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Section 1: Introduction

Our paper [AS-Barcelona] presented a control theorem on the ordinary part of a
p-adic deformation of the cohomology of congruence subgroups of GL(n,Z). In the
current work, we present a different approach to this problem which enables us to
work with a much larger part of the non-torsion part of the cohomology, including
some of the non-ordinary part. What we lose is (1) the torsion in the cohomology;
and (2) the parameter space for our deformation is now some undetermined polydisc
of characters, rather than the whole space of characters. Our methods work just
as well for any split Chevalley group, and probably for any arithmetic subgroup of
any reductive Q-group which is quasi-split at p. We have chosen in this paper to
restrict ourselves to GL(n)/Z in order to make the exposition as clear as possible.

The basic setup is similar to [AS-Barcelona] except that we use a different base
ring R of rigid analytic functions on the disc of characters rather than a completed
group ring like Λ. We also find it easier to begin directly with the congruence
subgroup that has p in the level. We follow Coleman’s approach [C] based on
Serre’s p-adic theory [Se] of Banach modules over R with a completely continuous
operator u.

Coleman’s paper is written for GL(2) and it was developed for modular symbols
by the second author [Stevens]. Our principal innovations here compared with the
GL(2) case include the following: (1) Working with cohomology classes becomes
trickier because now the cohomology is a subquotient of the cochains, whereas in
the GL(2) case the cohomology could be viewed as a subset of modular symbols.
We have to play off the strong and weak topologies against each other to show
that the coboundaries are closed in the space of cochains. (2) Because of this, we
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have to lift the Hecke operator Up to the cochain level. The cochains, but not
the cohomology, will have an orthonormal basis in general. (3) We have to factor
Fredholm determinants over R, which is no longer a one-dimensional ring.

We consider a congruence subgroup Γ of GL(n,Z) of level divisible by p and
a coefficient module V (Qp) which is a lattice in V (Qp), where V is an irreducible
rational representation of GL(n). We consider H∗(Γ, V (Qp)) as a module for a ring
H of Hecke operators. To construct a p-adic deformation of this cohomology group,
we form a large Zp-module D of measures on a certain coset space with maps from
D to V (Qp), for varying V ’s. These induce H-maps on the cohomology and we
determine the kernels.

We actually go in two steps: Depending on the highest weight κ of V we form
a quotient space Dκ of D and determine the kernel of the induced H-map on the
cohomology. The module Dκ has V (Qp) as a further quotient, and we prove that
the induced map on cohomology is an isomorphism on the slope-less- than-or-equal-
to f(κ) part of the cohomology. The word “slope” here refers to the p-adic ordinal
of the eigenvalue of a suitable U -operator. As in the GL(2)-case, U is a Hecke
operator at p. f(κ) is some simple piece-wise linear function of κ.

More precisely, we let Γ denote the intersection of a congruence subgroup of level
prime to p with a certain subgroup of GL(n,Z) of level p(n−1)ν . Then we construct

φhV :H∗(Γ,D)h → H∗(Γ, V (Qp))h

where the superscript h denotes the slope-less- than-or-equal-to h part of the coho-
mology.

To specify the kernel, let K denote a polydisc in T (Zp), where T is the torus of
diagonal matrices in GL(n). Set R to be the Banach algebra of rigid functions on
K. Then D has an R-module structure commuting with the Γ-action which induces
an R-action on H∗(Γ,D) commuting with the H-action. Let κ be the highest weight
of V (with respect to an appropriately chosen Borel subgroup containing T ) and
let Iκ denote the kernel of the Banach-algebra homomorphism from R to Cp given
by evaluation at κ. Then our main theorem states that if h ≤ f(κ), then the kernel
of φhV equals IλH∗(Γ,D)h. In the actual theorem below we include a nebentype
character.

We also can assert the surjectivity of φhV under certain hypotheses.
As in [AS-Barcelona] the theorem should be thought of as giving p-adic defor-

mations as follows: If α is a Hecke-eigenclass in H∗(Γ,D)h, then its images in
H∗(Γ, V (Qp))h as V varies will form a family of cohomology classes whose Hecke
eigenvalues will be congruent modulo powers of p that depend on what congruences
obtain among the highest weights κ modulo powers of p. The theorem maintains
some control on when the images are nonzero. However, we cannot expect a freeness
result for H∗(Γ,D)h.

Since non-torsion Hecke eigenclasses in H∗(Γ, V (Qp))h give rise to irreducible
automorphic representations on GL(n), we are also getting p-adic deformations of
certain automorphic forms.

