Cohomology of arithmetic groups
and congruences between systems
of Hecke eigenvalues

By Avner Ash*) at Columbus and Glenn Stevens*) at Boston

The present paper is the beginning of an investigation into the congruence
properties of systems of eigenvalues of Hecke operators acting on cohomology groups
associated to automorphic forms over a reductive algebraic group G.

When G =GL(2) this amounts to a study of the congruence properties of g-
expansions of classical modular newforms of weight >2. This theory has been
researched extensively and has found numerous applications (see for example [9], [16],
[17], [22], [24], [28], [29], [31], [34]). The cohomological approach to the theory
was initiated in 1968 by Shimura [33] (see Hida [17]). Other cohomological attacks on
congruences can be found in [13] and [20]. In [20] forms over unit groups in
quaternion algebras are studied as well.

In this paper we broaden the method in order to treat arithmetic subgroups of
other reductive groups.

In section 1 we set up some general machinery for treating the cohomology of a
group I' (possibly with twisted coefficients) along with the action of a commutative
Hecke algebra of double cosets on it. We consider pairs of groups and coefficient Z-
modules related in such a way that we obtain (1) a homomorphism : between the
Hecke algebras; (2) an 1-equivariant map between the cohomology groups mod/; and
(3) a way of lifting systems of Hecke eigenvalues mod/ back to the integral
cohomology. The net result is a pair of integral cohomology eigenclasses, one per
group, and a congruence mod/ between the associated systems of Hecke eigenvalues.

Two remarks deserve special emphasis. First, despite the congruence between the
eigenvalues associated to these eigenclasses, there may be no direct relationship
between the eigenclasses themselves (compare the remark following proposition 1. 2. 3).
Second, the cohomology groups under consideration may contain nontrivial torsion
elements (cf. section 3). In the general situation, one of our eigenclasses may be a
torsion class even if the other is not.

*) Research partially supported by grants from the National Science Foundation.
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Note that our Hecke algebras are assumed to be commutative, a condition which
1s satisfied in many important examples.

In section 2 we prove two results for arithmetic groups I' generalizing known
results for GL(2). The first of these (theorem 2. 2) states that for fixed I' and /, the set
of systems of Hecke eigenvalues modulo / occurring in @ H*(I'; E) is finite, where the
direct sum is over all finite dimensional rational representations E of the ambient
group which can be “reduced” modulo /. This may be viewed as a generalization of a
theorem of Serre and Tate [31] (see also Jochnowitz [19]) which states that the set of
systems of Hecke eigenvalues modulo / arising from modular forms of all weights and
level 1 is finite. Our second result (theorem 2.4) states that, given I', / sufficiently
large, and E as above, there exists a subgroup I'; of finite index in I" and a trivial I',-
module F such that every system of Hecke eigenvalues occurring in HY(I'; E) may be
found modulo / in H¥(I';; F) where N is the virtual cohomological dimension of I.
This generalizes results of Serre [28] and Serre-Fontaine [297] which state that modular
eigenforms of arbitrary weight are congruent modulo / to weight two forms. In a later
paper we will show how to get similar results in dimensions other than N. We close
section 2 with an examination of the special case G = GL(n).

One expects that our methods, when applied to specific groups, will yield
stronger theorems than the general ones proved in §2. In the special case G=GL(2),
for example, our methods can be refined to obtain more explicit statements about
congruences among modular forms. We are also able to prove congruences between the
algebraic parts of special values of associated L-functions. We will report on this in an
upcoming paper.

In section 3, we use our methods along with some input from automorphic
representation theory and /-adic Galois representation theory to prove (theorem 3. 5. 3)
the existence of many /-torsion classes in the cohomology of certain arithmetic
subgroups of SL(3, Z). The torsion classes we construct are Hecke eigenclasses whose
eigenvalues are congruent to the Hecke eigenvalues of an automorphic (hence
nontorsion) cohomology class in a different cohomology group. We wonder whether or
not all torsion eigenclasses in the cohomology of any arithmetic group have this
property. We also ask the related question: Is there a correspondence a la Langlands
between /-torsion eigenclasses and Galois representations on F,-vector spaces?

1.1 Cohomology and Hecke operators

In this section we define the Hecke algebra and state the basic properties of this
algebra acting on the group cohomology. We will use the notation of Andrianov [1].

Let G be a group. A Hecke pair consists of a subgroup I' of G and a
subsemigroup S of G such that

1) res,

(2) T and g7'I'g are commensurable for every g€ S.
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We will write L(I', ) for the free Z-module on the right cosets I'g, ge S, and
H =H (I, S) for the right I'-invariant elements in L(I', §). We define multiplication
in # by the formula

_ Zai(rgi)'ij(rhj)‘—'zaibj(rgihj)-
Then A is an associative algebra. If g e S and I'g[I is the disjoint union |J I'g; then we

will write T, for the element 3" I'g; in s#. We will refer to # as the Hecke algebra of
the pair (I, S).

Notation. If E is a right S-module, then we will denote the right action of 6 € S
on e € E by multiplication on the left by ¢7!:

ExS—E, (e,o0)—cle.

It is well known that if E is a right ZS-module, then there is a natural right
action of the Hecke algebra s# on the cohomology groups H'(I', E). For ge § the
element T, of # operates by the formula

(ng) ()"0’- T y,) =Z gi_lf(ti()’O)v . ti(})r))'

Here f: I'"*' — E is a homogeneous r-cocycle, y,,. .., v, are in I, I'gl is the disjoint
union {JI'g;, and ¢: I — ' is defined by the equations Ig;y=Trg; (for some j
depending on i and yeI') and g;y=1,(y)g;. The cohomology class of f T, does not
depend on the choice of the g;.

Dually, if E is a left ZS-module, then we can define a natural left action of # on
the cohomology by formulas like the ones above. Alternatively, we set
S™!={g7!|g e S} and observe that since (I, S) is a Hecke pair, so also is (I, S~'). As
in the last paragraph we have a right action of # (I', S™') on the cohomology. The left
action of # is then given by the formula T, f=fT,-, for g€ S, and fe H'(I', E). For
more details see for instance [20].

It is fundamental to what follows that the action of the Hecke algebra on the
cohomology groups respects the standard constructions of homological algebra. In the
remainder of this section we record some instances of this principle.

Lemmal.1.1. Let 0 D —E— F—0 be an exact sequence of (right or left)
Z.S-modules. Then the long exact cohomology sequence

- — H'(I', D)— H'(T", E) — H'(T', F) — H"*'([', D) — --.

commutes with the action of #.

Definition 1. 1. 2. A Hecke pair (I'y, S,) is said to be compatible to the Hecke
pair (I', §) if (a) (I'y, So) (I, S), (b) T'Sy=S, and (¢) I' 1 Sy Sy =T

If (I'y, So)=(I', S) are compatible, the cosets I'g with ge S, span L(I", S). So
there is a unique linear map L(I', S) — L(I'y, S,) sending I'g to I'yg for ge S,. The
compatibility condition guarantees that the restriction to double cosets,

12 # — # (T, So),

is an injective algebra homomorphism.
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Thus if E is a ZS,-module, then we may (and will) view the cohomology groups
H'(I'y, E) as #-modules by composing the action of #(I'y, Sy) with 1.

The notion of compatibility (1. 1. 2) is not left-to-right symmetric. For this reason
our next two results must treat right and left modules separately.

Lemma 1.1.3. (a) If E is a right ZS-module then the restriction map
H'(I'; E) == H'(I'y, E)

commutes with the action of #.

(b) If the index [I : I'y] is finite and E is a left ZS-module then the corestriction
map
H (I',E) == H'(I'y, E)
commutes with the action of K.
Now suppose [I': I';]<oo and let E be a right (resp. left) ZS,-module. Then in
particular E is a ZI,-module and we may consider the induced ZI'-module
I=1nd (I'y, I'; E) of functions f: I' — E such that f(xy)=xf(y) forall xin 5, yinT.

We define a right (resp. left) action of S on 7 by the following formulas for ge S, fel,
and xe .

1

If E is a right S,-module, choose g, € Sy, y eI’ so that xg~' =gg'y and set

& ') x)=g5"f(¥)
If E is a left S,-module, set
(gf) () =2 xgy™ ' f()
where the sum is over representatives, y, of the cosets in I'\(I' n Sy 'xg). Using the

compatibility of (I'y, So) (I, S) it is not difficult to verify that these formulas define
a right (resp. left) semigroup action of S on I extending the standard action of I'.

