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Introduction 

Let E be an elliptic curve which is defined over Q and has stable reduction 
modulo a given prime p. Assuming that E is modular, one can associate to 
E a p-adic L-function Lp(E, s). (See [-Mz-SwD, A-V, Vi, Mz-T-T] for its construc- 
tion in various cases.) This function is defined by a certain interpolation property 
and is analytic for seZp. In this paper, we will assume that E has split multiplica- 
tive reduction at p. Under  this assumption the interpolation property implies 
that Lp(E, 1)=0. We will prove a formula for Ep(E, 1) which was discovered 
experimentally by Mazur, Tate, and Teitelbaum [Mz-T-T]. 

By Tate's p-adic urfiformization theory, there is a p-adic integer q~:epZp 
(which we refer to as the Tate period for E) and a p-adic analytic isomorphism 

(0.1) E(Op) - O*/q z 

which is defined over Qp. Let l o g / Q *  ~ Zp be the usual p-adic logarithm on 
Z*, extended to Q* by the convention logp(p)=0. Let ordp: Q*--*Z be the 
normalized valuation. We define the -~-invariant of E by 

logp(qE) 
(0.2) ~2p(E) = ordp(qE) ' 

Our main result (Theorem 7.1) specializes to the following. 

(0.3) Theorem. Let p be a prime >=5 and let E be a modular elliptic curve with 
split multiplicative reduction at p. Then 

L~(E, 1) 
Ep(E, 1) = ~p(E). ~2~ 

* Partially supported by grants from the National Science Foundation 
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Here L~ (E, z) is the Hasse-Weil L-Junction Jor E/Q and (2 E is the real period 
.for E. 

Let w ~ =  _+1 denote the sign in the functional equation for L~(E, z). Then, 
under our assumption that E has split multiplicative reduction at p, Lp(E, s) 
satisfies the functional equation 

Lp( E, 2 - s) = wp (N> ~- ~ Lp(E, s) 

where Wp = -wo~. Here ( �9 ) is projection to the subgroup 1 + pZp of principal 
units in Z*. If wE = - l, then Wp= + I and the above theorem is trivially true. 
Both sides of the equation vanish. If  w~ = + 1, then Lp(E, s) has a zero at s = 1 
of odd order. As a consequence of the above theorem, we see that this order 
is 1 if and only if both logp(qE) and L~ (E, 1) are nonzero. Manin has conjectured 
that logp(qe)+O whenever E is a Tate curve with algebraic j-invariant (see 
[Manl ] ,  w The Birch and Swinnerton-Dyer conjecture predicts that 
Loo(E, 1)4:0 precisely when the Mordell-Weil group E(Q) is finite. It is conjec- 
tured in [Mz-T-T] that 

ords = 1 (Lp(E, s)) = 1 + ord~ = ~ (L:,~. (E, z)). 

At the moment,  all we can prove is that the order of vanishing of Lp(E, s) 
at s = l  is at least 2 i f w ~ = - -  1 and at least 3 ifwo~= + l and L~(E, 1)=0. 

To explain the idea behind the proof  of Theorem 0.3, we will give an outline 
in the special case E = X o ( l l )  and p =  II .  For  more details see (2.11) and (5.18). 
In this case E has split multiplicative reduction at p =  11, L~,(E, 1)4=0, and 
w~ = + 1. Let Tap(E) be the p-adic Tate module of E and let 

PE: Go = Ga l (0 / Q)  --* Aut(Tap(E)) 

be the associated Galois representation. Let f~:=q ~ I ( l - q " ) 2 ( 1 - q 1 1 " )  2 be the 
unique normalized weight two newform over Fo(ll). Then the Mellin transform 
off~: is L~(E, z). We have fE]Tp=fE and, in particular, f~ is ordinary at p. 

The basic ingredient in our proof  of Theorem 0.3 is Hida's universal ordinary 
deformation of Tap(E). In our example, the universal ordinary Hecke algebra 
turns out to be the completed group ring, A = Z p [ [ 1  + p Z p ] ] .  Thus Hida's uni- 
versal ordinary deformation of Tap(E) is a free rank two A-module T equipped 
with an action of the Galois group 

p: Gal(Q/Q)  ~ AutA (T) 

such that T/Po T ~  Tap(E) where Po is the augmentat ion ideal in A. The Galois 
module T has a number  of remarkable properties, which we will describe below. 

For  each k e Zp, let ak-2: A ~ Zp be the unique continuous Zp-algebra homo- 
morphism extending the character 1 + p Zp--, Z*, t ~-~ t k- 2. For e e A we will write 
e(k) instead of Crk_2(e ) and refer to ak-2 as specialization to weight k. Let 
Pk ~- A be the kernel of ak- 2. Let Tk = T/Pk T ~ T (~)A . . . . .  Zp and let 

Pk: Gal(Q/Q)  ~ Aut (Tk) 
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be the reduction of p modulo Pk. Now fix, once and for all, an embedding 

(0.4) Q_cQ,,. 

Then p has the following properties. 

(0.5)a. pz=pE. 
(0.5)b. For  each integer k > 2 ,  there is a normalized newform fk of weight k 
and conductor dividing p such that Pk is equivalent to Deligne's p-adic Galois 
representation [D]  associated to f~ and our fixed embedding of Q into Or.  
The conductor offk is 1 precisely when k > 2  and k = 2  modulo p -  1. For exam- 
ple, f 1 2  = Ramanujan 's  A-function. For other values of k the conductor is p 
and the Nebentype character is the Dirichlet character of conductor p associated 

c * is the Teichmfiller character. to 13,) 2 - k  where r Z* --+ #p_ 1 _ Z p  

(0.5)c. Let GQp=Gal(Qp/Qp) be a fixed decomposition group over p. Then the 
restriction PI~% of p to Go, , is equivalent to an upper triangular representation 

where q~: GQ~-+ A* is an unramified character and Z: GQ,,-~ A* is the unique 
character for which ak_2.,Z=Z~ -1 o 2-k, where 7,o is the cyclotomic character 
and e~ is the Galois character associated to the Teichm/iller character by class 
field theory. 

The A-adic representation p can be used to construct p-adic analytic functions 
(in fact Iwasawa functions) which interpolate various data attached to the new- 
forms Jk, k > 2. For example, for each prime I ~ p let Frobt be a Frobenius element 
at 1 and let az= Tr(p(Frobt))eA. It follows from (0.5) b and the Eichler-Shimura 
relations that at(k) is the / - th  Fourier coefficient of/~, for each integer k > 2 .  

The Euler factors at p will play an important role in our proof  of 
Theorem 0.3. These factors can be described in terms of the representation p. 
Let %=q0(Frobp)eA*. Then for each integer k>2 ,  the p-th Euler factor of the 
complex L-function L~(fk,  z) of fk has the form [(l--c~kp-=)(1--flkp-:)] 1, 
where c~ k = ap(k) and 

{Ok-1/O:k if k >  2 and k = 2  m o d u l o ( p - 1 ) ,  
fig = otherwise. 

These numbers satisfy the congruences ~ k = % = l  and [tk=--O modulo p. We 
will refer to c( k as the unit root of Frobenius and to /3k as the non-unit root 
of Frobenius. From the above description we see that the family of unit roots 
of Frobenius {C(k}k> 2 is interpolated by the Iwasawa function %(k), but that 
the family of non-unit roots of Frobenius r tflkS cannot be interpolated by any 
p-adic analytic function of k. 

The remarks of the last two paragraphs may be summarized by saying that 
there is a formal q-expansion 

(0.6) f =  ~ a,q%A[[q]] 
n = l  
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def ctj 
such that for each integer k>  2, the specialization fk---- ~ an(k)qn of f to weight 

n--1 

k is the q-expansion of the 'p-stabilized newform' associated to fk. This is the 
cusp form fk* defined by 

(0.7) A* (z) = L (z) - [~, L (p z) 

for z in the upper half-plane [W]. In particular, the L-function of f *  is equal 
to the L-function of fk with the Euler factor (1 -fig P-~)-1 removed. 

The final ingredient we require for the proof of Theorem 0.3 is a two variable 
p-adic L-function Lp(k, s), k, seZp.  In case E is an elliptic curve with complex 
multiplication, which has ordinary reduction at p, the construction of such a 
p-adic L-function having the four properties below is due to Katz [Kz]. When 
E is a modular elliptic curve with ordinary reduction at p (e.g. if E has multiplica- 
tive reduction at p), this function was constructed in special cases by Mazur 
[Mz2]. Mazur's construction was generalized by Kitagawa [K]  for arbitrary 
ordinary A-adic cusp forms. Property (0.8)d was not treated. In this paper we 
will give another construction of the two variable p-adic L-function. The proper- 
ties of it which we need for the case E = X o ( l l )  are as follows (see Theorem 5.15 
for the general case, where we also prove an important functional equation 
for the ' improved'  p-adic L-function L*). 

(0.8)a. (Analyticity) Lp(k, s) is analytic for k, s~Zp. 
(0.8)b. (Specialization to weight two) Lp(2, s)= Lp(E, s). 
(0.8)c. (Functional equation) Lp(k, k - s ) =  --Lp(k, s). 
(0.8)d. (Specialization to the critical value s = 1) There is a factorization 

Lp(k, 1) =(l-ap(k)- ')  L*(k, 1) 

where L*(k, 1) is a p-adic analytic function of k for which 

L~(E, 1) 
L*(2, 1)= f2 E 

In fact, much more is true. The two variable p-adic L-function Lp(k, s) interpo- 
lates the one variable p-adic L-functions Lp(Jk, s) associated to the newforms 
fk, k>2,  as in [A-V, Vi]. More precisely, recall that the definition of Lp(fk, s) 
depends on the choice of a complex period (2ik~C*. This period is determined 
only up to multiplication by a non-zero element of the field generated by the 
Fourier coefficients of fk" Fix, once and for all, a choice of complex periods 
f2r k > 2, with (212 = (2 E. Then the two variable p-adic L-function Lr(k, s) inter- 
polates the functions Lp(fk, s) in the following sense. For each integer k > 2  
there is a 'period '  (2k~Qp such that 

Lp(k, s) = Ok" Lr(A,  s). 

Note  that (0.8)b says that ~ 2  = 1,  and in particular that not  all ~'~k vanish. 
Note  also that (0.8)c follows from the above interpolation property and the 
functional equation of Lp(fk, s). 
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The fourth property (0.8)d lies somewhat deeper. For  each integer k>2 ,  
and each integer So with 0 < So < k and So = 1 (rood p -  1), the p-adic L-function 
Lr(.fk, s) satisfies the following interpolation property 

(0.9) Lv(fk,So)=(l __flkp-so)(l_~[I p.'O 1). L~ (fk, So) 
(2 fk 

For a discussion of the Euler factors which occur in this expression, see [Gr].  
For So= l, the second Euler factor is interpolated by an lwasawa function, 
namely (1-av(k)-1) .  This vanishes at k = 2  and so is a nonunit in the Iwasawa 
algebra A. The function Lp(k, 1) is also an Iwasawa function in k. Moreover, 
Lp(k, 1) can be shown to be divisible in A by (1-ap(k) - l ) .  The quotient L*(k, 1) 
is an lwasawa function in k, which we regard as an " improved" p-adic L- 
function. It satisfies the interpolation property 

(O.lO) L*~(k, 1)=(1-/~kp -1) L~(A, l).Ok 
~2fk 

for all integers k_>_2. When k=2,  this reduces to (0.8)d since fi2=O, Y2y2=Y2~:, 
and 0 2 = 1. 

Theorem 0.3 is proved by calculating the linear term in the Taylor expansion 
of L,(k, s) about (k, s)=(2, 1). From the functional equation (0.8)c we see that 
Lp(k, k/2)=0 for all keZp. Hence the linear term has the form c . ( - � 8 9  
(s-1))  for some constant ceZp.  We calculate c in two ways. From (0.8)b we 
see that c=Ep(E, 1). But from (0.8)d and the fact that ap(2)=~2= 1, it follows 
that c = -2a'p(2). L~ (E, 1)/f2 E. Comparing these expressions for c we obtain 

L,~(E, 1) 
Ev(E, I)= -- 2a'p(2). (2 E 

Theorem 0.3 is therefore a consequence of the following special case of Theo- 
rem 3.18. 

(0.11) Propos i t ion .  s  (E) = - -  2 a'p (2). 

This proposition can be interpreted as follows. The analytic isomorphism (0.1) 
leads to an exact sequence 

(0.12) 0 ~ Qp(1) ~ V~ Qp ~ 0 

where V= Tav(E)| p is the Tate module of E tensored with Qp. For an arbi- 
trary continuous GQp-module M, we let H"(M) denote the continuous Galois 
cohomology H"(Gop, M). Then the isomorphism class of the exact sequence 
(0.12) is determined by a nontrivial extension class ~eHl(Qv(1)) and the 
isomorphism class of the middle term V is determined by the line spanned 
by ~ in HI(Qp(1)). Now, by Kummer theory, ordp and logp give rise to coordi- 
nates on H 1 (Qv(1)) in terms of which we get an isomorphism 

(0.13) H '  (Qp(1))~ Qv z . 
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With respect to these coordinates, the !~-invariant ~p(E) is the slope of the 
line spanned by 4. In this way the isomorphism class of V is determined by 
~2p(E) and vice-versa. 

Now let qS, Z: Gop--'A* be the characters of (0.5)c. Let T(q) 1) denote the 
underlying free rank two A-module of the representation p with Gop acting on T 
via p | (p-~. Then (0.5)c gives us an exact sequence 0-~ A (Z 0)--* T(q) ~)~ A ~ 0 
where 0=~0 -2. For each keZp we "specialize this exact sequence to weight 
k" and tensor with Q,  to obtain an exact sequence 

(0.14) 0 ~ Q,(Zk Ok) --* Vk ~ Qe --* 0 

where )~k=Ok_zoZ and I//k=O'k_2OO and Vk=T(~0 l)k@Q p. NOW, as before, 
the isomorphism class of V k is determined by an extension class ~keH 1 (Qp(Zk Ok)) 
up to homothety. Clearly, ~k+0 for k sufficiently close to 2. But for k=g2 the 
cohomology group H~(Qp(Zk Ok)) is one-dimensional. Hence the isomorphism 
class of Vk is completely determined by the character 7~k Ok' As k approaches 
2 in Z, ,  the sequence (0.14) flows into the sequence (0.12). Thus we should 
expect that the sequence (0.12) is completely determined by the characters Ok 
for k in a neighborhood of 2. More precisely, what we prove is 

(0.15) d Ok (Frob~)dk k = 2 = ~2p (E). 