Because of the way our construction works, we can only vary V in a small p-adic
neighborhood. We do not know how to control the size of this neighborhood. As
mentioned above, in the ordinary case [AS-Barcelona] we could vary V over all
representations with highest weight congruent to p mod p− 1.
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Section 2: The big cell

We introduce some notation. All the algebraic groups below should be thought
of as group schemes over Z:

Set G =GL(n), N =lower triangular unipotent matrices in G, T =diagonal
matrices in G, and B =TN = NT .

We denote by a raised “o” the transposed group. For example Bo = TNo is the
opposite Borel subgroup to B.

Let Cp denote as usual the completion of an algebraic closure of Qp, and let O

be its ring of integers. We denote by v the valuation on Cp such that v(p) = 1.
Let I =Iwahori subgroup of G(Cp) = {g ∈ G(O) | g mod p ∈ Bo(O/p}. We

also define I∗ = {g ∈ G(O) | v(gij) > 0, i > j} and Iν = {g ∈ G(O) | v(gij) ≥
ν(i− j), i > j}.

Let Y = N(Cp)\G(Cp). It is a rigid analytic space. Let X ′ denote the image in
Y of TNo(O), the “integral points of the big cell”. It is a finite union of affinoid
polydiscs.

Lemma 2.1. (a) X ′ is the image of I∗ in Y . (b) I∗ acts on X ′ on the right
rigidly.(c)T (O) acts on X ′ on the left rigidly. (d) These two actions commute.

Proof: The actions involve only rational functions without poles so (b) and (c)
are clear. The other statements are easily checked.

We fix a congruence subgroup Γ′ of G(Z) of level prime to p.
We will now define some sets Br on which Iν∩G(Zp) and hence Γν := Iν∩Γ′ will

act. Each Br is of the form T (Zp)Dr where Dr is an affinoid polydisc in No(Cp).
Γν will also preserve the Zp-points of Br.

As in lemma 2.1, the action will be rigid and will commute with the left T (Zp)-
action. We will only need one of these spaces in this paper, but their GL(2)
analogues were all needed in [Stevens] and may be useful later for defining p-adic
L-functions.

Let r denote a tuple of rational numbers (αij) where 1 ≤ i < j ≤ n. Set
Dr = {[xij ∈ X ′|xii = 1, v(xij) ≥ αij∀i < j}. Set Br to be the image in Y of
T (Zp)Dr.

Note: we use [a] to denote the image in Y of a matrix a in G(Cp).
We assume all αij < 0 so that Dr contains No(O). In fact, it is easy to verify

the following lemma:

Lemma 2.2. Given the nonnegative integer ν, assume that for all i < j, 0 > αij >
−1 if ν = 0 and 0 > αij > (i− j)ν if ν > 0. Then Iν leaves Br stable, acts rigidly
on it, commuting with the rigid action of T (Zp) on the left.

Section 3: Semigroup actions on various Banach spaces

¿From now on for simplicity we fix a compatible pair ν and r as in Lemma 2.2
and drop them from the notation. To avoid confusion with the Borel subgroup, we
will use X instead of B.

As in [AS-Barcelona], consider a semigroup S̃ in G(Q) ∩G(Zp) that contains Γ.
We assume that S contains the diagonal matrices d(', a) = diag (', . . . , ', 1, . . . , 1)
with a '’s for 0 ≤ a ≤ n and ' not dividing the level of Γ. (Remember that p divides
the level of Γ.) We define S to be the semigroup generated by S̃ and the matrix
π = diag (1, p, p2, . . . , pn−1).
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We assume that SS−1 ∩G(Z) = Γ, which is a harmless condition satisfied by all
Hecke pairs in practical use.

We let H = H(Γ, S) be the Hecke algebra of double cosets. We assume H
is commutative. In [AS-Barcelona] we defined the ∗-action of S on Y . It is the
restriction of the unique semigroup action of the semigroup generated by G(O) and
π on Y such that for every b ∈ Bo(Cp) and every g ∈ G(O), [b] ∗ g = [bg] and
[b] ∗ π = [π−1bπ]. This will induce semigroup actions on spaces of functions and
distibutions on X, and hence Hecke algebra actions on the cohomology of Γ with
coefficients in such spaces.

Let X denote the space of all continuous group homomorphisms from T (Zp) to
Cp

×. For a finite extension L of Qp, let X (L) denote the L- rational points, i.e.
those homomorphisms taking values in L.