Lemma 1.1.4. Suppose [I':T'y]< oo and let E be a (right or left) Z.S,-module.
Then the Shapiro isomorphism

& H ([, 1nd(Iy, T, E))—=> H" (I, E)
commutes with the action of .
Proof. Let I=Ind(l'y, I'; E). If E is a right ZS-module then the map p: I — E
which sends a function f to f(1) is a morphism of right S,-modules. The Shapiro
isomorphism is the composition

H'(I', 1) = H'(I';, I) > H' (I, E),

and hence commutes with the action of # by 1.1.1 and 1.1.3.
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If Eis a left ZS,-module, then the map i: E — I defined by

xe, if xel,,
0, otherwise

i(e) (x) ={

is a morphism of left ZS,-modules. The inverse of the Shapiro isomorphism is the
composition
H'(ly, E) —— H"(I'o, I) <% H'(T', I).

Again we use 1.1.1 and 1. 1.3 to conclude that this commutes with . dJ

We close this section with a discussion of nebentype operators. Suppose ('}, S,)
is a Hecke pair compatible to (I'y, S,) and which is normalized by I'y. Let E be an S,-
module. We have seen that the Hecke algebra Ho=# Ty, So) acts on H*(I';, E). But
there is also a standard action of the quotient group I o/I'y on the cohomology ([27],
VII §§ 5, 6). In our language this action can be described as follows. Since I' , Is normal
in Iy the pair (I'y, I'y) is a Hecke pair. The Hecke algebra ' (I';, I'y) is naturally
isomorphic to the group ring Z[I,/I',]. Thus the action of H (I, [,) on the
cohomology induces an action of I'y/I’;, on H*(I'y, E). For a e I'y we write [a] for the
associated operator on cohomology and refer to [a] as the nebentype operator
associated to a. One readily verifies that these operators commute with the action of Hy.
Since the nebentype operators are defined as Hecke operators, they enjoy all of the
functorial properties attributed to Hecke operators in this chapter.

Let R be a commutative ring with identity and let e: I’ o/T'y — R* be a character.
For a right (resp. left) RS,-module E we define H *(I'y, E) (¢) to be the submodule of
¢ in H*(I',, E) on which the nebentype operators act via &: é[a] =e(a)"! ¢ (resp.
[a]é=¢e(a)¢). '

The compatibility of (I'y, S;)<(l,, S,) guarantees that there is a unique
extension of ¢ to a character &: S, — R* which is trivial on S;. Let R, be the rank one
R-module on which S, acts via .

Lemma 1.1.5. Let (I',, S,) be a Hecke pair compatible to Iy, So) and normalized
by I'y. Suppose the index [I',:I',] is finite and invertible in R. Then Sfor every (left or
right) RS,-module E and every character ¢: I’ o/I'y — R*, the restriction map induces an
isomorphism of #y-modules

H*(Ty, EQ R)= H*(I',, E) (V).

Proof. The map R— R,, rr is an isomorphism of RS -modules and thus
induces an isomorphism of #,-modules H* (r'y, Ey—» H*(I', EQR,). A simple
calculation with cocycles shows that the space H*(I'y, E)(¢™') is mapped onto
H*(I'y, E® R,)™. The invertibility of [T’ o-T';] together with the Hochschild-Serre
spectral sequence now show that this is isomorphic to H*(I'y, EQ R,) via the
restriction map. If the action of S on E is a right action then lemma 1. 1. 3(a) shows
that restriction commutes with H, and we are done. Otherwise we use 1. 1. 3(b) and
the fact that cores o res=[Iy: I',] which is invertible in R to complete the proof. [J
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1. 2 Systems of Hecke eigenvalues

In this section we discuss the functorial properties of systems of Hecke
eigenvalues associated to eigenvectors in the cohomology groups H*(I', E). We will
take a more abstract point of view and let 5# be an arbitrary commutative algebra.

Definition 1. 2. 1. (a) A system of eigenvalues of # with values in a commuta-
tive ring R is a set theoretic map ¢: # — R.

(b) The system @ is said to occur in the R#-module A if there is a nonzero
ae€ A such that Ta=®(T)a for all Te #. Such an a is called a P-eigenvector.

We will prove the following two propositions.

Proposition 1. 2. 2. Suppose R is a discrete valuation ring (respectively field). Let
A, B be RH#-modules, finitely generated over R and f: A— B be a surjective RH-
morphism. Let @: # — R be a system of eigenvalues occurring in B, and ve B be a ®-
eigenvector. Let Q S R be a prime ideal in the support of Rv. Then there is a discrete
valuation ring (respectively field) R’ of finite type over R and a system ¥: # — R’
occurring in A @g R’ such that ¥(T)=®(T) (mod Q') for all Te # where Q' is the
unique prime ideal of R’ for which Q' n R=Q.

This proposition generalizes a lemma of Deligne and Serre ([9], Lemma 6. 11)
which considers the special case where 4 is free over a discrete valuation ring R and B
is the reduction of 4 modulo the maximal ideal.

If R is a local ring then we will use a bar to denote reduction modulo the
maximal ideal. Thus, if P< R is the maximal ideal then R= R/P; if M is an R-module
then M=M®R; if me M then m=m® 1eM; and if &: # — R is a system of
eigenvalues then @: # — R is the composition of @ with the canonical projection
R— R.

Proposition 1. 2. 3. Suppose R is a discrete valuation ring. Let A be an R#-module
finitely generated over R. If &: # — R occurs in A then @ occurs in A.

Remark. Proposition 1.2.2 states that a system of eigenvalues occurring in B
may, after finite base extension, be “lifted” to a system occurring in 4. Note, however,
that an eigenvector in B need not lift to an eigenvector in A. Proposition 1. 2. 3 is also
more subtle than it may seem at first. For example, a @-eigenvector a € 4 may reduce
to zero modulo the maximal ideal. It is in general not even possible to solve the
equation rb=a for re R, be A with b a ®-eigenvector in A4.

In preparation for the proof of proposition 1. 2.2 we state and prove two simple
lemmas.

Lemma 1.2.4. Let R be a discrete valuation ring (respectively field) and let A be
an RH#-module, finitely generated over R. Then there is a discrete valuation ring
(respectively field) R’ finite over R such that A'=A ®xR' possesses an R'#-stable
filtration

= 4p24,2 - 24,=0

in which the successive quotients are cyclic R’-modules.

93 Journal fiir Mathematik. Band 365



198 Ash and Stevens, Cohomology of arithmetic groups

Proof. It suffices to show that 4 has an #-eigenvector after some finite base
extension. If R is a field this is well known.

If A has no nonzero R-torsion then we may reduce to the case where R is a field
by tensoring with the quotient field of R. Otherwise there is a nonzero RA#-submodule
Ay < A which is annihilated by the maximal ideal P of R. The action of # on 4,
factors through an action of # ® R. Thus we are again reduced to the case where the
base ring is a field. [J

We will refer to an Rs#-filtration A=A4,2 --- 2 4,=0 as a cyclic R# -filtration if
the successive quotients are cyclic R-modules. If the integer s is minimal among all
such filtrations of 4 we will call the filtration a minimal cyclic R -filtration.

Lemma 1.2.5. Let R be a discrete valuation ring or a field. Let
A=4924,2-24,=0

be a minimal cyclic R# -filtration of A, and suppose T, e H# annihilates the quotient
Ai/A;+, for some i=0,...,s—1. Then there is a nonzero ae A such that Tya=0.

Proof. We have TyA, < A;,,. For j=0,...,s—1 let

o [To4 if 0<j<i,

Then ToA=A4,2A412---24,_,=0 is a cyclic R#-filtration of T, A of length s—1.
Because of the minimality of s, 7,4 and 4 are not isomorphic as R#-modules. Thus
T, does not act injectively on 4. [

Proof of Proposition 1.2.2. By lemma 1. 2.4 it suffices to prove the following:

(*) If A possesses a cyclic Rs#-filtration then the proposition is true with
R =R.

By replacing s by the R-algebra generated by the image of # in Endg(4) we
may assume J is an R-subalgebra of Endg(4). Since A4 is a finitely generated R-
module, so is #. We will prove () by induction on the minimal number of algebra
generators of J# over the image of the structure morphism R — #. If R— # is
surjective there is nothing to prove. So we let #, be a subalgebra of Endg(A4) and
make the following inductive assumption.