Since 0k (Frobp)= ap(k)-2, this is equivalent to proposition (0.11). This completes 
our outline of the proof of Theorem 0.3 in the special case where E = X o ( l l )  
and p = 11. 

In general, we may start with an arbitrary newform f of weight 2 over 
F~(Np)(p.~N) which is split multiplicative at p (i.e. the pth Hecke eigenvalue 
of f is + 1). In this case f corresponds to a simple quotient of the Jacobian 
variety of XI(Np)  which has multiplicative reduction at p. Our Theorem 7.1 
is a strengthened form of Theorem 0.3 in which the ~2-invariant o f f  is defined 
as in [Mz-T-T]. For example, if E is a modular elliptic curve with split multiplica- 
tive reduction at p and if ~ is a primitive Dirichlet character (not necessarily 
quadratic) for which 0(p)= 1, then we have Lp(E, 0, 1)=0 and Theorem 7.1 

implies Ep(E, O, 1)= ~p(E) Lo~(E, O, 1) where OE, o= f2~/z(U)) with f2~. being the 
f2v.,~ 

real or imaginary period of E depending on the sign of 0- This is the "local" 
property of the t.~-invariant discovered numerically by Mazur, Tate, and Teitel- 
baum in [Mz-T-T]. 

Some interesting problems arise in the general case which are not apparent 
in the special case E = X 0 ( l l )  described above. In the general case, as in the 
special case, Hida has constructed a finite A-algebra ~ called the universal 
ordinary Hecke algebra and the newform f corresponds to a 0p-valued homo- 
morphism ~c of ~.  But, in general, N is larger than A, and we can no longer 
say that k e Z ,  parametrizes an analytic family of Or-valued homomorphisms 
of ~.  However, it turns out that by restricting k to a neighborhood of 2, we 
do get such a parametrization locally (see (2.7) and the remarks thereafter for 
a precise formulation). We then obtain, as before, an analytic family of ordinary 
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Galois representations Pk and a p-adic L-function Lr(k, s) which is defined for 
all seZp  and all k in a neighborhood of 2. In general, however, the functional 
equation relates the p-adic L-function to the contragredient family of Galois 
representations, which will differ from the original family if the Nebentype is 
nontrivial. This means that the p-adic L-function need not vanish identically 

k 
along the line s = ~  as it did in our special case. However, in Theorem 5.15e 

we will also prove a 'functional equat ion '  for the improved two-variable p-adic 
L-function. This allows us to show that the restriction of the standard two- 

k 
variable p-adic L-function to the line s = ~  vanishes to order > 2  at the point 

(k, s)=(2, 1). This is sufficient for our purposes. 
We may also inquire about the 'denomina tors '  in the various p-adic L- 

functions. In general, we expect the two-variable p-adic L-function to have no 
denominator  at all. On the other hand, the improved p-adic L-function may 
have a denominator. This denominator  is a 'divisor" of the characteristic power 
series of a certain torsion A-module - the A-adic cuspidal group ~ which arises 
in our calculations (see 6.12). It would be interesting to analyze the structure 
of this group and to perform a descent analogous to Mazur's Eisenstein descent 
[Mzl] .  

We close this introduction by mentioning the following question. Assume 
that E is a modular  elliptic curve with good, ordinary reduction or multiplicative 
reduction at p. Then there is an associated two-variable p-adic L-function 
Lp(k, s). Let n = o r d : = l  L~(E, z). Then it seems reasonable to believe that the 
expansion of L~,(k, s) at k = 2 ,  s =  1 should begin with the homogeneous term 
of degree n (or n +  1 in the case of split multiplicative reduction). If this degree 
is odd, then - � 8 9  will be a linear factor in this term. Can one 
determine the other linear factors? 

1. Hecke operators and ordinary eigenforms 

In this section we fix some of the terminology and conventions which will be 
used in the rest of the paper. 

Following [-Sh2] we define Hecke algebras as double coset algebras. Let 
S=GL2(Q)c~ M2(Z ) be the semigroup of 2 x 2 integral matrices with nonzero 
determinant. For each arithmetic group F in SLe(Z) we let D(F, S) denote the 
double coset algebra associated to the pair (F, Z). The elements of this algebra 
are the Z-valued functions on Z which are bi-invariant with respect to F and 
which are supported on the union of finitely many double cosets of F. Clearly 
D(F, S) is generated by the characteristic functions T(g)ED(F, X) of the double 
cosets FgF, for geX. If S1 is a subsemigroup of X containing F, then we will 
denote by D(F, X1) the subalgebra of D(F,, X) consisting of functions supported 
on $1. For  each such Z 1 we will denote by $1- the subsemigroup of 221 consisting 
of matrices with positive determinant. 

In this paper, X-modules will be contravariant (i.e. 22 acts on the right) 
unless otherwise stated. The algebra D(F, 22) acts contravariantly and func- 
torially on the cohomology of S-modules. If F is preserved by the anti-involu- 
tion g~--~g*=det(g) g -~, then , induces  an anti-involution on D(F,Z) by 
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T(g)~--~ T(g)* = T(g*). In this case we can also define a covariant action of D(F, X) 
on the F-cohomology of S-modules by defining 

dcf  
(1.1) T(g ) .  �9 = qSLT(g)* 

for a cohomology class q5 and g~X. 
Fix a positive integer N, a prime p which does not divide N, and an integer r>0.  

LetXl(pr)={geXg=-(10 : )modulopr} . I fN>l ,  thealgebraD(F~(Npr),X~(pr)) 

is not commutative, but we can construct a central subalgebra as follows. 
Let Z' denote the multiplicative set of integers which are prime to p. For 
each a e Z '  choose 7aeFl(N)c~F0(p r) whose lower right hand entry is congruent 

to a modulo pr and let [ a l p = T ( ( ;  0) ) 7a in D(F~(Npr), Xl(pr)). The map a 

Z'-~ D(F1 (Np~), X1 (p~)), a~-~[a]p, is multiplicative, hence extends to a Z-algebra 
morphism Z [Z'] ~ D(F1 (Npr), Xl (p~)). The image of this map is a central subalge- 
bra. On the other hand, Z[Z ' ]  embeds naturally in the completed group ring 
Z r [ [Z*] ]. Hence we may form the Zp [ [Z* ] ]-algebra 

def 
(1.2) Dp(N p r) = D (Ill (N pr), E 1 (pr)) @z[z'] Zp [ [Z*] ]- 

If A is a Zp[22~ (p~)]-module which satisfies Hypothesis P below, then the (contra- 
variant or covariant) action of D(F~(Npr), S~(p~)) on the F~(Np')-cohomology 
of A extends uniquely to a continuous action of D~(Np~). 

(1.3) Hypothesis P. The action of the scalar matrices al, a~Z', extends to a 
continuous action of the scalar matrices aI ]or aEZ*. 

We are going to view Dp(N) as a universal algebra which acts on the 
F~(Np~)-cohomology, for every r>0 ,  of every Zp[Z]-module A satisfying 
Hypothesis P. To define this action we note that the Hecke pair (F~ (Npr), X1 (pr)) 
is weakly compatible to (FI(N), X) in the sense of [A-S]. Hence, as in [A-S], 
there is a natural surjective Zp [ [Z*] ]-morphism 

(1.4) Dp(N) ~ Dp(Np ~) 

induced by restriction of functions on S to Z~(p~). Let Dp(N) ac t  on the 
F1 (Np")-cohomology of A via the composition of this morphism with the natural 
action of Dp(Np~). 

The elements of D(F~ (Npr), S~ (pr)) supported on Z ff (p') (elements of positive 
determinant) generate a Zp[[Z*]]-subalgebra of Dp(Np') which we denote 
D+(Np'). As before, the algebra D~(N) acts naturally on the F~(Np~) - 
cohomology of any Zp IX1 + (p~)]-module A satisfying Hypothesis P. 

(1.5) Definition. We define the following standard elements of Dp(N). 

a. For  each positive integer n, let T,,=T((~ : )) .  

b. For  each integer a prime to N choose an element fl~Fo(N) whose lower 
right entry is congruent to a modulo N and define [a]~ = T(fl,). 
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e. We extend [.]~,: Z * ~ D p ( N )  to a multiplicative function on all nonzero 

p-adicintegersbydefining[p]o=T(( 0 ~))" 

All of these elements, except l, are in the subalgebra D~(N). Moreover, 
Dp(N) = D~ (N)[i]. The elements laiN, for a e Z prime to ~ generate a subgroup 
AN in D+ (N) isomorphic to (Z/NZ)*. Let ,~' be the Zp[ [Z*] ] - suba lgebra  of 
D~- (N) given by 

(1.6) .~' = Zp[  [Z*] ]  [A N, T, (neZ+),  [Pip]. 

Then ~ is commutative and is centralized by i. If we define [a] = laiN. [a]p~( " 
for integers a which are prime to Np, then the map a~---~[a] extends uniquely 
to a continuous multiplicative map from Z* s=lim(Z/NprZ) * to Yr In this 
way we obtain a Zp [ [Z*] ] -morphism 

(1.7) Zp[ [Z* ,u ] ]  ~ , # /  

in terms of which we may view 3r ~ as a Z p [ [ Z *  u] ]-algebra- The element Wu 
does not centralize Jut"Ill. Indeed, Wu does not even normalize Yt ~' (e.g. 
W u T, W~-I~,~ ~ if (n, N ) >  1). However, we do have the following relations in 
~ l - t ,  w~,]: 

(1.8) W,.[a].W~l=[a]~l.[a]p for all a~Z*  u; 

W u �9 T,. WN- 1 = [n]~ 1. T, for every n which is relative prime to N; 

Wu.~. WN-1 = [ -  1]u.~; 

w ~  = [ - N L . 

Let k be an integer ~ 2  and, for each congruence group F, let 5/~(F, O) denote 
the space of holomorphic weight k cusp forms over F whose q-expansions have 
algebraic coefficients. Let 

(1.9) ~ ( Q )  = ~ ~ ( F ,  Q) 

be the union over all congruence groups E We let the subsemigroup X + ~ S  
of elements with positive determinant act on ~ ( Q )  by the weight k action: 

if g=(a O,,]~S+ and f~,-~k(Q)then (flg)(z)=det(g)k-'(cz+d)-kf(gz)for z in 
/ 

\ r a/  

the upper half plane. We extend this by linearity to an action of I2 + on 
(O,) = ~ (Q) | Q~ and define 

(1. ! O) 5~k (F~ (N pr), Op) = co# k (Op)r, (Np~). 

Since the nonzero scalar matrices over Z act on ~ ( 0 p )  via al~--*a k- 2, Hypothes-  
is P is satisfied and we obtain an action of J f  [WN] on ~ ( F  1 (Nff), Op). 
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(1.11) Definition. a. If r is a nonnegative integer and ~ is a Dirichlet character 
whose conductor is a power of p, then we let at,0: z * - - . Q *  be the character 
defined by a~--,O(a)a r. Such a character will be called an arithmetic character. 
If ~ is trivial we will suppress it from the notation and write simply ar instead 
of at, O" 
b. If R is a commutat ive Z p [ [ Z *  N] ]-algebra we let f ( R ) =  Homoont(R, Qv) den- 
ote the set of continuous 9 f v a l u e d  homomorphisms on R. We will refer to 
the elements o f f ( R )  as the Q f v a l u e d  points on R. A continuous homomorphism 
~: R ~ Qv will be called an arithmetic point if its restriction to Z* is an arith- 
metic character. In that case we say that K has weight r + 2  and character e 
if ~:([a])= ~:(a)a r for every rational integer a prime to N p. Let 

f a r i t h ( R )  = the arithmetic points on R. 

e. We will write f o  and .~.~ith for the points and the arithmetic points, respective- 
ly, of our base algebra Zp [ [Z*]  ]. 

It will often be convenient to view the elements of R as functions on f (R).  
When we wish to emphasize this point of view, we will write ~(~c) instead of 
K(a) for ~6R and JcEJ'(R). 

The homomorphism K: W ~ Qp associated to any eigenform f is easily seen 
to be an arithmetic point on the Z p [ [ Z *  u] ]-algebra ~ (1 .7 )  whose weight is 
the weight o f f  and whose character is the nebentype character o f f  

2. Deformations of ordinary Galois representations 

Fix a positive integer N and a prime p >  5 which does not divide N. For each 
integer n > 0 ,  let J,/o be the Jacobian of the modular  curve X1(Np") equipped 
with Shimura's canonical model [Sh2] associated to the adelic group 

There is a natural covariant action of the Hecke algebra # f [ l ,  WN] on J,(C) 
induced by the action of the double coset algebra D (F 1 (N p"), Z ~ (p")) via algebraic 
correspondences and letting t act by complex conjugation. The elements [a], 
for a e Z *  N operate through the nebentype. 

Let Tap(J,) denote the p-adic Tate module of J,. The action of ~r on J, 
is defined over Q, and therefore induces an action of ,-~ on Tap(J,) which com- 
mutes with the action of the Galois group G o. For  each pair of nonnegative 
integers m >  n, the natural projection X1 (Np')--* X I(Np") is defined over Q, 
hence induces a Galois equivariant map of Tate modules Tav(J,,)~ Tav(J,). If 
m, n are positive then this projection also commutes with Dp(N) and in particular 
with our. (When n = 0 and m > 0, it respects all of the generators Tq, [a] of Yf 
except T v and [P]v.) We may therefore form the projective limit over n > 0  
and define an ~ [Go]-module 

(2.1) Tap(Joo)=lim Tav(J,). 
n 
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The importance of Tap(J~,) for the study of p-adic Galois representations 
attached to modular  forms was first recognized by Shimura [Shl]  (see [O] 
for a published account). More recently, Hida defined a certain factor of Tap(J~) 
called the ordinary part and made a careful and beautiful analysis of its structure. 
The following discussion is based on his works [H 1, H2]. 

(2.2) Definition. Let A be a profinite abelian group and Tp: A ~ A  be a con- 
tinuous homomorphism.  The ordinary submodule of A is defined to be 

A~  (~ T;(A). 
n = l  

(2.3) Proposition. Let A = l i m  A. be a profinite abelian group and let T~ be an 

operator on A which is equal to a limit of operators on the finite quotients A.. 
Then Tp acts invertibly on A ~ and there is a canonieal decomposition A = A ~ ~ A ni~ 
where A"i '= {a~AIJ im  Tfl(a)=0} is the subgroup on which Tp acts topologically 
nilpotently. 

