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In the present paper we shall give evidence to support  the claim (Conjecture I 
below and (1.3)) that every elliptic curve A/o which can be parametrized by 
modular  functions admits a canonical modular  parametrization whose properties 
can be related to intrinsic properties of A. In particular, we will see how such 
a parametrizat ion can be used to prove some rather pleasant integrality proper- 
ties of Stickelberger elements ad p-adic L-functions attached to A. In addition, 
if Conjecture I is true then we can give an intrinsic characterization of the 
isomorphism class of a special elliptic curve in the Q-isogeny class of A distin- 
guished by modular  considerations. 

For  most of the paper  we have opted for the concrete approach and defined 
modular  parametrizations in terms of X I (N) (Definition 1.1). However, to justify 
our view of these parametrizations as being canonical, we begin here with a 
more intrinsic definition. Recall that Shimura ([19], Chap. 6; see w 1 of this 
paper) has defined a compatible system of canonical models of modular  curves 
{Xs, SeS~}, where 5 p is a certain collection of open subgroups of the group 
GL(2, Az) over the finite adeles A I of Q. We define the adelic upper half-plane 
to be the pro-variety )~=lL_m Xs and give )~ the Q-structure induced by the 

s 

field of modular  functions whose q-expansions at the 0-cusp have coefficients 
in Q. 

A modular  parametrization of A is a Q-morphism ~: ) ( ~ A  which sends 

to 0-cusp to the origin of A and for which ~i*~oA=c.f(q)---dq where c~ A is a 
q 

Neron differential on A, f is a normalized weight two newform, and ceQ*.  
We refer to c as the Manin constant of the parametrization ~i. 

In Theorem 1.9 we will see that every modular  parametrization factors 
through a morphism ~: XI(N)~A where N is the conductor of A. Thus we 
lose no generality if we restrict (as we will) our attention to 
X1 (N)-parametrizations. 

We will investigate the following basic conjecture and its consequences. 

* Research supported by the National Science Foundation. 
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Conjecture I. For each modular elliptic curve A/Q there is a unique (up to sign) 
modular parametrization ~: X ~ A whose Manin constant is + 1. 

This should be viewed as a refinement of a conjecture of Manin [11, 14]. 
In [14] Mazur and Swinnerton-Dyer introduce what they call the strong parame- 
trization, X o ( N ) ~ A o ,  of a special curve Ao, the so-called strong curve, in the 
Q-isogeny class of A. This parametrization is determined by the property that 
its degree is minimal among all Xo(N)-parametrizations of curves Q-isogenous 
to A. For  this strong parametrization, Manin [11] conjectured that c = _+ 1. 

Thus the novelty in our formulation is the assertion that any curve in the 
Q-isogeny class of A can be parametrized by some modular curve in such a 
way that the Manin constant is + 1. The corresponding statement is false for 
Xo(N)-parametrizations (Example 1.11). 

Let d denote the Q-isogeny class containing A. Following the example 
of Mazur and Swinnerton-Dyer we distinguish a special modular parametriza- 
tion of a special curve in d .  Define the relative degree of a modular parametriza- 

1 
tion r~: )~--*A, A ~ 4  to be deg(rcs), where rCs: Xs-+A , S~5 '~, is 

[SL(2, Z): Fs] 
any representative of ~. As a corollary of Theorem 1.9 we see that there is 
a unique curve A l ~ d  and a unique (up to sign) parametrization z~l of A 1 
whose relative degree is minimal among all parametrizations of all curves in 
~'.  We refer to A1 as the optimal curve in d and to z~l as the optimal parametriza- 
tion. More concretely, the optimal curve is characterized as the curve in d 
which occurs as a subvariety of the Jacobian of X1 (N). 

As another corollary of Theorem 1.9 we discover that there is a canonical 
lattice ~ o ( f ) ~  C associated to the weight 2 newform f which is defined as follows. 

For  any congruence subgroup F of Fo(N), f (q)  dq  defines a regular differential 
q 

1-form on the Riemann surface X r  associated to F. The periods of f ( q ) d q  
q 

over singular 1-cycles on X r span a lattice 5~ in the complex numbers. 
We define 

~ ( / ) =  (-] ~r( f ) .  
F ~ F o ( N )  

Using Theorem 1.9 we derive the equality ~ ( f ) = ~ r , ~ m ( f ) .  Thus S ( f )  is a 
full lattice in C. 

We feel that the lattice ~ ( f )  induces the 'r ight '  integral structure within 
which one should measure integrality properties of special values of L-functions 
associated to f. This point of view is motivated in part by w of [21] especially 
Theorem 2.1. Our basic conjecture relates f ( f )  to the period lattices of elliptic 
curves associated to f (see (2.9)). It is this relation which allows us to deduce 
integrality properties of values of L-functions in ~ 3 and 4. Conversely, in w 6 
we will use arithmetic properties of values of L-functions to prove a weak form 
(2.4) of the conjecture for certain elliptic curves with complex multiplication. 

In w 2 we show that if d is any Q-isogeny class of elliptic curves (modular 
or not), then there is a canonical curve Amin in d whose Neron lattice LP(Amin) 
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is contained in the Neron Lattice 5f(A) of any other curve A ~.4. Equivalently, 
Amin is distinguished as the curve of minimal Parshin-Faltings height in ,~'. 
In case d is modular with newform f we prove that Conjecture ! is equivalent 
to the equality of lattices 5r  (Conjecture I" (2.9)). In particular, 
the following statement (see (2.4)) is a consequence of Conjecture I. 

Conjecture II. A 1 -~ Amin. 

Note that this relates a curve distinguished by modular considerations to 
one distinguished intrinsically without mention of modular forms. 

In w 3 we will attach to a modular elliptic curve A/Q Stickelberger elements 
O~C[-GM] ,  M ~ Z  +, similar to those studied by Mazur and Tate [15]. Here 
GM'~(Z/MZ)* is the strict ray class group of conductor M over Q. The coeffi- 
cients of Ou are known to lie in the Q-span L,C(A)| of the Neron lattice 
of A. With respect to the integral structure imposed by •(A), we will show 
how Conjecture I implies integrality properties for OM which are analogous 
to those known for the Stickelberger elements associated to totally real number 
fields [5]. 

We will also look at the integrality properties of the Mazur, Swinnerton-Dyer 
p-adic L-functions attached to A for primes p4 = 2 of good ordinary reduction. 
By the philosophy of the Main Conjecture of Iwasawa Theory we expect these 
to be p-integral, but no proof is known at present. In w we will show this 
integrality is a consequence of Conjecture I. We shall also derive lower bounds 
for the /~-invariants of these p-adic L-functions which match bounds proved 
by Greenberg ([8], formula (75)) for the characteristic power series on the other 
side of the Main Conjecture. 

The remainder of the paper is devoted to the presentation of evidence sup- 
porting the basic conjecture. In w we will prove that if Conjecture 1 is true 
for a curve A, then it is also true for any twist A* of A by a quadratic Galois 
character O which is unramified at the primes of additive reduction. 

In w 6 we study the conjectures for certain elliptic curves with complex multip- 
lication. We will use integrality properties and congruence formulas due to Rubin 
[18] for algebraic parts of special values of L-functions to prove Conjecture II 
for these curves. Comparing the congruences with ' special values of L-functions' 
attached to subgroups of the cuspidal divisor class group, we are also able 
to show that a certain torsion subgroup of the optimal curve A t is contained 
in the cuspidal group (see Theorem 6.4). 

Finally, in w we present the known numerical evidence for Conjecture I. 
By direct calculation on a Macintosh Plus personal computer we have verified 
the conjecture for the 749 curves (281 isogeny classes) of conductor less than 
or equal to 200 appearing in the Antwerp tables [22]. The results of these 
calculations are being compiled on disks which can be used on any Macintosh 
computer and are available to anyone for the cost of the disks and postage. 

Even assuming that Conjecture I is true and that we can prove it, there 
is good reason for dissatisfaction. We should then expect that our conjecture 
is just a manifestation, in the one dimensional factors of the Jacobian of X1 (N), 
of some deeper property of the entire Jacobian. Perhaps, conversely, an identifica- 
tion of this deeper property will lead to a proof of Conjecture I. 
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w 1. Modular elliptic curves 

The celebrated conjecture of Taniyama, Shimura, and Weil asserts that every 
elliptic curve over Q can be parametrized by modular functions. Motivated 
by this conjecture, Mazur and Swinnerton-Dyer [14] introduced the notion 
of strong parametrization X o ( N ) ~ A  of an elliptic curve A/o by the modular 
curve Xo(N)/o. Such a parametrization provides a powerful tool for viewing 
the arithmetic of A by relating it to the arithmetic of Xo(N ) which, in turn, 
can be studied moduli-theoretically. 

The choice of X o(N) (as opposed to X I(N ) or X(N)) as parametrizing object 
is justified by the relative simplicity of the associated moduli problem. Neverthe- 
less, the use of Xo(N) does involve a choice. 