(1) If # =#, then (x) is valid.

Now suppose # =#,[T] for some T e Endgz(4). We will prove (x) in this
situation by induction on the length of a minimal cyclic R#-filtration of 4. If 4 is a
cyclic R-module then (*) is immediate. Thus we may make the following inductive
assumption.

(2) s>1is an integer and (*) holds for every #-module 4 which possesses a
cyclic R -filtration of length less than s.
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Let 4 be an Rs#-module which possesses a minimal cyclic R# -filtration
A=A4,24,2--24,=0

of length s. Without loss of generality we may also make the following assumption
on B.

(3) B is the cyclic R-module generated by v.
Let A=@(T) and let C be the submodule of A defined by

C=Uker [T (T—4)
j=1
where the union is over all natural numbers n and n-tuples (4,,..., 4,) € R” whose

components satisfy the congruence 4;=4(mod Q). Then C is #-stable since # is
commutative.

Suppose f(C)=0. Then f: 4 — B factors through an Rs#-morphism
f'iA=4/C— B.

Let A'=A4524,2--24,=0 be the R#-filtration of A’ induced by the given
filtration of A. Let 0= i<s—1 be the least integer for which f'(4;,,)=0. Let '€ R
satisfy Tx=4A'x for all xe A}/A;,,. Since f’' induces a nonzero R #-morphism
Ai/A;,, — B and B is cyclic (3), we have A'=1 (mod Q). By the definition of C we
know that T— A’ acts injectively on A’. On the other hand 7'— A’ annihilates 4;/4;,,.
Thus lemma 1. 2.5 implies the filtration 4'=A4;2 --- 20 is not minimal cyclic. Then
by (2) there is a system of eigenvalues ¥': # — R occurring in A4’ such that ¥’ =¢
(mod Q). But then ¥'(T)= A (mod Q) and therefore, by the definition of C, T— ¥'(T)
acts injectively on A’, a contradiction.

This shows f(C)=+0. By applying (1) to the surjection C — f(C) we conclude
that there is a system ¥,: s, — R occurring in C such that ¥,(¢)=®(¢) (mod Q) for
all re H,. Let ce C be a ¥,-eigenvector. By the definition of C there is a nonnegative
integer 7 and 4;,...,4,e R with 4=41 (modQ), j=1,...,n such that

a=[] (T-A)c+*0, and (T—4,)a=0. Then a is a Y-eigenvector for a system of

j=2

eigenvalues ¥: # — R satisfying ¥=& (mod Q). O

Proof of Proposition 1.2.3. As in the proof of proposition 1.2.2 we may suppose
# < Endg (A4) and # = #,[T] where ®|#, occurs in A. Without loss of generality we
may replace 4 by the full inverse image of the @|#;-eigenspace of A4, since @ occurs
already in this submodule. Thus it suffices to find a nonzero x € 4 such that Tx=rx
where r=@(T).

Since A4 is a finite direct sum of cyclic R-modules, there is a free R-module F and
a surjective R-morphism ¢: F — 4 whose reduction &: F— A4 is an isomorphism. We
may lift T to an R-endomorphism of F so that T commutes with ¢.

By proposition 1. 2.2 there is a discrete valuation ring R’ finite over R, and a
nonzero f € F®g R’ such that Tf=sf for some s € R’ with §=F. Since F is free we may
assume f=+0. Thus (1 —7) has a nonzero kernel in F®z R'=A4 ®y R’, and hence also
inA. O '
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1. 3 The main diagrams

We consider compatible Hecke pairs (I, So) (I, S) and let # be the
associated Hecke algebra. We assume the following additional conditions:

I' is finitely presented and of type (WFL) ([26], section 1. 8),

1.3.9) (:Ty]< 0.

Let R be a discrete valuation ring with maximal ideal P generated by =, and let E be a
right (left) RS-module and F be a right (left) RS,-module. We assume that both E and
F are finitely generated as R-modules. This assumption taken together with (1.3.1)
implies that the cohomology groups of E and F are finitely generated over R as well,
so that we can apply the results of the last section to them.

If E and F are right modules and ¢: E — F is an RS,-morphism then the map
a($p): E— Ind(ly, I'; F) defined by (x(¢) (e)) () =¢(ye) for ec E and ye ' com-
mutes with the right action of RS. The interesting cases of course occur when ¢ can-
not be lifted to a morphism E — F.

For a positive integer r we can now draw the main diagram for right modules.

H'([,E) —— H'(I', E) —%—  H'™*Y(I, E)

res \\W‘.
H' (Iy, E) A
| \N /

H' (o, F) ——— H' (I, F) —*—  H"™"'([,, F)

(1.3.2) H' ([, Ind(Fy, I'; F))

In this diagram the horizontal arrows are extracted from the long exact cohomology
sequences of 0 > M % M — M — 0 for M=E, F, the arrow res is the restriction
morphism, and & is the Shapiro isomorphism. The arrow A" is defined by the
commutativity of the diagram. The results of 1.1 show that this diagram commutes
with the action of #.

Dually, if E and F are left modules and : F— E is an RS,-morphism then we
define B(¢): Ind(I'y, I'; F) — E by

B (= X . v ().

yelo

A straightforward calculation shows that B(y) is a morphism of left RS-modules.
Our main diagram for left modules is the following.

H'(T,E) —— H'(I', E) —2—  H'™*Y(T, E)

(1.3.3) H' (T, E) . H (T, Ind (T,, T'; F))

H' ([, F) —— H'(I,, F) —2 H™ (I, F)
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Here cores is the corestriction morphism which commutes with the action of # by
lemma 1. 1.3, and B" is defined by the commutativity of the diagram.

Theorem 1.3. 4. Suppose # is commutative and replace R by a finite extension if
necessary so that R contains all of the eigenvalues of # acting on the cohomology groups
in (1.3.2) and (1.3.3). Let &: # — R be a system of eigenvalues.

(@) Suppose A" is injective or B is surjective. If @ occurs in H'(I', E) then there
is a system of eigenvalues ¥: # — R occurring in H' ® H'*'(I',, F) such that =¥.

(b) Suppose A" is surjective or B' is injective. If ® occurs in H'(I'y, F) then there
is a system of eigenvalues ¥: # — R occurring in H' ® H"*'(I', E) such that &=9.

Proof. We will give the proof of (a) only. The proof of (b) is similar. Suppose ®
occurs in H'(I', E). The long exact cohomology sequence of the sequence
0— E-% E— E— 0 provides a Hecke equivariant inclusion

H'(I', E)® R/P & H'(T', E).

Thus proposition 1. 2. 3 shows that @ occurs in H'(I', E). If 4" is injective we conclude
at once that ¢ occurs in H'(I'y, F), and if B is surjective we use proposition 1. 2. 2 to
draw the same conclusion. In either case we can find a $-eigenvector v € H'(Ty, F). If
0(v)# 0 then @ occurs in H"*!(I'y, F). Otherwise we can appeal to proposition 1. 2, 2
again to prove the existence of ¥ occurring in H'(I'y, F) with 8=¥. []

We close this section by giving a criterion for 4" or B" to be surjective.

Theorem 1.3.5. Let N be the virtual cohomological dimension of ' and D be the
greatest common divisor of the indices of the torsionfree subgroups of finite index in T.
Assume D is invertible in R. Then we have the following implications:

(i) a(¢) surjective = A" surjective;

(i) B(Y) surjective = BY surjective.

Proof. To prove (i) we consider the long exact cohomology sequence associated
to

0—ker(a) » E— Ind(l,, T'; F)— 0.
By [6], p. 287 we have D- H¥*'(I', ker («))=0. Because D is invertible in R we have

H"*'=0 and therefore a,: H(I', E) — H"(I', Ind) is surjective. Since AN=Fcq,
and & is an isomorphism, (i) follows. A similar argument establishes . 04
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1. 4 Arithmetic groups

In the applications I' will be an arithmetic subgroup of a reductive algebraic
group G over Q, and S will be a subsemigroup of G(Q). Then I' satisfies (1. 3. 1) and
the results of the last section are applicable.