Proof In case A is finite, A ~ is the subgroup on which Tp acts periodically. 
Clearly, Tp acts invertibly on A ~ in this case. The asserted decomposition then 
follows in the finite case from the fact that every orbit of Tp is eventually periodic. 
The general case follows from the finite case by a simple compactness argument. 

Since the Tate modules Tap(J,) are profinite, so also is Tar,(J~). Moreover, 
Tap(J~) satisfies the hypotheses of Proposition 2.3, so we may define the ordinary 
part Ta_(J~,) ~ Since the operator  Tp commutes with J r  I-Go], we see that 
Tap(J~)d'is a direct factor of the ~ [Go]-moduleTap(J~,:). 

Let A be the Iwasawa algebra Zp[[1 + p Z p ] ]  embedded in the natural way 
in ZpE[Z*] ]  and let 5r be the fraction field of A. Let H ~ be the image of 
~ in the endomorphism ring of Ta,(J,~,) ~ Hida has proven ([H1],  Thin. 3.1) 
that Tap(J,~) ~ is a free A-module of finite rank. Moreover, he has constructed 
an idempotent ep~im~H ~ = H ~ | c~([H2],  pp. 250, 252) analogous to projection 
to the space of N-primitive eigenforms in Atkin-Lehner theory. We define the 

a o primitive part of Tav(J~) ~ to be the Jr' [Go]-submodule T = T, p(J~)p,~m obtained 
as the intersection of Tap(J~) ~ and eprirn'Tap(J~)~ (~ff. Then T is a reflexive 
A-module and is therefore free of finite rank. Since t and WN preserve the N- 
primitive part  of Tap(J,), they induce operators on T. Note, however, that W N 
does not in general commute with ~'/" and that neither t nor Wu commutes 
with the action of the Galois group. 

We associate to T the following data which will be used throughout the 
paper. 

(2.4) Definition. a. The universal ordinary p-adic Hecke algebra of tame conduc- 
tor N is defined to be the image ~ of -3f in End A (T). The natural map h' ~ '  -~ 
endows ,~ with the structure of Zp [ [-Z*, N] ]-algebra inherited from J~r The 
induced character r/: Zp, N will be called the canonical character. Let 
, ; f '=  ~ | ~ where S is the fraction field of A and let ~ be the normalization 
o f ~  in ,X/. Let :~'= ~ ( ~ )  = Hom~o,t(~, Qp) and set 

?/,-,~i~h = 2F,~i~h (~) = the arithmetic points on ~ (see ( 1. i 1)). 

b. Let T -+ denote the _ eigenmodules of l. 
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e. The universal ordinary p-stabilized newform of tame conductor N is defined 

to be the formal q-expansion f e ~ [ [ q ] ]  given by f =  ~ a,q  ~ where the coeffi- 
cients are given by a, = h(T,) for each integer n > 0. "= 
d. The universal ordinary p-adic Galois representation of tame conductor N is 
defined to be the representation p: GQ ~ Aute(T). 

(2.5) Definition. a. We will say that an eigenform f~SPk(F~ (Np"~), Qp)(k>2) is 
ordinary if the eigenvalue ap of Tp on f is a unit, that is, if laplp-- 1. 
b. An ordinary eigenform f will be called a p-stabilized newform of tame conduc- 
tor N if it is normalized (its leading Fourier coefficient is 1) and the following 
two conditions hold. 
(1) The conductor o f f  is divisible by N. 
(2) The level o f f  is divisible by p. 

It is not hard to see that an ordinary p-stabilized newform f is either already 
a newform, or is related to a newform g of conductor N as described in (0.7). 
In the latter case, f has level N p .  

(2.6) Theorem. Let p be a prime >=5 and suppose p,fN. Let r be the number 
of  ordinary p-stabilized newforms of tame conductor N in ~9~2(F1 (N p), Qp). 

a. (Hida) The 5F-algebra J{" = ~  | 5F is a finite product o[ finite field extensions 
of  5F ([H2], Thin. 3.5). Moreover, dim~ Y{ = r. For each ~ce y.,~ith, the localization 
~(~) of ~ at K is a discrete valuation ring which is unramified over A ( [HI ] ,  
Cor. 1.4). 
b. (Hida) The map K~--*f~ establishes a one-one correspondence 

Arithmetic points], ,-+ J'Ordinary p-stabilized newforms~ 

on ~ .J 1. of tame conductor N .J" 

e. (Hida) The A-modules T +- are free of rank r. As 2g'-modules, + T +- T ~  = (~A ~ 

are free of rank one. We may thereJore regard p as a two-dimensional Galois 
representation over 5~f ". This representation is unramified outside N p and .for each 
prime 1 outside N p, the characteristic polynomial of p(Frobz) is X 2 - a l  X + lq(l) 

�9 * ._+~* where rl Zp, u is the canonical character (2.4) a. 
d. (Mazur, Wiles) ([Mz-W], and [W] Theorem 2.2.2) Let q): Gop--* ~ *  be the 
unramified character for which q)(Frobp)= ap. Let )~o: Gop ~ Z* be the cyclotomic 

--* * N c ~ *  be the Galois character associated to the character and let q: GQp Zp, _ 
canonical character t I (2.4)a by class field theory (i.e. compose q with the homo- 

* induced by the action on N p  '~ roots of  unity). Then, as morphism Gop --* Zp, N 
a Gop-module, T~e has a filtration 

0 --. 2(((Zo q q0- 1) - .  T~ --. 5~ (q)) --. 0. 

These results can be interpreted analytically as follows. For each arithmetic 
point ~cs5 r"'i'h of weight ko and character e., let sd(~c) be the subring of 
0 p [  [ x - k o ] ]  consisting of formal power series in x - k 0  with a positive radius 
of convergence and let ,#(~c) be the field of fractions of ~a/(K). We endow ~(~c) 
with an N(~)-structure if: ~ - - * d ( K )  as follows. On the image of Zp[-[Z*]]  in 

we define ff by associating to each t eZ*  the power series in sJ(~c) representing 
the analytic function k~-+e~oa~ k, where o) is the Teichmiiller character and 
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< ) is projection to the principal units 1 +pZ~.  Now it is well-known that the 
ring of convergent power series is Henselian ( IN] ,  Thm. 45.5) and, from (2.6)a 
we have ~ )  is unramified over A. Hence there is a unique extension of this 
map  to a morphism 

(2.7) if: :N(~) ~ ,~,'(K) 

such that ~(a)(ko)=~c(a) for every aeS~. Moreover, we can extend ~: by linearity 
to an Y - h o m o m o r p h i s m  t?: ~--*~#(K).  We define the domain of convergence 
about  ~c to be the intersection of the disks of convergence of the power series 
~(a)E,~(K) where a ranges over :k. Since ~ is finite over A, Us is an open 
disk centered at ko. 

(2.8) Notational Conventions. Let K be an arithmetic point on ~ and let ae ,~ ' .  
a. Define a(~c, k) to be the meromorphic  function of k about  k 0 represented 
by ~(a)eJt(~c). For each k e G ,  let ~c~)e.~ ' be the point defined by tdk)(a)=a(K, k) 
for a ~ .  
b. We say that a is regular at K if a(~c, k) does not have a pole at k=ko.  In 
that  case, we will write a(~), a'(tc) for the value, respectively the derivative, 
of a(K, k) at k = k0. 

For  each ~c~?//"~i'h and k~U~, we let f~.k denote the specialization ZG(~c, k)q" 
of f to K (k). As a function of k~ U~ this is an analytic family of formal q-expansions 
which interpolates the q-expansions of ordinary p-stabilized newforms at integers 
k > 2  in U~. Similarly, we can specialize p to obtain an analytic family P~.k, 
ke  U~, of Galois representations interpolating the Galois representations asso- 
ciated to the forms f~.k at integers k > 2  in U~. 

We close this section by describing an involution on Jr '  which will play 
an important  role later. 

(2.9) Proposition. Conjugation by W N in End~(Tze) preserves the subalgebra 2# 
and induces an involution * on 3f" satisfying the following properties. 
a. [ t ] * = [ t ] ~  1 for all t~AN; and 
b. a* = [/]N I at ]'or all primes l~/N. 

Proof. Since, by Atkin-Lehner theory, the actions of ~;r and of WN~WN -1 
commute with one another  on the N-primitive part  of Tap(J,) for each n, they 
also commute on T. In particular, WN,;~ffW~ 1 centralizes ,g(" in End~(T~).  
Since T~ are flee of rank one as off-modules and are preserved by WN ,~  WN- I, 
there are involutions i + ' J ~ f ' ~  over Z p [ [ Z * ] ]  such that, for every 
a~dC, i+ (a)= WN aW~ 1 on T~ .  By (1.8), each of these involutions satisfies prop- 
erties a and b of the proposition. We need to show i+=i_ .  Let ~ce?/"~*ith be 
an arbitrary arithmetic point on ~,  and let to+ =K~i+.  Then f~+ and f~_ are 
ordinary p-stabilized newforms which, according to b, have identical eigenvalues 
for the Hecke operators T,,(n, N ) =  1. Hence, by the strong multiplicity one 
theorem, we have f~+ =f~ . By Theorem 2.6b we conclude that ~+ =~c_ and, 
since ~c was arbitrary, that i+ = i_.  This completes the proofi 

The involution �9 on 3(( induces an involution on f which we will denote 
~c~--~ ~c*. If K is an arithmetic point of weight k o and Nebentype character e, = c,u c,~, 
then ~c* is an arithmetic point of the same weight ko, but with character e~, ~ ~ .  
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Moreover, for any a~,Y{ we have the following identity of meromorphic func- 
tions in a neighborhood of k=  ko: 

(2.10) a* (~c*, k) = a(•, k). 

(2.11) Example. In the example of the introduction, where E = X o ( l l ) ,  p = l l ,  
and N = I ,  the space Y2(F~(ll)) is one dimensional and is spanned by J~.. 
Since f~ is ordinary at p =  11 we have r =  1 in Theorem 2.6. Hence the uni- 
versal ordinary Hecke algebra (2.4)a is given by ~ = A .  Moreover, we have 

0 _ _  T =  Tap(J~)prim- Tap(J.,~) ~ If we set 

f=~a ,q"eA[[q]] ,  p: Go ~ AutA(T) 

as in (2.4)c, d, then f, and p are the deformations o f fE  and Tap(E), respectively, 
whose properties are described in (0.5). For each integer k > 2 let fk (respectively, 
Pk) be the specialization of f (respectively, p) to weight k and trivial character 
and let J~, be the associated normalized newform. The assertions (0.5) are then 
immediate consequences of Theorem 2.6. The precise prescription of the conduc- 
tor of each J~, given in (0.5)b follows from [A-L]. Indeed, in [A-L] it is proven 
that if f is a newform of weight k > 2 with prime level p and trivial character, 

k - 2  

then ap ( f )=  _+p 2 . Hence f can be ordinary at p only if k = 2. 

3. The $-invariant 

The ~2-invariant of an abelian variety with split multipficative reduction 

Let p be a rational prime and let A/o p be an abelian variety over Qp with 
split multiplicative reduction. Then the dual abelian variety B,, also has split 
multiplicative reduction. Let X, Ybe the character groups of B~176 respective- 
ly. Then X and Y are free abelian groups of rank dim(A) on which the local 
Galois group Gop = Gal(Qp/Qp) acts trivially. From the theory of p-adic unifor- 
mization [McC, Mo] we obtain a bi-multiplicative pairing 

(3.1) j:  X x Y ~ Q *  

and exact sequences of Gop-modules 

(3.2) 
0 , X J ,  Hom(Y,Q*) , A(Qp) , 0 

0 , Y J ,  Hom(X,Q*)  , B(Op) , 0 

where the maps labeled j are induced by (3.1). Moreover, the 
c~=ordpoj: X x Y--*Z is nondegenerate. Let X p = X |  Yp= Y|  
ep be the non-degenerate pairing of Qp-vector spaces induced by c~: 

pairing 
and let 

(3.3) ep: Xpx  Yp--*Qp. 
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Recall that logp: Q*--*Zp is the unique group homomorphism for which 
logpp=0 and l ogp( l+x)=x-xZ /2+x3 /3 - . . .+( -1 )"+Xx" /n+. , ,  whenever 
xepZp. The composition of j  with logp induces another pairing 

(3.4) tip: X r x rp ~ Qp. 

(3.5) Definition. The ~2-invariant of A is the Qp-endomorphism S2r(A): Xp ~ Xp 
for which tip(x, y)=%(fep(A)x, y) for all xeXp, ye Yp. 

(3.6) Example, If A is an elliptic curve then A is canonically isomorphic to 
its dual abelian variety. Hence we may take A = B  and X = Y. Moreover, X 
is free of rank one over Z. Tate's multiplicative period qA is given by qA =j(x0, X0) 
where j is the pairing (3.l) and Xo is a generator of X = Y. Hence flp(Xo, Xo) 
=logp(qA), 7(X0, Xo)=ordp(qa) and it follows that the ~2-invariant defined in 
(3.5) agrees with the ~2-invariant defined in the introduction for elliptic curves 
over Qp with split multiplicative reduction. 

Returning now to the general case we will show how the S2-invariant can 
also be described in terms of the p-adic Galois representation associated to 
A. Indeed, we will generalize the above definition by first introducing the notion 
of a split multiplicative Galois representation and then associating an ~2-invariant 
to an arbitrary split multiplicative Galois representation. 

The P.-invariant of a split multiplicative representation 

Let art: Q * ~ G  ~b be the Artin symbol, where we observe the conventions of op 
[Ser]. Thus, if Zo is the cyclotomic character then xo(art(u))=u for all ueZ* .  
We will write Frobp for art(p)-~. This is a lifting to G~ b, of the Frobenius 
element on the maximal unramified extension of Qp. I~' W is a finite di- 
mensional vector space over a finite extension K of Qp and if W is equipped 
with the trivial action of Go~, then there is a canonical isomorphism 
HI(W)~Hom(G~b,w)  of K-vector spaces. Moreover, for any nontrivial 
principal unit ue  1 +pZp the map 

H I ( W ) ~  W x  W 

is an isomorphism whose definition is independent of the choice of u. The space 
H 1 (W) therefore decomposes into a corresponding direct sum 

H I (W) = H '  (W)unr @ H '  (W)cy~ 

where Ha(W)unr is the space of unramified homomorphisms and H l(W)~y~ is 
the space of homomorphisms which factor through the basic cyclotomic 
Zp-extension of Qo. Let 

(3.7) 2u.r: W'--~Hl(W)unr and •cyc: W----~HI(W)cyc 

be the induced linear isomorphisms. Hence for each wE W, 2u,r(w) is the unique 
unramified homomorphism for which 2unr(w)(Frobp)=w and 2~yc(W) is the 
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unique cyclotomic homomorphism for which 2cyc(W)(art(u))= logp(U), w for every 
u e Z * .  