Fix an L- rational point κ0 ∈ X and let K denote an m-dimensional closed
affinoid polydisc centered at κ0 for some m from 0 to n. So if m = 0, K is just
the point {κ0}. In particular, we shall assume that we have rational coordinate
functions (b1, . . . , bn) and Q-rational numbers (r1, . . . , rn) such that κ0 has the
coordinates (0, . . . , 0) and K = {(b1, . . . , bn) : |bi| ≤ |ri|∀i}. Write K(L) for K ∩
X (L).

Let A(K) denote the rigid analytic functions on K with values in Cp. It is
a Banach algebra, isomorphic to a Tate algebra. In the case where K is not a
point, choose L-rational coordinates (β1, . . . , βn) on K so that κ0 has coordinates
(0, . . . , 0). Thus A(K) is the set of functions λ on K such that λ is given by a
single power series in the β’s which converges on K. The norm on A(K) is the
sup norm of functions. Let I0 be the ideal generated by β1, . . . , βn, so I0 = {λ ∈
A(K)|λ(κ0) = 0}. If L is a finite extension of Qp we write A(K)(L) for the L-points
of A(K), i.e. those functions which take values in L on K(L), or equivalently have
coefficients in L when written as power series in the β’s.

Recall that X is T (Zp) times a closed affinoid polydisc D. Define AK to be the
set of functions F : K ×X → Cp such that

(1)F (κ, tx) = κ(t)F (κ, x) for all κ ∈ K, t ∈ T (Zp), and x ∈ X, and
(2) writing x = td with t ∈ T (Zp) and d ∈ D, F should be locally analytic in

the t variable and rigid analytic in the (k, n) variables. Since K and D are closed
affinoid polydiscs, (2) means that F is given by a single convergent power series on
K ×D, with coefficients being locally analytic functions on T (Zp).

We put the sup norm on AK and this makes it into a Banach module over A(K),
where the module action is given by (λF )(κ, x) = λ(κ)F (κ, x). It is also a left
S-module with the action (sF )(κx) = F (κ, x ∗ s). These actions commute. Let
AK(L) denote the L-rational points.

Define DK to be the space of continuous A(K)-module homomorphisms µ :
AK → A(K). This is also a Banach module over A(K) with the operator norm
on µ, i.e. |µ| = sup{|µ(F )|/|F | : F �= 0}. The module action is the usual one:
(λµ)(F ) = λ(µ(F )). It also inherits a right S-action from AK in the usual way,
i.e. (µs)(F ) = (µ(sF )). Again, these two actions commute. Let DK(L) denote the
L-rational points.

We let EK be the unit ball in DK . Let EK(OL) denote the OL-rational points.
We want to prove that the sequences

0 → I0DK → DK → D(0) → 0
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and the similar sequences with EK , DK(L), and EK(OL) are exact. If n = 1 this
is fairly easy, but in general we have to introduce some intermediate spaces of
measures in order to reduce to the n = 1 case. So we have to make some more
definitions.

Without loss of generality, we assume K is n-dimensional until the end of the
proof of Corollary 3.5. For m = 0, . . . , n let Km = {(b1, . . . , bm, 0, . . . , 0)} ⊂ K.
So K0 = {κ0} and Kn = K. Similarly we set Tm = {diag(t1, . . . , tm, 1, . . . , 1)} ⊂
T (Zp). If m < l we have the obvious inclusions Km ⊂ Kl, Tm ⊂ Tl, and projections
Kl → Km and Tl → Tm written as κ �→ κ̂ and t �→ t̂ where (b1, . . . , bl, 0, . . . , 0)̂ =
(b1, . . . , bm, 0, . . . , 0) and diag(t1, . . . , tl, 1, . . . , 1)̂ = diag(t1, . . . , tm, 1, . . . , 1).

Define Am to be AKm and Dm to be DKm . For later use we point out that
there are constants cJ such that {cJ ñJ} form an ONB for Am over A(K). Here
ñJ denotes the unique extension of nJ as a function on D to Am and nJ is the
monomial taking the image [nij ] of the unipotent upper triangular matrix (nij) in
D to

∏
n
Jij

ij . This uses the fact that the Gauss norm equals the spectral norm on
closed affinoid polydiscs.

Because |κ(t)| is absolutely bounded above and below for t ∈ T (Zp) and κ ∈ K,
we have a norm on Am equivalent to the one above given by |F | = sup{|F (κ, n)| :
κ ∈ K,n ∈ D}. In fact this is the norm we shall use.