In the present work we have made a different choice. We will present evidence 
to support the claim (see e.g. Conjecture I (1.3)) that parametrizations by X I(N) 
are simpler than those by Xo(N ). Moreover, parametrizations by X~ (N) satisfy 
a certain universal property (see Theorem 1.9) which suggests that our "choice" 
of X1 (N) is hardly a choice at all. 

Throughout  this paper, X1 (N)/o will denote Shimura's canonical model over 
Q of XI (N  ) ([19], Chap. 6) in which the 0-cusp is a rational point. In this 
model, a rational function on X~ (N) is defined over Q if and only if its q- 
expansion at the 0-cusp has coefficients in Q. 

(1.1) Definition. An elliptic curve A/o is modular of level N if there is a morphism 

X~(N)~-~A 

of algebraic curves over Q such that 

(i) rc sends the 0-cusp to the origin, and 

(ii) zc* 0 )  A = C(7~) " U) f 

where ~o A is a Neron differential on A, ~oy=f(q) d-q is the differential 1-form 
q 

on X 1 (N) associated to a normalized newform f of level N, and c(~)~Q*. 

The map 7z is called a modular parametrization of A. The constant c(~z) is 
called the Manin constant of the parametrization 7r. []  

(1.2) Remark. By the work of Carayol [1] we know that the level of a modular 
elliptic curve is equal to its conductor. [ ]  

The basic conjecture which we propose to study is as follows. 

(1.3) Conjecture I. Let A/o be a modular elliptic curve of level N. Then there 
is a modular parametrization 

~: Xt(N)--*A 
for which c(~z): +_ 1. [] 

This conjecture is related to a conjecture of Manin (see [11, 14]), but is 
stronger than that conjecture. Manin's conjecture asserts that some curve in 
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the isogeny class of A (namely the strong one) admits a parametrization 
by Xo(N) with c(u)= _+ 1. Conjecture I asserts that if we replace Xo(N) by 
Xt (N)  then every curve isogenous to A admits such a parametrization. The 
analogous statement for Xo(N ) is false (see Example 1.11). 

To approach Conjecture I, it is useful to decompose it into two subconjec- 
tures. This is achieved by singling out a special parametrization u l : X  1 ( N ) ~  A I 
of a special curve A~ in each isogeny class of modular elliptic curves ~ over 
Q (see (1.4), (1.5) below). The first subconjecture is then a statement about nt 
(namely, c(7rt)= + 1), and the second statement concerns isogenies from At to 
the other curves in ~r 

We first recall some basic facts about modular parametrizations. The follow- 
ing proposition is easily verified (compare [14]). 

(1.4) Proposition. Let J be an isogeny class (over Q) of modular elliptic curves 
of level N. Then there is a curve A~ ~ and a modular parametrization 

7 t 1 : X I ( N ) ~ A 1  

satisfying the following equivalent conditions. 

(1) 7~ 1 is optimal in the following sense. I f  n: X I ( N ) ~ A  is a parametrization 
of a curve A ~ ,  then there is an isogeny fl: Aa ~ A  which makes the Jollowing 
diagram commutative: 

X I (N)  ~1 >A a 

A. 

(2) The induced map on singular homology 

n l , :  H i ( X ,  (N); Z)--~ H1 (AI ; Z ) 

is surjective. 

(3) The induced map on Pic ~ 

n*: A1 ---- Pic~ (A1) % Pic~ (N)) 

is injective. 

The curve A t  ~ is uniquely determined by these conditions and zcl is determined 
up to sign. [] 

(1.5) Definition. We will refer to A~ as the optimal curve in ~ and to 

++_~zl : X I  ( N ) ~  A1 

as the optimal parametrizations. [] 

(1.6) Theorem. For any modular parametrization n: X1 ( N ) ~  A, we have c(n)~Z. 
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Proof The proof is a straightforward application of the techniques of 114, 10]. 
Recall that a F~(N)a~ith-structure on a generalized elliptic curve A is defined 
to be an inclusion of group schemes/~N ~ A. There is a smooth connected scheme 
M~ (N)/z which classifies generalized elliptic curves with F~ (N)a~it~-structure. 

Let Tate(q) be the Tate curve "G,,/q z' '  ([-4], VII), and let i : / zN~Tate(q  ) 
be the /"1 (N)"~th-structure induced by the natural inclusion /~N~G,,. The pair 
(Tate(q), i) corresponds to a morphism 

z: S p e c ( Z [ [ q ] ] ) ~  M, (N)/z. 

After base change to C we have M1(N)/c ~-XI(N)/c and ~ defines the formal 
neighborhood of the 0-cusp on X I(N)c corresponding to the local parameter 
q=e-2'~i/NL This can be seen as follows. For  z in the upper half plane, let 
E(z)=C/(z, 1) be the elliptic curve whose period lattice (z, 1) is generated 
by z and I. For  each primitive element cot(z ,  1) let io,:#N~E(z) be the 
F l(N)arlth-structure given by e2'~i/N~--~oo/N(mod(z, 1)). Then z corresponds to 
the point (E(z),iz)eXl(N)c. After a simple calculation we see (E(z),i~)~- 
(E(- 1/Nz), il)" But this latter pair is clearly isomorphic to (Tate(e-2~ i/N~), i). 

Now consider r over Q. Since M~(N)/o is irreducible, we see that a function 
on M~ (N)/o is defined over Q if and only if its q-expansion at the 0-cusp has 
rational coefficients. Thus M~ (N)/o - X ~  (N)/o. 

By the universal property of Neron models, the parametrization 
n: Xa (N)/o ~ A/o extends to a Z-morphism 

n: M1 (N)/z ~ A/z 

where A/z denotes the Neron model of A. 
Now let (/gAEH~ (21) be a Neron differential on A. From the commuta- 

tive diagram 

4" 
H~ f2x)- ~* ,H~ f2 ~) , Z [ [ q ] ]  dq 

H~ f2') '~*,H~ (!) /c;  f21) ** ,C [ [q!]  dq 

we see at once that 7"E*tSOA=C'(2) f has an integral q-expansion at the 0-cusp. 
But the Atkin-Lehner operator WN interchanges the 0-cusp and the oo-cusp 
and acts on coy as ___ 1. Thus c.~or also has an integral q-expansion at the 
oo-cusp. This proves the theorem. []  

Remarks. For  an isogeny class of modular elliptic curves with square free conduc- 
tor Mazur [13] has shown that the Manin constant, Cstro.g, of the strong parame- 
trization is a power of 2. In [14] this was strengthened to cstro.g= + 1 if the 
strong curve is involutory. In a letter to Mestre (February, 1985), Raynaud 
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has stated general results concerning parametrizations by algebraic curves of 
stable elliptic curves. These results imply c(~1)= _ 1 or + 2  fo; square free con- 
ductor. 

We can now give the second form of the basic conjecture. 

(1.7) Conjecture I'. Let ~c~ be an isogeny class of modular elliptic curves of level 
N, and let 7r 1 : X 1 (N) ~ A t be the optimal parametrization. Then 

(a) c(7~1)= _ 1 ;  
(b) For any A e ~  there is a (necessarily cyclic) isogeny c~: A 1 --* A .for which 

(~*O)A= -~(DA1 where ~Oa, COAl are Neron differentials on A, A1. [] 

Remark. In w 2 we will show that any Q-isogeny class (not necessarily modular) 
contains a unique curve A1 satisfying (b). This curve is characterized by the 
property that every cyclic Q-isogeny with domain A 1 extends to an dtale morph- 
ism on Neron models over Z. 

(1.8) Theorem. Conjectures I and I' are equivalent. 

Proof Conjecture I is clearly a consequence of Conjecture I'. So suppose Conjec- 
ture I is true. 

Let A ~  be an arbitrary curve in the isogeny class, and let 7r: XI(N)---,A 
be a parametrization for which c(rc) = 1. By the definition of optimality, rc factors 
through ~zl : 

X I ( N  ) ,1 ,AI 

A. 

If OA, e~A I are Neron differentials on A, A~ then ~*~o a =n-e)A, for some integer 
neZ.  Thus l=c(~)=n.c(rq) .  Since both n and c(rc 0 are iotegers (1.6(a)), n 
= C ( ~ 1 ) =  ___+ 1. [ ]  

We next turn to the question of how much our definitions depend on their 
reference to X1 (N). 

Shimura ([-19], Chap. 6) has studied the field g of modular functions of 
all levels having Fourier coefficients in cyclotomic fields. He showed that J~ 
is Galois over Q and constructed a surjective homomorplaism p: GL2(Aj-) 

Aut(,~) whose kernel is the group of rational matrices Z[Q) in the center 
of GL2. Let 5 p be the collection of open subgroups of GL2(A~) for which 
Z(Q)_~S and S/Z(Q) is compact. For  each SE5 p let ks be th~ cyclotomic field 
associated to the open subgroup Q*R + det(S) of A* by class field theory. Shi- 
mura has shown that the fixed field ~s of p(S) in ~ defines a structure of 
algebraic curve over ks on the modular curve Xrs associated to the congruence 
group F s = GL~ (Q) c~ S. For example, if we define 

K ~ ( N ) = { g e ~ G L 2 ( Z v ) g - ( ;  ~) (mod N)}, 
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then the group S I ( N ) = Z ( Q ) K I ( N )  defines the model of X I ( N )  we have been 
using. 

