , we have that
ρ(Φf,β) = φf,β .

For the uniqueness, if there were two such lifts of φf,β then their differ-
ence would be a Hecke-eigensymbol in the kernel of specialization which is not
possible again by Proposition 8.3.

We now prove the uniqueness and existence of a Hecke-eigensymbol Φf,β

lifting φf,β for X0(11) and p = 3.

Proposition 8.5. The hypotheses of Corollary 8.4 are satisfied for X0(11) and
p = 3.

Proof. First note that M2(Γ1(33), ω2) = M2(Γ0(33)) since ω has order 2. Let
f be the modular form corresponding to X0(11) and let al be the l-th Fourier
coefficient of f . Since {al} is not congruent to an Eisenstein series, it suffices to
look at S2(Γ0(33)).

By standard formulas, S2(Γ0(33)) is 3 dimensional. Let fα and fβ be the two
3-stabilizations of f to level 33. This accounts for two of the three dimensions.
The third dimension comes from a new form of level 33. This form has rational
coefficients and is actually congruent to f mod 3 (see [2]). Hence, away from
3 and 11, the only system of eigenvalues that occurs mod 3 in this space is
{al}.

21



Part II

Computations

9 Explicitly computing with modular symbols

9.1 The Steinberg module as a Γ-module

Recall that in Proposition 2.1, we had that

H1
c (Γ, V ) ∼= HomΓ(∆0, V )

where Γ = Γ0(Np). Thus in order to write down a modular symbol we need
to understand the structure of ∆0 = Div0(P1(Q)) (the Steinberg module) as a
Γ-module.

If γ =
(

a b
c d

)
∈ GL+

2 (Q), let us denote by [γ] the singular 1-chain in the
extended upper half-plane H∗ represented by the geodesic path joining a

c to b
d .

We will call any such 1-chain a modular path and any finite formal sum of such
modular paths, a modular 1-chain. The Z-module of all such modular chians
will be denoted by

Z1 = Z1(H∗,P1(Q)),

which we regard as a module of 1-cycles in H∗ relative to the boundary of P1(Q)
of H∗.

The group PGL+
2 (Q) acts on Z1 via standard fractional linear transforma-

tion on H∗, hence Z1 is naturally a PGL+
2 (Q)-module. If β, γ ∈ GL+

2 (Q) then
we have

β · [γ] = [βγ].

The boundary map gives us a surjective GL+
2 (Q)-morphism

∂ : Z1 −→ ∆0.

We say two modular chains c,c′ are homologous if ∂c = ∂c′. Thus ∂ induces a
PGL+

2 (Q)-isomorphism from the one-dimensional relative homology of the pair
(H∗,P1(Q)) to the Steinberg module ∆0:

∂ : H1(H∗,P1(Q);Z)
∼=−→ ∆0.

Let G = PSL2(Z). A modular path of the form [γ] with γ ∈ G is called
a “unimodular path” and any finite formal sum of such unimodular paths is
called a unimodular 1-chain. Using continued fractions it is easy to see (and is
a well-known result of Manin [?]) that every modular chain is homologous to
a unimodular chain. Moreover, G acts transitively on the unimodular paths.
Indeed, the map

G −→ Z1

γ �→ [γ]
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is a bijection from G to the set of unimodular pahts in Z1. Extending by linear-
ity, we obtain a G-morphism Z[G] −→ Z1, and composing with the boundary
map ∂ we obtain a surjective G-morphism

e : Z[G] −→ ∆0.

We know from a result of Manin that the kernel of e is the right ideal

I = Z[G](1 + τ + τ2) + Z[G](1 + σ)

where τ =
(

0 −1
1 −1

)
and σ =

(
0 −1
1 0

)
. These are the well-known Manin

relations.
The Manin relations allow us to describe the structure of ∆0 as a Γ-module

in terms of generators and relations. Note that the map

G −→ P 1(Z/NpZ)(
a b
c d

)
�→ d

c

is surjective and its fibers are the right Γ-cosets. We fix a choice of a section

g : P1(Z/NpZ) −→ G

of this map such that g(∞) equals the identity matrix. In this way, the set {g(v)}
as v varies over P1(Z/NpZ) gives a complete set of right coset representatives
of Γ\G.

We have that Z[G] is a free Γ-module generated by the g(v). Of course
though, the Steinberg module is not free as we have to consider the Manin
relations given by the right ideal I. Namely, for each v ∈ P 1(Z/NpZ) we have
that

e(g(v) + g(v)τ + g(v)τ2) = e(g(v) + g(v)σ) = 0.

