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This paper is devoted to the study of certain Poincar6 series on GL(r), r> 2, 
obtained by averaging Whittaker functions over discrete groups. 

When r =  2, these are the Poincar6 series introduced by Petersson [10] and 
later used by Selberg [12] and others in their work on the Ramanujan conjecture. 
The case r=  3 was initiated by Bump et al. [4]. They have extended most of 
Selberg's theory [12] to this case. In particular, they have calculated the Fourier 
coefficients of the Poincar6 series in terms of certain trigonometric sums which 
they appropriately call Kloostermann sums and have indicated how good 
estimates for these sums would give information toward the generalized Rama- 
nujan conjecture for GL(3). 

In the present work we take an adelic look at the general case r>2.  We 
calculate the Fourier coefficients of the Poincar6 series and begin an investigation 
into the resulting Kloostermann sums with the eventual aim of giving good 
estimates for them. The reader should compare our results with those of an 
upcoming paper of Friedberg [6] who has also considered the general case but 
from the classical point of view. 

In the first section we define adelic Poincar6 series with arbitrary K-type and 
show (Theorem 1.13) that they are dual in an appropriate sense to certain zeta 
functions associated to pairs of Whittaker functions. This extends the classical 
view of Poincar6 series as being dual to Fourier coefficients (see Example 1.14). 

In Sect. 2 we give an adelic description of the Fourier coefficients of Poincar6 
series (Theorem 2.7). The Kloostermann sums arise in this context from the 
calculation of certain p-adic integrals over unipotent groups (Definition 2.10, 
Theorem 2.12). In particular, the multiplicative property of the sums, proven in [4] 
for r =  3, is inherent to the adelic approach. 

In the remainder of the paper we investigate the properties of the local 
Kloostermann sums. Before outlining our results it may be useful to first describe 
the long range goals of this theory. 

The Kloostermann sums Kl(n, v/, ~p') (Definition 2.10) are indexed by elements 
n of the normalizer NQ of the standard torus T, and pairs of characters ~p, v/' of the 
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26 G. Stevens 

standard unipotent subgroup U 0 which are trivial on Uz. For fixed ~p, tp' we define 
the Kloostermann zeta function 

(0.1) Z(A,~p,~p')= E Kl(n,~p,~p').llnll~ 
n~NQ 

where the variable A ranges over the complexified root space zr c of the standard 
torus and II II A is defined by (1.8). It is natural to decompose (0.1) into a sum of 
Dirichlet series indexed by the Weyl group "/F: 

Z(/i, ~, ~') = Z Zw(A,,e,,e'), 
w E"II/- 

(o.2) 

Zw(A,~,~')= Z Kl(tw,~,~'). IItll A. 
te TQ 

When ~ and ~' are the trivial characters, the Zw are the Dirichlet series which 
appear in the constant term of the Eisenstein series [7] induced from the trivial 
representation of the Borel subgroup and having trivial K-type. These Dirichlet 
series are known to converge for Re(A)E20+cg where Q is half the sum of the 
positive roots and cg is the fundamental Weyl chamber. Since the Kloostermann 
sums associated to the trivial characters bound the general sums we obtain for 
arbitrary ~v, ~': 

(0.3) Z(A, ~, ~') converges absolutely for Re(A) e 20 +c~. 

The principal aim is to prove the following conjecture. 

Conieeture 1. Suppose ~ and ~' are regular (Definition 1.2). Then Z(A,~,~o') 
extends to a holomorphic function in the region Re(A)e 0 +c~. 

When r = 2 it is known that Conjecture I implies the generalized Ramanujan 
conjecture [12]. We expect this to be true for general r (compare [4]). 

Of course when ~, ~' are regular we expect that the trivial estimates for the 
Kloostermann sums can be improved and that the region of absolute convergence 
in (0.3) can be extended. In fact we conjecture the following. 

Conjecture 2. Suppose ~ and lp' are regular. Then Z(A, ~, of) converges absolutely in 
the region Re(A) e ~2 0 + c~. 

When r = 2 this follows from Weil's bound [15] for the classical Kloostermann 
sums. 

Note that Conjecture 2 is an assertion about the asymptotic distribution of 
absolute values of Kloostennann sums while the strengthening of Conjecture 2 to 
Conjecture 1 may be viewed as a statement about the distribution of arguments of 
Kloostermann sums. 

In Sect. 5 we will give a proof of Conjecture 2 for GL(3). This is accomplished 
by applying the general techniques of Sects. 3 and 4 to estimate the sums attached 

to the long element 1 of the Weyl group (Theorem 5.1). The sums 

0 
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associated to 0 and 0 have already been estimated by Larsen 

0 1 
[9] and the sums associated to the remaining elements of the Weyl group are either 
trivial or are GL(2) sums. 

Sections 3 and 4 are devoted to a study of the local Kloostermann sums 
Kip(n, tp, tp'), n ~ N(Qp). Our results can be roughly divided into three categories: (1) 
identities among Kloostermann sums (Theorem 3.2); (2) factorization of Klooster- 
mann sums for GL(r) into Kloostermann sums for GL(rO and GL(rz) with 
r = r I + r 2 (Theorem 3.7, Corollary 3.11); and (3) decompositions of Kloostermann 
sums into sums of simpler trigonometric sums (Sect. 4). 

It is interesting to note that the orbit decomposition of the Kloostermann sums 
described in Sect. 4 leads to trigonometric sums Sw(O; f) [Definition 4.9 (c)] which 
are easily described without mentioning the group GL(r), but which do not seem to 
have appeared in the literature before. Examples 4.12 and 4.13 show that these 
sums generalize sums considered elsewhere (e.g. [3, 5, 8]). It seems likely that the 
techniques of [-3, 5, 8] can be applied to obtain good estimates for S,~(O; f) at least 
when ~ = 1. 

It is perhaps significant that the local Kloostermann sums Kip(n, v2, ~p') can be 
given an algebraic geometric interpretation. Though we do not explicitly use this 
fact in this paper, it has motivated the decompositions described in Sects. 4 and 5. 
We therefore outline, at the beginning of Sect. 4, the description of Klp(n, o2, ~p') as a 
sum of character values over the rational points of an algebraic variety defined 
over Fp. Examples show that the associated variety is in general not smooth. We 
wonder if one can construct intrinsically a smooth stratification of this variety. We 
refer the reader to the remarks following the proof of Theorem 5.1 for an example. 

1. Poincar6 Series 

In this section we describe the formal construction of Poincar6 series for the group 
G = GL(r), r > 1 [see Definition 1.5 and (1.11)]. We will write Qv for the completion 
of Q at a place v and write A for the adeles of Q. 

Let 

1 . . .  * 

U ~ - - -  . . 

0 ... 1 

be the standard unipotent subgroup of G and let 

~p : U(A) /U(Q)- .C* 
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be a character of U(A) which is trivial on U(Q). Every such character has the form 
v? = ~pr for some v �9 Q ' -1  where v?_~ is given by 

(1.1) 
1 x2 ... * [ 

v2~_ \ oo,x 
0 0 ... 0 

= ~(vlxl + v2x: +. . .  + vr_ lx~- 1) 

and r  is the standard additive character. 

(1.2) Definition. We will say that the character ~p = ~o, is regular if vl v2... vr-1 4: 0. 

Let Koo=SO(r), Kv=G(Zv), and K=Ko~ x [ IKv  be the standard maximal 
P 

compact subgroups respectively of the real group G(R), the p-adic group G(Qv) , 
and the adelic group G(A). For each place v of Q we fix a finite dimensional 
complex Hermitian space V~ with inner product ( , ) v  and let av : K~ ~ A u t  (V~) be an 
irreducible unitary representation of K,. We assume that (try, V~) is the trivial 
representation with a canonical unit vector [i.e. - (1, C)] for all but finitely many v. 
We can then form the tensor product representation 

(1.3) (a, V ) -  @(a~, Vv) 
l? 

of K, which is finite dimensional and unitary with respect to the inner product ( , )  
= l q ( , ) ~ .  

v 

Let Z be the center of G, and fix a character 

(1 .4 )  • = I-I z.: Z(A)/Z(Q)--,C* 
t~ 

extending the central character of (a, V). 
Let v?= l-I ~P~ be the factorization of v? into local characters ~p~: U(Q~)~C*. 

v 

(1.5) Definition. (a) A ~ov-Whittaker function is a function Wo:G(Q~)~Vo 
satisfying 

Wo( uvz~gvko) = v2 o( uo) Zo( zv) a ,( k ; 1) W~(g,) 

for all u~ e U(Q~), zo e Z(Qv), go �9 G(Q~), and ko �9 Kv. 
(b) A 1p-Whittaker function is a function W: G(A)~ V satisfying 

W(uzgk) = v?(u) Z(z) a(k- 1) W(g) 

for all u �9 U(A), z �9 Z(A), g �9 G(A), and k �9 K. 