Define Jf to be the pro-variety lim Xs.  We give )? the Q-structure induced 
s 

by the subfield ~,~Q of ~ consisting of modular functions whose q-expansions 
at the 0-cusp have rational coefficients. An 3?-parametrization of an elliptic 
curve A/Q is a compatible system r~={ns} of ks-morphisms ns: X s ~ A  for all 
sufficiently small S e 5  e. The parametrization 7t is defined over Q if the image 
of the induced inclusion ~* : Q(A) ~ Y is contained in ~Q. 

(1.9) Theorem. Let f be a weight two normalized newform of level N with rational 
Fourier coefficients, ~4j. be its associated isogeny class of elliptic curves, and (by 

the differential 1-form on X associated to f (q) dq,  q = e2,i=. Let 
q 

be a parametrization of a curve A ~.~r such that 

(i) ~ is defined over Q; 

(ii) r~ sends the O-cusp to the origin; and 

(iii) ~* co A = c. aS: 

where ~oA is a Neron difJ'erential on A and c~Q*. Then 7~ factor through a modular 
parametrization 

n: X I ( N ) ~ A .  

Proof Let ns: Xs--*A be a ks-morphism representing 7~ where Se~9 ~ is chosen 
so that S ~  SI(N). We must show that ns factors through a Q-morphism X1 (N) 

A. We first prove the corresponding statement over C. 

Let F =  Fs, Jr = Pic~ and J1 = Pic~ (N))/c. The natural projection 

Xs/r 

induces a morphism (a: J1 (N) ---, Jr. 
We first show that q5 is injective. Since the principal congruence groups 

are cofinal in the lattice of congruence groups we may suppose F = F ( M )  for 
some integer M divisible by N. With this assumption Xs/c ~ X1 (N)/c is a Galois 
cover of Riemann surfaces. By Kummer  theory we know that the group ker(qS) 
is Pontrjagin dual to the Galois group Gal(Xunr/X1 (N)) of the maximal abelian 
unramified c o v e r  Xunr/C ~ X 1 (N)/c intermediate to Xs/c ~ XI  (N)/c. But the iner- 
tia groups of the cusps of XI(N)/c are the parabolic subgroups of FI(N), and 
a theorem of Fricke and Wohlfahrt [24] tells us that F~ (N) is generated by 
its parabolic elements together with any congruence subgroup. Thus Xunr/c 
= X 1 (N)/c and ker (4)) = 0. 
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Next we show that there is a map r A/c--*J1 for which the diagram 

Jr ' ~* A/c 

~l / (1.10) 

J1 

is commutative. The hypothesis (1.9)(iii) gives us the desired diagram on tangent 
spaces at the origin. Exponentiating and using the injectivity of ~ gives us 
(1.1o). 

Finally, we dualize (1.10) and consider the canonical embeddings Xs/cC~dr 
and X l ( N ) / c ~ J l ,  each of which sends the 0-cusp to the origin. This gives 
us the following commutative diagram where the leftmost vertical arrow is the 
natural projection. 

7E S 

Xs/c ~ ~ Jr ~ A/c 

X 1 (N)/c ~ ~ d 1 

From this diagram we see that the functions in the image of the inclusion 
z*" Q ( A ) ~ s  are fixed by FI(N). Since ~ is defined over Q we also have 
n*(Q(A))_.~- o. From ([19], Ex. 6.26) we see that YQ is the fixed field of p(T) 

where Tis  the group {( ;  01)}~_GL2(Af). Thus x*(Q(A)) is contained in the 

fixed field of p (/'I(N)" S. T). But F 1 (N). S. T = $1 (N) by the strong approximation 
theorem for SL2. This proves the theorem. [] 

We close this section with an example. 

(1.11) Example. There are three elliptic curves of conductor 11. The minimal 
Weierstrass equations of these curves are given in the Antwerp tables [22] 
where the curves are labeled ILIA], [11 B], and [11 C]. It can be verified (see 
w that [ l l A ] = X ~ ( l l ) ,  [ l l B ] = X 0 ( l l ) ,  and [I1C] is the quotient of Xo(ll)  
by the subgroup of order 5 generated by the cusps. We have the following 
diagram. 

[ l l A ]  , [ l lB ]  ,[11C] 

I1 II 
x , ( l l )  ,Xo(ll)  

The horizontal arrows are isogenies of degree 5 under which a Neron differential 
on [ l l C ]  pulls back to a Neron differential on [ l lB ]  which in turn pulls 
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back to a Neron differential on [11A]. Note,  however, that under the isogeny 
[11 B] -~ [I  1A] of degree 5 a Neron differential on [11A] pulls back to 5 times 
a Neron differential on [ l l B ] .  This shows that we cannot replace XI(N)  by 
Xo(N ) in Conjecture I (1.3). []  

w 2. Parshin-Faitings heights 

In w i we used modular  considerations to distinguish the "op t ima l"  curve A1 
in an isogeny class .4  of modular  elliptic curves. Conjecture I '(b) (1.7) then 
asserts that A1 should have a rather remarkable property. I have not been 
able to find a statement in the literature which would guarantee the existence 
in .4  of a curve with this property. Thus, to make our conjecture sensible 
we should prove that every isogeny class d (modular or not) contains a curve 
At satisfying (b) of Conjecture I'. This is the essential content of Theorem 2.3 
which is the main result of this section. 

(2.1) Definition. Let (D a be a Neron differential on the elliptic curve A/Q. 

(a) The lattice of Neron periods of A is defined by 

def 
.W(A) = Image(Ht  (Ac; Z) S'OA) C). 

(b) The Parshin-Faltings height of A is 

1 (1  )-1/2 
H(A) = ~//covolume(~L~'(A)) ~ a~l e% A e8 a 

We say that an isogeny q~: A/o--* B/Q of elliptic curves is 6tale if its extension 
to Neron models is an 6tale morphism. The following easily established lemma 
provides a useful criterion for an isogeny to be 8tale. 

(2.2) Lemma.  Let K be a finite extension of Qp and R ~ K be the integers 
of K. An isogeny ~o : A --* B of elliptic curves over K is 6tale if any only if c~ 
induces an isomorphism on N eron differentials 

(~*: H~ ~/R)-7~H~ t2~/R). [] 

We can now state the main theorem of this section, 

(2.3) Theorem. In any isogeny class .4  of elliptic curves over Q there is a unique 
curve Ami.6~4 which satisfies the following equivalent conditions. 

(a) For every A e d  
H (Amln) < H(A). 

(b) For every A ~ d  there is an 6tale isogeny 

q~ : Ami n ---,, A .  

(c) For every A e d  

, ,~ (Amin) _____ ~( '  (A).  

Before giving the proof  of this theorem, a few remarks are in order. 
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Remarks. (i) It  is no t  true in general  that  there is a unique curve of maximal 
height in the isogeny class. The  isogeny class of conduc tor  17 in the An twerp  
tables [22] provides  an example.  The  curves [17C]  and [17D]  have the same 
maximal  height. (The curve [17A]  is the unique curve of minimal  height.) 

(ii) The hypothesis  that  elliptic curves and isogenies be defined over  Q will 
be used in an essential way. The  main  local l e m m a  (2.5) is valid only over  
unramif ied extensions of  Qp. Consequent ly ,  our  p roo f  of  Theorem 2.3 will be 
valid only over  n u m b e r  fields everywhere  unramified over  Q, that  is, only over  
Q itself. There is no reason to believe the theorem over  any n u m b e r  field other  
than  Q. 

No te  also that  by (2.2) and (2.3) the following conjecture is a consequence 
of Conjecture  I (more precisely, is equivalent  to Conjecture  I '  (b) (1.7)). 

(2.4) Conjecture II.  The optimal curve in an isogeny class of modular elliptic 
curves is the curve of minimal height. [] 

Our  p roof  of Theo rem 2.3 makes  use of  a p roper ty  of isogenies which is 
well k n o w n  for isogenies with quasi-finite fiat kernels. Let K be a finite extension 
of Qp and R~_K be the integers of  K. If 4): A ~ B  is an isogeny of elliptic 
curves over  K and if the kernel A[4)] of  4) in the Neron  model  of  A is a 
quasi-finite flat g roup  scheme then the exact sequence 

0 ---* A [4)]  o _,, A [4)] --,'. A [4)]  et ~ 0 

gives rise to a factor izat ion ~b = 4)a ~ ~bo 

A - ~ ~,B 

C 

where 4)~t is 6tale and ker(4)o) = A [4)]0. If A [4)] is not  flat, but  K is unramified 
over  Qp, then we can still make  the following statement.  

(2.5) Lemma.  Suppose K is unramified over Qv and 4): A/K~B/K is a cyclic 
isogeny of degree p". Then there is a factorization 4) = 4)~ o 4)0 

A r , B  

</ 
C 

where 4)~t and do are Otale. 