Let m ≤ l. Define Φ : Am → Al and Ψ : Al → Am by the formulas (ΦF )(κ, tn) =
(κ(t)/κ̂(t̂))F (κ̂, t̂n), for all κ ∈ Kl, t ∈ T (Zp) and n ∈ D, and (ΨF )(κ, tn) =
F (κ, tn), for all κ ∈ Km, t ∈ T (Zp) and n ∈ D.

Lemma 3.2. Φ and Ψ are maps of Cp-vector spaces, defined over L, and they both
are bounded operators with norm 1. The composition Ψ ◦ Φ is the identity on Am.
Ψ is an A(K)-module map but Φ is not.

Proof: One checks easily they map into the claimed targets, using the fact that
if F (κ, tn) = κ(t)F (κ, n) for all κ ∈ Km, t ∈ T (Zp) and n ∈ D then F is in Am.
The other assertions are also easy to check.

We have continuous homomorphisms (in fact with operator norm = 1):

im,l = i : A(Km) → A(Kl)

and
pm,l = p : A(Kl) → A(Km)

which are the pull-backs of projection and inclusion respectively. That is, (iλ)(κ) =
λ(κ̂) for κ ∈ Kl and (pλ)(κ) = λ(κ) for κ ∈ Km.

In particular, we have pm,n : A(K) → A(Km) via which we will automatically
view any A(Km)-module also as an A(K)-module. For instance Dm becomes an
A(K)-module for any m.

Define πm,l = π : Dl → Dm by

(πµ)(F ) = pm,l(µ(ΦF )).

It’s easy to see that π has operator norm less than or equal to 1, (so it is continuous),
that its image lies in Dm as claimed, and that it is an A(K)-module map.
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Theorem 3.3. The sequence (where the first nontrivial map is the inclusion ι and
the second is π)

0 → (βm+1, . . . , βl)Dl → Dl → Dm → 0

is an exact sequence of continuous A(K)-module maps defined over L with operator
norm less than or equal to 1.

Proof of Theorem 3.3: We must check that (1) π is surjective and that (2) the
kernel of π is the image of ι.

(1) Fix m < l. We are assuming that K is an n-dimensional polydisc. So
there is a set K ′ which is an (l − m)-dimensional polydisc such that for any
point with coordinates (b1, . . . , bm, 0, . . . , 0) ∈ K and any (bm+1, . . . , bl) ∈ K ′ then
(b1, . . . , bm, bm+1, . . . , bl) is in K.

For any (bm+1, . . . , bl) ∈ K ′, define Ψ(bm+1,...,bl) : Al → Am by

(Ψ(bm+1,...,bl)(F ))((b1, . . . , bm, 0, . . . , 0), x) = F ((b1, . . . , bm, bm+1, . . . , bl), x).

This is Cp-linear and has operator norm 1.
We then define a map ν → ν̃ from Dm to Dl by

ν̃(F )(b1, . . . , bl, 0, . . . , 0) = ν(Ψ(bm+1,...,bl)(F ))(b1, . . . , bm, 0, . . . , 0).

Of course ν̃ depends on the choice of (bm+1, . . . , bl) ∈ K ′, which we suppress from
the notation. One easily checks that this map has operator norm less than or equal
to 1 and is an A(Kl)-module map.

Now choose (bm+1, . . . , bl) = (0, . . . , 0). We claim that π(ν̃) = ν. For any
G ∈ Am and any (b1, . . . , bm, 0, . . . , 0), we have (π(ν̃))(G)(b1, . . . , bm, 0, . . . , 0) =
pm,l(ν̃)(ΦG))(b1, . . . , bm, 0, . . . , 0) = ν(Ψ(0,...,0)ΦG)(b1, . . . , bm, 0, . . . , 0). So it is enough
to show that Ψ(0,...,0)ΦG = G. But we have by definition Ψ(0,...,0)ΦG((b1, . . . , bm, 0, . . . , 0), tn) =
(ΦG)((b1, . . . , bm, 0, . . . , 0), tn) = (κ(t)/κ̂(t̂))G(κ̂, t̂n) where κ = κ̂ = (b1, . . . , bm, 0, . . . , 0).
Therefore the last expression above equals (κ(t/t̂))G(κ, t̂n).