(1.6) Definition. Let W be a o2-Whittaker function. The Poincar6 series associated 
to W is defined formally to be the function Pw: G(A)-. V given by the series 

e,,(g) = E W(~g). 
y �9 ZQ U Q  \GQ 
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Of course this last definition can only be understood formally unless wither the 
series is absolutely convergent or we have some other method of regularizing the 
s a m .  

In the applications we follow Selberg's example [12] and use the "Hecke trick" 
to regularize the sum. In particular, we introduce a complex analytic family of 
~-Whittaker functions containing the given one, W. The definition of Pw is then 
obtained by analytic continuation from a region where the series converges. 

To describe the analytic family it is convenient to introduce some notation. Let 
fr be the real Lie algebra of G, and let d be the standard Cartan subalgebra of ff 
associated to the standard torus 

, , ~  

For each place v of Q we have the Iwasawa decomposition 

G(Q~) = U(Q~) T(Q~)K~. 

The Harish-Chandra function H~ : G ( Q ~ ) ~ d  is given by 

(1.7) Ho(utk)= H~(t)= l~ t2lv "'" 

0 ... logilt,l~ 

for u e U(Q~), t = "- e r(Qv) and k E K~. 

tr 
The Killing form, (A, B)= Tr(AB), restricts to a positive definite form on d 

which we extend by bilinearity to a positive definite Hermitian form on the 
complexification Mc of ~/. For A ~ d c  and g~ ~ G(Qo) we then set 

(1.8) a~efex A *. Ilgv[l~= p(( ,Hv(g~)))~C 

Globally, we define for g z G(A) 

(1.9) ItglI~ = H JlgJ~ a- 
o 

Now for a given ~p-Whittaker function W we obtain a complex analytic family 
of ~p-Whittaker functions Wa, A ~ ~/c defined by 

(1.10) WA(g) = W(g)-Ilgll~. 

We will write Pw(g, A) for Pwa(g). 
Thus 

(1.11) Pw(g,A)= ~ W(yg). I])'gH~- 
7 e Z(Q) U(Q)\G(Q) 
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We denote by L2(G(Q)\G(A); a, Z) the space of square integrable V-valued 
automorphic forms 49 which satisfy 49(gzk) = Z(z) a(k- 1) 49(g) for g s G(A), z e Z(A), 
and k e K. The inner product on this space is given by 

(1.12) <491,492>2 = J" (49,(g), 492(g)) dg. 
ZA GQ\GA 

(1.13) Theorem. Let W= ]-I Wo be a factorizable ~-Whittaker function and suppose 
t~ 

Pvr( ", A) converges to an element of L2(G(Q)k G(A); a, X). Let 49 be an automorphic 
form in L2(G(Q)kG(A); a, X) whose associated Whittaker function 

W'(g)= ~ 49(ug)~(u)clu 
uQ \uA 

is factorizable: W'= [-I Wo'. Then 
ff 

(P~( .  ,A),49>~ = l-I IoIw~, w~', A) 
v 

where 
t I~(W~, W~, A) = 

Proof. We compute: 

<Pw( ", A), 49>2 - - - -"  

= 

' �9 Iltvllv dtv. < W~(tv), W~(to)) a 
Z(Q~)\T(Q~) 

( V~(g, A), ~(g) ) dg 
ZA GQ \GA 

E (W(yg),49(g)). llygll~dg. 
ZAGQ\GA yEZQUQ\GQ 

Since 49 is automorphic we have 49(g) = 49(yg) and the last integral can be unfolded 
to obtain 

(W(g), 49(g)). [Igll~, dg 
g A UQ \GA 

= ~ ~ (W(ug),~(ug))du. IIgtl~,dg. 
ZAUA \GX UQ\UA 

Recalling that W is a tp-Whittaker function we see that W(ug)= ~p(u) W(g) and 
therefore that the last integrand is equal to (W(g), 49(ug)~p(u)). Thus the inner 
integral above becomes (W(g), W'(g)). We then have 

(W(g), W'(g)). Ilgll~ dg 
ZAUA \GA 

= ~ ~ <wI/3g), w'(13g)>, tll3gll~dl3dg 
BA\GA ZAUA \BA 

= ~ ~ <W(tk), W'(tk)>. I[tll~dtdk. 
(BA nK)\K ZA\TA 

Applying the transformation law (1.5)(b) to W and W' and using the fact that o 
is a unitary representation we see that <W(tk), W'(tk)> = < W(t), W'(t)). We may 
assume that the Haar  measure on (BAc~K)\K has total measure 1. Then the last 
integral simplifies to 

< W(t), W'(t) ) .  Iltll~ dt. 
Zx \TA 
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Since W and W' are factorizable this integral factors and the theorem is 
proved. [] 

Note that if ~r = (~)It v is an irreducible constituent of L2(G(Q) \G(A);  or, Z) and if 

~b e L2( ) corresponds to a factorizable element of 7r then the factorizability of W' in 
the theorem is guaranteed by Shalika's multiplicity one theorem [13]. 

In words, we might say that Theorem 1.13 expresses a duality between 
Poincar6 series and certain zeta functions. This should be compared to the classical 
view of Poincar6 series as being dual to Fourier coefficients. The connection 
between these two points of view is illustrated by the next example. 

(1.14) Example .  It is not hard to relate our Poincar6 series to the ones considered 
by Bump et al. [4]. We take X to be the trivial character of Z(A) and (~, V) to be the 
trivial representation of K. Let 

tl I X1 * ... * * 1 x 2 ... * * 

(1.15) z=  " " " " 

0 0 ... l x r_ 

0 0 ... 0 1 (lYrl i) Y2"'" Yr-  1 

Yr- -  | 

0 

be a real upper triangular matrix with Yl . . . . .  Yr- 1 positive. Let E be the function on 
these matrices defined by 

E(z) = e z'~iz ~J(~J + it j). 

By the Iwasawa decomposition we can factor any element go~ ~G(R) into a 
product g~ = z zk  with r as in (1.15), z e Z(R) and k e O(r). We may therefore extend 
the function E to a function Wo~ : G(R)~C defined by 

(1.16) Woo(zzk)= { E(~) ifotherwise.ZkeZ(R).SO(r), 

Then Wo~ is a ~poo-Whittaker where ~p is defined by (1.1). 
At the finite places we define 

J'~p(up) if tpeZ(Qp).T(Zp), 
(1.17) [0 otherwise. 

Then W =  l-I Wo is a global ~p-Whittaker function. 

If we view z (1.15) as an element of G(A) by letting the finite components be 1, 
then we see at once that for 7 ~ G(Q) we have 

(1.18) W(Tz)= { 0 E(TT) ifotherwise.TeZ(Q).SL(r,Z), 

Substituting this into (1.10) we obtain 

(1.19) P w ( r , A ) =  • E(Tz). II~zll~. 
7 6 U(Z)\PSL(r,  Z) 

The right hand side is the Poincar6 series of [4, 6]. 
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It is known that if ~o is regular then this series converges to a square integrable 
automorphic form when Re(A) e 2Q + cg [1]. (Recall, Q is half the sum of the positive 
roots and cr is the fundamental Weyl chamber.) So for A in this region we may 
apply Theorem 1.13. For 4bcL2( ) as in the theorem we find 

Iv(Wv, W~,A)= W~(1). 

If we write W} = 1-1 W~ then the theorem states 
P 

(1.20) (Pw(', A), ~b)2 = W}(1). Ioo(W| WL, A). 

Recall that in the classical language W}(I) is the ~p-Fourier coefficient of ~b. Thus 
(1.20) expresses the classical duality between Poincar6 series and Fourier 
coeff• 

2. Fourier Coefficients and Kloostermann Integrals 

In this section we give the formal calculation of the Fourier coefficients of the 
Poincar6 series Pw. Recall [11] that, for 4b an automorphic form on G and 
~p': U(A)/U(Q)~C* a character, the ~p'-Fourier coefficient of ~b is the function ~b~, 
on G(A) given by 

~b~,(g) = I d?(ug) ~p'(u) du . 
U(Q)\U(A) 

We normalize the Haar measure du on U(A) as follows. The group U can be 
factored as a product U =  I-I Ua over the positive roots 2 (the order is 

unimportant). Each Ua(A) is canonically isomorphic to A which is equipped with a 
canonical Haar measure. The Haar measure on U(A) is the product of the 
measures on Ua(A). 