For any η ∈ G, we can write g(v)η = η′g(v′) for some η′ ∈ Γ and v′ ∈
P 1(Z/NpZ). Hence, we see that the images of the g(v) under e in ∆0 sat-
isfy many two and three term relations with coefficients in Γ.

In practice it is probably possible to solve these relations when Γ is torsion
free. We consider the case when N = 11 and p = 3. Then among the 48 =
(3 + 1)(11 + 1) values of g(v) that generate ∆0, there is a subset of 9 elements
that span and satisfy a single relation. Namely, one can find v1, . . . , vt,∞ ∈
P1(Z/NpZ) such that

e(g(v1)), . . . , e(g(vt)), e(g(∞)) generate ∆0

and satisfy a unique Z[Γ]-relation. (Here t = 8.) Let Di = e(g(vi)) and D∞ =
e(g(∞)) = {0} − {∞}. Then the single Z[Γ]-relation is of the form((

1 −1
0 1

)
− 1

)
D∞ +

t∑
i=0

(γi − δi) Di = 0

23



with γi, δi ∈ Γ for each i.
The fact that ∆0 is generated over Γ by certain elements that satisfy one

relation as above seems to occur more generally than just when N = 11 and
p = 3. This seems to happend whenever Γ is torsion free. We state this as a
hypothesis that we will assume for the remainder of the paper.
Condition (TF): There exist v1, . . . , vt, infty ∈ P 1(Z/NpZ) such that

e(g(v1)), . . . , e(g(vt)), e(g(∞)) generate ∆0

and a satisfy a unique Z[Γ]-relation:((
1 −1
0 1

)
− 1

)
D∞ +

t∑
i=0

(γi − δi) Di = 0

where Di = e(g(vi)) and γi, δi ∈ Γ for each i.
Thus, assuming (TF), a modular symbol φ ∈ H1

c (Γ, M) (viewed as a Γ-
invariant homomorphism from the Steinberg module to M) is uniquely deter-
mined by its values on Di for i = 0, . . . , r,∞. Here M is any right S0(p)-module.
Conversely, consider a collection of m + 1 elements of M , say m1, . . . , mt, m∞
satisfying

m∞|∆ =
t∑

i=0

mi|
(
δ−1
i − γ−1

i

)
where ∆ is the difference operator

(
1 1
0 1

)
− 1. Then there exists a unique

modular symbol φ ∈ H1
c (Γ, M) such that

φ(mi) = Di

for i = 1, . . . , r,∞. (Recall that φ(γD) = φ(D)|γ−1.)
Note that once the values mi are known, the continued fraction algorithm

of Manin allows one to compute the associated φ on any D ∈ ∆0.

Remark 9.1. With the description of H1
c (Γ, M) given in this section, one could

easily represent an M -valued modular symbol on a computer if one is able to
represent elements of M on a computer. Namely, for φ ∈ H1

c (Γ, M), one stores
φ as the list of t + 1 elements: φ(D1), . . . , φ(Dt), φ(D∞).

9.2 Solving the difference equation

From the results in the previous section, we see that in order to build modular
symbols in H1

c (Γ, M) one must be able the solve the difference equation

u|∆ = v

for a given v ∈ M . We begin by discussing the case where M = Lk.
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Proposition 9.2. For each non-zero g ∈ Lk with deg(g) < k there exists an
f ∈ Lk such that

f |∆ = g.

Moreover, f is unique up to the addition of a constant.

Proof. First note that if h ∈ Lk and h|∆ = 0 then h(x − 1) = h(x) and thus h
is a constant. Therefore, we have

0 −→ Qp −→ Lk
∆−→ Lk −→ coker(∆) −→ 0

where coker(∆) is one dimensional over Qp. Moreover, directly from the defini-
tion of acting by ∆, one sees that im(∆) ⊆ Lk−1. Since Lk−1 is of codimension
1 in Lk, we must have that im(∆) = Lk−1 which is the content of the first part
of the proposition. The second follows since the kernel of ∆ is exactly the set
of constants.

We next consider the case of M = D†(Zp, 1) ∼= Ωlog(W ).

Lemma 9.3. We have that

ker(∆ : D†(Zp, 1) −→ D†(Zp, 1)) = 0.