Proof. We proceed by induct ion on n. If n = 1, then 4)o d; is mult ipl icat ion by 
p on B. Since p is a uniformizing pa rame te r  for K, we can choose Ne ron  differen- 
tials e)A, ~O B on A, B such that  either qS*~OB=~OA or ~*COA=O B. By L e m m a  2.2 
this means  that  either 4) or  ~ is ~tale. This proves L e m m a  2.5 if n = 1. 
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N o w  suppose  n >  1 and  tha t  the l emma  is known  for cyclic isogenies of  
degree p"-1.  Since q~ is a cyclic isogeny we can write q~ = a o fl 

A ~ ~B 

A' 

where ~, fl are cyclic isogenies of  degrees p " -  1, p respectively. By the induct ion 
hypothesis,  we can factor c~=~aO~o to obta in  the following commuta t i ve  dia- 
gram. 

A '~ ~B 

A' , C  
~0 

If  ~o is an i somorphism,  the l e m m a  follows at  once. Otherwise ~o has a factor  
$ : A ' ~  C' of  degree p. Since q~: C'--*A' is 6tale, L e m m a  2.6 (below) guarantees  
that  fl is not  6tale. Then 4)o = aoO fl and  q~t = ~a gives the desired factor izat ion 
of q~ and  L e m m a  2.5 is proved.  [ ]  

(2.6) L e m m a .  Let A, B, C be elliptic curves over a finite extension K of Qp. 
I f  c~: A --* C and ~: B ~ C are dtale isogenies of  degree p then there is an isomorph- 
ism c~: A _2, B making the following diagram commutative. 

A a ~B 

C 

Proof Let R be the ring of  integers of K. Let  AII~, B/R, CIR be the Neron  
models  and  (A • cB)IR be the fiber p roduc t  of  A/R and B/R over  C m. Then 
we have  the following d i ag ram of algebraic g roups  over  R. 

A •  

/ \  
A ~ B 

C 
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Now suppose there is no isomorphism c~ as claimed in the lemma. Then on 
generic fibers we have (A x c B)m ~- Am x c Bm ~- C /K and rc/~: C m --. C m is multipli- 
cation by p. Using the universal properties of Neron models and of fiber products 
we see that (A x cB)/R~-C m and that ~ corresponds to multiplication by p on 
C m. But ~ is the fiber product of two 6tale morphisms and is therefore 6tale. 
This is a contradiction and Lemma 2.6 is proved. []  

Proo f  o f  Theorem 2.3. Since ~r is a finite set, the existence of a curve Amin~Sr 
satisfying (a) is clear. On the other hand, there can be at most one curve satisfying 
(c). So the theorem will be proved if we establish the equivalence of (a), (b), 
and (c). 

To prove (a )~(b)  let Ami n be as in (a), A ~ r  and qS: Ami n ~ A  be a cyclic 
isogeny. We must show that q~ is 6tale. By Lemma 2.5, ~b=~betoq5 o with (Pet 
and 6o 6tale. 

Arni n q5 ) A 

C 

Let C0rnin be a Neron differential on A,,i . .  Since 6o is 6tale, COc=6" COmi n is 
a Neron differential on C. Then 4)* ~oc=deg(~bo).~Omi n and 

- 

H(Amin)  = I O')min A (Dmin) 
Amin(C) 

1 (q~* ~ ) -  ,/2 
=deg(q~o). f~/~ / ~ (~b~ mc) A 

AminlC) 

=deg(~b~ deg(qS~ 2@/c!c)e~cA (5c) - 1/2 

= 

But C ~ r  so H(C)>H(Amin )  and we see that deg(q~o)= 1. Thus ~b is 6tale. 
To prove (b)~(c)  we let ~b: Amin~A be an 6tale isogeny and will prove 

~Cf(Amln)~('(A ). Let COmi n be a Neron differential on Ami n. Then Lemma 2.2 
guarantees that there is a Neron differential O~A on A such that ~b*~OA =mml,. 
For each QE~9~(Amin) there is a 7~H1 (Amin(C); Z) such that 

~Q-----f~Omin=Iq~*(DA= f (DAE~CP(A) 
"r 7 4>*~' 
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and (c) follows. 
The implication (c)=>(a) follows at once from Definition 2.1. This completes 

the proof of Theorem 2.3. [] 

Remark. Using (2.5) it is not hard to see that the set {5~ of Neron 
lattices of ~r is closed under intersection. Indeed, if A, B e d ,  then there is a 

cyclic isogeny qS: A--,B. By (2.5) ~b factors as A ~o ,C +Ot,B where 4) ~t and 

~;0 are 6tale. Then 5e(C)= s 5r 

We conclude this section with a third equivalent formulation of Conjecture I 
which will be useful in the sequel. 

Let d be a Q-isogeny class of modular elliptic curves of level N and let 
f be the associated weight 2 normalized newform. Integration of the differential 

1-form f(q)dq_ over singular l-cycles on X1 (N)c gives a linear map 
q 

I f(q) 
H 1 (X~ (N)c; Z) , C. 

The image of this map is a lattice 

cd(f)~_C. (2.7) 

Indeed, using (1.4 (2)), one easily verifies the equality 

(2.8) 

where A 1 is the optimal curve in ~r nl:  X1 (N)~A1 is the optimal parametriza- 
tion, and c(nl) is the Manin constant. Thus Conjecture I' is equivalent to the 
following statement. 

(2.9) Conjecture I".  Let Ami n be the curve of minimal height in ~4. Then 

~,~ (f)  = ~ (A rain)- 

w 3. lntegrality properties of Stickelberger elements 

Mazur and Tate [15] have recently formulated some intriguing new conjectures 
of Birch, Swinnerton-Dyer type about certain Stickelberger elements, O ~ - r ) ,  
associated to a modular elliptic curve A. These conjectures predict congruence 
formulas relating O ~  -T) to the arithmetic of A and so are quite sensitive to 
the integrality properties of these Stickelberger elements. In this section we will 
define a variation OM (Definition 3.3) of O ~ - r )  and show how Conjecture I 
implies integrality properties of OM analogous to those known for Stickelberger 
elements associated to totally real number fields [5]. The relation between our 
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Stickelberger elements and those studied by Mazur and Tate is exhibited in 
(3.4) and (3.5). 

Let f be the weight 2 normalized newform of level N associated to the 
modular elliptic curve A. 

(3.1) Definition. The modular symbol associated to f is the function 
[- I f :  p1 (Q) ~ C defined by 

r 

[r]f  = i f (q)  dq 
o q 

where the integral is over the geodesic in the upper half plane joining 0 to 
r. [ ]  

The reader should note that our modular symbol is a variation of the one 
used by Mazur and Tate. Their modular symbol is given as an integral from 
i ~  to r .  

We know from the Manin-Drinfeld theorem I-6] that the values of the modu- 
lar symbol lie in the Q-span of the lattice of Neron periods of A: 

[r]fed(A)|  (3.2) 

For  each positive integer M let FM = Q (e  2 ~t i/M), let GM 
=Gal(FM/Q)~(Z/MZ)* and let G~t= GaI(F~t/Q)~_(Z/MZ)*/(+ 1) be the Galois 
group of the totally real subfield FA of F M. The standard isomorphism 
(Z/MZ)*~ GM is given by a>-~(~a: e2~im~-+eZ~ia/~a). 

(3.3) Definition. To each integer M > 0 we associate the following objects. 

(a) The Stickelberger function of layer M" 

0~: G~ -~ 5'~(A)| 

where a' represents the inverse of a in (Z/M Z)*. 

(b) The Stickelberger element of layer M: 

OM = ~ OM(a)|174 
a~GM 

To express the relationship between our Stickelberger element and the one 
used by Mazur and Tare we note that 0M(cr_l "cr)=0M(cr) for each a~GM and 
SO 

+ def 
~9 M = ~, Re(0~t (a ) ) . a - l~R[G~]  (3.4) 

aeG~, 
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is well defined. Then 

o~y-T)=~+ (O;,+L(f, 1) y~ ~) (3.5) 
~ A  a e G ~  

where ff~A+ =~_1 I ICOAI is a (half-)period of a Neron differential on A. 
A (~) 

By analogy with what is known about Stickelberger elements attached to 
totally real number fields [51 we might hope that the following conjecture is 
true. 

(3.6) Conjecture IIL Let JM_~Z[GM] be the annihilator of A(FM)tor. Then 

JM" OM_~ ~(A)| [GM"1. 

As a corollary of the next theorem we will see that Conjecture III is a conse- 
quence of Conjecture I (1.3). 

Fix a modular parametrization of A 

n: X1 (N) ~ A ,  

and let C:_~ Ato r be the subgroup generated by the image of the cusps of X I(N ). 
For rEPI(Q) we let 

{r}~eC~ (3.7) 

be the corresponding torsion point on A. The geodesic from 0 to r in the upper 
half plane projects to a path {0, r} on A(C)joining the origin to {r}~. The 
modular symbol associated to n is the function [-"1~: p1 (Q)_~ 2~O(A)| defined 
by 

If ~ denotes the natural map 

then ~([r]~)= {r},. 