Our calculation of the Fourier coefficients of Pw uses the Bruhat decompo- 
sition of G as described in [2]. Let N be the normalizer in G of the standard torus T. 
Thus NIT is the Weyl group ~r of T. For n e N(Q) we can decompose 

v = v ~  u ;  = u ;  v ~ ,  

where Un~=Unn-lU+n with U+=U and U-  = the opposite unipotent 
subgroup. The decomposition of an element of U is unique and the decomposition 
depends only on the image of n in the Weyl group. We will abbreviate the notation 
and set 

(2.1) U . ~  U;. 

The Bruhat decomposition of G is given over Q by 

(2.2) G(Q) = I_[ U(Q) nU,(Q). 
neN(Q) 

The decomposition of an element of G(Q) is unique. 
The result of our calculation of the lp'-Fourier coefficient of Pw is a sum of 

products of local integrals which we call Kloostermann integrals and which we now 
describe. 
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For our fixed character ~o = H ~po and n s N(Q) we define ~Po,, : U,+(Q12) ~ C *  by 
12 

(2.3) ~o,.(u) %f vg12(nun- ~). 

This is meaningful since u~ U + =~ n u n - l e  U. We then define the global 
character ~0. : U.+(A)~C * by 

(2.4) ~ .  = H ~12,.. 
12 

If ~o' = I-I lpg is another character of U(A) set 
12 

6.(ipo ' ip,o) = { 10 ifotherwiseW12,. =~P'12[v.+ (Q,) 
(2.5) 

,~.(~, ~') = H,~.0po, V ) .  
o 

(2.6) Definition. Let W12 be a ~po-Whittaker function, qYo: U(Q12)~C* be a character, 
and n~N(Q). The associated Kloostermann integral K12=K12(W~,lp'o,n ) is the 
function Ko : G(Qo) ~ V~ defined by 

Kv(g) = 3,0p,, ~p')" ~ W12(nug) ~p'(u) du. 
U,~(Q~) 

Note that K12 is a ~p'12-Whittaker function. 

(2.7) Theorem. Let W =  l-I Wv be a factorizable ~p-Whittaker function on G(A). 
12 

Then for g =(g12)o e G(A), the ~o'-Fourier coefficient of the Poincar~ series P(g) 
= Pw(g) is given by 

P~'(g) = E l-I Ko(W~, ~'v, n)(go). 
n~Zo \N  0 v 

Proof. By the definition of Fourier coefficient 

V~,(g) = ~ P(ug) ~'(u) du . 
U(Q)\U(A) 

Substituting the series for P and using the Bruhat decomposition for G(Q) we 
obtain 

v~,(g)= ~ Z Z W(yug) vy(u)~u 
U(Q)\U(A) n~ZQ\N 0 ~,EU(Q)\U(Q)nU.(Q) 

= E ~ E W(n#ug) ~p'(u) du. 
n~ZQ\NQ U(Q)\U(A) #eU~(Q) 

If ~ is a fundamental domain for U(Q)\U(A) then LI # ~  is a fundamental 
e U~(Q) 

domain for U, + (Q)\ U(A) since U(Q) = U. + (Q) U,(Q). Thus we can unfold the above 
integral to find 

Pc(g) = E .~ W(nug) tp'(u) du. 
n~ZQ\NQ U+ (Q)\UtA) 

Using the Bruhat decomposition again we see that if ~,+ is a fundamental domain 
for U,+(Q)\ U.+ (A) then ~,+ x U,(A) is a fundamental domain for U.+ (Q)\U(A). The 
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last integral therefore becomes 

~ ~ W(nu+ug)lp'(u+u)dudu + �9 
nEZQ\N o U.+(Q)\U.+(A) O.(A) 

Now if u + ~ U + (A) then nu + n -  1 ~ U(A) and therefore W(nu + ug) = ~v,(u +) W(nug). 
Thus 

P~,'(g)= Z j ~v.(u+)lp'(u+)du + y W(nug)~p'(u)du 
neZo \N  Q U+ (Q)\U+ (A) Un(A) 

= ~ 6.(~p, ~p') ~ W(nug) ~p'(u) du. 
nEZo\N Q Un(A) 

Since W is factorizable the integral factors and the theorem is proved. [] 

We conclude this section with a calculation of the p-adic Kloostermann 
integrals in terms of generalized Kloostermann sums in the special case where Wp 
has level one, i.e. when the representation (t~p, Vp) is trivial. Note that in the general 
case Wp has level one for almost all primes p. 

For n e N(Qp) we will write 

C(n) %f U(Qp) nV(Qp)n G(Zp); 

(2.8) X(n) deaf U(Z . ) \  C(n)/U.(Z.) ; 

Y(n) %f U(Zp)\C(n)/U(Z.) .  

By the Bruhat decomposition we have natural maps 

u: X(n) ~ U(Z.)\ U(Q.), 
(2.9) 

u' : X ( n ) ~  U.(Qp)/U.(Z.) 

defined by the relation x = u(x). n.  u'(x) for x ~ X(n). 

(2.10) Definition. (a) Let n s N(Qp). Let ~pp be a character of U(Qp) which is trivial 
on U(Zp) and let v/~ be a character of U.(Q.) trivial on U.(Zp). The local 
Kloostermann sum associated to this data is 

Klp(n, v/p,~p'p)-- • ~pp(u(x)). v2'p(u'(x)). 
x~X(n )  

(b) Let n~ N(Q). Let lp-- N ~pp (respectively ~p'= ~ ~p~)be a character of U(A) 

(respectively U.(A)) which is trivial on ~ U(Zp)(respectively N U,(Zp)/. The 

global Kloostermann sum associated to this data is 

t Kl(n, ~p, ~') = l] Kip(n, ~p~, ~pp). 
p 

The Kloostermann sums which appear in the Fourier coefficients of Poincar6 
series are those for which lp~ can be extended to a character (which we also denote 
lp~,) of U(Qp)/U(Zp) which satisfies 6,0pp, lp~)= 1. Under these assumptions, for 
x ~ X(n) the term ~pp(u(x)). lp'p(u'(x)) depends only on the image ofx in Y(n). Thus the 
sum in (a) can also be expressed as a weighted sum over Y(n). 
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The general Kloostermann sums defined above will arise naturally in the next 
section. For example, in Corollary 3.11 we show how to factor certain Klooster- 
mann sums in terms of lower dimensional sums of this more general type. 

Let Wp: G(Qp)~C be a ~vp-Whittaker function of level one. The aim of 
Theorem 2.12 below is to describe the Kloostermann integrals Kp(Wp, ~p'p, n)(g) for 
g ~ G(Qp) in terms of the local Kloostermann sums. By the Iwasawa decomposition 
it suffices to calculate Kp(t) for t ~ T(Qp). But a simple variable change shows 

(2.11)  Kp(Wp, ~p'~, n)(t )  = tltll ~a. gp(Wp, ~o'p,t, nt)(1), 
where v/'p,t(u)=~v;(tut-1). Thus we only need to calculate Kp(1). 

(2.12) Theorem. Suppose Wp has level one. Then 

Kp(Wp, ~pp, n)(1)=6n(~pp, E Wp(t)" Klp( t-~ v?p, ,, --7~pp). 
t~ T ( Z p ) \ T ( Q p )  

Proof. By definition 

Kp(1)=6n(~p, lp'p)" ~ Wp(nu)~p'p(u)du 
U.(Qp) 

= 3. • Wp(nu') ~v'p(u') du. 
u' ~. Un(Qp)/Un(Zp) 

Now for each u'~Un(Qp) there are t~T(Qp) and u sU(Qp) such that 
u t-  lnu, ~ G(Zp). Moreover, the Bruhat decomposition guarantees that the class of t 
in T(Zp)\T(Qp) is well defined and that once we have chosen t the class of u in 
U(Zp)\ U(Qp) is determined. Thus we have 

Kp(1)--~. Z Z Wp(nu')~o'p(u') 
t~ T ( Z p ) \ T ( Q p )  ue U ( Z p ) \ U ( Q p )  

u" ~ Un(Qp)/Un(Zp) 
u t -  tnu" ~ G ( Z p )  

= 3" ~, ~. lpr(tut- 1) Wp(tut- lnu') ~p'p(U'). 
t u,u" 

Since ut- lnu '~ G(Zp) we have Wp(tUt-lnu')= Wp(t) and the last sum simplifies to 

KA1) = ,~ Z w,,(t) E ~,,,,(u) ~,',,(u') 
I U, U" 

which proves the theorem. [] 

We will say that a global Whittaker function (and the associated Poincar6 
series) has level one if the representation (%, Vp) is trivial for every finite prime p. 
Using Theorem 2.7 we can now easily calculate the ~p'-Fourier coefficient of a level 
one Poincar~ series. The result is stated in the following corollary. As in the 
remarks preceding Theorem2.12 it is enough to calculate P~,(g) when 
g=goo ~ G(R) has all of its finite components equal to 1. 