Proof. Let µ ∈ ker(∆) and let n be the smallest non-negative integer such that
µ(xn) �= 0. Then by assumption µ((x − 1)n+1) = µ(xn+1). (Note that the
weight k action of ∆ is the same as its weight 0 action). We then have that

µ(xn+1) = µ(xn+1) + (−1)n+1(n + 1)µ(xn)

and thus µ(xn) = 0. This contradiction implies that µ is identically zero.

Lemma 9.4. We have that

ker(∆ : Ωlog(W ) −→ Ωlog(W )) = 0.

Proof. Let

ω = a0δ0 +
∞∑

r=0

arz
−r dz

z
∈ ker(∆)

and thus

ω

∣∣∣∣ (
1 1
0 1

)
= a0δ0 +

∞∑
r=0

arz
−r dz

z
.

Assume that n is the smallest non-negative integer such that an �= 0. Then

since
(

1 1
0 1

)
preserves Ωn, from the formulas of Lemma 5.6, we see that

an+1 = an+1 + (n + 1)an.

Thus an = 0 and ω is identically zero.
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We begin by solving the difference equation µ
∣∣
k
∆ = ν for ν of the form

z−jdz/z. (Since the weight k action of ∆ is the same as the weight 0 action of
∆, we will simply write µ

∣∣∆ = ν.)

Lemma 9.5. Let

ηj =



∞∑
r=j

(
r

j

)
br−jz

−r dz

z
j �= 0

δ0 +
∞∑

r=1

brz
−r dz

z
j = 0

where br is the r-th Bernoulli number. Then ηj ∈ Ωlog(W ) and

ηj |∆ =
j + 1
zj+1

dz

z
.

Proof. By the von Staudt-Clausen theorem, pbn ∈ Zp for each n. Thus pηj ∈ Ω0

and ηj is in Ωlog(W ).
As for the second part, for j > 0 we compute:

ηj

∣∣∣∣∣
(

1 1
0 1

)
=

∞∑
r=j

(
r

j

)
br−jz

−r dz

z

∣∣∣∣∣
(

1 1
0 1

)

=
∞∑

r=j

(
r

j

)
br−j(z − 1)−r dz

z − 1

=
∞∑

r=j

(
r

j

)
br−jz

−r(1 − z−1)−r−1 dz

z

=
∞∑

r=j

(
r

j

)
br−jz

−r

( ∞∑
m=0

(−r − 1
m

)
(−1)mz−m

)
dz

z

=
∞∑

r=j

∞∑
m=0

(
r

j

)(
r + m

m

)
br−jz

−r−m dz

z

=
∞∑

s=j

 s∑
r=j

(
r

j

)(
s

r

)
br−j

 z−s dz

z
.

But we have the following identity of Bernoulli numbers:

n∑
r=j

(
n

r

)(
r

j

)
br−j =

{(
n
j

)
bn−j n �= j + 1(

n
j

)
bn−j + (j + 1) n = j + 1

.

Thus
ηj |∆ =

j + 1
zj+1

dz

z

as claimed.
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Theorem 9.6. For any ν ∈ Ωlog(W ) of total measure zero, there exists a unique
µ ∈ Ωlog(W ) such that

µ|∆ = ν.

Proof. Let

ν =
∞∑

m=1

amz−m dz

z
.

Then consider

µ =
∞∑

m=1

am

m
ηm−1.

Since ηj ∈ Ωlog(W ), by Proposition 4.1, the coefficients of µ grow slowly enough
so that µ ∈ Ωlog(W ). Now from Lemma 9.5, it is clear that µ|∆ = ν.

Remark 9.7. Note that the proof of Theorem 9.6 is completely explicit.

9.3 Explicitly lifting modular symbols

We will now use Theorem 9.6 to give an explicit proof that

H1
c (Γ,D†(Zp, 1))

ρk−→ H1
c (Γ, Lk)

is surjective. Take φ ∈ H1
c (Γ, Lk). By the results of section 9.1, we know that φ

is determined by its values on D1, . . . , Dt, D∞ and moreover if mi = φ(Di) and
m∞ = φ(D∞) then

m∞|∆ =
t∑

i=0

mi|
(
δ−1
i − γ−1

i

)
.

We begin by lifting each mi ∈ Lk to a distribution. We do this in the simplest
possible way; namely, if

mi =
k∑

j=0

ajZ
j

set

νi =
k∑

j=0

(−1)j

(
k

j

)−1

ak−jz
−j dz

z
.

Then ρk(νi) = mi and it is the unique such distribution
∑

j cjz
−jdz/z with this

property such that cj = 0 for j > k.
Now let

ν =
t∑

i=1

νi|
(
δ−1
i − γ−1

i

)
.