[r]~= ~ COn. (3.8) 
{O,r}~ 

~: ~ ( A ) |  --, Ator, (3.9) 

Now fix a positive integer M and define O~.M: Z[GM]~5~(A)| Q and 
O~,M= ~o0~,M: Z[GM] --* C~ by 

(3.10) 
~r ,M(aa)= a 

where a. a' = 1(rood M). Let C~,M--- C~ be the image of O~.M. 

(3.11) Lemma. The points of C~,M are defined over FM and the map g~,M: 
Z [GM] ~ C~,M commutes with the action of GM. 
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Proof The cusps of Xt(N) are defined over F N. For each pair x, y~Z/NZ with 

(x,y ,N)=l,  we let ] ; ]  denote the cusp on X,(N)represented by rational 

a 
numbers ~ with (a, b )= l  and a - x ,  b-=y(mod N). The action of GN on the 

cusps is given by 

(3,21 
YJ [ Y J  

where d, d'e(Z/NZ)* and dd '=- 1 (rood N) (compare [-20], p. 12, where the model 
for X 1 (N) was chosen so that the oo-cusp was rational). 

Now let (r, v~GM, and choose a, be(Z/MZ)* such that ~=c~,  t = a b .  We 
lift a, b to 4, ~(Z /MNZ)*  and let a', b '~Z represent the inverses of& ~'. Then 

a'b' b '" ,  

[[ b'h~o 

This proves the lemma. [] 

We define the Stickelberger element of layer M associated to g by 

O~,M= ~, O,~,M(~)@ff-leLF(A)@QEGM]. (3.13) 
~Gm 

(3.14) Theorem. Let J~,M~_Z[Gm] be the annihilator of C~,m. Then 

J~,u" O~,M ~-- 5~ (A)| Z [Gin]. 

Proof We extend ~ (3.9) by linearity to a map 

4: 5F(A)| [GM] ~ Ato,| [GM]. 

Then the theorem is equivalent to the statement ~(J , , , "  O~,m)=0. 
We define O~,MeC.,u| by 

~ , . :  ~(o~,.)= E ~.~(~)e~-'. 
aEGM 

Now C.,MQZEGM] is a Z[Gu]| and Lemma 3.11 tells us 

(1 | O~,M--(~| 1) O~.M 
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for every c~eZ[GM]. Thus 

= (J,,M| 1). 0 , ,  M 

= 0 .  

This proves the theorem. [] 

(3.15) Corollary. Conjecture I (1.3)~Conjecture Ili (3.6). 

Proof A simple calculation shows O~,M=c(~) .O~. Thus Conjecture I implies 
O,~,M= +_Ou. Since JM~J~,M, w e  have JM'OM~JTr, M.O~,M~_5~(A)@Z[GM] 
and the corollary is proved. [] 

w 4. P-adie L-functions and p-invariants 

Let d be an isogeny class of modular elliptic curves associated to a newform 
f of level N and let p # 2  be a prime of good ordinary reduction. Mazur and 
Swinnerton-Dyer [14] have constructed p-adic measures whose p-adic Mellin 
transforms furnish p-adic analogs of the complex L-functions associated to d 
(see Theorem 4.4). Because of the Main Conjecture of Iwasawa Theory in this 
setting, we expect these measures to be integral (Conjecture IV (4.5)). Unfortu- 
nately, the answer to even this simple question is unknown at present, On 
the other hand, if our Conjecture I is true for ~ then the measures of Mazur 
and Swinnerton-Dyer must be integral (at least if p#2), as we shall see in 
this section (Theorem 4.6, Corollary 4.7). We will also see how Conjecture IV 
leads Io lower bounds for/~-invariants of p-adic L-functions which are consistent 
with bounds proved by Greenberg [8] for /~-invariants of Selnaer groups in 
cyclotomic towers. 

Let Cp be a fixed p-adic completion of an algebraic closure of Qp, let 0 
be the algebraic closure of Q in C, and fix an imbedding of Q into Cp. When 
we speak about p-adic properties of algebraic numbers, we shall always be 
referring to the p-adic properties with respect to this fixed imbedding. 

The data required to build the p-adic measures consists in the unit root 
of Frobenius at p, and the modular symbol []s"  PI(Q)~5((A) |  (3.1). 

For each integer A>0 with (A,p)=l  let Z*a=lim(Z/p"AZ)* be the group 

of units in the ring Zp, a=lim(Z/pnAZ). The sets a+p'AZe.~%Z*,~ (n> t ,  
n 

ae(Z/p"dZ)*) form a basis of open sets in Z*.~. If we define g" PI(Q)~5~ 
|  by 

g(r)= i f(q) d_qq= [ r ]y - [ ioo] f ,  (4.1) 
ioo q 

then the formulas 

(4.2) 
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for n=> 1, ae(Z/p"AZ)*,  define a distribution VA, a on Z*A which takes values 
in Y(A)|  (compare [16, 20]). 

The distribution VA,A is bounded because of the Manin-Drinfeld theorem 
and because c~ is a unit in Z*. We can therefore use va,a to define p-adic L- 
functions as follows. Let ( . ) :  Z * a ~ l + p Z ,  be projection to the first factor 
in the canonical isomorphism Z* A~(1 q-pZp) x (Z/pA Z)*. For  s~Zp and x~Z*,~ 
we define (x)~=exp(s log((x))) using the convergent Taylor series. Then for 
each primitive Dirichlet character ;( of conductor p"A, n>O, we define a p-adic 
L-function by 

Lp(VA,a,)~,S)= ~ )~(X)(X> s-1 dVA,A(X). (4.3) 
ZJ,.a 

The result of Mazur and Swinnerton-Dyer can be formulated as follows. 

(4.4) Theorem. Let )~ be a primitive Dirichlet character of conductor p" A, n > O, 
and let Q [z, ~] be the subfield of  Q generated by c~ and the values of Z. Then: 

(a) Lp(VA,A, Z, 1 ) ~ ~ 1 7 4  a]; 
(b) Under the natural map, G'q(A)| ~] ~ C ,  (2| we have 

Lp(va,~, Z, 1)~--* c~-". (1 -- Z(p)~- 5)'(1 --)~(p) c~- 1)-r()~)L(A, )~, 1) 

where z(Z) is the Gauss sum associated to Z. 

Proofs of this can be found in [14, 20]. 
The Main Conjecture of Iwasawa Theory predicts the following (and much 

more). 

(4.5) Conjecture IV. For each A e d  the measure VA, ~ take values in • ( A ) @ Z p .  

At least we can prove: 

(4.6) Theorem. Suppose p +- 2, and let 7r : X1 (N) --+ A be a modular parametrization 
of a curve A ~ .  Let c(7c) be the Manin constant. Then c(~z).v,~, 4 takes values 
in S(A) |  

The next corollary is an immediate consequence. 

(4.7) Corollary. I f  p + 2, then Conjecture I ~  Conjecture IV. 

Proof of Theorem 4.6. Let A[p ~] _~A(Q) be the p-power torsion subgroup and 
let 

~p: ~c-'S(A)@Qp --*A [p~O] 

be the p-primary component of the homomorphism 3: 2 ' (A) |  ~ A tot defined 
in (3.9). The kernel of ~p is ~(A) |  

Next define ~: P~ ( Q ) ~  A [pO~] by 

(r) = ~p (c (lr). g (r)) (4.8) 

where g(r) is given by (4.1). Equivalently, ~(r) is the difference of the images 
under 7r of the cusps on X1(N ) corresponding to r and i ~ .  The image of 
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g generates the p-primary component C~,p of the cuspidal group C~__A(Q) 
(see w for the definition of C~). Since p,~N, the action of Gal(Q/Q) on the 
cusps of XI(N) is unramified at p. Let apeGal(Q/Q) be a Frobenius element 
at p. The action of a ,  on the cusps was exhibited in (3.12). From this we easily 
derive the following identity, for n__> 1, as(Z/p"A Z)*: 

Indeed, 

~ a ~ .  a 1 ~p p a  

(4.9) 

(because f is modular for Fo (N)), and this last expression is equal to 

Since the Galois module C,,p is unramified at p, there is a finite flat 6tale 
group scheme C~,p/z, whose generic fiber is C~,p/Q, = C,~,p • Q Spec(Qp). Let A/z, 
be the Neron model of A/Q, = A • Q Spec(Qp). By the universal property of Neron 
models the injection C~,p/Q,,~-,A/Q, extends to a morphism over Zv, C~,~,/z~ 

A/zp. By Raynaud's theorem [17], since p 4: 2, this is a monomorphism: 

Cn,p/z .  r A / z "  . 