(2.13) Corollary. Let W = H w~ be a factorizable ~o- Whittaker function of level one 
v 

and let Wf = H Wp. Then the ~v'-Fourier coefficient of the Poincar~ series P = Pw is 
P 

given by the following formula for goo e G(R): 

Pr = E (~n(IP, ~P')" E Wf(t). Kl(t - in, ~!,-~). K ~o(Woo, ~o'~, n)(goo) �9 
n e ZQ \N O t e T ( Z ) \  T (Q)  
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(2.14) Example. We let P=Pvr ,A) where W is the ~p-Whittaker function of 
example 1.14 and calculate the tp'-Fourier coefficient Pv,(z) using Corollary 2.13. 
Here z is given by (1.15). 

By the definition of W we see that W/(t) vanishes unless t ~ T(Z) .  Z(Q). It is also 
evident from the definition of the Kloostermann sums that K l ( t - ~ n , ~ t , ~ ) = 0  
unless det(t)= _det(n). So we can rewrite the formula in Corollary 2.13 as 

- -  t P~,(z) = y, 6~OP, lp') . Kl(n, ~, lp') . Ko~(Wo~, ~P~o, n) (z). 
hEN(Q)/++. 1 

This should be compared to the results of [4, 6]. 

3. Kloostermann Sums 

In this section the prime p and the ground field Qp will be fixed unless otherwise 
specified. Thus we will write simply G for G(Qp), N for N(Qp), U for U(Qp), etc. 

To understand the Kloostermann sums Kip(n, ~p, ~p'), n ~ N,  it is clearly essential 
to study the structure of the coset spaces X(n) and Y(n) [see (2.8)]. In this section we 
examine two aspects of this structure: (1) isomorphisms among the X(n) and 
among the Y(n); and (2) factorizations of X(n), Y(n) into coset spaces coming from 
GL(ra) and GL(r2) with r lq - r2=r .  In the next section we will consider a third 
aspect, namely decomposition of X(n) into a disjoint union of simpler sets. In 
Theorem 3.12 we give a necessary and sufficient condition for X(n) to be 
nonempty. 

We begin by observing that there are several symmetries of G which preserve 
G(Zp) and respect the Bruhat decomposition. These symmetries lead to relations 
among the Kloostermann sums. 

If we let w o e ~/: be the long element of the Weyl group and tg denote the 
transpose of an element g e G, then the involution 

t :G--~G 
(3.1) 

g~-~g'= Wotg-XWo 

is an example of such a symmetry. Note that ~ preserves the unipotent group U and 
that it sends Un to Un, for n ~ N. Thus iftp is a character of U so also is ~ o ~ and if ~' 
is a character of U. then ~p' o z is a character of U.,. 

(3.2) Theorem. Let  n e N  and let ~p: U-*C*, ~' : Un-~C* be characters which are 
trivial on U(Zp), U,(Zp). 

(a) I f  t ~ T(Zp) then 

Kip(n, lp,, lp') = Klp(tn, lp, ~p') , 

Klp(n, v2, lp't) = Klp(nt-  1, ~p, ~p,). 

(b) Kip(n, ~p, v/) = Klp(n', tp o t, Ip' o O. 
(c) / f  the image of  n in the Weft  group ~ is the long element w o then Kip(n, ~p, ~p') 

= r l t , (n-  t, ~ ,  if:). 

Proof. The first statement (a) is an immediate consequence of the equalities t .  C(n) 
= C(tn) and C(n). t -  l = C(nt -  1). 
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The involution t maps C(n) to C(n ~) and U. to U.,. Thus t induces a bijection 
X(n)~X(n')  and (b) follows easily�9 

The map  y ~ ?-1  sends C(n) to C(n-1), and since inversion preserves U this 
induces a bijection Y(n)--* Y(n- 1). For  general n this map  cannot be lifted to a map  
X ( n ) ~ X ( n -  1). But in case n lies over wo we have U. = U = U.-  1. Thus Y(n) = X(n) 
and Y(n-1)=X(n- l ) ,  and (c) follows easily. [ ]  

In our study of the double coset spaces X(n), Y(n), it is convenient to keep in 
mind the following invariants of a U double coset. 

(3.3) Definition. Let g ~ G and let I, J ~ { 1 . . . . .  r} be subsets of order k. We say that 
the subdeterminant 

gH = de t (g0~ i  

is exposed if ~ J  
(1) g t s+0 ,  and 
(2) grs '  = 0 whenever I '  > I, J '  < J but (I, J) ~= (/', J'). 

Here, of course, I ' ,  J '  denote subsets of { 1 . . . . .  r) of order k and subsets have 
been ordered lexicographically. 

Visually, gH is exposed if it is revealed by a glance at the matrix of k x k 
subdeterminants from the lower left hand corner, imagining zero determinants to 
be invisible. 

The following lemma is evident. 

(3.4) Lemma. Let g ,g '~G and suppose g~-u lg 'u  2 with Ul, U2~U. Then gls is 
exposed if  and only i f  g'ts is exposed. Moreover, if  they are exposed then they are 
equal, g1J = g'xs. [] 

As a consequence of this we see that if X(n)4: 49, n ~ N, then every exposed 
subdeterminant of n is integral. In fact we will see later that this is also a sufficient 
condition. 

We identify the Weyl group ~ with the symmetric group on r letters as follows. 
First identify ~ with the subgroup of N consisting of permutat ion matrices whose 
entries are zeroes and ones in the usual way. Then define w(j) for w e ~ and 
j e { 1 . . . .  , r} by the formula 

w �9 ej = ew(j) 

where el, ..., er is the standard basis of column vectors. We let N act on {1 . . . . .  r} 
via the canonical map  N~"W.  These actions of N and ~ extend in a natural way 
to actions on the collection of subsets of { 1 . . . .  , r}. 

Now fix rl, r2 > 0 with r = rl + r 2. We will write G i for GL(rl), Ui for its standard 
unipotent subgroup, and N~ for the normalizer of the standard torus. We imbed 
G 1 • G 2 diagonally in G: 

GI x G 2 % G 0) 
(gl'g2)~"~gx x g z =  g2 

Thus U 1 x U z will be viewed as a subgroup of U and N~ x N2 as a subgroup of N. 
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N o w  let n ~ N, J ____ {1 . . . . .  r} be a subset with r 2 elements and I = n(J). Then  there 
is a unique choice of v, we~r n l e N l ,  and n2eN2 such that the following 
condit ions hold:  

(3.5) (a) The restrictions of v and w to each of  the two sets I1 ={1 . . . . .  rl} and 
I2 = {rl + 1 . . . .  , r} is order  preserving; 

(b) v(12)=I,  w(I2)=J; 
(c) v -  lnw  = nl  x n2. 

Note  that  condi t ion (a) is equivalent to 

v(U~ x U2)v- ~ g U, 
(3.6) 

w(U 1 X U 2 ) w -  1 C. U.  

�9 c U  and U,~ ,2= ' lr2 Let  U,1 ,2=  1 1, 2 = , = 

(3.7) Theorem. Let n~N,  J ~ { 1  . . . .  ,r} be a subset of order r2 and l=n(J).  Let 
v, w ~ ~1r n 1 ~ N 1, and n 2 ~ N 2 be as in (3.5). Thus, in particular, v - l n w  = n I x n 2. 
Suppose n u is exposed and n~s e Z*. Then the following hold. 

(a) I f  ~1 ~ C(nl), ~2 E C(n2) , v ff U(Zp)C3vUrl,r2V- 1, and p ~ U(Zv)c~wU~,,2w- 1, 
then 

(*) vv(71 x 72)w- ~ e C(n).  