Clearly, ν has total measure zero and thus Theorem 9.6 applies. Namely, there
exists a unique µ ∈ D†(Zp, 1) such that

µ|∆ = ν.
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Again using the results of section 9.1, we can form a modular symbol Φ ∈
H1

c (Γ,D†(Zp, 1)) such that Φ(Di) = νi and Φ(D∞) = µ. We would like to say
then that Φ is a lifting of φ under ρ. Unfortuntately, we do not yet have enough
control on the value of ρ(Φ(D∞)). We know that

ρ(Φ(D∞))|∆ = ρ(µ)|∆ = ρ(µ|∆) = ρ(ν) = ρ

(
t∑

i=1

νi|
(
δ−1
i − γ−1

i

))

=
t∑

i=1

ρ(νi)|
(
δ−1
i − γ−1

i

)
=

t∑
i=1

mi|
(
δ−1
i − γ−1

i

)
= m∞|∆.

However, ∆ has a kernel on Lk and since (ρ(Φ(D∞))−m∞)|∆ = 0 we can only
conclude that ρ(Φ(D∞)) and m∞ differ by a constant in Qp. In fact, there is
no reason to expect that this constant is zero. To succeed in lifting φ, we need
to make a different choice of νi lifting mi.

The µ that we constructed has all the correct coefficients of z−jdz/z for j
between 0 and k − 1 to be a lift of m∞. It is only the coefficient of z−kdz/z
that is a problem. The following lemma describes this z−kdz/z coefficient of µ
in terms of the coefficients of ν.

Lemma 9.8. If ν =
∑

j ajz
−jdz/z and µ|∆ = ν then the coefficient of z−kdz/z

in µ is given by
k∑

j=0

aj+1

j + 1

(
k

j

)
bk−j .

In particular, it depends only on a1, . . . , ak+1.

Proof. This lemma is immediate from the explicit nature of the construction of
µ given in Theorem 9.6.

Let us now consider what happens to the coefficients of ν if we change one of
our chosen lifts νi. Note that we can only change each νi in such a way that their
specialization to Lk is unaffected. The simplest way to do this is to replace ν1

with ν1+cz−(k+1)dz/z with c some element of Qp. So let ν′
1 = ν1+cz−(k+1)dz/z

and for i between 2 and r, let ν′
i = νi. Let ν′ =

∑t
i=1 ν′

i|
(
δ−1
i − γ−1

i

)
and µ′

be the unique solution of µ′|∆ = ν′. The following lemma will be useful in
computing the coefficients of ν′ in terms of the coefficient of ν.

Lemma 9.9. If γ =
(

a b
c d

)
∈ Σ0(p) and if

z−(k+1) dz

z

∣∣∣∣
k

γ =
∞∑

j=0

ajz
−j dz

z

then

aj =


0 0 ≤ j ≤ k
k+1∑
m=0

(−1)ma−(m+1)bmcmdk+1−m j = k + 1
.
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Proof. Since Ωk+1 is a Σ0(p)-module, it is clear that aj = 0 for j ≤ k. The
coefficient ak+1 can be computed directly from the definitions as in Proposition
5.5.

Thus, from Lemma 9.9, we see that if ν =
∑

j ajz
−jdz/z and ν′ =

∑
j a′

jz
−jdz/z

then for j between 1 and k we have a′
j = aj . Furthermore, a′

k+1 = ak+1 + cδ
where δ is some constant that depends only on γ1 and η1. Therefore, by judi-
cious choice of c, we can force a′

k+1 to take on any possible value.
By Lemma 9.8, the coefficient of z−kdz/z in µ′ is

k∑
j=0

a′
j+1

j + 1

(
k

j

)
bk−j =

a′
k+1

k + 1
+

k−1∑
j=0

aj+1

j + 1

(
k

j

)
bk−j .

Thus by altering the constant c appropriately, we can alter the value of a′
k+1 ap-

propriately and thus force the coefficient of z−kdz/z in µ′ to equal the constant
term of m∞. This fact together with the above argument about the kernel of
∆, proves that we can choose c so that ρ(µ′) = m∞. Then the modular symbol
Φ defined by Φ(Di) = ν′

i for i between 1 and r and Φ(D∞) = µ′ is indeed a lift
of φ.