On the other hand, since G ∈ Am,

G(κ, t̂n) = (κ(t̂))G(κ, n)

so that (κ(t/t̂))G(κ, t̂n) = κ(t)G(κ, n) = G(κ, tn) = G((b1, . . . , bm, 0, . . . , 0), tn).
(2) First we check that (βm+1, . . . , βl)Dl is contained in the kernel of π. If µ ∈ Dl

and m+ 1 ≤ j ≤ l, then π(βjµ) = bjπ(µ) since π is an A(K)-module map. But βj
acts on Dm via the restriction map from A(K) to A(Km). In particular βj acts via
0, so bjπ(µ) = 0.

To prove the converse, we put m, l back in the notation, writing π = πm,l. It’s
easy to see that if m ≤ s ≤ l then πm,s ◦ πs,l = πm,l.

We will now prove by induction on l −m ≥ 1 that if µ ∈ Dl and πm,l(µ) = 0
then µ ∈ (βm+1, . . . , βl)Dl. First we do the induction step. Assume that l−m ≥ 2
and the statement is true for πm+1,l and πm,m+1. Then

πm,l(µ) = 0 ⇒ πm,m+1(πm+1,l(µ)) = 0 ⇒ πm+1,l(µ) = βm+1ν

for some ν ∈ Dm+1. Lift ν to ν̃ ∈ Dl so that πm+1,l(ν̃) = ν. Then πm+1,l(µ −
βm+1ν̃) = 0 since πm+1,l is A(K)-linear. By the induction hypothesis again, µ −
βm+1ν̃ ∈ (βm+2, . . . , βl)Dl. It follows that µ ∈ (βm+1, . . . , βl)Dl as desired.
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It remains to do the case where l = m+1 so π : Dm+1 → Dm. Suppose µ ∈ Dm+1

and π(µ) = 0. We want to show that µ ∈ βm+1Dm+1.
Let F be any element of Am. Then (πµ)(F ) = 0 means that pm,m+1µΦF = 0.

In other words, for any (b1, . . . , bm, 0, . . . , 0) ∈ Km, µ(ΦF )(b1, . . . , bm, 0, . . . , 0) = 0.
That is µ(ΦF ) is an element of A(Km+1) which vanishes on the locus of bm+1 =
0, and therefore µ(ΦF ) ∈ βm+1A(Km+1) (e.g. by the Weierstrass preparation
theorem.)

Now for any G ∈ Am+1, write out the power series representation for G:

G(κ, n) =
∞∑

i=0

γi(κ̂, n)bim+1

where κ = (b1, . . . , bm+1, 0, . . . , 0) and κ̂ = (b1, . . . , bm, 0, . . . , 0). For each i there is
a unique extension φi of γi to an element of Am, defined by

φi(κ̂, tn) = κ̂(t)γi(κ̂, n).

We see that (Φφi)(k, n) = φi(κ̂, n) = γi(κ̂, n). Thus G and
∑
βim+1Φ(φi) agree

on (κ, n) and are both in Am+1 and hence are equal. Therefore, using that µ is a
continuous, A(Km+1)-linear map,

µ(G) =
∑
βim+1µ(Φ(φi)) =

∑

i≥1

βim+1µ(Φ(φi)) + µ(Φ(φ0)).

We had earlier shown that µ(ΦF ) ∈ βm+1A(Km+1) for any F and in particular
µ(Φ(φ0)) ∈ βm+1A(Km+1). We conclude that for any G, µ(G) ∈ βm+1A(Km+1).

So define ν : Am+1 → A(Km+1) by µ(G) = βm+1ν(G). We will be finished if we
show that ν ∈ Dm+1, i.e. that ν is bounded and is A(Km+1)-linear. The second
point is easy, since µ and multiplication by 1/βm+1 are A(Km+1)-linear. For the
first point, since µ is bounded, it will suffice to show that there exists an M > 0
such that |ν(G)| ≤M |µ(G)| for all G ∈ Am+1.

If we write ν(G) = λ, then µ(G) = βm+1λ. Thus it is enough to show that there
exists M such that |λ| ≤ M |βm+1λ| for all λ ∈ A(Km+1). In fact, let’s show that
there exists an M such that |λ| =M |βm+1λ| for all λ ∈ A(Km+1).