(b) Every element of C(n) has a unique decomposition in the form (*). 
(c) The map C(nl)x C(n2)~C(n), 71 x 72 ~ V(?l x 72)w-1 induces an injection 

X(nl) x X(n2) ~ X(n), 

and a bijeetion 

Y(nl) x Y(n2 )~  V(n). 

I f  v = 1 then the first map is also bijective. 

Proof. Let  ?l ,  ?2, v, # be as in the theorem. Then  )'i = uiniu'i with u i, u' i e Ui. By (3.6) 
we know that  u=v(u l xu2 )v  -1 and u'=w(u'lxu'2)w -1 are in U. Thus  
VV(? 1 X 72)W-1/,t----vuv(n 1 x n2)w-lu '# lies in UnU. This element is clearly also in 
G(Zv) and is therefore in C(n), proving (a). 

N o w  let fl E C(n). Then fits is an exposed subdeterminant  and flH = nu e Z*. 
Thus a simple row and column reduct ion applied to fl produces  elements 
v,/~ e U(Zp) such that  ? = vfll~ satisfies 

[ ( i , j ) e I  • J ;  or 

(3.8) 7~s=0 unless i < m i n ( I )  a n d j C J ;  or 

i r 1 a n d j  > max(J ) .  

In fact we can achieve this even with the following assumptions for i<j  

f i e 1 ,  and 
(3.9) v~j = 0 unless ( i r I 
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and 
{ i ~ J ,  and 

(3.10) #ij=O unless jq~j .  

One verifies easily that under conditions (3.8), (3.9), (3.10) the elements v and # are 
uniquely determined. 

Now condition (a) is equivalent to v - l?w~ GI(Zp) x GE(Zv). So we may write 

fl=v-lv(? 1 X?2)W-I#-I 

in a unique way with ?, ~ 6,(Z,,) subject to the conditions (3.9) and (3.10) on v and ~,. 
We have - 1 (v vv)ij=vo,),vo). Thus (3.9) is equivalent to the statement 

~ j ~ v - t ( I ) ,  and 
(~,- lvv)ij = 0 unless I i r v- 1(I). 

Since v- 1(1) = (rl + 1 . . . . .  r} this is equivalent to v -  lvv ~ Url.r2" Similarly, (3.10) is 
equivalent to w - l pw~  U~,r2. This proves (b). 

Let q~: C(nl) • C(n2)~X(n)  and ~v: C(nl) • C ( n z ) ~  Y(n) be the maps induced by 
(71, ?2) ~ v(?l • ?z)w- 1. If ?i, ?'i ~ C(ni), i = 1,2, then there are ui, u'i ~ Ui such that 
?'i = ui?iu~. We then have 

v(?'~ • ?'~)w-1 = (v(ul • u z ) v -  1) [V(?l • ?~)w- 1] (w(u'~ • u'~)w- 1). 

Since v, w are in ~r which is contained in G(Zp), (3.6) shows u 1 x u2 is integral if 
and only if v(u'l • u'2)v- 1 ~ U(Zv ) and similarly u~ x u~ is integral if and only if 
w(u'~ • u ' 2 )w- l e  U(Zv). Thus ~p(?l,?2)=~p(?'1,?~) if and only if ?~,?'~ represent the 
same element of Y(n~) for i=  1, 2. This proves that ~p induces a well defined and 
injective map Y ( n l ) x  Y(n2)--* Y(n). The surjectivity of this map is an immediate 
consequence of (b). 

If in addition we have u'l ~ Unl, u'2 e Un~ then w(u'l x u'z)w- 1 E U n. Indeed, we 
have nw(u'l x u'2)w- i n -  1 = v[(n~u'ln[ 1) x (n2u'2n ~ 1)] v- 1 �9 v(U? x U2 v -  1). This is 
contained in U-  as can be seen by transposing the first inclusion of (3.6). 
Moreover, w(u] x u'2)w- t ~ Un(Zv) ~:~ u'l x u~ s Un,(Zv) x Un2(Zv). It follows that ~b 
induces an injective map X(n l )  x X (n2)~X(n ) .  

Finally, suppose v = 1, and let x �9 X(n). By (b) x is represented by an element 
?eC(n) of the form (71 x?2)w- l#  with ?leC(nl) ,  ?2eC(n2), and 
#~ U(Zv)c~wU~,r2W -1. TO show that x is in the image of q~ it suffices to show 
#~Un(Zv). If we write #=wuw-1  with ueU~.r , ,  then n#n-1  
=(nl xn2)u(n~ xn2) -1. Since N1 xN2 normalizes U~,,2 it follows that 
n#n-  1 ~ U- .  We therefore have /~ s U(Zv)c~ n-  a U-  n = U,(Zv) and the proof is 
complete. [] 

As an example of how this theorem can be used to prove identities among 
Kloostermann sums we mention the following corollary. 

(3.11) Corollary. Let n = (n~ x n2)w-  1 where ni e N~ (i = 1, 2) and w ~ W satisfies 
(3.5) (a). Then U. = w(U,1 x Un~)w- 1. I f  ~p : U / U ( Z v ) ~ C * ,  ~p' : U . / U . ( Z v ) ~ C *  are 
characters and ~oi: Ui~C*,  ~p;: U.,--*C* are the characters for  which ~Pl UI x U 2 
=~Pl xlp2, vp'=v2'l xv2: (recall ' , -1 ' ~pw(u) = ~p (wuw ))  then 

Klv(n, ~p, v2') = Klv(nl,  ~Pl, ~P'~)" Klv(n2, ~22, ~P'2). 
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The proof of this is straightforward using part (c) of the theorem. We leave it to 
the reader. 

We are now in position to characterize those n ~ N for which X(n)+-qr. 

(3.12) Theorem, Let n ~ N. Then C(n) ~e q5 (and hence X(n), Y(n) Je qS ) if and only if 
det(n) ~ Z* and every exposed subdeterminant o f  n is integral. 

Proof. From Lemma 3.4 we see that if C(n) :~ (o then every exposed determinant in 
n is integral. Clearly, we must also have det(n)~ Z*. 

So suppose det(n)~Z* and every exposed determinant is integral. We will 
prove C(n) ~ c~ by induction on r. The theorem is trivial when r = 1. We therefore 
assume the theorem to be known for GL(r') with r ' <  r. 

We first consider the case where some proper exposed determinant nls is in Z*. 
Let r2=  ~ I =  ~:J and r 1 = r - r  2. Then as in Theorem 3.7 we can choose v , w ~ t U  
and ni eNi  ( i= 1,2) satisfying (3.5). We will show that n~, n2 satisfy the hypotheses 
of the theorem. 

We have det(n2) = nij e Z* and since det(n) e Z* we also have det(nx) ~ Z*. 
Let 1', J '  =c 12 = {rl + 1 . . . . .  r} be subsets of order k for which (n2)t, J, is exposed in 

n2. Then (n2)1,s, = nvw)i wts,). Since v(I2) = 1, w(I2) = J and w, v are order preserving 
on 12 we see that nvw), wts') is an exposed subdeterminant of n~s and therefore also of 
n. Thus (n2)r~,=n~w),~w) is integral and we conclude that n2 satisfies the 
hypotheses of the theorem. 

Now let 1',,/'_~ Ix = { 1, ..., r ~ } such that (nl)rJ, is exposed in n~. Let 1"= v(l')u1 
and J" = w(J')LlJ. Then nr,s,, is an exposed subdeterminant of n and we therefore 
have nr, s,, ~ Zv  Since nr, s,, = +_ (n~)rw" nu  and nHe Z* it follows that (n~)~,j, ~ Zp. 
Thus n~ also satisfies the hypotheses of the theorem. 

By the inductive hypothesis C(nO and C(n2) are nonempty. Using Theorem 3.7 
we conclude C(n) +- d?. 

Finally, we consider the general case. Let n --- 

is exposed then 

1. ... . If n ~ N and nts 

. . .  

ordp(ntl  ) - 1 =< ordp(( / rn~-  1)H ) _< ordp(n/ /)  + 1 

and if n is not a diagonal matrix then ordp((nnn-1)lz)= o rdp (nu ) -1  for some 
exposed determinant n u. If n is diagonal and satisfies the hypotheses of the 
theorem then all of its entries are units and n ~ C(n)4: q~. 