10 Finite approximation modules

10.1 Approximating distributions

We now need to describe a method of representing distributions on a computer
so that we can perform explicit computations in H1

c (Γ,D†(Zp, 1)). Of course
though, any given distribution contains an infinite amount of data. One first
guess on how to store an approximation to ω ∈ Ωlog(W ) on a computer would
be to fix two integers M and N and stored the first M coefficients of ω mod pN .
Unfortunately, these approximations are not stable under the action of Σ0(p)
and so we have to proceed a differently.

Let

K0 =

ω =
∞∑

j=0

ajz
−j dz

z
| pjaj ∈ Zp

 ⊆ Ωlog(W (Zp, p)).

Proposition 10.1. We have that K0 is a Σ0(p)-module.

Proof. We need to check that p−jωj |kγ ∈ K0 for γ ∈ Σ0(p) and ωj = z−jdz/z.
Knowing this is equivalent to knowing that the coefficent of z−ndz/z of pn−jωj |kγ
is in Zp. For n ≥ j there is nothing to check since all the coefficients of ωj |kγ
are integral. For n < j this is true since ωj ∈ Ωj and thus ωj |kγ ∈ Ωj .

Definition 10.2. For M > 0, define the M -th finite approximation module of
Ω0 to be

F(M) := (Ω0 + pMK0)/Ω0
∼= Ω0/(Ω0 ∩ pMK0).
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Proposition 10.3. We have that F(M) is a Σ0(p)-module and that

F(M) ∼= (Z/pMZ) × (Z/pM−1Z) · · · × (Z/pZ)

where the map is given by

ω �→ (a0 + pnZp, a1 + pM−1Zp, . . . , aM−1 + pZp)

where ω =
∑

j ajz
−jdz/z ∈ Ω0 + pMK0.

Proof. By Proposition 10.1, we know that F(M) is a Σ0(p)-module. As for the
isomorphism, first note that the above map makes sense since if ω ∈ Ω0 +pMK0

then aj ∈ Zp for j between 0 and M . With this said, checking that the map is
an isomorphism is straightforward.

Proposition 10.3 tells us that F(M) is actually a finite set which is easily
represented on a computer. So for a given element µ ∈ D†(Zp, 1) we can project
µ onto F(M) and then store its image in F(M) as a sequence of integers mod
various powers of p.

With this description of F(M) in hand, we can now represent the space
H1

c (Γ,F(M)) on a computer and elements of this space can be considered as
approximations to overconvergent modular symbols.

10.2 Solving the difference equation in H1
c (Γ,F(M))

To construct modular symbols in F(M), we must be able to solve the difference
equation for elemnts in F(M). Some new difficulties appear in this case because
in the construction of µ troublesome denominators appear. For example, even
if ν is in Ω1 the associated µ will not even be an element of Ω0 + pMK0. To fix
this, we must scale by a power of p that is small relative to M .

Lemma 10.4. Let µ ∈ D†(Zp, 1) such that µ|∆ ∈ Ω0. If m, M ≥ 0 are integers
for which pm > M + 1 then

pmµ ∈ Ω0 + pMK0.

Proof. It suffices to prove that if pm > M + 1 then for all j ≥ 0

pm · 1
j + 1

· ηj ∈ Ω0 + pMK0.

For this, it suffices to show that for all integers n, j with n ≥ j ≥ 0,

pm

j + 1

(
n

j

)
bn−j ∈ Zp if n < M

pn · pm

j + 1

(
n

j

)
bn−j ∈ pMZp if n ≥ M

If n < M then also j < M , hence pm > j + 1 and it follows that ordp(pm/(j +
1)) ≥ 1, so the first assertion follows from the Clausen-von Staudt theorem. On
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the other hand, if n ≥ M , then n = M + r with r ≥ 0, so pm+r > M + 1 + r =
n + 1. Thus ordp(pm+r/(j + 1)) ≥ 1 for every j ≥ 0 with j ≤ n. Again, from
the Clausen-von Staudt theorem it follows that

pm+r

j + 1

(
n

j

)
bn−j ∈ Zp

and consequently that

pn · pm

j + 1

(
n

j

)
bn−j = pM · pm+r

j + 1

(
n

j

)
bn−j ∈ pMZp.

Corollary 10.5. If ν̃ ∈ pmF(M) of total measure zero such that pm > M + 1
then there exists µ̃ ∈ F(M) such that µ̃

∣∣
k
∆ = ν̃.