However, this is a consequence of the fact that the Gauss norm and the spec-
tral norm are equal on a polydisc. We have assumed that K and hence K ′ has
the form {b : |bi| ≤ |ri|} for some rational numbers ri. Using multi-index nota-
tion, write ν(G) =

∑
aI(b/r)I and µ(G) = rm+1(bm+1/rm+1)

∑
aI(b/r)I . Thus

|µ(G)/rm+1| = |ν(G)| since the maximum of the coefficients aI are the same in
the two sums. Since rm+1 is a norm-multiplicative element in the Banach algebra,
we’re finished.

Let a superscript 0 denote the unit ball in a normed space. Since all the auxilliary
operators used in the proof had operator norm less than or equal to one, the same
method of proof applies to show:

Theorem 3.4. The sequence

0 → (βm+1, . . . , βl)El → El → Em → 0

is an exact sequence of continuous A(K)0-module maps defined over OL.
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Corollary 3.5. The sequence (βn, . . . , β1) is a DK-regular (resp. EK-regular) se-
quence in A(K) (resp. A(K)0).

Proof: We give the proof for DK . The proof for EK is similar. Let µ ∈ DK
represent an element µ̄ ∈ DK/(βn, . . . , βj+1)DK such that βjµ̄ = 0. We must show
µ̄ = 0. We have βjµ =

∑i=n
i=j+1 βiνi for some νi ∈ DK . Hence for any F ∈ AK and

any (b1, . . . , bn) ∈ K

(βj(µ(F )))(b1, . . . , bn) = bjµ(F )(b1, . . . , bn) =
∑
biνi(F )(b1, . . . , bn)

that is, βj(µ(F )) =
∑
bi(νi(F )). Writing µ(F ) as

∑
biλi + α where α is a power

series in (b1, . . . , bj), we get

0 = βj(µ(F )) − βj(µ(F )) =
∑
βi((νi(F )) − βjλi) − βjα

and comparing coefficients of monomials gives that βjα and hence α equal 0. Thus
for every F , µ(F ) lies in the ideal generated by (βn, . . . , βj+1).

This means that for every F , µ(F ) restricted to Kj is identically 0. In particular,
for any G ∈ Aj , (πµ)(G) = pj,n(µ(ΦG)) = 0 since pj,n is just restriction to Kj . So
πµ = 0. We conclude from Theorem 3.3 that µ lies in (βn, . . . , βj+1)DK .

If K consists of the single point κ0, write A(0) and D(0) for AK and DK re-
spectively. Later when we may let κ0 be a variable κ, we will write A(κ) and
D(κ).

We recall the following cohomological lemma which is Lemma 1.2 in [AS-Barcelona].

Lemma 3.6. Let R be a commutative ring, G a group, M a right RG-module, I
an ideal of R. Suppose I is generated by an M -regular sequence (x1, . . . , xr). Then
the image of the map

i∗:H∗(G, IM) → H∗(G,M) ,

induced by the inclusion i: IM →M , equals IH∗(G,M).

Section 4: Cohomology and U-operators

We fixed the Hecke pair, i.e. congruence subgroup Γ = Γν and semigroup S in
Section 3. We have the Hecke algebra H = H(Γ, S). For any right S-module M ,
we will denote the H-module H∗(Γ,M) by H(M).

We denote the Hecke operator corresponding to the double coset ΓπΓ by u. We
can lift u to the cochain level in a non-canonical way as follows:

Wwrite ΓπΓ as the disjoint union of single cosets ΓAi. We may and shall assume
that each Ai is upper triangular, integral, with determinant equal to det(π) and
with diagonal part = diag (1, pm, p2m, . . . , p(n−1)m) Then ΓπΓ is the disjoint union
of single cosets ΓνAi.

We fix a resolution F∗ of Zp by free, finitely generated ZpΓ - modules. We use
F to compute the cohomology of Γ and π−1Γπ ∩ Γ in terms of cochains. For the
group, π−1Γπ we use F • where the underlying groups of F • are the same as in
F , and the group action is defined by f•π−1γπ = fγ. We also fix a homotopy
equivalence τ between the two π−1Γπ ∩ Γ-resolutions F and F •.
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By definition, the Hecke operator u onH(M) equals tr◦res◦π, where π:H∗(Γ,M) →
H∗(π−1Γπ,M) is induced by conjugation π−1Γπ → Γ (γ �→ πγπ−1) and the right
action on M (x �→ xπ), res:H∗(π−1Γπ,M) → H∗(π−1Γπ∩Γ,M) is the restriction
map and tr:H∗(π−1Γπ ∩ Γ,M) → H∗(ΓM) is the transfer map.