For  n not diagonal the above remarks guarantee the existence of a maximal k 
for which m=nknn -k has integral exposed determinants. Then some exposed 
determinant m H of m is a unit. Thus by what has been proved above we have 
C(m)4:ck. Let flEC(m). Since G(Zp)=U(Zp)-B-(Zp) .  U(Zp) we may assume 
fle B-(Zp) is a lower triangular matrix. Let y = n-k[3Zk. If we write fl = umu' with 
u, u'e U, then y = (n-kUnk)n(n-ku'n k) ~ UnU. Since fl is integral and lower trian- 
gular, so also is ~. Thus 7 ~ UnUnG(Zp)  = C(n) and we have proved C(n) ~e (a. [] 
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4. Decompositions of Kloostermann Sums 

Motivated by the well known case r = 2, we expect that to give good estimates for 
the Kloostermann sums, we need first to give them a more algebraic geometric 
interpretation. In fact, it is quite easy to construct algebraic varieties X(n)/Fp, 
n ~N(Q~), whose Fp-rational points are in one to one correspondence with the 
elements of X(n) [see (2.8)]. 

However, two problems arise which prevent us from simply plugging into the 
general theory of exponential sums I-3, 5, 8]. First, the general theory is concerned 
with characters of Fp, but in our situation we have a character of U(Qp) which 
should be viewed as a product of characters of Qp/Zp. Second, to prove purity of 
weights it is usually assumed that the varieties are nonsingular. Interestingly, 
examples show that the varieties X(n) are in general not smooth. 

Judging from the ease with which the first problem is handled in the case r = 2 
(see [14]), we expect that the second problem is the more serious one. One 
approach to circumventing it would be to construct a smooth stratification of X(n) 
(see the remarks at the end of Sect. 5 for an example). This corresponds to 
decomposing the Kloostermann sums into smaller sums, one for each smooth 
strata in X(n). Estimating these smaller sums would then lead to good estimates for 
the total sums. Since this program has only barely been begun, we will only sketch 
the basic constructions here, and look at an example in the next section. 

Most of this section will be devoted to another decomposition of X(n) provided 
by the orbits of an action of T(Zp) on X(n). This decomposition is finer than the one 
we get from a smooth stratification. We therefore do not expect the resulting 
estimates for Kloostermann sums to be best possible, though they will improve the 
trivial estimates. The sums.which arise from this orbit decomposition ~tre easy to 
describe without reference to GL(r) (see Definition 4.9) but do not seem to have 
appeared in the literature before. 

We begin with the observation that U(Zp)\U(Qp) can be identified with a 
product of a number of copies of Qp/Zp. By the Witt construction Qp/Zp is 
naturally identified with an inductive limit of affine spaces over F r In this way 
U(Zp)\ U(Qp) becomes the set of rational points of an inductive limit U/Fp of affine 
spaces. Similarly we identify U,(QyU,(Zp)  with a limit UjFp  of affine spaces. 

The maps u, u' of (2.9) provide an inclusion 

(u, u'): X(n) c_, U • U,(Fp). 

The condition u(x). n. u'(x) ~ G(Zp) translates into a system of algebraic equations 
in the coordinates of U • Un. These equations define an algebraic variety, X(n)/Fp, 
contained in some finite layer of the inductive limit U • U,, and for which we have 

X (n) = X(n) (F p) . 

In this way we realize the Kloostermann sum Klp(n, tp, ~v') as a sum of character 
values over the Fp-rational points of the affine variety X(n). 

It would be quite interesting to give a description in terms of the algebraic 
group GL(r) of a smooth stratification of X(n). We will return to this problem in a 
future paper. In the next section we look at the special case r =  3. 

We turn now to the orbit decomposition of X(n). Let t~ T(Zp) and set 
s= n-  ltn ~ T(Zp). If ), E C(n) then ? = unu' with u, u' ~ U and t?s- 
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=(tut-1)n(su's - l)e UnUc~G(Zp)= C(n). Since conjugation by t and s preserves 
U(Zp) and Un(Zp) the map T(Zp) x C(n)~C(n), (t, 7) ~ t?s- 1 descends to an action 
of T(Zp) on X(n): 

T(Zp) x X(n)-* X(n) 
(4.1) 

t , x ~--~t,x. 

For characters lp, lp': U/U(Zp)-,C* the decomposition of X(n) into T(Zp)-orbits 
leads to the following decomposition of the Kloostermann sums: 

(4.2) Kip(n, ~p, ~p') = Y, Y, lp(u(x)). ~'(u'(x)). 
x~T(Zp)\X(n) T(Zp)*x 

Here T(Zp)\X(n) is a set of representations x ~ X(n) for the T(Zp)-orbits and 
T(Zp) * x is the orbit through x. 

To describe the inner sum in (4.2) it helps to have some more notation. The 
roots of the standard torus T in GL(r) are the characters _2ij: T~GL(1)  given by 

(4.3) ~ij "'. = tit f  1, 

0 t, 

1 ~i, j(=r,  i4=j. 

Let A = {-2i, i+ 1 ] 1 < i < r} be the root basis associated to the standard unipotent 
subgroup U. This induces the ordering on the roots given by -2ij > 0 r The 
action of the Weyl group ~ r  on the roots is given by w(_2)(t)= _2(w- ~tw) for w s ~r 
t e T and _2 a root. We then have w(_2 0 = _2w,),,~t/). Finally, let 

(4.4) A w = {_2 ~ d ] w(_2) < 0} = {_2i,,+ a ]w(i + 1) < w(i)}. 

We return now to the inner sum of (4.2). If w is the element of the Weyl group 
associated to n e N ,  then the condition u ~ U. is equivalent to the statements 
uii= 1(1 <i<r)  and, when i . j ,  

i< j  
(4.5) uij=O unless w(i) > w(j). 

Now write 

I Xl * �9 \ 
0 1 x2 "'. 

(4.6) u(x) = "" "'. * 

0 1 x,-1 

0 O 1 

Since u'(x)~U, we have x;=O unless w(i+l)<w(i).  For 

and 

(IX 1 1 x~ ".. 

, u ' ( x ) =  " -  " ' .  " ' .  * . 

! 0 1 xr_ 

0 1 

1 ~ i < r define 
x~: X(n)~Qp/Zp and if also w(i + 1) < w(i) define x~: X(n)-~Qp/Zp by 

(4.7) tq(x)--xi, 

~c; (x)  = x ' , .  
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For t s T(Zp) we then have 

xi(t * x)= -~i,i+ 1(0" xi(x), 
(4.8) 

~(t  * x ) =  &.), w.+  tit)" ~c'~(x). 

We are therefore led to make the following definitions. 

(4.9) Definition. (a) For  t ~ > 0 and w ~ ~ let 

Aw(~) = ( Z / / Z )  ~ • (Z / /Zp ,~  
r - - 1  r - 1  

= [I  ( z / / z )  • H 
i = '  i = 1  w(i+ 1) < w(i) 

A typical element of Aw(~) will be denoted 

_~ X ~ t  = ( 2 i ) i  = 1 . . . . . .  - 1  N ()~';)i = 1 . .w(i  + . . . . .  1 ) <r-lw(i) " 
(b) Let 

( z / / z ) .  

Vw(~)=[~x-~t6Aw(~) I "~'i" w(i+'~i~(ZfPeZ)*l)<j<w(i)H ,~j  = 1 and / " 

(c) For a character O:Aw(~)~C* define 

s~(o;r)= E o(v). v e Vw(,) 
Using the notation (1.1), let ~ - -~r ,  ~'=~v~, be characters of U where 

t t r - 1  Y=(vl . . . . .  v,-O, y'--(vl . . . . .  vr-1) are in Zp . 

(4.10) Theorem. Let n ~ N and [ be large enough so that the matrix entries of u(x), 
4 

UI(X) ZffZ~ for every x e X(n). Let ~ci(x), ~(x) be as in (4.7) and define the lie in 
1 

character 0x : Aw(t')--,C* by 

r - 1  r - 1  

Ox(_~ X ~t)= H ~(~i "11i" l~i(X))" H ~(~'i" Y;" K;(X)). 
i = 1  i = l  w(i+ 1) <w( i )  

If  N(x) denotes the number of elements in the orbit through an element x of X(n) then 

gl,(n, ~, ~') = [ / ( 1  - p -  ')] ' - ' .  E N(x). &(Ox; ~). 
xE T(Zo)\X(n ) 

Proof. This is simply a restatement of (4.2). Note that [pe(1-p-1) ]  ' -~ is the 
number of elements in Vw(f). []  

Giving good estimates for the sums Sw(O; E) will therefore lead to improvements 
on the trivial estimates for the sums Kl(n, ~p, ip') once we have understood the orbit 
structure of X(n). 