The additional structure which we would like to utilize derives from the fact that
I' acts properly discontinuously on the symmetric space X of G. We define the integers
d, N, m and D by

d = the dimension of X;
N =the virtual cohomological dimension of I';

1.4.1) m =the least common multiple of the orders |I'|
o of the isotropy groups of all x in X;

D =the greatest common divisor of the indices of
the torsionfree subgroups of finite index in I.

Borel and Serre [4] have shown that N depends only on G and is equal to d minus the
Q-rank of G.

Let R be a ring in which m is invertible. For an RI-module E, let E, be the
corresponding local coefficient system on the quotient X,=I\X, of X by I'. The
invertibility of m implies that the canonical map

H' (Xr, Ep) H'(T', E)

is an isomorphism for every r. Letting H, denote cohomology with compact supports
. and H, the image of H, in H, we define

H!(I', E)=H'(X;, E;) and H!(I', E)=H (X, E;).

If E is a right (resp. left) RS-module, then the action of s can be described
topologically. For g in S let

r@=rng'rg and I'(g)=gl'(g)g =T nglg’,

and consider the diagram

Xl‘(.q) te 'Xl”(.u hH
(1.4.2) “® ' *(g)

where 7n(g) and m(g™') are the natural projections and L(g) is induced by left
translation of X by g. Then T,: H{(I', E) — H,(I', E) is given by

T,=m(g)y° L(g)* (g™ ")*

(resp. T,=m(g™ "), ° L(g),~n(g)*) where H, denotes either H or H, The map
H! — H" commutes with the action of # so that Hy(I', E) also inherits a structure of
#-module.
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If E is a right (resp. left) RS-module finitely generated as an R-module, we define
the contragredient left (resp. right) RS-module E* = Homg (E, R) by (gf) (e)=f(g 'e)
(resp. (g7'f) (e)=f(ge)) for fe E*, e€E, and ge S.

The following lemma will not be used in the rest of the paper, though it seems
appropriate to record it here for the sake of completeness.

Lemma 1. 4.3. Suppose I' acts on X without reversing orientation, and let R be a
field in which mD is invertible. Then cup product and the identification H"(F R)=R
induce # -equivariant perfect pairings

() H/(I',Eyx H""(I', E*) > R
and

(i) HI(I', Eyx H{™"(I', E*) — R.

Proof. 1f I' is torsion free then the Poincaré duality theorem ([7], p. 20—40)
assures that the pairing (i) is nondegenerate. In the general case let I’ be a torsion free
subgroup of finite index in I' such that [I": I''] is invertible in R. Let n: X — X, be
the canonical projection. For each RI'-module M and each integer r>0 we consider
the maps

n*: Hy(T, M) — HL(I', M), n,: H.(I', M) — H.(I'", M)

where H, denotes either H or H,. Since 7, o n* is multiplication by [I": I''] which is
invertible in R we see that 7, is surjective and =n* is injective. If x € H' (I, E) satisfies
{x,y>=0 for every ye H "(I',E*) then 0={(x, n,(2)) ={(n*(x),z) for all
ze H*"(I'’, E*). Since I'" is torsion free we see that n*(x)=0. But n* is injective, so

x = 0. Thus the pairing is nondegenerate on the left. The right nondegeneracy is proved
similarly.

Next we check that (i) is s#-equivariant. To fix ideas we suppose E is a right RS-
module. Let xe H!(I', E) and ye H* "(I', E*). For ge S we have

(XT ) =<m(8)y o L(®)* o m(g™)*x, y) ={x, m(g™ ")y o L(8)y o m()*y) =<x, T, ).

The canonical maps H}(I', E)— H*(I', E) and HX*(I', E*) — H*(I', E*) are
dual under the pairing (i) and commute with 5. Thus (ii) is a consequence of (i). [

2. Systems of Hecke eigenvalues mod /

In this section, we prove two general theorems (2.2 and 2. 4) about systems of
Hecke eigenvalues (mod/) occurring in the cohomology groups of a fixed arithmetic
group I'. As mentioned in the introduction these results generalize known statements
about classical modular forms [19], [29], [31].

We begin by defining precisely the objects to concern us for the rest of this
paper. Let / be a rational prime and let Z, be the ring of rat1ona1 numbers with
denominators prime to /. We make the following assignments.
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G = a reductive linear algebraic group scheme defined over z,.
I' = an arithmetic group in G(Z,)).
(I', §) = a Hecke pair.
A =the Hecke algebra #(I", S).
& =a finite dimensional representation of G defined over Z,.

E =a I'-stable finitely generated Z-module in &(Z,,) such that Z,E=&(Z,).
We will call such an E an /-rational ZI'-module. We also let

O = the ring of algebraic integers in the algebraic closure Q of Q.

A =a prime ideal in @ lying over /.

We will identify @/4 with the algebraic closure of the finite field with / elements via a
fixed isomorphism 0/A=x F,. If we reduce an integral object mod/ or 1, we use a bar to
denote the result. The completion of ¢ at A will be denoted by 0,.

Lemma 2. 1. Suppose # is commutative. Let k be a field, and V be a (left or right)
k S-module, finite dimensional over k. If ®: # — k occurs as a system of eigenvalues in
H'(I', V), then ® occurs in H' (I', W) for some irreducible k S-subquotient W of V.

Proof. If V is not already irreducible, we have an exact sequence of kS-modules
0—V,—>V—>V,—0 with nonzero ¥, and ¥,. We get an exact sequence of -
modules H'(I', Vy) > H'(I', V) — H'(I", V,). If a ®-eigenvector maps nonzero into
H'(I', V;), & occurs in the latter. Otherwise, this eigenvector is in the image of
H'(I', V) and & occurs in H'(I', V}) by proposition 1.2.2. The result follows from
induction on dim, V. [J

Theorem 2. 2. Suppose the Hecke algebra # is commutative. Given an integer r,
Jorm the set Z={®: H# — F} with & running through all systems of eigenvalues
b:. H# — O, occurring in @ H'(I', E® O,), where E runs over all l-rational Z.I'-modules.
Then Z is finite.

Proof. Let J< G(F,) be the reduction of S mod/ Then J is a finite semigroup
with cancellation laws and is therefore a finite group. Let {V} be a set of
representatives of isomorphism classes of irreducible finitely generated F,J-modules.
This is a finite set (see, e.g. Part III of [30]). Define the set Z, ={¥: # — F} where
¥ runs through all systems of eigenvalues occurring in @ H"(I', V), V running over
{V'}. Each H'(I', V) is finite-dimensional over F,, so Z, is a finite set. We will show
that Z is contained in Z,.

Let E and @ be as in the statement of the theorem. By lemma 1. 2.4 there is a
discrete valuation ring R<Q of finite type over Z,, and with maximal ideal RN A,
such that @ takes values in R and occurs in H'(I', E® R). Then from proposition
1. 2.3 it follows that ® occurs in H'(I', E® R) ® R/(A ~ R). From the Bockstein exact
sequence we know this last injects into H'(I, E® R/(2 ~ R)), which injects into
H (I', EQF,). So & occurs in the latter.
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Now S acts on EQF, via the reduction map S — J. By lemma 2. 1, we see that
@ occurs in H'(I', V) for some ¥ in {V}. So @ is in Z,. [J

Let E be an /-rational ZI'-module and e be a nonzero element of E. Set

S(e)=1{geG(Z)|geeTe},
Si(e)={ge S(e)|ge=¢},
I'n={gerl |geeF}e}.

Proposition 2.3. Let S be a subsemigroup of S(e) which contains T and set
Fy=rnsS(e), S;=SnS\(e) and S;=T,S,. Then (I'y,S,)<(I'y, So)< (T, S) are
compatible Hecke pairs and I'y normalizes (I'y, S,).

Proof. Clearly Iy and I'; have finite index in I', so I';, I'y are arithmetic, and
G(Z,) commensurates them. Thus (I'y, S,), (I'y, Sy) and (I', S) are Hecke pairs.

We will prove only the compatibility of (I';, S,) to (I, S). The other two
compatibility statements are easy consequences of this one. We must verify conditions
(b) and (c) of definition 1.1.2. Clearly I'S, = S. If g€ S then ge=7ye for some yerl.
Thus y"'ge S, and it follows that g e I'S; proving (b). If y=gh ' eI with g, he S,
then

ve=(gh™e=(gh " Yhe=ge=e,
soyel;. Thisshows I'n S, S;' =TI, whichis (c). [

Theorem 2.4. Let N, D be as in (1.4.1) and suppose | does not divide D. Let
S, Iy, I'y be as in proposition 2.3 and ¢: I'y/T'| — Z¥ be the unique character satisfying
ae=c¢(a)e for all a in I',.