As in Formulae 4.3 of [AS-Barcelona] we can lift u to an operator U on the
cochains as follows. Write γi = π−1Ai.

Formula 4.1. For a cocycle z in HomΓ(Fk,M), uz is represented by the cochain

f �→ U(f) = Σiz(τ(fγ−1
t ))Ai.

We write Ck(M) for the cochains HomΓ(Fk,M) and C(M) for ⊕kCk(M), Z(M)
for the cocycles and B(M) for the boundaries. Thus H(M) = C(M)/Z(M). As-
sume that M has a topology. Since the coboundary maps on the cochains are
continuous, Z(M) is closed. However, B(M) need not be closed in general, a
source of much complication.

Lemma 4.2. Fix K to be a closed affinoid polydisc or a single point in X . The
operator U acts completely continuously on the A(K)0-module C(EK(OL)).

Proof: The module AK(OL) has the ONB over A(K)0 given in Section 3, namely,
{cJ ñJ}. Because the nij , i < j, are positive root vectors for the torus, π acts on
nJ by a positive power of p that tends to infinity as J grows. In other words,
multiplication by π is completely continuous on AK(OL). Therefore it is completely
continuous on the dual space EK(OL), and hence on the cochains Ck(EK(OL)) ≈
EK(OL)mk wheremk is the rank of Fk over ZpΓ. We give Ck(EK(OL)) the structure
of Banach A(K)0-module induced by the isomorphism with EK(OL)mk .

Then U is a finite sum of terms, each of which is the composition of a continuous
map, π and an invertible map. Each term is completely continuous and hence so is
U . QED.

Lemma 4.3. Fix K as above. The coboundaries B(EK(OL)) are closed in C(EK(OL)).

Proof: So far we have been dealing with the (strong) topology on C(EK(OL))
induced by the operator norm topology on EK(OL). There is also the weak topol-
ogy, defined by saying that a sequence of elements ei ∈ EK(OL) has a limit e if and
only if for every F ∈ AK(OL), lim ei(F ) = e(F ). A standard diagonal argument
shows that EK(OL) is compact in the weak topology.

Now let bi ∈ B(EK(OL)) be a sequence which converges in the strong topology
to a point c ∈ C(EK(OL)). Then it also converges to c in the weak topology. Write
bi = dai where d is the coboundary operator. Passing to a subsequence, we may
assume that ai converges in the weak topology, say to a∞. Since d is continuous
(in both topologies) we have that bi converges to da∞ in the weak topology. But
the weak topology is Hausdorff, so c = da∞, i.e. c is a coboundary. QED.

Note: It follows that H(EK(OL)) inherits the structure of a topological A(K)0-
module but it does not obviously have any canonical Banach module structure.
The obstruction to finding the latter is related to the possible existence of torsion.
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Section 5: Slope decompositions

Throughout this section, R is either a Banach algebra over L with a multiplica-
tive norm, or the unit ball in such an algebra. In particular, R is a complete valued
ring containing L or OL where the norm restricts to the usual one on L or OL re-
spectively. We also assume R is noetherian. For example, R could be a Tate algebra
over L or over OL. By Theorem 1 page 207 of BGR, the former is noetherian, and
by the second part of the appendix to this section below, the latter is noetherian.

If a ∈ R and |a| = p−h, we say “a has slope h”.
We have the completely continuousA(K)0-module endomorphism U on C(EK(OL))

which induces the Hecke operator u on H(EK(OL)). Fix a rational number h. We
want to derive a “slope ≤ h”- decomposition of H(EK(OL)) with respect to u that
doesn’t depend on the choice of the lifting U . But the methods we are using only
work after tensoring with L. First we do this at the cochain level.

Note that DK(L) = EK(OL) ⊗ L since EK(OL) is the unit ball in DK(L). Also
by the Universal Coefficient Theorem, H(EK(OL))⊗L = H(DK(L)) as H-modules.

If f(T ) is a polynomial of degree d, let f∗(T ) = T df(T−1). In our notation, we
will use Y to denote a polynomial of the type Q∗, where in Coleman’s notation
a Fredholm determinant factors into Q(T )S(T ). (In such a factorization we shall
always assume Q(0) = 1.)

Definition. If Y (T ) is a monic polynomial with coefficients in R, we say Y has
slope ≤ h if and only if Y (0) is a unit in R and every root of Y ∗ in an algebraic
closure of the fraction field of R has norm ≤ ph, where the norm is the unique one
induced from that on R.