We content ourselves here with a few examples. In each of these examples, 
0:A~(~)--,C* will be the character defined by 

r-l.i/Vi2i'~ r-1 ('_~) (4.11) r 
w(i+ 1) < w(t) 
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with v~, v'~ e Zp. As always ~ :Qf fZp~C* is the standard additive character. 

. . .  1 
(4.12) Example. Let w o = . be the long element of the Weyl group. 

. . .  0 

Then Awo = A, Awo(?)=(Z/peZ)2~r-1) and 

• ' Vwo(g)={_2 _2 EAwo(g)12,.2"_,=l, for 1_<i__r-1}. 

Thus if 0: Awo(t")--*C* is given by (4.11) then 

r - -1  

S2(vi, Vr- i, P ) S w o ( 0 ; t )  = l q  ' " ' 
i = 1  

where 

. [ v 2  + v '2 ' \  
S2(v,v';P~) = E r ~ / 

a.z'~{z/pez) \ p / 
22'  = 1 

is the classical GL(2)-Kloostermann sum. 

(4.13) Example. Let r = r  1 + r  2 with r~,r2>0 and let 

w:(O ,0) 
Then 

w(i)=~i+rx if 1NiNr2, 
( i - - r  2 if r2<i__<r, 

and dw consists of the single element _2r2,,2+ 1. We have 

Aw(t ~) = {(2,, ..., 2,_ ,) • (2'r2) 6 (Z/PeZ)'}, 
V,M) = {(21 . . . . .  2,_ a) x (2',2) E A,M) I 2',~ �9 2, . . .  2,-1 = 1 } .  

If 0:Aw(d)~C* is given by (4.11) then 

Sw(O;E)= ~ t ~ (  ~ 1 2 i  "~- " " " "~" V r -  1 2 r -  1 "JV V' 
\ 

2t, 2'r 2 eZ/p Z P~ r2"r2/) $ 

2'r z n 2t = 1 

For g = 1 this sum was estimated by Deligne [5]. For  r = 3 and E arbitrary Larsen 
[9] gave estimates and more recently Friedberg [6] has given estimates in the 
general case. 

(4.14) Example. In the preceding example we now set r x = l ,  r z = r - 1  and let 
n e N(Qp) lie over w. We look at the orbit structure of X(n). 
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As in Theorem 3.2 (a) we may assume without loss of generality that n has the 
form 

t l =  

0 0 ... 0 ( -  1 ) ; - ' p - b \  

)a~ 0 
p a  " . �9  �9 . 

0 0 

0 pat- 1 0 

By Theorem 3.12 we may suppose a i>0 ,  i = 1  . . . . .  r - l ,  and b= ~a~. 
If  ai = 0  for some i then using Theorem 3.7 the orbit structure of X(n) can be 

deduced from that of similar coset spaces arising from GL(r -  1). 
If a~ > 0 for all i and if 7 e C(n) then Lemma 3.4 assures us that 7 is congruent 

modulo p to an upper triangular matrix. Thus the diagonal entries of 7 are in Z~ 
and we can find an element u ~ U(Zp) for which u~ is lower triangular. We conclude 
that any x ~ X(n) is represented by a matrix of the form 

tit  1 0 t 
Pi' t2t 3 1 

X = pa2 ".. 

�9 .. t~_lt~ 1 j 
pa~ - 1 t,t ~ 1 

where t 1 . . . .  , 6  E Z*. If  we set t = 
= t * x o where 

XO= 

i 
0 

) E T(Zp) and s = n - ~ tn then x = tXoS- 1 
/ 

t , /  

(11) P"' p , 2 - . .  

" . .  1 

0 p . . . .  

It follows that the orbit  represented by x o in X(n) is the only orbit�9 
Factoring Xo according to its Bruhat decomposit ion we find (iPal O) 

1 p-.2 

(4.15) Xo= ... ... 

1 p-"'- 

1 
r - I  

where b k = y~ a i. 
i=k 

1 . . ~  

~ 

o (- 1)ip- , l 

0 p-b~-~ / '  
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Now let d = max(ai), and suppose ~p = lp_~, ~p' = lpr, are characters of U(Qp) with 
_v, v' e (Zp)'- 1. Then 

# X(n) 
Kl(n, tp, tp') = - - .  Sw(O; ~), 

# v~,(~) 

where O:Aw(d)~C* is given by 

( o(~ x_~')=~\. + ,=,Y p ' /" 

Since the map u ' : X ( n ) ~  U,(Qp)/U,(Zp) is injective, we can use (4.15) to calculate 

r - - 1  

~:X(n)= H ~(pb,), 
/ = 1  

where ~b is Euler's totient function. Since clearly # Vw(d) = c~(pe) "- 1 we conclude 

Kl(n, ~v, ~v') = p(Zb,)-(,- ~)eSw(O; f ) .  

(4.16) Example. In Example 4.13 set rl = r - 1 ,  r2 = 1 and let n e N(Qp) lie over w. 
The involution t of (3.1) sends n to an element of the form considered in 
Example 4.15. Theorem 3.2 (b) then reduces this case to the preceding one. 

5. GL (3)-Kloostermann Sums 

In this section we set r =  3 and use Theorem 4.10 to estimate the Kloostermann 
1 

sums attached to the long element w 0 = 1 of the Weyl group. Note that 

1 
the sums attached to the identity element are trivial, those associated to the 
transpositions (12) and (23) are GL(2)-sums (Theorem 3.7) and those associated to 
the 3-cycles (123) and (132) have been estimated by Larsen I-9]. This leaves only the 
long element considered here. 

Theorem 5.1. Let tp, tp' : U/U(Zp)--*C* be characters, n= _pr-S  ~ N,  
pS 

and a=min(r ,s ) .  Then there is a constant C depending only on ~p, ~' for which 

~ r + r + s  

IKlp(n,~p,~v')J<C(r+ l ) ( s+  l)p 2 

We will prove this by tabulating the T(Z~) orbits in X(n) and using 
Example 4.12 to estimate the sum over each orbit. 

We begin with the observation that the map u' of (2.9) furnishes an injection 

u' : X(n) ~ U/U(Zp). 

This follows from the uniqueness of the Bruhat decomposition and the equality 
U = U~. Since also 

u'(t * x) = s . u'(x) . s -  1 
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for t e  T(Zp) and s = n - l t n ,  we see that the orbits in X(n) correspond to T(Zp)- 
conjugacy classes in U/U(Zp). 

To determine which u in U/U(Zp) lie in u'(X(n)) we will use the following easily 
established lemma. 

(5.2) Lemma. Let  r > 1 and for  each k = I , . . . ,  r let I k = { r -  k + 1 . . . .  , r} be the final 
k-element subset of  { 1, . . . ,  r}. Let  g, g' ~ GL(r, Qp), Then g' ~ U(Qp)g/f and only i f  for  
each k = 1 . . . . .  r and every k-element subset I c= {1,..., r} we have gxk, t = g'ik,1. ( In  
words, this last equality asserts that the bottom row of  k x k subdeterminants o f  g 
agrees with that for  g'.) [] ( p )  We return now to G = GL(3) and fix n = _ p,-S once and for all. 

p~ 

Suppose we are given 2 ~ Z* and nonnegative integers a, b satisfying 

(i) a<s ,  b < r ;  
(5.3) 

( i i )  /~ = p,(p-a- b __ l~p -S )  ~ Z ~  . 

Then there is an element x~, ~ b ~ X(n) for which 

(5.4) u'(x~., b) = l p -  b (mod U(Zp)). 

1 0 

Indeed, we have the matrix identity 

l "-1 ~ ii "1"sll li' 'l (5.5) -lpr-b A - l #  = 1 2 -1p  ~-s-b n 1 p -b  . 

\ pS p~-~ 0 0 1 

Our conditions on a, b, 2, # assure that this matrix lies in C(n). We take x~, b to be the 
associated element of X(n). 