If # is commutative and E is irreducible as an F,TI'-module, then for each system of
eigenvalues ®: # — O, occurring in HY(I', EQ O,) there is a system D H — O,
occurring in H¥(I'y, 0;) (¢™) such that $=5,.

Proof. Let S, S, be as in proposition 2.3 and let &: S, — Z} be the unique
extension of ¢ which is trivial on S;. Then the map y: (F,) — E defined by y(r)y=reis
Sp-equivariant by the definition of &. We can therefore draw diagram 1.3.3 with
F=(Z,), and F=(F),

The image of B(y): Ind (I, I'; (F,),) > E contains e and is therefore a nonzero
F,I'-submodule of E. Since E is irreducible we see that S(y) is surjective. Theorem
1.3.5 (ii) tells us that B is surjective. Since H"**(I'y, (Z,),) vanishes, theorem 1. 3. 4 (a)
shows that there is a system of eigenvalues @, occurring in H™ (I, (Z)),) for which
¢, =&. The theorem is now a consequence of lemma 1. 1. 5. 0

Remark. For the sake of simplicity this result has been stated only for the case
when E is irreducible. However a similar result is true for reducible £ if we replace e
by an element of some irreducible subquotient of E and define S, I' 1» Iy as before.

We close this section with an investigation of the irreducible representations of
G=GL(n). We first give a few preliminary definitions and remarks.
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Let T be a Young tableau with r=r(T) rows of lengths g, > ---=g,>0. Let
g=g(T)=g,+ - +g, and number the positions of 7 from 1 to g in lexicographic
order. Let % be the symmetric group on {1,..., g}. As in [36], Chapter IV, there is a
unique idempotent Cr e QY such that

pCr=Cyp, Crq=sgn(q)Cr

for all p, g € &, such that p preserves the rows of T and g preserves the columns of T.
In fact

1
Cr=— 3 sgn(qg)pq
Ut pgq

where the sum is over all p, g as above and u; is a positive integer which divides g!.

Now let G=GL(n) and W =Q" be the standard representation of G over Q. The
symmetric group % acts on ®‘ W by permuting the factors. Let W= Cr- @’ W. As in
[36], theorem 4. 4F, it follows that a finite dimensional rational representation ¥ of G
is irreducible if and only if there is an integer v and a Young tableau T with r(T)<n
such that VW, ®det( ).

We fix a tableau T with r =r(T)<n. We assume that the prime / is greater than
g=g(T), and as usual denote reduction modulo / by bar. Let M=Z"< W be the
standard lattice and set E;=Cr- @ M W;. Then M and E, are [-rational ZI-
modules for every arithmetic group I'c SL(n, Z).

Next we fix I' to be SL(n,Z). Then the reduction map I — SL(n, F,) is
surjective and our assumption /> g implies Ey is irreducible as an F,I'-module. Define
'y (1) to be the group of all y € I' which are congruent modulo / to an upper triangular
matrix with ones on the diagonal.

We will identify M with the space of n-dimensional column vectors over F, with
the usual left action of G(Z,). Let e, =(1,0,...,0),...,e,=%0,...,0,1) be the
standard basis of M and set

er=Cr-(®"e)® - ®(®%¢)) € Er.
One can check that I', (/) fixes e;.

We take for S the set of all ge M,(Z) with lydet(sc). Then S<S(e).
Transposition defines an anti-isomorphism of S which leaves invariant the double
cosets I'al’. Thus # = (', S) is commutative ([32], proposition 3. 8).

Proposition 2. 5. Let V be an irreducible finite dimensional rational representation
of GL(n, Q), and let ®: # — O be a system of eigenvalues occurring in H¥(I', V) with
nn-—1)
N =
2
I'y intermediate to I' () ST and a system of eigenvalues ®, occurring in H¥(I",, ©,) such
that =@,

. Then for sufficiently large | and every A< O extending |, there is a group

Proof. The integer N in the proposition is the virtual cohomological dimension of
I'. Let m and D be as in (1.4.1). Let T be a Young tableau and v>0 be such that
V=Wr®det( )" The conclusion of the proposition then follows from theorem 2. 4 if
we let / be greater than g(T) and relatively prime to mD, and take I', to be the
stabilizer of e;. [J
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3. An example

In this section we combine the results of the first section with the theory of
automorphic representations to prove the existence of torsion classes in the coho-
mology of certain subgroups of SL(3, Z) (see theorem 3. 5. 3). To prove this theorem
we need three lemmas which in principle are “well known”. The first (proposition
3.2.1) states that any system of Hecke eigenvalues occurring in the cohomology of the
boundary of the Borel-Serre compactification corresponds to a reducible Galois
representation. The second (lemma 3.3.2) is a vanishing statement for interior
cohomology with coefficients in a non self-dual representation. The third (lemma
3. 4. 3) concerns the existence in cohomology of the symmetric squares lift of a classical
modular eigenform.

All of this is most easily understood in an adelic setting. Thus we begin by
adelizing the cohomology groups and their associated Hecke algebras.

Notation. We will write A for the adeles of Q and A, for the finite adeles. If B is
an adelic object then we let B, B,, B, be the infinite, respectively finite, respectively p-
adic components of B. For example, if geGL(3,A) then g,eGL(3,R),
g,€GL(3,A ), and g,e GL(3,Q,). Similarly, if y:A* — C* then y,:R* — C*,
xr: Af — C*, and y,: Qf — C*.

3.1 Adelization of the cohomology

Let G;=GL(3), Z be the‘ center of G;,Z,=Z(R), and K =SO(3). Then
X=G;3(R)/Z, K, is the symmetric space of G;. To each compact open subgroup
K, = G5(A,) we associate the topological space

Xy, =G3(Q\G3(A)/Z, K K,
This space has finitely many connected components and moreover, there are arithmetic
subgroups I';= SL(3,R), i=1,..., h, such that Xk, 1s the disconnected union
) .
X, = U T\X.

F=
i=1

Let E be a finite dimensional irreducible representation over C of the group
G5 (R). The action will be a left action. We describe a sheaf Ej , over Xy by describing
its local sections. Let n: G3(A)/Z, K K, — Xk, be the natural projection and let U be
an open subset of Xy . Then
s is locally constant and
Ex (U)y={s:n'(U)—>E |forall geG4(Q) and xen ' (U)
5(8X) =g - 5(x)

We can now form the cohomology groups H* (Xk EK,)- If K is a compact open
subgroup of K, then we have the pullback map

3.1.1) H*(Xxf, EK,) - H*(XK',, EK})-
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We adopt Harder’s notation [15] and write
H*X, By< lim H* (X, By,

even though the symbols X, £ are given no independent meaning,.

Right translation by g€ G, (A;) induces maps

X, = Xpigyg G3(Q)xZ, Koy Ky — G (Q)xgZ,, K., ('K 2)

which in turn induce isomorphisms in cohomology |

(3.1.2) H*(Xx,, Ex)) @& H*(X,-1x,4 Bk, )

by pullback. The maps R(g) commute with the inclusions (3.1.1) in the obvious way.
Thus the maps (3.1.2) induce an automorphism of H*(X, E). The resulting map
G3(A,) — Aut (H* X, E)) is an admissible left action. Moreover, if K, is a compact
open subgroup of G;(A,) then

(3.1.3) H*(X, EY"r = H* (X, Ey,).

For a positive integer N we define K(N)={ge [1,G3(Z,) | g=1(mod N)} and
say that a compact open subgroup K; =S G3(A,) has level N if N is the least positive
integer for which K(N)< K.