Since the Frobenius endomorphism acts on the &ale quotient of the p-divisi- 
ble group of A by multiplication by cr it follows that cry acts on the Galois 
module C~,. by multiplication by cr as well. In particular we have 

a a 
(4.10) 

Comparing (4.9) and (4.10) gives ~-g =g  which according to (4.8) 

is equivalent to c(~). c~.g --g eker(~p). F rom (4.2) and the fact 

that ker(~,)= 5r174 we conclude 

c(~z). VA,,~(a+p"A Zv, a)E ~ ( A ) @ Z  p 

for all n > 1 and aE(Z/p"A Z)*. This completes the proof. [] 

We now turn to the question of Ft-invariants. For  simplicity, we take A = 1. 
Let e: (Z/pZ)* ~ Zp * be the Teichmfiller character. Complex conjugation decom- 
poses 5~174 into 2 rank one eigenspaces 5~ + |  with eigenvalues _+ 1. 
Choose OJ ELP(A) -+ so that OA ~ | 1 are generators of A~ + |  
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If we fix a topological generator u of 1 +pZp,  then for each i, O < i < p - 1 ,  
there is a power series F~(T)EZp[[T]]  for which 

Lp(va,1, e i, s) = ~2~- 1)'| 1) (4.11) 

The p-invariant #(F,~ (T)) is the highest power of p which divides every coefficient 
of F~(T). 

(4.12) Proposition. Let (a : A ~ Ami n be a cyclic Q-isogeny to the curve of  minimal 
height and let K be the kernel of  c~ viewed as a Galois module. Let a ~ G a l ( 0 / Q )  
be a complex conjugation. Then 

where 

]A(Fi4(T)) = ]A(~mln (T))  Jr m 

0rdp(#K)  if a a c t s o n K a s ( - - l ) i + l ;  
m = ira  acts on K as ( -- 1) i. 

Proof  The kernel K* of the dual isogeny q~: Amin--*A is Cartier dual to K 
so that the eigenvalue of cr on K is minus that on K*. Since Ami n is the minimal 
height curve, we know ~ (Ami.)~_ ~ (A). Moreover, as modules for complex con- 
jugation we have an isomorphism K * ~ ( ~ ( A ) / ~ ( A m i n ) ) .  We can therefore 
choose the p-adic generators f2~ ~Lf(A) -+, + + OXmin6~(Amin)- SO that 

~,~(- 1)' =pm.Q~-  1)', 
Amin 

f2(-1)'+' = fI(A- U '+' 
amin 

The proposition follows at once. []  

(4.13) Corollary. With the notation of  Proposition 4.12, if Conjecture I V  is true 
then 

la(Fia(T))>m. 

It would be surprising, if the #-invariants for Ami n w e r e  ever positive. Corre- 
spondingly, we expect that the above inequality is actually an equality. 

(4.14) Remark. The group K is the maximal #-type subgroup of A [p,O], and 
therefore Corollary 4.13 is consistent with the Main Conjecture and recent work 
of Greenberg [-8]. Indeed, the bound (4.13) is precisely the bound predicted 
by formula (75) of [8]. 

w 5. Twisting 

In this section we examine the behavior of Conjecture I (1.3) under twisting. 
We will show that if the conjecture is true for a Q-isogeny class of elliptic 
curves then it is also true for all twists by quadratic fields which are unramified 
at the primes of additive reduction. 

From class field theory we have a correspondence between Galois characters 
and primitive Dirichlet characters. We shall try to consistently distinguish be- 
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tween the two by underlining Galois characters. Thus, if Z: G a l ( Q / Q ) ~ C *  is 
a Galois character, then Z: Z ~ C is the corresponding primitive Dirichlet char- 
acter, and vice versa. 

If A/Q is an elliptic curve and ~: Gal(Q/Q)--* _ 1 is a quadratic Galois charac- 
ter, then A ~' will denote the twist of A by _0. Similarly, d ~ is the twisted isogeny 
class. 

The main theorem of this section is as follows. 

(5.1) Theorem. Let d be an isogeny class of modular elliptic curves, and let 
be a quadratic Galois character which is unramified outside the primes where 

~r has semistable reduction. I f  Conjecture I" (2.9) is true for ~r then it is also 
true for d q'. 

The proof  is based on the two lemmas 5.2, 5.4 below. 

(5.2) Lemma. Let A/Q be an elliptic curve and ~ be a quadratic Galois character. 
I f  ~ is unramified outside the primes where A has semistable reduction then 

W (A*) = ~ ( ~  ~ (A) 

where z(~) is the Gauss sum of ~ and 

if the conductor of ~ is divisible by 8, and 
A has good supersingular reduction at 2; 

otherwise. 

Sketch of Proof Let ~OA be a Neron differential on A. Since r(l~)2=Dq, is the 
discriminant of the quadratic field associated to ~, z(~b) -1- ~o A is a regular 1-form 
on A q' which is defined over Q. Thus, a Neron differential on A is given by 

(DA~, ~ ~ �9 (I)  A 

for some positive r/eQ*. The resulting relation between minimal discriminants, 
A (A*)= q-12 D~-A (A), reduces the calculation of r/ to an application of Tate's 
algorithm [23]. []  

Since t/ is an invariant of the isogeny class, the following corollary is an 
immediate consequence of the lemma. 

(5.3) Corollary. Assume the hypotheses of Lemma 5.2. Let AminES~ be the curve 
of minimal height. Then A~i n is the curve of minimal height in d q'. 

Now let f be the weight 2 normalized newform associated to ~4. If the 
q-expansion of f is ~ a, q", then f ,  = ~, ~ (n) a, q" is the normalized newform 
associated to ~r 
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(5.4) Lemma .  Assume the hypotheses of Lemma 5.2 and define ~t = t or 2 as 
in the conclusion of that lemma. Then 

~(f~)~-~ ~'(f). 

Proof It  is enough to prove  the l emma  when the conduc tor  D=D~,  of ~O is 
a p r ime power :  D=p". Let N be the level o f f  and N '  be the level of  fq,. Then 
ND is a divisor of N' .  

F r o m  the definition of the m o d u l a r  symbols  (3.1) we have:  

~ ( f ) - -  {[7"0] i I7  EEl(N)} 

(f$) = { [7" 0 ] / ,  [)' e F~ (N')}. 

Moreover ,  a s tandard  calculat ion [16] allows us to express [ ] I ,  in te rms of 
[]• 

1 E ~(a) r+ D I  [ r ] , , -  ~(qJ) o~(z/oz)* , -  . (5.5) 

N o w  let ~ ( f ~ , ) .  Then  ~2=[r]r, for some rat ional  cusp r e P ~ ( Q )  which 
is F 1 (N')-equivalent  to 0. Then r can be expressed as r =  b/M with (b, M ) =  1 
and M - 1 (mod N'). In par t icular  we have  (M, D) = 1. 

a a M + b D  . a 
The  cusp rOD MD is easily seen to be Ft(N)-equivalent  to ~)-, so 

that  r +  D I ~LJT(f). Then  by (5.5), t ] = [ r ] l , ~ z ~ . S ( f )  and we have 

5r ( f r  ~ ~ (f).  This proves  the lemma,  unless ~/= 2. p roven  

So, suppose  q = 2. Then  D - -  8 and d is supers ingular  at 2. The supersingular-  
ity at 2 means  that  the eigenvalue a 2 of  the Hecke  ope ra to r  T2 is divisible 
by 2. 

F r o m  the definition of  the Hecke  opera to r  T2 we see that  for any pair  of 
rat ional  cusps s 1 , s2, ep1  (Q): 

/ r ]  r l  \ l r ]  r ]  s2 s, + 1 s 2 + 1 

= a 2 �9 ( [Sl] f  -- [s2]f). (5.6) 

If m o r e o v e r  sl and s 2 are EL (N)-equivalent,  then this lies in 2. ~ ( f ) .  
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Using our assumption that r is F~(N')-equivalent to 0, it is not hard to 
establish the following congruences modulo Lf (f): 

r +  - for ae(Z/8 Z)*; 
f f 

[ 41[ ] 2 r +  - for a~(Z/4 Z)*; (5.7) 
f f 

[4 r + 1 I f  = [1If" 

It is now a routine matter to calculate r(~)[r]~, modulo 2 . ~ ( f ) .  Beginning 
with (5.5) we work modulo 2 - ~ ( f ) :  

([ z (0) [-r-]f,-- z/~s r +  
ae( Z)* 

3 3 7 7 

By (5.6) first with s 1 = 2 r + � 8 8  s2 =�88 and then with sl = 2 r + � 8 8  s2=�88 this simpli- 
fies modulo 2. ~r to 

(0)" [ r ] f , -  ([4 r + �89 [1]f) + ([4 r + ~]f--  [~]f) 

= 2([4 r + � 8 9  [�89 

~0.  

2 q 
Thus •=  E r ] s ~ e , ~  ) 5P(f)  = ~  5a(f)  and the lemma is proved. []  

We are now ready to prove Theorem 5.1. 

Proof of Theorem 5.1. Let f be the weight two newform associated to ~ '  and 
let f~, be the twist of f by ~. Let A ~ (f) ,  A ~ (fq,) be the optimal curves in ar ar ~'. 