(3.8) Definition. A finite dimensional G,  -representation V over K will be called 
split multiplicative if the following conditions are satisfied. 
a. There is an exact sequence of Go;representations 

0 ~  V~ V~ V e ~ 0  

where Go~ acts trivially on V et and V ~ (hence via the cyclotomic character 
on  V~ 
h. The degree one coboundary map 6: H 1 (Ve9 ~ Hz(v~ associated to the long ex- 

act cohomology sequence of a induces an isomorphism 6: H I (V')unr - ' H 2 (V ~ (1)). 

Since H2(V~ is canonically isomorphic to V ~ the composition of 6 with 
2unr and 2cy~ (3.7) gives rise to maps 6 . . . .  6cyc: Ve t~  V ~ Condition b of (3.8) 
is equivalent to the assertion that 6unr is an isomorphism. In particular we 
see that a split multiplicative representation must be even dimensional. 

(3.9) Definition. Let V be a split multiplicative Gop-representation. Then the 
s of V is defined to be the endomorphism s  et) given 
by 

s  ~ -  - - ( ~ u - n l r  o(~cy  c . 

To compare the definitions (3.5) and (3.9) we will need some well known facts 
from Kummer theory and Tate duality theory. For each integer n>0 ,  let 
7("1: Q* -+ H1(#,~ be the Kummer homomorphism. This sends q~Q* to the 
cohomology class 2~")eH 1 (#p,) represented by the 1-cocycle which sends aEG o 

n - . - -  P I / p  n to (ql/;,)~- i where q is a fixed cholce of a p -th root of q in Qp. The family 
{7(q")}.=>0 corresponds to an element of lira H l(#p.)= H i (Zp(1)). Let ?q denote 

n 

the image of this element in HI (Zp(1)) | Qp = H i (Qp (i)). Then the map q ~ 7q 
defines a continuous group homomorphism, 7: Q * ~ H I ( Q v ( 1 ) )  whose image 
spans H 1 (Qp(1)). 

To a finite dimensional continuous Qp[Go,]-representation V we associate 
the contragredient representation V*. From Tate duality we know that cup 
product induces perfect pairings 

Hi(V) x n 2 - i (V* (1)) ~ Qp = H2 (Qp(1)) 

for i=0,  1, 2. In the important special case when V= Qp and i=  1, the pairing 
is explicitly given by (~, 7q)~--~ ((art  (q)) for ( r  l (Qp) and 7q~H ~ (Qv(1)). It follows 
that the transposes of the maps 2,,r: Qp~H~(Qp)  and 2r162 Qp--*HI(Qp) are 
given by 

2 * u n r  2 * c y c  

(3.10) Ha (Qp(1)) ' Qp and H~ (Qp(1)) , Qp 

7q I , ordp(q) 7q I , logp(q). 

(3.11) Theorem. Let Tap(A) be the Tate module of an abelian variety A/Qp with 
split multiplicative reduction and let V= Tap(A ) | Qp. Then V is a split multiplica- 
tire Galois representation and ~p(A)=  ~p(V). 
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Proof For each integer n > 0  a simple application of the snake lemma to the 
p"-power map acting on the exact sequences (3.2) gives us exact sequences 

0 , Hom(Y,/l,,) ~" , A [ p ' ]  , X / p " X  , 0 

0 , Hom(X,/ap,,) t. , B[p"] , Y/p"Y , O. 

Passing to the projective limit over n, and tensoring with Q p  w e  obtain the 
exact sequences 

0 ~ Y 2 ( 1 )  ~ v  ~ x ~ - - , 0  

0 ~ x*(1)-- ,  v* --, r~ - ,0 .  

These sequences are Qp(1)-dual to each other, hence Tare duality gives us a 
perfect pairing between the associated long exact cohomology sequences. In 
particular, the coboundary map 6: H 1 (Xfl ~ H2(y*(1))= Y* of degree one asso- 
ciated to the first of these sequences is the transpose of the coboundary map 
3": H ~ H 1 (X*(1)) of degree zero associated to the second sequence. If 
we identify H~ with Yr and H 1 (X*(1)) with X* | H ~ (Qp(1))in the natural 
way, then a simple calculation shows that 6* is given by 

(3.12) 6": Ye~X* |  

Let 2 . . . .  ~cyc" Xp ~ H 1 (Xp) be as in (3.7) and define 3 . . . .  3eye: Xp ~ Y* by setting 
3u.r = 3 '~ 2un~ and 3~yc = 3 ~ 2cy ~ . We will show that 6u.~ and 3~y~ induce the pairings 
- ~ p  (3.3) and tip (3.4). Indeed, their duals are given by ~,,r;';* ----)*--~n~"6* and 

�9 �9 . H 1 H 1 ~cy~ 6.  =~*-r176 where the maps 2 . . . .  2~yo. (X*(1) )=X* |  ( Q p ( l ) ) ~ x *  are 
induced by (3.10). Hence, using (3.12) we find that 3 ..... Yp Xp 6cyc. ~ are given 
by 3*,,~(y)(x)= -ordp( i (x ,  y))= -~p(x,  y) and 3*y~(y)(x)= logp(/(x, y))=/~p(X, y). 
By duality we therefore have 

6unr(X)(y)= --O~p(x, y ) and 3cyc(X)(y)=[]p(x, y ) 

for all x~Xp and y~Yp. From the nondegeneracy of % we see that 6un r is 
an isomorphism, hence V is split multiplicative. The above identities together 
with the definition of ~p(A) (3.5) imply 6o,r c' ~p(A)= - 6 c y  c. Hence, by the defini- 
tion of ~2p(V) (3.9) we conclude that f2p(A)= -6u,1~ o 6cyc = ~p(V) and the theorem 
is proved. 

The ~-invariant and infinitesimal deformations 

The !~-invariant exerts a strong influence on the p-adic deformations of a split 
multiplicative representation. To explain this, we begin with a few remarks about 
infinitesimal deformations. Let Op = Qp [T] /T  2. 

(3.13) Definition. An infinitesimal deformation of a Qp[G%]-module W is a 
0p [Go,I-module W such that W/TW_~ W. 
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If Wis a trivial Qp[Gop]-module, we let I71/= W |  v denote the trivial infinitesi- 
mal deformation of W. If ~: G o --* Aut0,(ITv) is a continuous Galois representa- 
tion then I7V(qj) will denote gV wleth Go~ acting via ~. Clearly, W(~b) is an infinitesi- 
mal deformation of W if and only if ~b=I modulo T. Assume now that ~ is 
such a character. Then ~ factors through G "b and after differentiation with Qv 
respect to T gives rise to an additive homomorphism 

d~, 
for which O = I + ~ . T  

dO" G "h ~ E n d ( W )  
dT" Qp 

d~ (Frobp)= ~v(V)o 1 d~ (art(u)). 
d T  logp(u) d T  

Proof Multiplication by T gives rise to a Galois equivariant map V e'--+ V~'(~) 
whose cokernel is V e'. Thus we obtain an exact sequence 

(3,15) 0---~ vet---+ ~/'e,([/]).._.+ Vet___~O, 

Let 60: V~'= H ~  et) -+ H ~ (V ~') be the degree zero coboundary map of the asso- 
ciated long exact cohomology sequence. A simple calculation shows that for 
each x e V %  5o(x) is the homomorphism whose value on an element o-eGo, ' 

d0 
is given by 6 , ( x ) ( a ) = ~ ( ~ ) ( x ) .  Hence the homomorphism 5r V ~ ' o H I ( V  e') 
is given by 

(3.16) (~qz ____ )~unr o dd ~T (Frobv)_b )~cyc o 1 ~0T (art(u))" 
logv(u) 

Now consider the following diagram. 

, H ' ( V )  ) H l ( p e , )  

_ , H~(V) , H I ( V  et) 

H~ V e' 

Since i2o5r and the diagram is commutative, we have i io5o6o=0. By a 
simple application of Tare-duality it follows that il is injective. Hence 5o5r 
The theorem now follows by composing 6 on the left with (3.16), and using 
the identities 6u,r = 5 o 2 . . . .  5cy~ = 6 o 2cyc, and ~p (V) = - 6~,1r o 6~y~. 

, H Z ( P ~  

, H2(V~ 

(3.14) Theorem. Let V be a split multiplicative Galois representation and f ix  a homo- 
morphism ~t : Gop - ,  Aut0p(~ "et) and an exact sequence 0 --+ r/o (1) --* V -* Ve'(~b) -~ 0 
whose terms are infinitesimal deformations of the terms in the exact sequence 
(3.8)a. Then for any nontrivial principal unit u~ 1 + pZv 
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The P.-invariant of a split multiplicative newjbrm 

Let f be a classical weight two newform. Let K I be the complet ion in Qp 
of the field of Hecke  eigenvalues and let V I be the two dimensional  
Go-representat ion over  K I constructed by Deligne [D] .  We will say that  f 
is split mutt ipl icat ive at p if Vy is split multiplicative at p. F rom the work  of 
Deligne and R a p o p o r t  [ D - R ]  we know tha t  f is split multiplicative at p if 
and only if (1) the conduc tor  o f f  is N p  where p XN and (2)f]Tp = s  In part icular,  
these two condit ions show that  if f is split multiplicative at p then f is an 
ordinary p-stabilized newform of tame conduc tor  N. 

(3.17) Definition. The ~2-invariant of  a weight two split multiplicative new- 
form f is defined to be the ~2-invariant of its Galois  representat ion V I .  Hence 
~p(f)=~,,(Vs)~Ks. 

(3.18) Theorem. Let f be a weight two newJorm of conductor Np with p_->5, 
and suppose f is split multiplicative at p. Let ~ be the universal ordinary Hecke 
algebra of tame conductor N and let ap=h(Tp)~:~. I f  ~r is the arithmetic' point 
on ~ which corresponds to f by Theorem 2.6 then 

a'pffc) = - �89 

Proof Let qg: Go --*/~* be the unramified character  with q)(Frobp)=ap.  Let 
~ t ~  be the localization of ~ at K. F rom Theorem 2.6d we obtain  an exact  
sequence 

(3.19) 0 ~ y2t~)0~0 q ~o- 1)_. o a Tprim (~@ ~(K) -'~ flfl~(K) ((D) ---+ 0. 

Since the specialization of this to x is the sequence 0-~  Vy ~ (1)--* VI~  V f ' ~  0, 
we see that  ~o and  r/ are congruent  to 1 m o d u l o  the maximal  ideal P~ in ~ ( ~ .  
In par t icular  we see that  ~c(ap)=l, that  q(art(u))=[u]p for any principle unit 
u~l+pZp ,  and that  q ( F r o b p ) = l .  N o w  tensor  (3.19) with ~oq -1 and reduce 
modu lo  p2. This gives us an exact sequence 

0-,  gi(1)- ,  ~--, g.r(r 2 ~- ') --, 0 

where ~' is  an infinitesimal deformat ion  of V I .  Since q ) r / -1=  1 modulo  P~, we 
may  apply  Theo rem 3.14 with ~b = ~o 2 r/-1 to obta in  the identi ty 

(3.20) ~(art(u))'(K) 
tp (Frobp) ' (K)= Ydp(f). logp(u) 

for any nontrivial  principal  unit u~ 1 + pZp. But q9 (Frob~) = ap, 
t / (Frobp)=qo(ar t (u) )= l ,  and  tl(art(u))=[u]p~A. Hence ~ ( F r o b p ) = a p  and  
q)(art(u)) = [U]p -1 . The  theo rem now follows f rom (3.20) and  the simple fact that  
[u]~,(x) = logp (u). 
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4. Modular symbols and special values of L-functions 

In this section we review the basic definitions and properties of modular  symbols. 
Modular  symbols will be useful to us in two ways. First of all they give us 
a concrete realization of the one-dimensional compactly supported cohomology 
groups of a congruence subgroup of SL 2(Z) as well as a concrete description 
of the action of the Hecke operators on these groups. On the other hand they 
provide a powerful tool for studying the arithmetic properties of critical values 
of L-functions associated to modular  forms. We will recall how modular  symbols 
are used to attach one-variable p-adic L-functions to p-stabilized ordinary new- 
forms as in [Mz-T-T].  

Definitions and first properties 

Fix a commutat ive ring R and let A be a contravariant  Rl-Z]-module where 
S = M 2 (Z) n GL 2 (Q) as in "section 1 ". 

def  
(4.1) Definition. Let 9 =  Div(P1(Q)) denote the group of divisors supported 

on the rational cusps P l ( Q ) = Q u { o o }  of the upper half plane H. Let @o_C9 
be the subgroup of divisors of degree zero. Note that Z acts by fractional linear 
transformations on 9 and on 9 o. Let F be a congruence group. 
a. An additive homomorphism 0: 9o--*A will be called modular symbol over 
F if �9 is a F-homomorphism,  i.e. if O(?D)IT=O(D) for all D e g o  and ~,eF. We 
will denote the R-module of all A-valued modular  symbols over F by Symbr(A). 
h. An A-valued boundary symbol over F is a F-homomorphism O: 9 ~ A. We 
will denote the group of all A-valued boundary symbols over F by Boundr(A). 
c. More generally, we define 

Symb(A) = U Symbr(A), Bound(A) = U Boundr(A) 
F F 

where F runs over all congruence groups. We let Z act on these groups according 
to the formula Olg: D~--~O(gD)I g, for g a s  and OaSymb(A),  D e g 0  (respectively 
O~Bound(A), D~9) .  

Our interest in Symbr(A) and Boundr(A) is motivated by the following theorem 
which allows us to relate these groups to the cohomology of F (see 4.3). Let 
I i  be the Borel-Serre completion of H. Also, let t(F) be the least common 
multiple of the orders of the torsion elements of E 

(4.2) Theorem. Let F be a congruence subgroup of SL2(Z ) and suppose 
t(F) is invertible in R. Then the long exact cohomology sequence of the 
pair (F\rI ,  O(F\ITI)) with coefficients in A is isomorphic to the right- 
shift of the long exact F-cohomology sequence of the exact sequence 
0 --* A --* H o m z ( 9 ,  A) -* H o m z ( 9  0, A) ~ O. More precisely, for each integer i>O 
we have the following commutative diagram: 

,Hi- ' (F, ,Hom(9o,  A)) , H i (1A)  

, H~(F\H,  A)) , H ' ( F \ H ,  A) 

where the vertical arrows are isomorphisms. 