For K, of level N we set

3.1.49 Sk, =K, - ];IN (G5(Q,) N M, (Z,)).
P
where M;(Z,) is the set of 3 x 3 matrices with entries in Z,. Then (K, Sk ;) is a Hecke
pair and we may form the Hecke algebra H =H (K, Sk,). For each prime p not
dividing N let T,,, T, ,, T, ;€ # be the elements associated to the following double
cosets: )

p 0 0
Thh— K {0 1 0 K.,
0 0 1/,
p 0 0
T,,«—K,|0 p 0]|K
1 P2 4 r
(3-1.5) 00 1),
p 0 0 '
Tp’3 « Kf 0 p 0 Kf’
0 0 p/,

Then 5# is commutative and is generated by the set {Tp1, Ty, T,3: AN} Asin § 1.1
H acts on H*(X, E)® and thus also on H*(Xg,, E‘Kf) by transport of structure.
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The center Z(A;) acts on H*(Xy,, Ey ,) as a group of nebentype operators. For
a e AT we write [a]g, for the nebentype operator associated to the central element al.
Let y,: Z, — C* be the central character of E. Then a simple calculation shows that
for a e Q* we have

(3.1.6) a1k, = o (ac)-
Thus the characters of Z(A,) occurring in H*(Xy,, Ey ,) are Hecke characters of type
o and conductor a divisor of N.

We would like to relate this adelic Hecke algebra to the Hecke algebras of sections 1
and 2. To do this it is convenient to impose the following condition on K:

(3.1.7) det(K,) =1 Z%.

Under this hypothesis, the strong approximation theorem for SL(3) implies
K;G$ (Q)=G;(A))

where G5 (Q) is the subgroup of G;(Q) of matrices with positive determinant. In
particular if we set

3.1.8) I'=K,nGy(Q), S=S¢,nG(Q
then the Hecke pairs (I', §) < (K, Sk,) are compatible and the natural map
(3.1.9) v H(Kp, Sg,)— H (T, S)
is an isomorphism. Moreover the map
Xr— Xy, T'goKy—G3(Q) (8, DKL K,
is a homeomorphism, and the induced isomorphism in cohomology
(3.1.10) H* (X, Ep) — H*(Xy,, Ey)

commutes with the action of #'(K;, Sg,).

Of special interest to us will be the groups

%* L3 *
Ki(N)=<g€ellGs(Z,) | g=[* * *] (modN)p,
i 0 1
* * *
(3.1.11) Ko(N)=<gellGs(Z,) | g=[* * »| (modN)},
p
0 0 =

Iy(3, N)=K,(N) n G5 (Q),
I'y(3, N)=Ko(N) n G (Q).
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Then K,(N), Ko(N) satisfy (3.1.7) and we can apply the above remarks. The group
I',(3, N) normalizes I';(3, N) so that the quotient group acts on the cohomology of
I'y(3, N) as a group of nebentype operators. For ae[],Z} let [a] denote the
nebentype operator associated to an element of I'y(3, N) whose lower right hand
corner is congruent to ¢ modulo N.

The following dictionary is easily established.

Proposition 3. 1. 12. Under the identification

H*(Xg,wy> Ex,o0) = H*(Xr, 3.8y Eryany)

of (3.1.10) we have the following identification of adelic Hecke operators and I'; (3, N)
double coset operators.

For p¥N
p 0 0

O 7,,—T G3N)[O0 1 0])I,@3,N),
0 0 1t
p 0 0

(i) T,,«—Ty3,N)[O0 p 0 }I,(3,N).
0 0 t

For aell,Z}
(iii) [aly, > [4].

3.2 Cohomology at infinity

Let K, = G3(A,) be a compact open subgroup of level N satisfying (3. 1. 7) and let
H =H (K;, Sk,) be the associated Hecke algebra. Let XK be the Borel-Serre
compactlﬁcatlon [4] of Xg,. We will write dXg, for the boundary of XK If Eis a
finite dimensional 1rreducxb1e representation of G3(R) then the sheaf EK , over Xy
extends to a sheaf on X, k,- In this section we examine the systems of Hecke exgenvalues
occurring in the cohomology groups

H*(0Xy,, Ex).

As 1in the last section this is closely related to the problem of determining the structure
of the G;(A,)-module

H*(0X, E)¥ 11m H*(0Xy,, Ey,).

X
We will prove the following result.

Proposition 3. 2. 1. Let E be a finite dimensional irreducible complex representation
of G3(R), let K, =G3(A;) be a compact open subgroup of level N, and let

®: # (K;)— C

be a system of eigenvalues occurring in

H"(0X,, E).
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Set by, =P(T,,), b, ,=®(T,,) and b, , = ®(T,,5) for each prime p not dividing N. Let
F be a number field which contains all of these eigenvalues and O, be the completion of
the integers of F at a prime A with residue characteristic .

Then there is a reducible Galois representation
P2 Gal(Q/Q) — GL(3, 0,)
unramified outside NI such that for every py NI we have
det (1 —p;(Frob,)T)=1-5, T+pb, ,T?*—p*b, s T2

The structure of the boundary 4X, , 1s described in [21]. It is a union of three
subspaces, Wp, x , i=0,1, 2 associated to the three standard parabolic subgroups

* % * * * * * * *
Po=[ 0 x =« |; Pi=[* x %], P,=[0 % «
0 0 =« 0 0 =« 0 = =x

The space Wp k, is homotopically equivalent to the space  P(Q)\G3(A)/K, K.
Moreover, we have

Weox, = We,.k, O We,x,

Thus we may form the Mayer-Vietoris sequence as in [21] but with twisted
coefficients.

(3.2.2) = O (W s Ex,) — HT (0X,, Ey)
- Hr(WP‘,Kf’ E~K,) @ Hr(WPz,K,s EK,) e
Passing to the inductive limit over K, we obtain an exact sequence
(3-2.3) = H Wy, E)— H'(0X, E) — H Wy, EY® H' Wy, ) — ...

It is easy to check that the action of G3(A;) commutes with this sequence. It follows
that (3. 2.2) is a. sequence of #-modules.

We introduce a bit of notation. For an algebraic subgroup H of G; we will write
Xu,x, for the space

H(Q)\H(A)/KZ K]

where K=K, n HR) and K¥ = K;n H(A;). We will use the same symbol Ey, for
the restriction of Ey ; to Xy g, and set

H (Xy, BY< lim H' (X, . E).
K

s

Clearly, H'(Xy, E) is a left H(A,)-module.
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Lemma 3.2.4. Let P be one of the groups P,, P,, P,. Then there is a natural
isomorphism of G,(A,)-modules

Hr(WPs E) = IndIG’(SA(\t)!) Hr(XPy E)9

where Ind is defined as in 1.1 except that functions are now required to be locally
constant.

Proof. This is a consequence of the structure of the boundary (see [21], esp. 3.6
(2), and compare [15], p. 117). O

Now write
P=L-U

where L is the Levi component and U is the unipotent radical of P. Let % be the Lie
algebra of U.

Lemma 3. 2.5. There is a natural isomorphism of P(A)-modules
H' (%, By @ H(&, A'®, E)).
stet=r
Remark. Note in particular that the action of U(A,) on these groups is trivial.

Proof. For each K, consider the fibration

Xu.,

Associated to this fibration there is a spectral sequence

~

HS(XL,Kf’ ﬁt(XU,Kf’ E~Kf)) = Hs+t(XP,Kf’ EKf)‘

By Van Est’s theorem [35] we have an isomorphism H' (Xy &, E)~H'(%, E). Thus
after passing to the inductive limit over K, our spectral sequence takes the form

E3'=H*(X,, H'¥, E)) = H**'(%,, E).

Since E3'=0 for s >1 the spectral sequence degenerates at the E, term and the lemma
follows. [

Proof of Proposition 3.2.1. If & is a system of eigenvalues occurring in
H™(0Xg,, EKf) then (3. 2. 2) implies @ occurs in H*(Wp, &, EKf) for some i=0, 1, or 2.
Let P=P, and P=L-U be its Levi decomposition. Lemmas 3. 2.4 and 3.2.5 show
that there is a choice of s and ¢ such that @ occurs in

(IndZ:5% He(X,, A (U, E)))%.
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Consider first the case P=P,. Then L=L'x T where L'=GL(2) and T=GL(1).
By ([14], Theorem 2. 6. 1) we know that H'(X;,-) vanishes for i>0. Thus a simple
spectral sequence argument yields an isomorphism

H*(X,, AU, E))~ H*(X,., A°(X;, H (¥, E))).

To simplify the notation we write F for the L'(R)x T(A,)-module H°(X,, A" (4, E)).
Then F decomposes into a sum of character spaces under the action of T(A,):

F=@F,
X

where y runs through Hecke characters of T(A,). Thus our system of eigenvalues @
occurs in one of the spaces

(Indg2{4 VH (X, F))%.