Proof. First lift p−mν̃ to some element ν of Ω0. Then solving the difference
equation for ν yields some µ such that µ|k∆ = ν. By Lemma 10.4, we have that
pmµ ∈ Ω0 + pMK0. Let µ̃ be the image of pmµ in F(M). Then µ̃

∣∣
k
∆ = ν̃ as

desired.

10.3 Lifting classical modular symbols to H1
c (Γ,F(M))

We begin by writting down a way of representing Lk on a computer (compatible
with our representation of D†(Zp, 1)). For M > 0 define,

Lk(M) =

f =
k∑

j=0

ajZ
k | aj ∈ Z/pM−j+ejZ


where ej = ordp

((
k
j

))
. The reason for the ej terms is that under the special-

ization map ρk the coefficients of the given distribution are scaled by certain
binomial coefficients and the extra powers of p that appear are being accounted
for.

The specialization map reduces to give a map F(M)
ρk−→ Lk(M) defined by

ρk

∑
j

ajz
−jdz/z

 =
k∑

j=0

(−1)k−j

(
k

j

)
(ak−j + pM−j+ejZp)Zj

and it is with respect to this map that we will be lifting our classical modular
symbols.

Theorem 10.6. Let φ̃ ∈ pmH1
c (Γ, Lk(M)) for some integers m ≥ 0. Then

if pm > M + 1 there exists a modular symbol Φ̃ ∈ H1
c (Γ,F(M)) such that

ρk(Φ̃) = φ̃.

Proof. To prove this we can repeat the arguments of section 9.3 verbatim making
use of Corollary 10.5. Note that the assumptions of Corollary 10.5 are satisfied
since φ̃ is divisible by pm.
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10.4 Defining p−(k+1)Up exactly

In what follows, we are going to need to apply the operator u := Up/pk+1 many
times to project our lifted symbol to the “slope k+1” subspace of H1

c (Γ,F(M)).
In this section, we will describe how one can exactly compute this operator in
H1

c (Γ,F(M)) when applied to certain symbols that lift a constant multiple of
a β-eigensymbol for Up. (Note that the trouble in defining this operator is to
make sense of dividing by pk+1.)

Let Ψ be some symbol in H1
c (Γ,F(M)) that lifts a β-eigensymbol in H1

c (Γ, Lk(M))
and that satisfies the following condition:

For every D ∈ ∆0, if Ψ(D) =
∑

j

ajz
−j dz

z
then aj ∈ pk+1−jZp for j ≤ k.

We will be able to precisely compute the u-operator on symbols of this type.
For D ∈ ∆0 we have

(Ψ|Up)(D) =
p−1∑
a=0

Ψ
((

1 a
0 p

)
D

)
|
(

1 a
0 p

)
=:

M−1∑
j=0

cjz
−j dz

z
.

From the data of Ψ, for j between 0 and k we can compute p−(k+1)aj mod pM−j

since

p−(k+1)ρ(Ψ|Up)(D) = p−(k+1)(ρ(Ψ)|Up)(D) = p−(k+1)βρ(Ψ)(D)

since p−(k+1)β ∈ Zp.
For j > k, to deterine cj we need to consider the contributions from each

term of Ψ
((

1 a
0 p

)
D

)
|
(

1 a
0 p

)
=:

∑
r drz

−rdz/z. We have

drz
−r dz

z
|
(

1 a
0 p

)
= drp

r(1 − az−1)−(r+1)z−r dz

z
.

For r > k we can compute this expression exactly by simply replacing the pr

term in the front of the formula to pr−(k+1). For r ≤ k, we know by assump-
tion that dr is divisible by pk+1−r. Thus, we can replace drp

r at the start of
the formula with dr/pk+1−r to successfully divide by pk+1. Note that dr is
determined mod pM−r and thus dr/pk+1−r is only determined mod pM−(k+1).
However, since j > k and we are only looking to compute aj mod pM−j , the
above computation is accurate enough.

11 Explicitly forming a β Hecke-eigensymbol

The goal of this section is to give an algorithm that produces a Hecke-eigensymbol
in H1

c (Γ,F(M)) with the same eigenvalues as φf,β . As long as the hypotheses
of Theorem 8.4 are satisfied then we know that up to scaling there is a unique
such symbol in H1

c (Γ,F(M)) and any such symbol is the projection of some
bonafide eigensymbol in H1

c (Γ,D†(Zp, 1)).
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Let us begin by recalling the steps of constructing this β eigensymbol in
H1

c (Γ,D†(Zp, 1)). First, we form a lift of φf,β , say Φ. Then we project Φ to Φ0,
it’s image in the “slope k+1” subspace. Since this is a finite dimensional space,
linear algebra techiniques can then be used to form the desired eigensymbol.