,H~(r, Hom(~, A)) 

, u ' ( ~ ( r \ f i ) ,  A)) 
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For a proof  of this, see [A-S]. Recall that the parabolic cohomology group 
H~par(F,A) is defined to be the image of the map H J ( F \ H ,  A)-~H1(F\H,  A). 
The following theorem is an immediate consequence of Theorem 4.2. 

(4.3) Theorem. Suppose t(F) is invertible in R. Then there is a canonical isomorph- 
ism Symbr(A ) = H i ( F \ H ,  A). Moreover, there is a canonical exact sequence 

O__. HO(E A)__, Boundr(A)__. Symbr(A) 1 -~ Hw~(F,A)-*O. 

Now let F be a congruence group and let D(F, S) be the double coset algebra 
associated to the pair (F, 22). The action of the algebra D(E S) on A-valued 
modular  symbols over F can be made explicit as follows. If T(g)eD(F,S) is 
the element associated to the double coset FgE geS, then we can write FgF 
as a finite disjoint union of right cosets, ~ Fg~. For a modular  symbol 

4)~Symbr(A) we then have 

(4.4) 4) I T(g) = ~ q~l g~ e Symb r (A). 
i 

(o' 0) The matrix t =  1 e S  induces an involution q)~-*q)It on modular  symbols. 

If 2 is invertible in R, then we can decompose any modular  symbol q) in a 
unique way as a sum 

(4.5) q) = rb + + q)- 

where q~-+lt=+q~ -+. Let Symbr(A)=Symbr(A)+| be the corre- 
sponding decomposition of the space of modular  symbols. 

Modular symbols qf integral weight k > 2 

For each non-negative integer r_>_ 0, let Symr(R z) denote the R-module of homo-  
geneous polynomials of degree r in two variables X, Y with coefficients in R. 
We let 2;" act on Symr(R 2) by the formula (FIg)(X, Y)=F((X,  Y)g*) for g~X 
and FESymr(R2), where �9 is the adjoint involution defined in "section 1 ". 

(4.6) Definition. Fix an integer k > 2. Then the R [2;I-module Symb(Sym k 2(R2)) 
is called the module of modular  symbols of weight k over R. 

This terminology is motivated by the following well known example of Eichler 
and Shimura. Recall from "section 1" that ,~(Q) is the space of weight k cusp 
forms of all levels having algebraic q-expansions and that 2; + acts on cJk(0 ) 
via the weight k action. 

(4.7) Definition. The standard weight k modular symbol associated to a cusp 
form f e  5Pk (Q) is the modular  symbol 4)fs Symb (Sym k- 2 (C2)) defined on divisors 
{c2}-  {cl} ~ o ,  cl ,  c z s P l ( Q )  by 

C2 

~f({c2} -- {c,})=27ci S f ( z ) ( zX  + Y)k-2dz 
r 
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where the integral is over the geodesic in the upper half-plane joining Cl to c2. 

A straightforward calculation shows that the map f~--*~j, commutes with 
the action of S +. We have the following theorem of Shimura [-Sh]. 

(4.8) Theorem. Let f~CJk(Fl(N pr)) be a Hecke eigenform of weight k >=2 and let 
K ( f )  be the field generated by the Hecke eigenvatues o f f  Then for either choice 
of sign +_, the Hecke eigenspace associated to f in Symbr,(sp.)(Sym k- 2(K (f)2))+ 
is one dimensional over K(f ) .  Moreover, there are 'periods' f2} EC* such that 
the modular symbols ~f+- = (s -1 dpf are defined over K ( f)  and span the associat- 
ed eigenspaces, that is 

0 4: 7 f  + ~ Symbr, (Npr)(Sym k- 2 (K (f)2))_+. 

Recall from Theorem 2.6b that ,%/"arith= 0~arith(o~) parametrizes the ordinary p- 
stabilized newforms of level N p r, r > O. 

(4.9) Definition. For  each ~cEX arith we fix the following data and notations. 

a. K~ is the p-acid completion of K(f~) with respect to our fixed embedding 
(0.4). 
b. W, is the Hecke eigenspace in Symbr,{Npr)(Symk-2(K~)) associated to f,. 
Here k is the weight of f,. 
c. We fix, once and for all, two periods (2+~C * as in Theorem 4.8 and let 
~+ c W + be the associated generators. 

Consistent with the notational conventions of "section 2" (see (2.8)) we will 
write K~.k and W,.k to denote K,(~ and W,c.,, respectively. 

Special values of L-functions 

Modular symbols provide us with a convenient tool for studying values of L- 
functions. We will attach "special values of L-functions" to modular symbols 
and show how the critical values of the L-function of a cusp form of weight 
k > 2  can be described in terms of the "special values of the L-function" of 
the associated modular symbol. 

(4.10) Definition. Let q~Symb(A). Then the special value of the L-function of 
is defined to be the element L(~) of A given by L(~)=  q~({0}- {i oo}). 

Let ~k: Z--+ R be a primitive Dirichlet character of conductor m > 1. Then we 
may also define "special values of L-functions twisted by ~". For  simplicity, 
suppose F=FI(M) for some positive integer M. Define the twist operator 
R~,: Symbr(A)--* Symb(A) by the formula 

<blR, = ~ 4,(a) ~1 

(4.1l) Definition. The special value of the L-function of dp twisted by ~k is 
L(qL ~O)=L(q~IR~,). In case q~ is a modular symbol of weight k > 2  over R then 
the special value L(~, ~b) is a homogeneous polynomial of degree k - 2  in X 
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and Y l f t h e  binomial c o e f f i c i e n t s ~ k r  2 ) / -  \ ,  0 < r < k - 2 ,  are not zero divisors 

in R, then we define the 'special values'  L(q~, ~b, So)eR, for integers s o with 
0 < So < k, to be the unique elements of R for which 

(4.12) L(~,  1 So - 1 ( - 1. L(qb, ~, So). X ~~ 1 yk-~o- I. 

These definitions are mot ivated  by the following well known example. If 

,f(z)= ~ a n e 2~inz is the Fourier  expansion of a weight k cusp form f e ~ ( Q )  
n = l  

and if $:  Z--* C is a primitive Dirichlet character  with conduc tor  m >0 ,  then 
the complex L-funct ion o f f  twisted by $ is defined by the Dirichlet series 

Lo~(fO, s)= ~ t~(n)a,n -~ for Re(s )>  k + l  
2 n = l  

This function extends to an entire function in s. We are interested in its values 
at integers s = So in the 'critical str ip '  0 < So < k. For  such values of So we define 

d e f  
(4.13) A (f, ~9, So) = m s~ 1 (So - 1) ! 

z(O) Lob(J; t~, So) 
(2 n i) *~ 1 

m - - 1  

where r(O) is the Gauss sum ~ ~ (a) e 2~ia/m. If ~O is the trivial Dirichlet character,  
a = O  

then we will suppress it from the nota t ion and write simply L,~ (.]; s) and A (f, So) 
instead of L~ (f, if, s) and A ( f  r So) respectively. 

(4.14) Theorem. For every primitive Dirichlet character t~ and each integer So 
with 0 < So < k we have 

L(q) s, ~, So) = A (f, ~, So). 

The proof  is a s traightforward calculation. 

p-adic L-functions attached to p-stabilized ordinary newforms 

For  an arbi t rary  topological  Zp-algebra R, we let Meas(Z*,  R) denote  the R- 
module of all bounded  R-valued distributions on Z* (see [Mz-SwD]) .  For  fixed 
p e M e a s ( Z * ,  R) we associate to each cont inuous character  a: Z*--*R* the ele- 
ment 

(4.15) Lp(l~, a)= S ~r(t) dp(t)ER 
z*p 

in the usual way (see, for example, [Mz-SwD]) .  The resulting function of a 
will be called the R-valued Iwasawa function associated to / t .  
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For  each K e ~  ari'h we follow [Mz-T-T] and define measures 
p~ eMeas(Z*,  K~) by setting 

(4.16, ]A~(a-~pmZp)=ap(K)-ml~• --(io~ })[X=O,y = 1 

for each a s Z  prime to p, and each m>0.  We then define the p-adic L-function 

(4.17) Lp(f~, tp, s)= Lp(p~, g" Ir ~b ( - ) ~ -  ~) 

for each K'@~ 'arith. If ~O is the trivial character, then we will suppress it from 
the notation and write simply Lp(f~, s). We have the following theorem. 

(4.18) Theorem. Let KE:~'arit h be an arithmetic point of weight k. Let ~p be a 
finite character of Z* of conductor pm, m > 0 and let So be an integer with 0 < So < k. 
Then 

A (f~, ~ t~ 1 - so, So) 
Lp (f~, ~b, So)= a.(x)-"-(1 -ap(tC)-'@cg' -.~o(p) pSO-1) r 

For more details of the construction of the p-adic L-function and a proof of 
Theorem 4.18, see [-Mz-T-T]. 

5. A-adic modular symbols and two-variable p-adic L -functions 

Fix a prime number p > 0 and a positive integer N which is not divisible by 
p. Let F = F~ (N). In this section we examine the structure of the group of modular 
symbols over F which take values in the module D of Zp-valued measures 
on (Z~)' (=  the set of primitive elements of Z~). Such modular symbols will 
be referred to as A-adic modular symbols. Our interest in Symbr(D) stems 
from two facts. First of all, the module D is rich enough to admit non-trivial 
morphisms to each of the modules Sym"(Z2), r>0 .  Thus a measure gives rise 
to a family of elements in Sym r as r varies, and correspondingly, a A-adic 
modular symbol gives rise to a family of modular symbols of varying weights. 
The second reason for our interest in D rests on the fact that the elements 
of D give rise in a natural way to two variable p-adic L-functions. The main 
results of this section are Theorems 5.13 and 5.15. Theorem 5.13, which is proved 
in the next section, asserts the existence of ordinary A-adic modular eigensym- 
bols which are p-adic deformations of the modular symbols associated to any 
given ordinary p-stabilized newform. In Theorem 5.15 we describe the analytic 
properties of the two-variable p-adic L-function associated to such an eigensym- 
bol. 

Let Cont(Z~) denote the Zp-module of continuous Zp-valued functions on 
Z~ and let Step(Zp z) be the submodule of locally constant functions. The group 
I~ of Zp-valued measures on  Z~ is defined to be I)---Homzp(Step(Zp), Zp). As 
is well known, every t teD has a unique extension to a Zp-homomorphism 
Cont(Z2)---~Zp which is continuous with respect to the supremum norm on 
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Cont(Z~). If # ~ ,  q)eCont(Zp z) and K_~Z 2 is a compact open set, we will 
use the integral notation and write 

K 

for the value of FL on the product of ~p with the characteristic function of K, 
In case ~0 is identically 1, we will also write FL(K) for this integral. 

We will be particularly interested in a certain direct summand D of E) which 
may defined as follows. Let (Z~)' denote the primitive elements of Z~, i.e. those 
elements which are not divisible by p. Then D is the submodule of D consisting 
of measures which are supported on (Zg) '. Restriction of measures from Z 2 
to (Z2) ' gives a projection from I) to D, hence D is a direct summand of D. 

There is a natural continuous action of Mz(Zp) on D. To describe this 
action we regard the elements of Z 2 as row vectors and let M2(Zp) act by 
matrix multiplication on the right. Then mz(Zp) acts covariantly on Step(Zp z) 
by the formula ~0~--~(gq): x~Zg~--~q)(xg)). The contravariant action on E) is given 
by/~--~/~lg where/rig is given by the integration formula 

j ~od(it]g)= j gcpd#. 
Z 2  Z 2  

P P 

Since the kernel of the natural projection 1 ) -~D is preserved by this action 
of M2(Zp) we also obtain an induced action of M2(Z p on D. We will take 
this induced action as the natural action of M z ( Z p  on D. Note, that while 
the action has been defined to commute with the natural surjection f ) ~ D ,  
it does not respect the natural inclusion D ~ 17). 

The group Z* acts continuously on D and D via the scalar matrices in 
M2(Zp). We extend this to a continuous action of the algebra Z p [ [ Z * ] ] .  Note 
that the action of M2(Zp) commutes with these Zp [ [Z* ] ]-structures on D and 
l). Now restrict the action of mz(Z.) to an action of 2:. Since Hypothesis P 
(1.3) is satisfied, we may form the .~-modules  

(5.1) W = S y m b r ( D )  and ~r  

Restriction of measures induces a natural surjective .~ ' -morphism "r162 ~ W. 
We now describe a simple procedure for attaching p-adic L-functions to 

the elements of W. Recall (1.11)c that ~0  is the space of Qp-valued points 
on ZpE[Z*] ] .  To each q~eW we attach its 'special value of the L-function'  
~t~ = L(q~)ED as in the last section (4.10) and define the standard 2-variable p-adic 
L-function associated to q~ to be the Qp-valued function Lp(q~) on ~0  x ~ o given 
by 

(5.2)a. Lp(4~, ~c, o ) =  S K(x) a(y/x) d~,(x, y) 
z~, • z? 

for fie, a)~.Y" 0 xS( 0. If a is an arithmetic point, then its restriction to Z* 
is an arithmetic character of the form a,.~. We can then extend a to a con- 
tinuous multiplicative function z p ~ Q p  by the convention cr(p)=p r if ~0 is the 
trivial character and a ( p ) = 0  otherwise. With this convention, we define the 
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improved 2-variable p-adic L-function associated to q~ to be the function L*(q') 
on f o  • of~r.h given by 

(5.2)b. L*(q~, K, a )=  ~ to(x) a(y/x) d#~(x, y) 
Z T , •  e 

0~'arith for (K, a ) ~  o X.~o - 
It is clear from the definitions that Lv(@ ~c, a) is analytic in (K, a) and that 

L*(~P, to, a) is analytic in ;c for each ~cf f ' a r i th  . . . .  o . Moreover, for fixed a there are 
unique Z,  [ [Z*] ]-morphisms 

(5.3) Lo( ' , a ) :  W--*ZvI-I-Z*]] forfixed a~~ and 
L*(" a): W--*Zp[[Z*]]  forfixed ,~=orari,h 

such that K(L,(~, a))= Lp(<P, ~c, a) and ~c(L*(~, a)) = L*(~P, to, a) for all K~.~o. 
Now fix a continuous Zp[[Z*]]-algebra R. Let Dn=D|  and 

Wn=W| There is a natural isomorphism Wn~Symbr(De)  of dr ~- 
modules. Extending the maps (5.3) by R-linearity, we obtain R-homomorphisms 
Lp( ' ,  a), L*(' ,  a): Wg-~R. We may therefore extend our definitions (5.2) and 
associate to each @~WR a two-variable p-adic L-function Lp(4P) on W(R)x f o  
and an improved p-adic L-function L*(q') on ~'(R) • ~.~th by the formulas 

(5.4) Lp(q),K,a)=lC(Lv(O, cr)) for (K,a)~f(R)x.~'o, and 
L*(~b, K, a )=  tc(L*(4~, a)) for 0c, a)~f(R) x f~ri,h. 