Now let ¢ be a &-eigenvector in this space. Write n for the representation of
P(A;) on H*(Xy, F,), and =’ for the restriction of = to L'(A,). Then ¢ may be viewed
as a function

®: G3(Ap)/K, — HS(XL'a Fx)

satisfying ¢ (bg) =n(b) ¢(g) for all b in P(A,). Since P(A;)-[1,G5(Z,)=G,(A,) there
is a y in [],G5(Z,) for which ¢(y) is nonzero. Fix a prime p not dividing the level of
K, and let T, denote the Hecke operator associated to the double coset

L'(z,) (f) ?) Lz,

in the usual way. We now show that ¢, = ¢ (y) is a T,-eigenvector and express b, , in terms of
the eigenvalue. In this calculation we will use the fact that ¢ is L' (Z )-invariant and also the
fact that ¢ is invariant under left translation by U(Q,).

bp,l Po = (Tp,l @) (v)

o1 P a b b1 1 0 0 1 0 0
=3 oly{0 1 0 +> 0lyl0 p ¢ +o[y{0 1 O

“b=0 oo 1/,/) °° 00 1/, 00 p/,
-1 p a b p—1 1 00 1 0 0
=Y ¢ 01 0)y1+3 0 0 p clyl+o 01t 0}y

b0 oo 1/,/)] ° 00 1/, 00 p/,

p1 p-1
(P 4 (1 0
= n + i + 5
a,bz—-zo <0 1>p o c§0 (0 p)p(po 1p(P)®o

=pT, 00+ 3, (P)@o-

101 Journal fiir Mathematik. Band 365
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Thus we see that ¢, is a T,-eigenvector. Let a, be the eigenvalue. A similar calculation
can be carried out for the operators T, ,, T, ;. If we let  be the central character of
L'(A,) acting on ¢, then the result of these calculations is summarized by

bp, 1 =pap + Xp(p)7

by, 2 =1,(P)a, +p*¥,(p),

bp.3 = Xp(p) d/p(p)

We know from GL(2)-theory [8] and from class-field theory respectively, that
there are Galois representations

po: Gal(Q/Q) — GL(2, 0,),
p,: Gal(Q/Q) — GL(1, 0))
unramified outside N/ and satisfying
det (1 — p (Frob,) T)=1—a, T+py,(pT?,
det (1 — p,(Frob,)T)=1—y,(p) T
for all p¥NI. The action of the Galois group on l-power roots of unity gives us a

character w satisfying w, (F rob,) =p. Set p; = (py ® we,q) @ p,. A simple calculation
shows that p, satisfies the conclusion of the proposition.

The proofs for the cases P=P,, P, are similar. []

3. 3 Relative Lie algebra cohomology

Suppose E is a finite dimensional irreducible rational representation over C of
G3(R). Then for compact open subgroups K, of G3(A;) we have isomorphisms ([5],
VII 2.5)

H*(sl3, s03; C* (G5(Q)\G5(A)/Z,, K/)®E)=H* (Xx,» Ex,)
where sl3, so; are the Lie algebras of SL(3, R), SO(3) respectively, and C*® denotes

smooth functions. These isomorphisms commute with the maps (3. 1. 2). Thus, passing
to the inductive limit over K, we obtain an isomorphism of G, (A,)-spaces

(3.3.1)  H*(sly, 5055 C* (G5 (Q\G5(A)/Z,.) ® E)= H*(%, E)

where C*( )° is the space of K(1)-finite smooth functions. We will use this
isomorphism in lemma 3.4.3 to compute eigenvalues of Hecke operators.

In 3.5 we will need the following vanishing result. Recall the definition of the
interior cohomology H, from section 1. 4.



Ash and Stevens, Cohomology of arithmetic groups 215

Lemma 3. 3.2. Suppose E is not isomorphic to its own contragredient. Let I' be an
arithmetic subgroup of SL(3, Q). Then

H}(I', E)=0.
Proof. Any interior cohomology class ¢ € H¥*(I', E) can be represented by a
smooth compactly supported E-valued differential form on X,. We choose an
admissible scalar product on E as in ([3], § 5. 1; [5], I1 §2). Then ¢ can be represented

by an L? harmonic form ([23], p. 165). Propositions 5. 5 and 5. 6 of [3] now show that
¢ is in the image of the canonical map

(3.3.3) H*(sl;, s05; L2 (I'\SL3, R))* ® E) — H*(", E)

where L3, ( )™ is the space of smooth vectors in the discrete spectrum of L%, The left
hand side of (3. 3. 3) decomposes into a finite direct sum

(3.3.4) @ H*(sl3, s03; H* @ E)
where for each i, H® is the space of smooth vectors in a complete irreducible unitary
representation of SL(3, R). But proposition 6. 12 IT of [5] and our assumption that E
is not self dual imply that the space (3. 3.4) vanishes. This proves ¢ =0. [J

3. 4 Symmetric squares

For the rest of the paper g denotes a nonnegative integer and R is a ring in which
g! is invertible. If M is a free R-module of finite rank there is a canonical splitting

g9
RQM=Sym* M)W
where Sym?¢(M) is the module of symmetric tensors. The natural isomorphism
g g
(@ M= (M*)

induces an isomorphism Sym? (M )* = Sym? (M*).

Definition 3.4. 1. For n>1 let M, be the left GL(n, R)-module of column vectors
R" and set S7(R)=Sym?(M,). '

If X,,..., X, is the standard basis for M, we may identify S7(R) with the module
of degree g polynomials over R in (X,. .., X,). The action of 0 € GL(n, R) is given by
(6F) (Xy,..., X,)=F((X,,..., X,)o). Similarly if ({;,..:,&,) is the dual basis in M}
to (X,,. .., X,) then S;(R)* may be identified with degree g polynomials in (£,,..., ¢,).
The G L(n, R)-action is given by

6G) Erse s E) =G ((Epsn . s &) '07Y)

where ‘o is the transpose of o.
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Multiplication by 4"= Y X; ® ¢; induces a GL(n, R)-morphism
i=1
AVI
S5-1(R) ® S7-1 (R)* — S7(R) ® S, (R)*.

Definition 3.4.2. (a) V,(R) is the GL(2, R)-module S2(R).
(b) W,(R) is the GL(3, R)-module coker(4}).

Elements of W,(R) will be denoted by representatives in Sy (R) ® S5 (R)* when no
confusion will arise.

Our assumption that g! is invertible in R assures that V,(R) is an irreducible
GL(2, R)-module and also that W,(R) is an irreducible GL(3, R)-module.

Note that V,(C) runs through all irreducible rational representations of SL(2, C)
and W, (C) through all self-dual irreducible representations of S L(3,C) as
g=0,1,2,....

Recall the definition of H, from section 1.4 and the definition of T

»1> I, from
the end of 3. 1 where we take N=1.

Lemma 3.4.3. If 6 in H!(SL(2,Z), V,(C)) is an eigenclass for all the Hecke
operators T, with eigenvalues a, then there exists @ in H}? (SL(3, Z), W,(C)) which is an

eigenclass for all the Hecke operators T, and T,, with eigenvalues respectively
P ¥(ai—p**t) and p~9(a%—p**?) (sic).

Remark. Note that “eigenclass” implies by definition that @ and @ are nonzero.

Proof. Given 6, there exists a holomorphic cusp form in the classical sense of
weight g+2 for SL(2, Z) with the same Hecke eigenvalues as @ ([32], Chapter 8).
Corresponding to the latter we have an irreducible cuspidal automorphic representation
n=Q@mn, of GL(2, A) with trivial central character ([11], 5.19). The local represen-
tation =, is the discrete series representation with lowest weight g+ 2 and trivial
central character; for each prime p, m, is a principal series Eepresentation m(thp, iy ')

1
where y, is an unramified unitary character satisfying a,= qu(up( p)+u, (p) ([11],
5.21). By [25] we know that n is not a monomial representation.