For F(M), the first step of lifting φf,β requires some care because denomi-
nators are introduced. We need to be certain that we satisfy the hypothesis of
Corollary 10.5. Namely, instead of lifting φf,β we will lift pmφf,β for m satisfying
pm−||φf,β || > M + 1. Denote the lifted symbol in H1

c (Γ,F(M)) by Φ̃.
To project onto the slope k + 1 subspace, we will iterate the u-operator on

Φ̃. Since, u is topologically nilpotent on Φnil and pM kills F(M), we have that
for n large enough, the image of Φ0|un in F(M) equals Φ̃|un. (In practice, it
suffices to apply u only M times. However, if there was some piece of Φ with
eigenvalue of slope bigger than k + 1 and smaller than k + 2 it is plausible that
more applications of u would be necessary.)

Let Φ̃′ = Φ̃|un for n large enough. Then since the slope k + 1 subspace of
H1

c (Γ,D†(Zp, 1)) is finite dimensional, we can view the Hecke-stable subspace
generated by Φ̃′ as having dimension small compared to M . At this point, basic
methods of linear algebra can be used to produce the desired eigensymbol. In
practice, the dimension of the slope k + 1 subspace has been very small (no
bigger than 4) and so in particular it is smaller than t + 1 (the number of
divisors needed to determine a modular symbol). The following procedure has
been quite effective in producing our eigensymbol.

Let Ψ̃ = Φ̃′|Up−βΦ̃′ which is in the kernel of specialization. We want to kill
off Ψ̃ using the full Hecke algebra. Take Tl for some prime l and apply it many
times to Ψ̃. Since Ψ̃ lives in a small dimensional Hecke-stable subspace, the
elements {Ψ̃|T j

l } should posses a linear relation. To find this relation, look at
the coefficient of z−(k+1)dz/z in these symbols evaluated at each of the divisors
D1, . . . , Dt, D∞. For each Ψ̃|T j

l , this list of coefficients gives us an element of
(Z/pM−k−1Z)r+1. Call this element vj . The elements v0, v1, . . . , vd should then
posses a relation

∑d
j=0 cjvj = 0 for some small value of d.

Let f(T ) =
∑d

j=0 cjT
j and consider the symbol Ψ̃′ := Ψ̃|f(Tl). By construc-

tion, Ψ̃′ has the property that Ψ̃′(D) has its coefficient of z−(k+1)dz/z equal to
0 for all D. If Ψ′ is some lift of Ψ̃′ in H1

c (Γ,D†(Zp, 1)), then we have that
Ψ′ ∈ H1

c (Γ,Ωk+2). Thus by Lemma 7.6, Ψ′ has slope at least k + 2. However,
since Ψ′ is in the slope k + 1 subspace it must be the zero symbol. So in fact
Ψ̃′ = 0.

Therefore, by construction, Φ̃β := Φ̃′|f(Tl) is a β-eigensymbol for Up. Note
that Φ̃β still specializes to a multiple of φf,β . However, it is now possible that
this multiple is zero, if for instance f(al) = 0. Also, it is not always possible to
choose l such f(al) �= 0. (There will be no such possible choice if there is an
element of the kernel of specialization with the same eigenvalues as f .)

Now, it is plausible at this point that Φ̃β is a β-eigensymbol for Up, but not
a eigensymbol for the whole Hecke algebra. To remedy this, consider Ψ̃q :=
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Φ̃β |Tq −aqΦ̃β for some prime q �= p. Repeat, the process described above to kill
off Ψ̃q. Repeat this for as many q’s as necessary until one has a eigensymbol for
the full Hecke-algebra. (This is a finite process since we are working in a finite
dimensional subspace.)

12 Computing p-adic L-functions

12.1 p-adic L-functions of overconvergent modular sym-
bols

If Φ ∈ H1
c (Γ,D†(Zp, 1)) is a β-eigensymbol for Up, then by Theorem 6.3, Φ

descends to an element fo H1
c (Γ,Dk(Zp)). We then define the p-adic L-function

of Φ to be µΦ := Φ({0} − {∞}) ∈ Dk(Zp).
By choosing a generator of γ of 1+pZp, we can express µΦ as a power series

in A(Zp, 1). Namely, for u in the open unit disc of Cp around 1, let χu be a
character of Z×

p defined by first projecting to the 1-units and then mapping γ
to u. Then the function

L(µΦ, u) :=
∫
Z×

p

χudµΦ

is analytic as a function of u and its Taylor series expansion around u = 1
gives us a power series representation of µΦ which we will denote as L(µΦ, T ) ∈
A(Zp, 1).