In Proposition 5.8 we will prove a fundamental interpolation property of these 
p-adic L-functions. In particular we will show that they interpolate special values 
of L-functions attached to a certain family q~, K~Y'"~i'"(R), of modular symbols 
of integral weights attached to 4. This family of modular symbols is defined 
as follows. For each xef~m~(R) with weight k=>2 and character e define the 
specialization map q~ : D  ~ Sym k- 2 (Q2) by the integration formula 

(5.5)a. ~b~(/~) = ~ g(x).(xY-yX)k-2dp(x,y) 
Zp x Zp 

and extend this to the unique map ~b~:Da~Symk-2(Q~) which inter- 
twines K. If, moreover, the character ~ is trivial, then we also define a map 
~,:  1)--. Syma-2(Q~)by 

(5.5)b. ~.(;,)= y (xY-yX)~-~d/~(x, y) 
z~ 

and extend this to a map ~ :  l ) R ~ S y m  ~ 2(Qp2) intertwining K as well. A simple 
calculation shows that if the conductor of e divides p" and r > 0 then qS~ com- 
mutes with the action of Z~(p'). Hence, q~ induces an W[t ,  Wu]-morphism 
qb~.,:WR-~ Symbr~up~(Sym k- 2(Q2)). If e is trivial, then q~ commutes with all 
of X, hence ~,, induces an W [t, W~]-morphism 

~ , ,  : @R ~ Symbr, r162 ~- 2 (02)). 

We may therefore make the following definitions. 

(5.6) Definition. Let ~ W R .  
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a. For  each arithmetic point hZG~'arith(R) we define 4~. to be the image of q~ 
under qS~... 
b. For each K with trivial character, we also define ~ to be the image of 4, 
under ~ . . .  

In Proposition 5.8 we will describe the behavior of the p-adic L-functions when 
4~ is transformed by the operator Tp. For this purpose, it will be useful to 
first record a few facts about the Hecke operators at p acting on W. We will 
say that a modular symbol 4,e'~Yr is supported on a given compact open subset 
U of Z 2, if, for every D c ~ o ,  the measure 4~(D)cfl is supported on U. Hence, 
W may be described as the set of modular symbols in ~r which are supported 
on (Z2) '. Since the scalar matrix pI transforms any modular symbol 4~e~r to 
one supported on pZ 2, we see that (pip annihilates W. 

The action of the operator Tp and its powers Tff, m>0,  on W can be 
described as follows. Consider the reduction map (Z~)'---, pl  ( Z / p ' Z ) .  For each 
x e P  1 ( Z / p " Z )  the preimage of x in (Z2) ' is a compact open set which we denote 
by U(x,p ' ) .  Choose an element g,, ,r , ,eXl(N) with determinant p" for which 
U(x, pm) G((Zp)2)'gx, p,,,. The coset Fg,,,p,, is independent of the choice of gx, p,, 
with this property. The mth power of Tp acting on q)eW is then given by 

(5.7) ~IT;= Z ~lg~.~o,. 
xsP I (Z/pmZ) 

This decomposes 4~lTp into a sum of modular symbols which are supported 
on the disjoint compact open sets U(x, pro), xep~ (Z/p"Z). 

We will say that a pair of arithmetic points (~c, CS)C:~'"r"h(R) ,, arith X ?/'0 is critical 
if the weight of K is greater than or equal to the weight of a. This is equivalent 
to saying that sc or- 1 defines an arithmetic character on Z*. 

(5.8) Proposition. Let ~ _  W~ and Oc, a )eY ' (R)  x 4 o. 
1. (Relation Between the Standard and Improved p-adic L-functions.) ,jvc ,,~ == ,+or'"ri'ho 
then 

Lp( O l Tp, to, or) = L*(eb I Tp, to, a)--  or(p). L*( O, ~c, a). 

Here a(p) is defined as in the paragraph preceding (5.2)b. 
2. (Interpolation.) Suppose the pair (~c, or) is critical and suppose ~r=a,,q, where 
r is an integer >=0 and 0 is a finite character of  Z* of  conductor pro, with m >= O. 
Then 

L'~ (q~ I Tp, to, a )=  L(q)~, 0, r +  1) 

where q)~ is the specialization defined by (5.6)a and L(cI)~, tp, r + l )  is defined 

by(4.12). ( O  N l0 ) 
3. (Functional Equation for the standard p-adic L-function.) Let WN = _ 
Then 

Lp(@, K, 0")= - a -  I ( -  N) .  Lp(cb[WN, ~c, Kcr-1). 

4. (Functional Equation for the Improved p-adic L-functions.) Suppose the pair 
(~c, or) is critical and that both ~c and ~r have trivial characters and f i x  r >=0 so 
that a = a~. Then 

L*(q), to, a ) - -cr ( - -N)- lL*(cbl  WN, ~c, K a -  1) = Lp(qO, K, a )+  L ( ~ ,  r +  1). 
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Proof Each of these statements is verified by a straightforward calculation. 
We will only sketch the details. We restrict ourselves to the special case 
R = Zp [ [Z*] ], since the general case then follows by linearity. 

Let/~ = L(q~)~D. Then for each m > 0  we can write L(q)] TT) in the form 

(5.9) L(4'I Yp m) = ~ ~x I gx, ,,- 
x~P l (Z/pmZ)  

where #x = ~(gx.pm'({0}- {i ~})). As remarked above, the decomposition (5.9) 
exhibits L(~I T 7) as a sum of measures supported on the disjoint compact open 
sets U(x, pm), for x~PI(Z/pmZ). Since the standard and improved p-adic L- 
functions are defined as integrals over Z* x Z* and Z* • Zp, respectively, only 
those terms in (5.9) associated to x of the form x = [ 1 ,  a] with a~Zp/pmZ, will 

enter. Moreover, when x =  [1, a] we may choose gx.pm= . Now a simple 
0 pm 

calculation shows tha t  w h e n ( ~  a )  pm operates on the characteristic function 

of U([1, a], p") the result is the characteristic function of Z* x Zp. Hence we 
easily obtain 

(5.10) Lp(q)l Tp, K, tr)= ~ ~ K(x)~r(a+pmy/x)dl~a(x,y) 
a~(Z/pmZ)  * Z~ • Zp 

L*(cI)lTp,~c, cO= ~, ~ tc(x)~r(a+p~y/x)dl~a(X,Y) 
a ~ Z / p m Z  Z~ • Zp 

where we have written/~, for the measure ~({a/p m} - { i  ~}). 
Now consider the first assertion of the proposition. Setting m =  1 in (5.10) 

and calculating the difference of the two expressions occurring there we see 
that only the term corresponding to a =0  survives. Thus 

L*(~lTp, tc, a)-Lo(~[Tp, lc, a)=cr(p) ~ K(x) 6(y/x)dl~o(x,y). 
Z~ • Z v 

But/~0--L(cb) so 1 follows. 
We now turn to the proof of 2. Fix an arithmetic point / ~ E ~ ,  'ar i th of weight 

k>2.  We must prove the identity L*p(eP] Tfl, x, a,,,)=L(~b~, a~,~,) for every finite 
character ~b on Z* of conductor p~ and every integer r with 0 < r < k - 2 .  Fix 
the character ~b of conductor p". Using (5.10) one easily calculates 

r = O  

= ~ O(a) ~ e,(x)(x(y-aX)-y(pmX))k-2dg,(x,Y) �9 
a e Z / p m Z  Z~, x Zp 

On the other hand, from the definition of ~ (5.6)a and the definition of 
L ( ~ ,  ~p, r + l )  (4.12) we have 

r = O  

t = ~ r f e ( x ) ( x Y - y X ) - d ~ , ( x , y )  0 p,, 
a ~ Z / p m Z  Z~ • Zp 
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where the last J-operator denotes the action on the given homogeneous polyno- 
mial of degree k - 2  in Symk-2(Q~). Now 2 follows easily by comparing the 
last two displayed equalities. 

To prove the functional equation 3, we just notice that since W~. interchanges 
the cusps ~ and 0, we have tL~IWN = --l~e[ Wu. NOW a simple calculation proves 3. 

The last property 4 follows from an application of the inclusion-exclusion 
principle. We have 

L ( ~ , a ) =  ~ Ka l(x) a(y)dl~(x,y) 
(Z~,)' 

Z~o • Zp  Zp  • Z~, Z 7, • z~, 

The first of these three integrals is L*(q~, h', a) and the last is Lp(~, K, t7). The 
middle integral can easily be calculated as in the proof of the functional equa- 
t ion3 and is equal to --a([--N]p)-;L*(@[WN, h', xa-1) .  This completes the 
proof of Proposition 5.8. 

Recall the notations of (2.4) where ~ is the universal ordinary Hecke algebra, 
" ~ / ' = ~ |  c~o, and ,T=f(:~). For each K ~ f  let :#(~) be the localization of :~ 
at to. The fraction field f (~)  of ~(~) is a direct factor of ,~  and correspondingly, 
the ~(~)-space Wx(~) is a direct factor of Wx. We will say that an element 
4~W~ is regular at ~c if the projection of r to Wx(~) lies in the ~(~)-submodule 
W~(~). Every @eW~ is regular at all but finitely many x in ?t'. To each q ~ W  x 
we associate elements Lp(q', a)~,;r for a ~ f o ,  and L*(~b, a o ) ~ ,  for arithmetic 

~r ' a r i th  ao~:~ 0 , as in (5.3). If @ is regular at n, then Lp(~b, x, a) and L*(q), t~, ao) are 
defined as in (5.4). 

We are going to recast Proposition 5.8 in terms of the local charts (2.8). 
Fix an arithmetic point x ~ J  '"~th of weight ko and character e. Let @~W,r be 
a modular symbol which is regular at x. Let U~ be the domain of convergence 
about ~ (see the remarks before (2.8)) and define the domain of analyticity of 
@ about x to be the open set 

def  
U~,~ = {k~ U~I q' is regular at K(k)}. 

This is just U~ minus a finite set. For each rational integer k>__2 in U~.,, let 
q'~,k denote the specialization of q' to fc (k). Then q~,k is a modular symbol 
of weight k and character eo9 k~ For arbitrary keU~,~, and for qJ a finite 
character of Z*,  seZp, and soeZ + we define 

def  
(5.11) Lp(~,K,k,~,s)= Lp(qg, K(k),~(. )~ 1); 

d e f  
L*(@, ~c, k, if, So) = L*(q~, ~c (k), ff ( " ) ~ " -  1). 

We will be especially interested in these functions when q~ is an eigensymbol 
for the Hecke operators. 

(5.12) Definition. For each arithmetic point K E f ,  let h(K): ~ f  ~ ( ~ )  be the com- 
position of the natural map h: J f ~  defined in (2.4)a with the localization 
morphism. Define W(~I to be the h(~)-eigenmodule in W.~(~,. 
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The involution ~ preserves these modules. Let W~) denote the _+ eigenmo- 
dules for t. The following version of Hida's Control Theorem will be proved 
in the next section. 

(5.13) Theorem. Suppose p>=5. Then for every K ~  carith, and ,for either choice 
of sign +_, the following are true. 
a. W(~) is a free rank one ~(~)-module. 
b. The specialization map c~, ,  : tpw-~tp~ (5.6) induces an isomorphism 

+ + ~ + W(i)/P~ W(~)= W ; .  

If q~ is in one of the spaces W~), then for each integer k > 2  in the domain 
of analyticity of �9 about ~c, the specialization q~,k lies in the Hecke eigenspace 
W~k associated to ~c tk) by (4.9). This is a one dimensional K~,k-vector space 
generated by the element 7 j-+ defined in (4.9). Thus there is a unique 'period '  f ~ . k  

f2~,k(q))eK~, k such that 

(5.14) Cb~,k=n~,k(Cl))" ~+,~. 

If k is equal to the weight of K, then we will suppress it from the notation 
and write simply ~ ( ~ ) .  Of course, our definition of the periods O~,k depends 
on the choice of complex periods used to define G+. It is interesting to ask 
whether there is a natural choice of complex periods and a choice of q~ so 
that Q~(4~) extends to an analytic function of ~c~,Y'? It follows from Theorem 5.13 
that there is an element q~W~} for which Q~(q~)= i. This is enough for our 
purposes, def 

Consider the sesquilinear map �9 : W~ --* W~r defined on W by ~b F-~ 4'* = q)] WN 
and extended to W~c by sesquilinearity: (atb)* =a*~*  where �9 is the involution 
on J (  defined in (2.9). A simple calculation shows that, for K ~  arith, if ~b~W(~) 
then tP*~W(~,). Note  that * is not an involution though, by (1.8), we do have 
the simple relation (~*)* = ~b[[-Nip for any �9 ~W~.  In particular, since [ - N ] p  
acts invertibly on W, the map �9 W(~) -* W(~,) is an isomorphism. 

(5.15) Theorem. Let K ~  "a r i th  be an arithmetic point of weight k o and character 
e and let ~b be a finite character of Zp. Fix an eigensymbol ~,-~'n~w~g~(q'),,(~) and let 
U = U~,~ be the domain of analyticity of tp about K. Then the following assertions 
are true, 
a. (Analyticity.) Lp(~, K, k, ~, s) is analytic for (k, s)~ U • Z e and is an Iwasawa 
function in the variable s (up to multiplication by a constant). For each positive 
integer So, L*(cP, K, k, ~b, So) is analytic for k~ U. 
b. (Specialization of the weight variable.) For each rational integer k >= 2 in U 
we have the following identity of Iwasawa functions in s. 

Lp(~, K, k, ~, s)= s ~,, s) 

c. (Functional Equation.) Let ep be the p-component of e. Then for (k, s)e U x Zp 
we have 

Lp(~, to, k, ~9, s ) -  -~0 -1 ( - - N ) ( - - N )  1 -S.Lp(~*, K*, k, ~p c0k~ ~ T M  1, k - s ) .  
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d. (Specialization to critical values.) For every k e U  and every positive integer 
So we have 

(i) Lp (45 ,~c , k ,~ , so )=(1 -ap(~c , k ) - '~co l -~~  ~ 1).L*(45,~,k,~,So). 