Since we have assumed that Conjecture I" is true for d we know An(f) 
is the curve of minimal height in ~4 and 

~9~ ( f ) =  Ae(A~ (f)). 

From Corollary (5.3) we know that A~(f) r is the curve of minimal height in 
d *, 

~ (A1  ( f ) * ) = ~ - ~ t ~ ( A  1 (f)). 
~tq/~ 
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From the fact that A1 (f)r is the curve of minimal height in ~ '* and from 
(2.3 (c)) we obtain an inclusion 

~f (A, (f)~') _~ ~ (A ~ (f,)). 

But we also know from (1.4(2)) and (1.7(a)) that ~(Al(fq,))=c.oW(f,) for some 
integer cEZ. Thus we derive an inclusion 

(A, (f,)) _~ ~e (f+). 

Finally, we use Lemma 5.4 to get an inclusion 

5~ (f~,) - ~ )  ~ ( f ) '  

Combining all of the above inclusions we obtain a diagram 

~ (fq,) --~ S (A l(fq,))----- ~9(A l(f)~~ ) 

N[ II 

tl 5('(f) tl Z~?(Ax(f)). 
~(q,) ~(~) 

Therefore all of these inclusions are equalities and in particular 

cS (f~) = 5 ~ (A, (f)~). 

As already stated, A 1 (f)q' is the curve of minimal height in ,~r So Conjecture I" 
is true for ~r and Theorem 5.1 is proved. []  

w 6. Elliptic curves with complex multiplication 

In this section we will use congruence formulas for algebraic parts of special 
values of L-functions [18, 21] to prove Conjecture II for certain Q-isogeny class- 
es of elliptic curves with complex multiplication (CM) (Theorem 6.4). The basic 
conjecture (1.3) would then follow for these curves, if we also knew that the 
Manin constants of the optimal parametrizations were _+ 1. 

Of course, up to twist, there are only finitely many CM curves over Q. 
Moreover, up to quadratic twist, there are only finitely many CM curves of 
the type considered in this section. So the results of the last section reduce 
the proof of Conjecture I for these curves to a finite calculation (see w 7). Unfortu- 
nately, if the imaginary quadratic field has large discriminant, these calculations 
require far more memory than is available on the personal computer used to 
obtain the results in w 7. In any case, it is clearly preferable to have a conceptual 
explanation of our conjectures. 

For  the rest of this section we fix a prime p > 3 satisfying the congruence p -  

3(rood 4) and let K = Q ( ] / - p ) .  We suppose that the class number of K is 1, so 
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that pc{7, 11, 19, 43, 67, 163}. It is well known that there is a unique Q-isogeny 
class ~'(p) of conductor p2 and having CM by K. If ..~r is another isogeny 
class with CM by K then there is a unique quadratic Galois character ~ satisfying 

(a) ~ is unramified at p, 
(b) d = ~'(p)*. (6.1) 

Moreover, there is a unique curve A(p)~C(p) with CM by the full ring ~K 
of integers in K and whose minimal discriminant is - p 3  [9]. Thus, the curves 

A(p)*~d(p) ~ (6.2) 

where ~ runs through quadratic characters unramified at p give us a complete 
set of representatives for the isogeny classes of elliptic curves over Q having 
CM by K. The arithmetic of these curves has been studied by B. Gross [9]. 
We will combine his results with congruence formulas for algebraic parts of 
special values of L-functions [18, 20] to prove Theorem 6.4 which is the main 
result of this section. 

Now fix ~ and ~ '  as in (6.1). We can distinguish 4 curves in d :  (1) the 
curve of minimal height A~ined ;  (2) the optimal curve A l e , 4 ;  (3) the curve 
A=A(p)~'~d; and (4) the curve A*=A(p)**ed where A(p)*=A(p)Xp is the 
twist of A(p) by the quadratic character of conductor p associated to K. We 
will make use of the fact that A and A* are the only two curves in d which 
admit complex multiplication by the full ring of integers (9K ([9], Theorem 10.2.1). 
Multiplication by ] f ~  induces an isogeny 

O: A ~ A* (6.3) 

of degree p which is defined over Q ([9], w 13). 

(6.4) Theorem. Let A, A*, Amin, A l e d  be as above. Then 

(a) A=Ami,=A1; 
(b) the kernel of ~: A ~ A *  (6.3) is contained in the cuspidal subgroup of 

A 1 �9 

In particular, Conjecture II (2.4) is true for the isogeny class ~cr 
We will prove Theorem 6.4 through a sequence of lemmas. 

(6.5) Lemma. A=Amj n. 

Proof By Corollary 5.3 it suffices to prove this when ~ is the trivial character. 

Since the minimal discriminant of A* =A(p)* is _p9 ([9], Theorem 12.2.1), 
1 
- - . r  A. Thus ~ ( A )  a Neron differential on A* is given by ~ 

= 1 / ~ .  L? (A*) ~_ S (A*) and the isogeny q5: A ~ A* is 6tale. 
If A' is any other curve in .~(p) then the K-endomorphisms of A' define 

a suborder (9'__(9~r of finite index. Since A' is defined over Q, (9' has class 
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number  1. On the other hand (9'= Z + c (gK for some positive integer c > 0, and 
the class number h' of (9' can be expressed in terms of c: 

h'=c.H (1- )~_p(1).l-1), 
tic 

the product being over prime divisors of e. Since h ' =  1 we conclude that either 

c = 1 or c = 2 and 2 splits in K. Thus either (9' = (9 K or p = 7 and (9' = Z [ ] / -  7]. 
In the first case ~4(p) contains only the two curves A, A* and we are done. 

If  p =  7, there are 4 curves in d ( 7 )  labeled 4 9 A - D  in the Antwerp tables 
[22]. Since [49A] and [49C] have CM by all of (9~ and have minimal discrimin- 
ants -73 ,  - - 7  9 w e  have [ 4 9 A ] = A  and [ 4 9 C ] = A * .  Thus, as above, the cyclic 
isogeny [49 A] --* [49 C] is 6tale. The kernel of the cyclic isogeny [-49 A] ~ [49 B] 
has order 2 and is generated by the point P=(2 ,  - 1 )  in the minimal model 
y2+ x y = x 3 -  2 x 2 -  x - 1  for [-49 A]. The group generated by P in [49 A]/Q visi- 
bly extends to an 6tale subgroup of the Neron model [49A]/z. Thus the isogeny 
[49A] ~ [49B] is 6tale. It is now immediate that [49A] is the curve of minimal 
height in J ( 7 ) .  Thus A = [-49A] = Amin- []  

(6.6) Lemma.  AI has CM by all of (9 K. 

Proof Since ~r has conductor p2D~, there is a weight two newform f of 
level pZD~ and trivial Nebentypus character whose L-series is the L-series of 
the isogeny class. Indeed, if ~ is the Hecke character associated to ~ (p )*  then 
the q-expansion of f is 

f ( z ) =  Z a.q"= Z ~(~).qN~, (q=e2~i~) 
n > 0  r g ~  

{p,~) = 1 

where the sum is over ideals ~g---(9K prime to p, and N~g is the norm of cg. 
From this we see 

a , = 0  unless Z_p(n)=l .  (6.7) 

A straightforward calculation shows that the following elements of 
Z [-SL2 (Q)] define correspondences on the modular  curve X=XI  (p2 D~).2. 

,(1 
v _p= E z-,(a 

a =  I 0 

Z 
a = l  

Z_v(a) = 1 

These induce endomorphisms of Pic ~ (X). We will show that these endomorphisms 
induce endomorphisms of the subvariety A 1 - P i c ~  and moreover that / /  
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corresponds to a complex multiplication by � 8 9  + r0~-p)) which is a generator 
of CK over Z. It suffices to verify these claims on the tangent spaces at the 
origin. 

Now the tangent space to Pic~ is canonically isomorphic to the space 
of weight 2 cusp forms of level 2 2 p D,,  and the subspace defining A1 is the 
line spanned by the newform f A simple calculation shows 

f l U = - f  + ~ aopq "p 
n>O 

f l  Ux , = z ( Z - , )  ~, Z-p(n)a,q". 
n>O 

By (6.7) this means f l U = - f  and f lUx_p=,(Z_p). f .  Thus f l H = l ( - 1  
+r(X p)) 'f  and the lemma is proved. [] 

From Lemma 6.6 we conclude that the optimal curve A1 is either A or 
A*. To determine which, we need the following theorem (6.8) of Rubin ([18], 
Theorem 1). 

We will write e: Gal (Q/Q)~(Z /pZ)*  for the cyclotomic character giving 
the action of Galois on the group of pth roots of unity. Since ~ is quadratic 
we can view it as having values in (Z/pZ)* as well. 

Let R=(gK[~p_I] be the subring of C generated over CK by the group 
#p- 1 of ( p -  1)st roots of unity, and fix a prime go in R lying over p. Reduction 
modulo ~) induces a group isomorphism ~p-1 ~(R/go)*. Let e: Z--*R be the 
primitive Dirichlet character of conductor p associated to the Galois character 

Gal (Q/Q) -& (Zip Z)* ~ (R/~) ._7. #p_ ~ ,~ R*. 