Very explicitly, for m ≥ 1 let

Rm(u) =
p−1∑
a=1

pm−1−1∑
j=1

k+1∑
i=0

χ
(i)
u ({a}γj)

i!

∫
{a}γj+pnZp

(x − {a}γj)idµΦ

where {a} is the Teichmuller lift of a to Z×
p and χ

(i)
u is the i-th derivative of the

character χu viewed as a locally analytic function on Z×
p . Thus Rm(u) is the

m-th (enhanced) Riemann sum approximation of
∫
Z×

p
χudµΦ. Computing the

derivatives of χ and replacing u by 1 + T yields

Rm(1 + T ) =
p−1∑
a=1

pm−1−1∑
j=1

k+1∑
i=0

(L)(L − 1) . . . (L − i + 1)
i!{a}iγij

(1 + T )j ·

(∫
{a}γj+pnZp

i∑
r=0

(
i

r

)
(−1)i−r{a}i−rγj(i−r)xrdµΦ

)

=
p−1∑
a=1

pm−1−1∑
j=1

k+1∑
i=0

(L)(L − 1) . . . (L − i + 1)
i!

(1 + T )j ·

(
i∑

r=0

(
i

r

)
(−1)i−r({a}γj)−r

(∫
{a}γj+pnZp

xrdµΦ

))
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where L = logγ(1 + T ) = logp(1 + T )/ logp(γ).
We then have that

L(µΦ) = lim
m→∞

Rm(1 + T ).

Hence, to obtain approximations to the p-adic L-function, we need to be able
to compute the values of ∫

{a}γj+pnZp

xrdµΦ

in terms of Φ. The following lemmas describe how to do this.

Lemma 12.1. Let µ ∈ Dk(Zp). Then the support of µ
∣∣( 1 a

0 p

)
is contained in

a + pnZp.

Proof. Let fb be the characteristic function of b + pnZp. Then

(µ|
(

1 a
0 p

)
)(fb(x)) = µ(fb(a + pnx)) =

{
µ(Zp) a ≡ b (mod pn)
0 a �≡ b (mod pn)

.

Lemma 12.2. If Φ is a β-eigensymbol for Up then∫
a+pnZp

xrdµΦ = β−n(µΦ,a|
(

1 a
0 p

)
)(xr)

where µΦ,a = Φ({ a
pn } − {∞}).

Proof. Since Φ is a β-eigensymbol, we have that

βnΦ({0} − {∞})(xr) = (Φ|Un
p )({0} − {∞})(xr)

=
p−1∑
a=0

(Φ
({

a

pn

}
− {∞}

) ∣∣( 1 a
0 p

)
)(xr).

By the previous lemma, the support of Φ
({

a
pn

}
− {∞}

) ∣∣( 1 a
0 p

)
is contained in

a + pnZp. Therefore, since

Φ({0} − {∞})(xr) =
p−1∑
a=0

∫
a+pnZp

xrdµΦ,

matching the two equal sums up term-by-term yields the lemma.

Lemma 12.3. We have that

(µΦ,a

∣∣( 1 a
0 p

)
)(xr) =

r∑
j=0

(
r

j

)
ar−jpnjµΦ,a(xj).
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Proof. This is a simple computation. We have

(µΦ,a

∣∣( 1 a
0 p

)
)(xr) = µΦ,a((a + pnx)r) = µΦ,a

 r∑
j=0

(
r

j

)
ar−jpnjxj


=

r∑
j=0

(
r

j

)
ar−jpnjµΦ,a(xj).

12.2 Twists

12.3 Some data

Using the modular symbol Φ̃β ∈ H1
c (Γ,F(M)) contructed in section 11, we can

compute approximations to Rm(1 + T ) since the results of the previous section
show that to compute Rm one only needs the data of the first k +1 moments of
Φ({ a

pn } − {∞}) for a between 0 and pn−1. A good enough approximations to
Rm should yield a good approximation of the newton polygon of L(µΦβ

, T ). In
this section, we display the data arising from taking m =? and computing such
newton polygons for various curves and twists of those curves. (The formulas
for twists are given in the previous section.)

12.4 Persistence of zeros of small slope
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