(5.6) Definition. Let ~p, ~o' be characters of U/U(Zp). 
(a) For  a, b, and 2 satisfying (5.3) let 

X~.b(n ) = T(Zp) * ~ Xa, b 

be the orbit through x~, ~ b and let 

s~, b(n, ~, ~')= x ~ x ~ . , ( . ) ~ ( U ( X ) )  �9 ~'(U'(X)) 

be the Kloostermann sum restricted to this orbit. 
(b) For  a, b satisfying (5.3)(i) let 

X., b(n) = U X~. b(n) 

where 2 runs over the elements of Z* satisfying (5.3)(ii). Let 

S,.b(n, ~P, v2') = • ~o(u(x)). vf(u'(x)). 
x E Xa, b(n) 
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(5.7) Lemma. X(n)= LI Xa.b(n) where a, b >0 run over integers satisfying (5.3)(i). 
a,b 

Proof. The union is clearly disjoint and is contained in X(n) by definition. So let 
x e X(n). We will show x eX~,b(n ) for some triple a, b, 2 satisfying (5.3). 

Since G(Zp)= U(Zp). B-(Zp) �9 U(Zp) where B-  is the group of lower triangular 
matrices, we see that x is represented by an element fl in C(n)~B-(Zv). Replacing x 
by some other element of its T(Zv)-orbit if necessary, we may assume fl = u. n. u' 

i p-"  2p-~ with u , u ' e U  and u'= 1 p-b where a,b,c>O and 2~Z*. Since the 
matrix 0 1 

nu'= _pr-S __pr-s-b 

p,-a ,~g~-~ / 

lies in U(Qp)fl we can apply Lemma 5.2 first to the bottom row and then to the 
bottom row of 2 x 2 subdeterminants of the pair nu', fl to conclude s > a, s = c, and 
r > b, f ( p -  "- b_ 2p-C) E Z*. So we see that a, b, 2 satisfy (5.3) and that x = x~, b which 
lies in X~,b(n). This proves the lemma. [] 

Let v I, v2, Vtl, V2 ~ Zp and define the characters ~p, ~' of U/U(Zv) by 

(5.8) 

1 2 =~(vlxl+v2x2) ,  

0 

~' 1 ~ = ~(v'l x l + v'2x2). 

0 

(5.9) Theorem. Let a = min(r, s) and a <= s, b <= r be nonnegative integers. Then 
a + b  

ISa, b(n,w,o/)l<[vlv2v,lv,2lPl/2.p'~ z 

Proof. The involution z of(3.1) sends Xa, b(n) to Xb.a(n'). Composing v? and ~' with t 
has the effect of replacing (Vl, V2) by ( - r e , - v l )  and (v'l,v'2) by ( -v~ , -v ' l ) .  
Applying t to n reverses the roles of r and s. Thus we may assume r > s without loss 
of generality. 

The inequalities r > s > a and r ~ b imply that the matrix entries of u(x) and u'(x) 
lie in p-rZp/Zp for every x eX(n). Indeed, by Lemma 5.7 it is enough to verify this 
for x = X~,b. But x = x~, b is represented by the matrix (5.5) where u(x) and u'(x) are 
visibly displayed. The claim is now easily verified. 

Now let 6e be a finite subset of Z* such that X~,b(n) is the disjoint union of the 
X~,b(n) with 2 e 6  e. Then as in Theorem 4.10 we have 

(5.10) S~.~(n,v?,v/)=p-2r(1-p-~)-2.  y. 4~(X~,b(n)).Swo(O~,b,r), 
Ae 6" 
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where S~0 is defined in 4.9 and O~a,b:A~,o(r)---~C * is the character given by 

0a 2, b(2X_ 2')_ =~ (!~" 1/'2-1 pS-a)~1 .q_ (U2,~-1 p2r-s-b)pr A2+(v , lpr -a)2 ,1+(v ,2pr-b)2 ,2)  . 

By Example 4.12 we have 

(5.11) ~ " P , .2P ;P J'S2(v22-1P2~-~-b,v ' lpr-~;f)  Swo(Oa, b , r ) = S 2 ( v l l . t - 1  s-a~, ,  r -b  r, 

where $2 is the classical GL(2)-Kloostermann sum [see (4.12)]. 
The inequality 

(5.12) [S2(.~ ,/2; f)[  < 2(p'. gcd(lA[; 1, [~1; 1, pr))U2 

for 2, # s Z v is well known [14]. In order to apply this bound to (5.11) we first note 

gcd(lv lp ~- al; 1, IV,2f-b[; i, f ) <  IV l V,21; 1" gcd(p s-", f - b ,  p,) 

= Iviv,21; 1. gcd( f -~ ,  p~-b) 
(s-a)+(r-b) 

<= Iv l v,21;1 . p 2 , 

and similarly 
(2r-s-b)+(r-a)  

gcd(lvEpE~-~-bl~ 1, iv , i f -alp ,, f ) <  iv2v,ll ~ 1 .p 2 

Combining these inequalities with (5.11) and (5.12) we obtain the bound 
a+b 

(5.13) ISwo(0~,b; r)l <4.tvlv2v'lv'21~ 1/2. p2r 2 

This inequality together with (5.10) give 
a+b 

ISa, b (n) l<4. lv lv2v , lv ,2 l~ i /Z . ( l_p-1) -Z .p  2 ~ #(X~,b(n)). 

The sum appearing on the right hand side is equal to 4~ (Xa, b(n)) which is ~ p" + b + ~. 
Since p > 2  we have (1 _ p - 1 ) - 2 < � 8 8  and the theorem follows. [] 

Proof  o f  Theorem5.1.  Let E = m a x ( r , s ) = r  + s - a .  If Xa, b(n ) is nonempty then 
there is a 2 e Z* such that a, b, 2 satisfy (5.3). The condition pr(p-a-b_2p-~)  e Z* 
implies a + b < f. 

By Theorem 5.9 we therefore have 
a+b d 

iS~,b(n,w,w,)l<C.p ~+ 2 <C.p~+-~ 

where C = IvlvS~v'21; 1/2 depends only on ~, ~'. Theorem 5.1 now follows from the 
equality Kl(n,~p,~')= ~ S,.b(n,v?,~p'). [] 

a<s 
b<r 

a + r + s  
There is no reason to believe that the exponent 2 appearing in 

Theorem 5.1 is best possible. Because we have treated the sums S~.b as the basic 
sums our proof of Theorem 5.1 does not account for the quite likely possibility of 
cancellations among the S~,b in the sum Sa, b = ~S~,b. 
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In Sect. 4 we indicated how to construct an algebraic variety X(n)/Fp for which 
X(n) = X(n) (Fp). A similar construction leads to subvarieties Xa,b(n)/Fp ~ X(n)/Fp for 
which Xa, b(n) = X,,b(n) (Fp). 

Moreover, it can be shown that X(n)= L[ Xa, b(n) is a smooth stratification of 
a,b 

X(n). The proof  of the smoothness of X~,b(n ) is accomplished by exhibiting a 
transitive group of birational equivalences acting on X,, b(n). This suggests strongly 
that the sums S~.b should be viewed as the basic sums and correspondingly that 
Theorem 5.1 can be improved. 

Proof of the Case r = 3 of Conjecture 2. (See the introduction.) We need to prove 
that the Kloostermann zeta function Zwo(A,~p,~') converges absolutely for 
Re(A) ~ ~ e + ~. This is already known for the zeta functions Zw( ) for w :# w o (see 
the remarks at the beginning of this section). Now write Re(A)= s lPt + s2#2 where 
]A1 = ~ _~1,2 .~_ ~ ~2, 3 2  and ~2 = 13_1,2 • "4- 2/~2-, a [notation as in (4.3)3. Note thai-# t, #2 is 
the dual basis to _21,2,_22, 3. We need to show that Z~o ( ) converges whenever 
sl, s2>~. By Theorem 3.12 we can write 

Z*o(A, Ip, lP')= E ~ Kl(stWo, lP, lP')" tltll~, 
s~T(Z) D1,D2= 1 

where t =  D1Dz x . By Theorem 5.1 this is bounded by 

D2 

C. ~ {gcd(D1,D2)(DxD2)}I/Z.D?"+~D; ~+~ 
D1, D2 = 1 

< C "  ~, ~ d{-s'-s2+2erl�89189 
d=l  dl,d2 = 1 

where C is a constant which depends only on ~ and ~' and ~ is positive. This clearly 
converges for sl, s 2 > ~ and e sufficiently small. []  

It is amusing to observe that even if we could improve the exponent in 
r+s  . 

Theorem 5.1 to ~ - - ,  this would not result in a larger region of convergence for the 

Kloostermann zeta function. 
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