Fix once and for all, a prime ~ in Q lying over go. 

(6.8) Theorem (Rubin [-18]). Let co be a fundamental period of the Neron lattice 
~L,F(A) of the curve A=A(p)*. (Thus, 5fl(A)=f2"CK. ) Then there is a p-unit u6Z 
such that for every primitive Dirichlet character Z of conductor mz prime to p. D 0 
the following hold: 

d e f  r00L(A,  Z, 1) CK[z ] 
(a) L*(A, Z, 1) = u (2 

(b) L* (A, Z, 1) 
- - 1  3 p - I  p - 3  p 3 

- 2 z(pDo).~ke, 4 (mx).Bx(Oe 4 x) .BI(0  e 4 )~)(mod#) []  

(6.9) L e m m a .  A1 = A. 

Proof Let f be the weight two normalized newform associated to ,&. Since 
A = Ami n we have inclusions 

~q' (A) c L,e(A,) c_ ~r ( f )  (6.10) 

as in the proof of Theorem 5.1. 
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Now let X be the Riemann surface underlying X~(p2D~) and let 
~p: H 1 (X; Z)--* (5r176174 be the composition 

H ~ (X; Z) ~ Aa(f) ~ (~( f ) /~(A)) |  

In [12, 20] it was shown how to associate to cp a 'special value of the L-function' 

A (~p, Z) ~(2~' (f)/s (A))| Z v [Z] 

for any primitive Dirichlet character g whose conductor is prime to pD,. From 
the definitions we have 

A(~o, Z)=-z(z)L(A, f~, 1) (mod AP(A)| [~]). 

But (a) of Rubin's theorem (6.8) guarantees that ~(z)L(A, ~, 1 ) ~ ( A ) |  
so  

A(~p, Z)=0 

for every primitive Dirichlet character Z of conductor prime to pDr By ([21], 
Theorem 2.1) we conclude q~=0. Since q~ is surjective we must have L,e(f)| 
=5~(A)| and from (6.10) follows 5"(A1)|174 Since 5r 

1 
= ~ _ ~ . L P ( A )  we can now conclude A14:A*. Thus A1=A and the proof is 

l/ F 
complete. [] 

Theorem 6.4(a) follows from Lemmas 6.5 and 6.9. 
To prove 6.4(b) we will use the ideas of [20, 21]. Let X be the Riemann 

surface underlying 2 2 X~(p D,) and recall from 1.4(3) that there is a natural inclu- 
sion Al~Pic~  Let B be the finite subgroup of Pic~ corresponding to 
the kernel of ~b (6.3). We must show that B is contained in the cuspidal divisor 
class group of Pic ~ (X). 

In [20, 21] the author showed how weight 2 Eisenstein series on F l(pzD~) 
cut out subgroups of the cuspidal group in Pic~ By ([21], Proposition 4.7) 
there is a weight 2 Eisenstein series E on F1 (p2 D~) whose L-series is 

p--3 3p 1 p - 3  
L(E,s)=--z(tpe 4 )'LOPe 4 ,s).L(~e 4 , s - I ) .  (6.11) 

3p- I  p--3 
(in the notation of [21]: N 2 2 =P D 0, NI=Nz=d=pDo,  ~1 =Ca 4 , ~.2..~.l[ye 4 , 

~: T(N)--,C* is given by ([21], (4.13)), and E=Ed(7  ~) ([21], Defn. 4.6)). Let 
C_Pic~ be the p-torsion subgroup of the cuspidal subgroup associated to 
E. From ([21], Examples 4.9 and 4.10) we know that C has order p. We will 
show B = C. 

By Pontrjagin duality, as in ([20], w 1.7), we can associate to the groups 
B, C, homomorphisms 

tPB, (PC: H1 ( X ;  Z )  ~ Z / p Z .  

To r ~Pc in turn, we have 'special values of L-functions' A(r Z), A(qoc, Z)EF'p 
which in both cases can be computed explicitly. Indeed, A(~PB, ~) is given by 
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the right hand side of Rubin's congruence (6.8(b)) and A(~p c, Z) is given by 
([-21], Proposition 4.7(c)) with E as in (6.11). Comparison of these expressions 
reveals A (q~8, X)= A((pc, Z) for every primitive Dirichlet character ~ whose con- 
ductor is prime to pD~. By ([21], Theorem 2.1) we then have q)B=~0c and by 
Pontrjagin duality, B = C. This proves 6.4 (b). [] 

w 7. Numerical evidence 

We record the numerical evidence for Conjecture I in Theorem 7.1 below. This 
was established by direct calculation on a Macintosh Plus personal computer. 
The programs were written in the C programming language using 
LightSpeedC T M  v. 1.02 produced by Think Technologies of Bedford, Massachu- 
setts, USA. Tables containing the results of these calculations, including period 
lattices and modular symbols, are being compiled on disks which can be used 
on any Macintosh personal computer. Programs in C and in Pascal will be 
included which read to tables so that the data can be used by other programmers 
to test other conjectures. 

(7.1) Theorem. Conjecture I is true for the 749 elliptic curves (281 isogeny classes) 
of conductor less than or equal to 200 listed in the Antwerp tables [22]. 

For computational purposes, it is easier to verify Conjecture I" (2.8). Thus, 
for each isogeny class we must show ~(Ami,)=5~ where Amin is the curve 
of minimal height and f is the associated weight two newform. 

Since the Parshin-Faltings height is an approximation to the naive height 
of an elliptic curve, we should expect for each isogeny class that the minimal 
height curve would be the first curve found by the search method used to 
produce the Antwerp tables. This is indeed the case with 7 exceptions (listed 
below). 

We have used Gauss's AGM algorithm [2] to compute the lattice of Neron 
periods (with 16 places of reliable accuracy) of each curve in the Antwerp tables. 
Within each isogeny class the inclusions among these lattices were tabulated 
and the graphs in the Antwerp tables [22] were replaced by directed graphs. 
As predicted in the last paragraph, the unique minimal lattice (whose existence 
is guaranteed by Theorem 2.3) corresponds to the first curve listed in the 
Antwerp tables in almost every case. For example, the curve 11 A is the minimal 
height curve in the isogeny class 11 ABC. Here is the complete list of minimal 
height curves which appear in the Antwerp tables but are not listed first in 
their respective isogeny classes: 

89B, 98B, 128H, 130J, 141G, 150G, 168B. 

For example, the curve 168B is the minimal height curve in the isogeny class 
168ABCD. 

Much more time consuming is the calculation of the lattice Lf(f). 
The modular form f is represented in the computer by its first 100 Fourier 

coefficients. The Fourier coefficients ap for p prime are calculated essentially 
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by counting points modulo p on a representative curve in the isogeny class. 

For p 4 2  of course, this is equivalent to evaluating p+ l P21- --'"(P(X)] where 
x : o \  P / 

yZ= P(x)is a minimal Weierstrass equation at p and (p) is the quadratic residue 
symbol. 

With the modular form in hand, we next calculate the modular symbol 
[ ]Jr. This is accomplished by the methods outlined in [11]. We first solve the 
rather large system of linear equations over Z imposed by the Manin relations 
to obtain a basis for the Z-module of all Z-valued modular symbols. We then 
apply Hecke operators to these modular symbols and extract the rank 2 eigen- 
space corresponding to f This gives us [ ] f  up to the transcendental periods. 

These periods are obtained by integrating f(q) dq over the geodesic in the upper 
q 

half plane joining 0 to r for one appropriately chosen r. This integral is approxi- 
mated using a trick of Hecke which expresses the integral as an infinite sum 
involving the Fourier coefficients. Fortunately, we do not require too much 
accuracy in this calculation: using Theorem 1.7 (a) with A taken to be the quo- 
tient of the optimal curve Al(f) by the cuspidal subgroup, it can be shown 

that the lattice of values of [ ]y is 1 5~(A) for some integer c (in the calculations 
r 

we found always c = 1 or c = 2). 
Finally, to find 5~ we use the characterization 

5~ = {[7" 0Is I er, (N)}. 

To find a set of generator for Fl(N), we proceed as follows. Let a = (  01 -10) 
/ 

t e  a.da d en ra ors Z, 

set of representatives for SL(2, Z)/FI(N) containing the identity matrix and let 
s: SL(2, Z)/FI(N)~R be the corresponding section of the natural projection 
SL(2, Z) --, SL(2, Z)/F~ (N). Then the set 

is easily seen to be a generating set for/'1 (N). 
As a double check we also calculated the strong lattice and the Manin 

constant of the strong parametrization for each isogeny class. Our calculations 
verified that the curve marked in the Antwerp tables as the strong curve is 
indeed the strong curve, and that the Manin constant is 1 in each case. 

Only one minor error was noted in the Antwerp tables. The isogeny between 
the curves 153A and 153B is a 3-isogeny and not a 2-isogeny as marked in 
the tables. 
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