Moreover, if k is an integer >= 2 in U and if 0 < So < k, then 

A(f~.k, r  "",So) 
(ii) L* (45, ~, k, ~b, So)= ~(45)" ap(~C, k)- m. Qsgn (q~) 

f~.k 

e. (Functional Equation for the improved p-acid L-function.) Suppose the p- 
. co" Then for  component o f  g is a power o f  the Teichmiiller character, say Vp= . 

every integer k >=2 in U satisfying the congruence k = - n + k o - 2 ( m o d  p - l )  and 
for  every integer So with 0 < So < k we have 

L* ( 45, tc, k, coso -1 , So) - ( - N) l - so --p,~l*~cb*, ..~*, k, cok-~o -1 , k - s o )  

= Lp(45, to, k, r 1, So) + L(~) ,k.so). 

Proof  The first assertion a follows at once from the definitions. The assertions 
c, d(i), and e follow at once from 1, 3, and 4 of Proposition 5.8. Assertion 
d(ii) follows from 2 of (5.8), together with (5.14) and Theorem 4.14. To prove 
b we note that from d and Theorem 4.18 the desired equality holds if So= 1 
and ~0 is any nontrivial character. Since both sides of the equation are Iwasawa 
functions they are determined by these values. This completes the proof  of Theo- 
rem 5.15. 

Note that since the map q,v--~ ~* is not an involution, the functional equations 
e and e are not symmetric in 45 and 45*. Using the identity (45*)*=45[[-N]p 
and applying e with (45", ~c*) replacing (45, K) we obtain 

Lp( 45*, ~c*, k, ~, s) 
= - -gp  c o k ~  1 ( - - N ) (  - -  N )  k-s -1 .  Lp(dp, K, k, ~:p (Dk~ I / / - 1  k--s). 

A similar identity is easily derived for the functional equation of the improved 
p-adic L-function. In case the N-component  of e. is trivial the next lemma shows 
that 45 is actually an eigensymbol for the operator  *. In that case the functional 
equations (5.15)c and e take on a simpler, more symmetric form which we 
will exhibit in Corollary 5.1 7 below. 

(5.16) Lemma.  Let K~JJ{" be an arithmetic point o f  weight k o and character e 
and suppose the conductor o f  e. is prime to N. Then * acts on W(~) as multiplication 
by an element w~;~(~) where w2=h(~)([--N]p). Hence .for k in the domain o f  

convergence about K, we have w(K, k ) = w . ( - N )  2 where w ~ Z *  is a square 
root of  e c9 k~ 2 ( _  N). 

Proof  The condition that eu is trivial guarantees that the involution �9 
fixes ~ )  elementwise. Hence * induces an automorphism of W(~) and 
this automorphism is identical with W~v. Moreover, using (1.8) and the 
fact that e N ( - 1 ) = l ,  we see that * preserves the ___ submodules W~). 
Since these are free of rank one over o~(~), . acts on each of them as 
multiplication by a unit in .~(~). Now specialize to W~ and use the fact that 
WN acts by a scalar on W~ to deduce that w acts on all of W~) by the same 
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unit in ~ ) .  The identity w2=h(~}([--N]p) n o w  follows from the fact that 
(q~*)*=4~[[-N]p for all q~W.  The last assertion follows from the identity 

( [ - N] p, k) = e, co k~ - 2 ( _ N) ( -- N)k - 2. This completes the proof of the lemma. 

(5.17) Corollary. Let 49eWtK} where t c~ f  ~th is an arithmetic point of weight 
k o and character ~ with conductor prime to N. Let w be the square root of 
~:coko- 2 ( _  N) determined by ~c as in Lemma ~. 1 6. Then 
a. L~(cb,~,k, tp, s ) = - w . t ~  I ( - N ) . ( - N ) 2 - s .  L~(@,~,k, eogk"-2~-~,k-s ) ;  
and 
b. Suppose e = co". Then for each integer k >-_ 2 in U satisfying 
k----n + k o - 2  (mod p - 1 )  and for each integer s o satisfying 0 < s o < k we have 

k 
L* (dp, K, k, og~o- ~, So)-  W. ( -  N)7-~~ L* (q), x, k, co~-~o- ~, k -  so) 

=Lp(@, K, k, o,)so-1, So) + L(~ .~ ,  So). 

(5.18) Example. As an illustration we will construct the two-variable p-adie 
L-function described in the introduction associated to E=Xo(I1) ,  p = l t ,  and 
verify the properties (0.8). Let ~2~ be the real period of E and let 

1 
~E =~-E' q~L~Symbrax I~(Q) 

where q~i + is the plus part of the modular symbol associated to f~ by (4.7). 
Then the p-adic L-function Lp(E, s), s e Z  r, is given by (4.16) and (4.17). In (2.11) 
we showed that N = A  in this case. Let K=o- z be the unique arithmetic point 
on A of weight two and trivial character and use Theorem 5.13 to choose a 
modular symbol ~bEW~ +) with nonzero specialization to ~:. Since ~ =  A we can 
also assume that 4'+ is integral, i.e. ~ e W  +, by 'clearing denominators' .  Now 
define Lv(k, s)= f2~(~)- 1Lp(4), ~c, k, s) and L*(, k, 1)= f2~(~)- 1L*(4), ~c, k, 1) for 
k, seZp.  It is clear from the definitions (5.2) that these are Iwasawa functions 
in both variables (up to multiplication by a scalar). Since the tame level is 
equal to 1, we have q~*=q)lW~. But q~ is invariant with respect to SL(2, Z) 
and is therefore fixed by W~. Thus q~*=q~. The properties (0.8) now follow 
from Theorem 5.15 and its corollary 5.17. 

6. Existence of A-adic eigensymbols 

In this section we will prove Theorem 5.13. The proof is based on the following 
two propositions. 

(6.1) Proposition. The group W ~ of ordinary A-adic modular symbols is a free 
A-module of finite rank. For each arithmetic point ~cef~ rith let P ~ Z p [ [ Z * ] ]  
be the prime ideal associated to ~c. Then for @~W~ have cbK =0,~qbeP~ W ~ 

(6.2) Proposition. There is a natural injective Jt~ Tap(J~o) ~ --, W ~  

Proof of  Theorem 5.13. Let K s f  "rith. Since h(T~)=ap is a unit in ~ ,  the module 
o Wt~) is contained in the ordinary part W | N~). Since, by Proposition 6.1, 

W ~ is a free A-module of finite rank, W(~ I is a free ~(~-module of finite rank. 
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From the last assertion of Proposition 6.1 and the fact that t, ~ is unramified 
over A (Hida's Theorem (2.6)a), we conclude that the kernel of ~b~,, in W ~ 
is P~ W ~ In particular we see that the linear map W~/P~ Wt~ / -~ W~ induced 
by ~b~,, is injective. 

Since W~ has dimension two (Theorem 4.8), surjectivity of the map 
W~)/P~ W ~  ~ W~ will follow if we show that W ~  has ~ ) - r a n k  at least two. 
Recall the submodule T =  o Tap(Jx)orlm of Tap(J~,) ~ from "section 2". By Hida's 
Theorem 2.6c we know that Tso is a free ~f'-module of rank two. Using Proposi- 
tion 6.2 we lift this to a free rank two #{'-submodule of W~ Since #{ is a 
semisimple S-algebra,  this space projects injectively to the h-eigenspace in 
wO(~A f .  The intersection of this eigenspace with W~r is a rank two 
~l~l-submodule of Wt~. Hence W(~ I has rank exactly 2 and the specialization 
morphism induces an isomorphism Wt~/P ~ WI~ I ~ W~. Since specialization com- 
mutes with the complex conjugation involution, (5.13)b follows. Assertion (5.13)a 
is a consequence of (5.13) b. This completes the proof. 

Proof of Proposition 6.1 

Our proof of Proposition 6.1 will be based on two simple lemmas. Fix /(e,~'~) rith. 
We will say that a function q): (Z2) ' ~ Q p  is homogeneous of degree ~c if (p(tx) 
=~c(t)q0(x) for every t e Z*  and every xe(Z2) '. The following lemma follows 
easily from the definitions. 

(6.3) Lemma. A measure 12eD lies in P~D if and only if ~tpd#=0  jot every 
continuous function qo on (Z2) ' which is homogeneous of degree ~c. 

For each integer m > 0  let q~Zl be the continuous function on (Z2) ' given 
by 

q~m'(a'b)={o(a) otherwise.if b - O m o d  pm; 

(6.4) Lemmn. Let 4)~W be a A-adic modular symbol. Then the .]bllowing are 
equivalent. 

a. q)~P~ W. 
b. Sip d ~ ( D ) = 0  Jor all De~o and all continuous functions tp homogeneous of 
degree ~c. 
e. ftpr dq)(D)=O for all Dr and all m>0.  J tr 

Proof Since P~ is a principal ideal, we have PKW=Symbr(P~D ). From this it 
follows that tb~p~ W , ~  tb(D)r D for all Dr  So the equivalence a -~b  follows 
from Lemma 6.3. The implication b ~ e  follows a priori. Now assume c is true. 
Then for every 7sF, STq0(r rm dq~(D)=~q~ "~ d4~(TO)=0. So b follows from the fact 
that every continuous function ~0 which is homogeneous of degree ~c is the 
uniform limit of a sequence of linear combinations of the functions 7(p~ m). This 
completes the proof of Lemma 6.4. 

Proof of Proposition 6.1. We first prove the equality her(4, ~  P~ W ~ Recall 
from (5.6)a that for 4~EW the specialization ~ is the element of 
Symbr(Sym k- 2 (Q2)) whose value on a divisor D r ~o is given by 

(6.5) q~(D)= ~" ~(x)(xY-yX)k-Zdq~(D). 
Z~o x Zp 
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Since the integrand is homogeneous of degree ~c, the inclusion ker(qS~,.)_~P~ W 
follows from the implication a ~ b  of (6.4). Conversely, suppose @eW ~ and 
that ~b~=0. We will show that q~eP~W ~ by using c ~ a  from the last lemma. 
Fix m > 0  and De@o. Since q~ is ordinary, there is a t / ' eW ~ such that ~] Tpm = ,b. 
Using the notation of (5.7) we then have the identity 

~ ~p~"' d q)(D) = ~ ~g,,p,, q~'~' d ~P(gx.v~ .D) 
x 

where the above sum runs over x r P l (Z/pm Z). But g~, p,, ~p~"~ = 0 unless x = [ 1, 0]. 
Hence the above integral is equal to 

~g[1,ol, p~q~") dW(g[l,oj, p-,'D) : ~ ~:(x) xk-2d~(gil,ol, p,,,'D) . 
Z*p x Z v 

But this vanishes since it is the coefficient of yr in * ~ r  (@)(g[1,0],  p~" D) (see (6.5)). 
r o We have therefore proven the equality ke (~b~,,)= P~ W ~ or equivalently, that 

@~ =0<:~,/~eP~ W ~ It follows from this and the compact version of Nakayama ' s  
lemma that W ~ is a free A-module of finite rank. The proof  of Proposition 6.1 
is complete. 

Proof of Proposition 6.2 

The proof  of Proposition 6.2 is based on a study of the cohomology exact 
sequence attached to D by Theorem 4.3. It will be convenient to simplify the 
notation and write 

(6.6) B =  Boundr(D), W = Symbr(D), V = 1 Hp,r(F, D). 

It is easy to see that are no nonzero F-invariant measures in D, hence Theo- 
rem 4.3 gives us an exact sequence 

(6.7) 0-~ B-~ W-~  V-~ 0. 

(6.8) Lemma. There is a natural ~-isomorphism Tap(J~)~- V. 

Proof. Since the operator  W N intertwines the covariant and the contravariant  
actions of ~ on V, it will suffice to give an isomorphism ~: V -  Tap(J~) for 
the covariant ~ - s t r u c t u r e  on V. For  each integer n->_0 let Hi(X,(C) ,  Zp), 
H I (Xn(C), Zp) be the singular homology, respectively cohomology of the com- 
pact Riemann surface X,(C). Then the Albanese map gives us a canonical 
isomorphism Alb: H1 (X,(C), Z,)-~ Tap(J,) of ~ -modu les .  Moreover,  by Poin- 
car6 duality the intersection pairing gives us an isomorphism 
H 1 (X,(C), Z p ) - H I  (X,(C), Zp) which intertwines the covariant action of ~ on 
cohomology with the natural (covariant) action on homology. Now write V, 
for H~par(F~ (Np"), Zp) equipped with the covariant action of ~ .  Then the Eichler- 
Shimura theorem gives us a canonical isomorphism ES: V. ~ H  ~ (X.(C), Z,)  of 
~ - m o d u l e s .  We define 4,, to be the composition 

ES P D  Alb 
~,: V, ~ H1 (X.(C), Zp) , H1 (X,(C), Zp) , Tap(J,). 
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For positive integers m, n with m> n, we have a commutative diagram of o~- 
modules 

~m 
V m ) Tap(Jm)  

V. , ra~(J,) 

where the vertical arrow on the left is the corestriction morphism cores,.... 
We may therefore construct the limit V,~,=lim V. and patch together an 
isomorphism 

~,,: V~ ~ Tap(J~). 

For each n>0 ,  consider the map ~.: D ~ Z. ,  given by ~--~/~((0, l)+p"Z~). This 
map commutes with the action of F., hence induces a map ~. . :  V ~ V . .  A 
simple verification shows ~. .=cores . , . .o~m. .  Thus there is a natural homo- 
morphism 

7z,: V --~ V~,. 

We will prove that ~,  is an isomorphism by using Shapiro's Lemma and the 
simple observation that D is naturally isomorphic to a projective limit of induced 
modules. For  each integer n __> 0, let Mn = ((Z/p" Z)2) ' denote the primitive vectors 
in (Z/pnZ) 2. Let D . =  {#.: M. + Z.} be the Z,-valued functions on M. and let 
F act on D.  by the rule (/~.ly)(v.)=/l.(v.y-~). Since F acts transitively on M, 
and F. is the stabilizer of (0, 1) we see that D.  is an induced F-module. Hence, 
by Shapiro's lemma, the map D.  ~Zp,/~.~--~/~.((0, 1)) induces an isomorphism 
Hlar(Fl(N),Un)~ 1 = Hpar(Fn, Zp) = Vn. 

For each m > n, let M,. ~ M. be the natural projection and define the connect- 
ing homomorphism 6 , . . . ; D m ~ D .  by b,.,.(/~m)=#, where for each v .~M.,  
I~.(V.)=~l~m(Vm) where the sum is over all v,.~M,, lying over v.. The maps 
D ~ D .  given by #~--~/~0 where I~.(v.)=ll(v.+p" M) for v .~M. commute with 
the connecting homomorphisms 8m,. and induce an isomorphism 

D ~ lim D n. 