Gelbart and Jacquet ([10], theorem 3; [12], theorem 9. 3) have shown that given
a nonmonomial = as in the last paragraph there exists an irreducible cuspidal
automorphic representation IT=® I1, of GL(3, A) which is a “symmetric square lift”
of . This means that for each prime p, 11, is the principal series representation
(3,1, u;%) ([121, §3). The representation [T, is described in terms of the associated
representation of the Weil group. This can be translated to an explicit description of
I1,, using theorem 4. 4.1 of [18]. In this way one finds that IT, is induced from the
standard parabolic subgroup P = GL(3) of type (2, 1) as follows. Let PR)=°M-A4-N
be the Langlands decomposition of P(R) ([5], III 3.2). Then °M is isomorphic to

SL*(2,R)={ge GL(2,R)|det(g)= +1}.

Let g,,, 3 be the discrete series representation of M with lowest weight 2g+ 3 and y,
be the trivial character of AN. Then IT_ is the unitarily induced representation

Iposgearo (53, 1 3.2).
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Since IT is a direct summand of the space LJ(G5(Q)\G;(A)/Z,)™ of smooth L2
cuspidal functions we have an inclusion of G;(A )-modules

H?(sly, s03; 11 @ W,(C)) g H? (sl5, s05; LE( )™ @ W,(C)).
Taking K(1)-invariants we obtain an inclusion of # (K(1), Sg,)-modules
(3.4.4)  H3(sly, s05; 11, ® W,(C)) ® ® M15**»
p

& H3(sly, so3; L5(G3(Q\G3(A)/Z, K(1))* ® W,(C)).

By ([2], cor. 5.5) the natural map from this latter group to H*(SL(3, Z, W,(C)) is
injective and has image contained in H?(SL(3, Z), W,(C)).

On the other hand a calculation based on ([5], III 3.3) proves
H? (s, sos; 11, ® W,(C))=C.

Clearly I17*%» is one dimensional for each prime p. Hence the left hand side of
(3.4.4) is isomorphic to C. The eigenvalues of 7, , and T, , acting on this space are
easily calculated and seen to be those given in the statement of the proposition. [J

3.5 Torsion

If / is a rational prime, the Teichmiiller character is the unique character
w: F¥f — ZF satisfying the congruence w(a)=a (mod/). Evaluation of w on the lower
right entry of a matrix in I'y(3, /) induces a character I'(3, /)/I';(3, /) — Z} which we
will also denote by w.

Proposition 3.5.1. Let 6 be as in Lemma 3.4.3, [>g a rational prime, 142, 3,
and K a finite extension of Q. Let 1 be a prime of K lying over | and O, the ring of
integers in K;. For any p+1, let T, , and T, , denote the Hecke operators associated to
Ii3,0)asin3. 1. Set b,=p~¢(ai—p**").

(1) Then for a suitable choice of K there is a nonzero
0°e H*(I',(3, 1), S7(0)) (@)

such that ©° is an eigenvector for all T,, and T, ,, p=*1, with eigenvalues b, , and b, ,
respectively, satisfying the congruence b, ,=b, ,=b, (mod 1).

(2) If we fix g and 0, then for sufficiently large | the class ©° is a torsion class.
Proof. We make the following assignments:

I'=SL3,Z), TI'y=r,G,10,
S=Skqy N G5 (Q),
So = Skey N G5 (Q). .
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As in Lemma 1. 2. 4, we know that there is a finite extension K of Q which will
contain all the Hecke-eigenvalues appearing in cohomology groups we need to deal
with. We fix such a K and set R=0,, P=(A).

By lemma 3.4. 3 there is a class ® in H? (SL3, z), W,(R)) such that for every
prime p+1, © is an eigenvector for T, , and 7, , with eigenvalues b,=p~9(ai~p°*H).

We define y: SJ(R)® R,-» — W (R) by Yy(F®1)=F® &4 (notation of 3.4).
This is an Sy-morphism.

As in 1.3 we have an RS-morphism B(): Ind (I, I', S}(R) ® R,-,) — W,(R)
and we may draw diagram 1. 3. 3. Clearly, X{ ® ¢4 is a nonzero element of the image
of B (). Since E is irreducible we must have () is surjective. By theorem 1.3.5, B¥
is surjective. Assertion (1) follows from theorem 1.3.4 (a) and lemma 1. 1.5,

A theorem of Deligne [8] proves that there is a two dimensional irreducible -
adic representation ¢, of Gal(Q/Q) which is unramified outside / and such that the
characteristic polynomial of 0;(Frob,) is 1—a,T+pT? Let o2 be the symmetric
square of this representation and let Wy be the character of the Galois group acting
on /-power roots of unity. Then one easily verifies the identity ‘

det (1 — (6} ® w™*) (Frob,)) =1 ~b,T+pb,T? — p*T>.

By a theorem of Ribet [25], o,(Gal (Q/Q)) mod 4 contains SL(2, ®/1) for almost
all /. For such /, a7 (Gal (Q/Q)) mod A contains SL(3, O/A). Hence there is a B> 0 such
that whenever /> B, 62 mod 1 is irreducible.

Now fix /> B. We claim that @° is a torsion class. For suppose ®° were not
torsion. Then by lemma 3.3.2 we know that the restriction of @° to the boundary
does not vanish. Let b,; be the eigenvalues of T,; i=1,2,3, acting on @°. Then
theorem 3.2.1 says that there is a reducible three dimensional A-adic Galois
representation p, such that

det (1~ p,(Frob,)T)=1-b, , T+pb, , T* — p*b, , T*.

By (1) we have congruences b, , =b, , =b, (mod A). Using (3.1. 12 (iii)) and (3. 1. 6) we
find b, ; =p?w(p)~? In particular b, ;=1 (mod ). Thus we have a congruence

det (1 — p;(Frob,) T)=det (1 — (¢? ® w9 (Frob,)T') (mod 1)

for every prime p+/. But p, is reducible and ¢? ® w ¢ is irreducible, so by the
Cebotarev density theorem this contradicts the Brauer-Nesbitt theorem. O

Lemma 3.5.2. Let f and f' be two classical holomorphic cusp forms of the same
weight k for the full modular group SL(2, 7). Assume each is an eigenform for all the
Hecke operators T, with eigenvalues a, and a, respectively, for all primes p. Suppose
a,= xa, for every p. Then f and f' are proportional.

Proof. We prove the lemma by using the principle of [25] that the l-adic
representations of f and f' are “as independent as possible.”

Let E=Ql[a,|p prime] = Q[a,|p prime] and O be the ring of integers of E. For a
prime / let 0,=0 ®zZ,.
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We first show that there is a 6 € Aut(C) such that ¢(a,) =a, for all primes p. For
suppose there is no such o. Let (a, f)e Ox @ such that Ex E=Q[(a? p*)]. For
sufficiently large / we have Z,[(a?, $*)]= 0, x 0, and by theorem 6.1 of [25] there is a
prime p such that (a,, a,) = («, ) (mod /). Then (a}, a;’) generates E x E over Q. This
contradicts our hypothesis a,= *a,.

By lemma 4.8 of [25] there is a prime p such that Q[a2]=E. Since
o(a,)=a,= *a,

we have o|E is the identity map on E. In particular o(a,)=a,=a,, proving the
lemma. [O

Theorem 3.5.3. Let g be a fixed positive integer and set d(g) = the dimension of
the space of holomorphic cusp forms for SL(2, Z) of weight g +2. Then if | is sufficiently
large,

dimF, H3 (Fl (3’ l)a S; (Z))i-torsion g d(g)

Proof. The space of cusp forms mentioned above is naturally a sub-Hecke
module of H} (SL(2, Z), V,(C)) by Eichler-Shimura. Set d=d(g). By lemmas 3. 4. 3 and
3.5.2 there are d lmearly independent . Hecke eigenclasses ©;,...,60, in
H?(SL(3, Z), W,(C)) with eigenvalues p~?(a,(i)* —p?*'), i=1,...,d.

Let / be greater than g, large enough so that the d infinite-dimensional vectors

(. 5@, =), . )

are distinct (bar denotes reduction mod A), and large enough so that the conclusion of
(2) of Proposition 3.5.1 is valid. Then corresponding to these systems of eigenvalues
there are d linearly independent eigenclasses @7,...,0Q in

H3 (rl (3y 1)> Sg3 (@).))).-lorsion‘
The theorem now follows immediately. [J

Remark. In particular, the dimension of the I-torsion in H? (3,0, S2(zZy)
becomes arbitrarily large as g — oo and / is sufficiently large. Compare this with the
fact that there is no I-torsion in H'(I',(2,1), SZ(Z)) whenever /> g.
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