Since F-cohomology commutes with projective limits in the category of compact 
F-modules we conclude 

V ~ lim H 1 (F(N), D. )  ~ lira V. .  

This completes the proof of Lemma 6.8. 

To complete the proof of Proposition 6.2 we need to construct a Hecke 
equivariant splitting of the exact sequence (6.7). In general such a splitting does 
not exist over A. The obstruction is a group analogous to the classical cuspidal 
divisor class group. We need to first extend scalars to the quotient field 50 
of A. Then, as in the classical setting, we will apply the Manin-Drinfeld principle 
to produce the desired splitting over 5 ~ In order to use the Manin-Drinfeld 
principle we first need to analyze the structure of the ~'~-module B = Boundr(D). 
The next lemma shows that B is a free Z p [ [ Z * ] ] - m o d u l e  of finite rank and 
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gives an explicit description of the action of the Hecke operators Tt for 
l-- 1 (rood N). 

For each x~P~(Q) let F ~ F  be the unipotent stabilizer of x in F. Also, 
let M~ denote the ' l ine '  in (Z~)' which is stabilized by F~. 

(6.9) Lemma. 
a. Let cusps(F)_~P~(Q) be a complete set of representatives of the F-orbits in 
pl  (Q), Then there is a natural isomorphism of Zp [[Z*]]-modules 

B-~ ( ~  Dist(Mx). 
x~cusps{F) 

Hence B is a free Zp[[Z*]]-module of rank # cusps(F). 
b. I f  l is a prime diJferent from p which is congruent to 1 modulo N then 
T t -- l Ill  - 1 annihilates B. 

Proof A function q~: P I ( Q ) ~ D  represents a boundary symbol ~b~B if and 
only if 4~(7 x) = ~b (x)] 7 for all x ~ P 1 (Q) and 7 ~ E Hence ~b (x) ~ D r~ and the map 

B --* ( ~  D r~ 
x~cusps(F) 

x~cusps(F} 

is an isomorphism. Thus our problem is reduced to a determination of all mea- 
sures on (Z~)' which are invariant under Fx. We can obtain examples of such 
measures by 'extending by zero '  measures on M x. More precisely, define 
ix: D i s t (M~)~  D r- by i~(v)=/~ w h e r e / ~ D  is given by the integration formulas 

j~oix)d~(x)= j ~0(v)dv(v) 
M• 

for all locally constant functions tpeStep((Z2)'). Lemma 6.9a follows immediately 
from the following lemma. 

(6.10) Lemma. The map ix: Dist (Mx) ~ D rx is an isomorphism of 
Zp [ [Z* ] ]-modules. 

Proof We will prove this assertion for any congruence group F whose level 
is prime to p. The collection of all such groups is closed under conjugation 
by elements of SLz(Z ). Since p1 (Q) is acted on transitively by SLz(Z), it suffices 
to prove the lemma in the special case x =  00. The map i~ is clearly injective. 
We must show that it is surjective. So let # ~ D  r~. We need to show that # 
is supported on the line M ~ = { ( 0 ,  r)lr~Z*}. Let U be an arbitrary compact  
open subset of (Z2) ' which is disjoint from Moo. We will show ~(U)=0 .  

Choose a positive integer m 0 such that v+pm~ for every vEU. 
Each v in U can be expressed as v=(pra, b) for some a e Z * ,  b~Zo,  and r > 0 .  
Since the set v+pm~ 2 is contained in U it does not intersect M~o. Hence 
OCpra + pr, o Zp and consequently r < too. Now fix an arbitrary integer n > 0. Then 
U is the disjoint union of sets of the form V=v+p"~ 2. The open sets 
Vk=(pra+pm~ X (b+p"+m~176 k = 0 ,  1, ..., pmo+,-~_ 1, are all 
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F~-equivalent to one another. Indeed Vk----Vo" . Hence all of 

these sets have the same measure under #. Since V is the disjoint union of 
the Vk we conclude that p(V)=p"o+"-~p(Uo)=_O(modp"). Since U is a disjoint 
union of such sets it follows that iL(U)-0(modp") .  But n is arbitrary. Thus 
p (U)=0 .  This completes the proof  of Lemma 6.10 and hence also the proof  
of assertion a of Lemma 6.9. 

To prove b of Lemma 6.9, we let l be a prime which is congruent to one 
modulo N p  and compute ~U[Tt for an arbitrary element ~ B .  Let x ~ P l ( Q )  

and choose g~SL2(Z) so that g x = ~ .  For k=O . . . .  l - 1  l e t t T k = g - ' ( ;  ~)g 

and let c r , = g - l ( ~  0) 1 g" Using the fact that l -  1 (mod N) it is easy to see that 

the Hecke operator  Tt is represented by the double coset Fa~ F. Moreover this 
double coset can be expressed as the disjoint union of the right cosets F a  k, 
k = 0 . . . . .  1. Thus 

l 

(~1 ~)(x)= y~ ~(a~ x)l~. 
k - O  

l 

Since each cr k fixes x we have (tb I Tz)(x)= ~ q~(x)] cT k. A simple calculation shows 
k = 0  

that cr~ acts trivially on Mx and that for k = 0 . . . . .  l -  1, a k acts on Mx by multipli- 
cation by 1. Hence ~b(x)l~k= Ill ~(x) for k = 0  . . . . .  l - l  and q~(x)laz= 4'(x). Now 
b follows easily, and Lemma 6.9 is proved. 

(6.11) Lemma.  Let l+-p be a positive prime with l-=l modulo N and let 
ql -= T z - l [ I ] -  l ~ f f .  Then tl I acts invertibly on V ~ and annihilates B. Moreover, 
the exact sequence 

0 0 0 _..~ 0 O ~ B ~ W ~ V ~  

admits a unique splitting which commutes with o~. 

Proof. The fact that ~h annihilates B was proved in Lemma 6.9b. By the Weil 
bounds we see that the kernel of ~/l acting o n  Tap(J~) is trivial. So, by Lemma 6.8, 
the same is true of V. Hence q~ acts invertibly on the finite dimensional Lf 
vector space V ~  This proves the first assertion of the proposition. To construct 
a section s: V ~ ~ W ~ we proceed as follows. For  each v~V ~ choose an element 
k ~ W  ~ lying over qi-mv and set s(v)=qt k. Clearly s(v) lies over v. It does not 
depend on the choice of v~ since ql annihilates B. This splitting is Hecke equivar- 
iant since ~ is commutative.  If s' is another such section, then s -  s' is a morph-  
ism from V ~ to B~ which intertwines ql. Hence s = s' and Lemma 6.11 is proved. 

Proof of  Proposition 6.2. By composing the isomorphism (6.8) Tap(J~)~ ~ 
with the section 0 o V ~ - ~ W ~  constructed in Lemma 6.11, we obtain a natural  
injective ~ - h o m o m o r p h i s m  Tap(J~) ~ ~ W ~  This completes the proof  of Propo-  
sition 6.2. 

(6.12) Remark. A more careful analysis of the proof of Lemma 6.9b reveals 
explicit formulas for the action of the Hecke operators T t for any prime l not 
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dividing N, including l=p. In particular, we have B = B  ~ As a consequence 
we find that the splitting of Lemma 6.11 extends to a splitting of the sequence 

0 ~ B.~--~ W ~  ~ V.~ ~ O. 

Indeed, we have wnU= V nil. By analogy with the classical situation, it is natural 
to regard the p-adic L-functions defined in the last section as being associated 
to elements of Tap(J~). More precisely, for each xeTap(J~), we view x as an 
element of V by Lemma 6.8 and then use the splitting s of the above sequence 
to lift x to a A-adic modular symbol q~xeW~. Since s is not in general defined 
over A, we cannot say that q~xeW. There will, in general, be denominators 
and we can ask what kind of poles these denominators will pass on to the 
p-adic L-functions associated to q~x. We can say the following. 

First, it is not difficult to see that the standard 2-variable p-adic L-function 
Lv(~bx) has no poles. Indeed, we can find another modular symbol ~0'x~W which 
is congruent to ~x modulo B~, i.e. q~x= q~;r 7 ~ for some tPsB~.  But L ( ~ ) e D  
is a measure which, by (6.10) and the definition of L(70, is supported on the 
set {(a, b)eZ2[ab=O}. Since Lp(~ ) i s  defined by an integral over Z* x Z* (see 
5.2a) we have Lp(70 = 0. So Lp(cb~)= Lp(q~'~) and this is everywhere regular since 
~b'~ is everywhere regular. 

Second, we can bound the denominators which arise in the A-adic modular 
symbols ~ for xeTav(J~) as follows. The submodule s-I(W)_~V is clearly 
preserved by the Hecke operators. In fact, it can be shown that s-~(W) 
corresponds to a Galois invariant submodule S of Tap(Jo~). The quotient 
C= Tap(J| is a natural analog of the classical cuspidal divisor class group. 
It would be interesting to analyze the structure of C and to attempt an Eisenstein 
descent along the lines of [Mzl] .  From the above discussion we see that C 
is annihilated by the operators T ~ - l - l [ 1 ]  for primes 1 - I  modulo N with 
l~p. Hence C is a torsion A-module which is annihilated by a ~ - t - l [ 1 ] .  From 
this it follows that the denominator in 4~ x is a divisor of a i -  1 -1El] for every 
positive prime l = 1 modulo N. While the denominator  in ~b~ does not contribute 
poles to the standard 2-variable p-adic L-function (see last paragraph), we expect 
that it will contribute poles to the improved p-adic L-function L*(45~). Note 
that, by the Weil bounds, a g - 1 - l [ l ]  does not vanish at any arithmetic point 
~ceW a~ith. Hence each cbx is regular at these points, and correspondingly 
L*(4~x, ~c, a) is regular at arithmetic points. 

7. The  main theorem 

We are now ready to prove our main theorem. 

(7.1) Theorem. Suppose f is a weight 2 newform which is split multiplicative at 
a prime p>=5. Then Lp(f, 1)=0 and 

L~(f,  1) 
Ep(f, 1) = ~p(f).  ~2] 

Proof. The assertion Lp(f, 1)=0 follows from the interpolation properties of 
Lp(f, s) described in Theorem 4.18. Indeed, the eigenvalue of Tp acting on f 
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is 1, hence the 'Euler factor' appearing in 4.18 vanishes when s 0 = l  and 
is trivial. 

Let N be the tame level of f and let K'G~J~ "arith be the arithmetic point of 
weight two for which f =  f~. Using Theorem 5.13 we can choose an eigensymbol 
cb~W~) so that 4)~= 7Jr +. Let Lp(cl), ~c, k, s), Lp(q~*,K*, k, s), L*(4,, ~c, k, s) and 
L*(4~*, ~c*, k, s) be the functions defined in (5.11). They are defined and analytic 
for all (k, s)e U x Zp for some neighborhood U of 2 in Zp. Since j ' is  split multipli- 
cative at p, its nebentype character s satisfies e(p)= 1. Hence, by (2.9)b, we have 
apOC, k)=apOC*, k). We call this function ap(k) and note that ap(2)=l. From 
5.15d(i) we deduce the identities 

(7.2) Lp(~, ~c, k, 1)=(1 -ap(k)-1)" L;(~),  K, k, 1), 

Lp(q)*, K*, k, 1)=(1 -ap(k)-1).  L*(q~*, ~c*, k, l). 

In particular, each of the functions Lp(4~, ~c, k, s) and Lv(eb*, ~c*, k, s) vanishes 
at (k, s)=(2, 1). In fact, we will show that the Taylor expansions of these two 
functions have the same linear terms around the point (2, 1). To see this we 
define constants c, d~Qp (in fact, we have c, d~K~) for which 

Lp(q~, ~c, k, s)~ c ( - � 8 9  2) + ( s -  1))+ d ( k -  2) 

where f (k ,  s)~g(k, s) means that f and its first partials agree with g and its 
first partials at the point (2, 1). Replacing s by k - s  in the functional equa- 
tion 5.15c, we obtain 

Lp( ~, tr k, k - s ) =  - ( - - N )  1 +S-kLv(q~*, K*, k, s). 

Hence Lp(~*, ~c*, k, s)~ -- Lp(ct), ~c, k, k - s )  and we easily calculate its linear 
terms 

Lp(Cb*, to*, k, s ) ~ c ( - � 8 9  2) + ( s -  1))- d ( k -  2). 

Hence Lp(CI,, to, k, s)-Lp(~b*, to*, k, s )~2d(k -2 ) .  To see that d = 0  we set s =  1 
and calculate this difference using (7.2). 

(7.3) Lp(~b, K, k, 1)-- Lp(q~*, ~c*, k, 1) 

=(1 -ap(k)-1).  (L;(qb, to, k, 1)--L*(q~*, to*, k, 1)). 

From 5.15e we have L*(~, ~c, 2, 1)--L*(4~*, tr 2, 1)=Lp(4~, ~:, 2, 1 ) + L ( ~ ,  1) 
where ~ is the tame specialization of cb defined in (5.6)b. We have 
already seen Lp(q~, K, 2, 1)=0. As for L ( ~ ,  1), we note that ~ is a weight 2 
modular symbol over FI(N) with the same eigenvalues as f for the Hecke 
operators T~,l.~Np. But f is a newform whose level is divisible by p. 
Hence we must have ~ = 0 .  In particular, L(~K, I)=0,  and it follows that 
L*(@, ~c, 2, 1)-L*(@*, ~c*, 2, 1)=0. Thus the expression in (7.3) has a double zero 
at k = 2, and consequently d = 0. We therefore have 

(7.4) Lp( 4~, ~c, k, s)~ c ( - � 8 9  2) + ( s -  1)). 
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We complete the proof, as in the in t roduct ion ,  by calculat ing the cons tan t  c 
in two ways. F r o m  5.15b we have Lp(qs, ~c, 2, s)=Lp(f, s). Hence, setting k = 2  
in (7.4) we obta in  

c=Ep(f 1). 

On  the other  hand,  setting s =  1 in (7.4) and  differentiating the first identi ty 
of (7.2) with respect to k we find 

-�89 x, 2, 1). 

But from Theorem 3.18 we have @(2)=  - � 8 9  and since Q+ (q0= 1, Theorem 
5.15d(ii) gives us the identi ty L*(q~, to, 2, 1 ) = L ~ ( f  1)/f2]. Hence 

c=P~p(f). L~(f  1) 

and  the proof  is complete. 
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