Remark: Since the roots of Y are the inverses of the roots of Y ∗ this is equivalent
to saying that every root of Y has slope ≤ h.

Recall [BGR] that if f(T ) = Tm+a1Tm−1+ · · ·+am then sp(f) is the maximum
of the |ai|1/i for 1 ≤ i ≤ m. We extend this definition to any polynomial g whose
leading coefficient is a unit b by defining sp(g) = sp(b−1g). Then the roots of g all
have norm ≤ sp(g), and at least one root has norm equal to sp(g).

Then Y has slope ≤ h if and only if sp(Y ∗) ≤ ph. Suppose that R = A(K) with
the Gauss norm, If ξ ∈ K, and f is a power series with coefficients in R, we denote
by fξ the specialization of f at ξ, i.e. the power series obtained by evaluating the
coefficients of Y at ξ. Then sp(Y ∗

ξ ) ≤ sp(Y ∗) for all ξ ∈ K. It follows that if Y has
slope ≤ h, then Yξ has slope ≤ h, i.e. any root of any specialization of Y to a point
in K has slope ≤ h.

Definition: For any R-module M with an R-linear endomorphism u, a slope ≤ h
decomposition is an R[u]-submodule M1 satisfying the following properties (1)-(3):

(1) M1 is finitely generated over R.
(2) There is a monic polynomial Y (T ) ∈ R[T ] of slope ≤ h such that Y (u)

annihilates M1.
(3) For any monic polynomial P (T ) ∈ R[T ] of slope ≤ h, P (u) acts left pseudo-

invertibly on M/M1.
Definition: If V is an R-module and V1 a sub-module and f : V → V an R-

module map that preserves V1, we say f acts left pseudo-invertibly on V/V1 if there
exists an R-module map g : V → V that preserves V1 and a positive integer m such
that g ◦ f induces multiplication by pm on V/V1.

Notations: (1) For a polynomial such as Y in (2) we shall write YM .
10



(2) We shall use the notation Mh =M1 ⊗ L.

Lemma 5.1. If M is an R[u]-module with a slope ≤ h decomposition, then Mh is
unique up to isomorphism.

Proof. Suppose M1 and M ′
1 are both slope ≤ h decompositions of M , equipped

with polynomials Y (T ) = YM (T ) and Y ′(T ) = YM ′(T ). Consider x′ ∈M ′
1. Let an

overline denote the image of an element of M in M/M1.
Then 0 = Y ′(u)x′ implies that 0 = Y ′(u)x̄′. Let g be a left pseudo-inverse to

Y ′(u) on M/M1. Then 0 = gY ′(u)x̄′ = pmx̄′ shows that pmx′ lies in M1 for some
m. Since M ′

1 is finitely generated, we obtain that for some m, pmM ′
1 ⊂M1 and by

symmetry pmM1 ⊂M ′
1. After tensoring with L we get that M ′h =Mh

1 .

Definition: If M is an R[u]-module, even if it doesn’t necessarily have a slope
≤ h decomposition, we defineM (h) to be the sub-R⊗L-module ofM⊗L generated
by all generalized eigenvectors of u whose generalized eigenvalues (in an algebraic
closure of R⊗ L) are of slope ≤ h.

Lemma: If M is an R[u]-module with a slope ≤ h decomposition, then M (h) =
Mh.

Proof: Since YM (u)Mh = 0 we have M (h) ⊃Mh. Let v be in M (h) and let v̄ be
its image in M (h)/Mh. Then v̄ is annihilated by P (u) where P is some polynomial
of slope ≤ h. Let β be the left inverse to P (u) on M (h)/Mh. (Since we have
tensored with L, the left pseudo-inverse is an inverse.) Then v̄ = βP (u)v̄ = 0
shows that v ∈Mh.

Theorem 5.2. Given K and h as above, then after possibly shrinking K (without
decreasing its dimension) there exists a slope ≤ h decomposition of the A(K)(L)0[U ]-
module of cochains, C = C(EK(OL)).

In fact, there exist continuous operators q1 and q2 on C with the following prop-
erties:

(1) they commute with U ;
(2) there exists m ≥ 0 such that q21 = q22 = p2m, q1q2 = q2q1 = 0, and q1 + q2 =

pm;
(3) Image(q1) ⊂ C is a slope ≤ h decomposition of C.
Moreover, the same is true when C is replaced by its subgroup of cocycles Z, or

its subgroup of boundaries B or by the cohomology H = Z/B.

Note: We call a pair (q1, q2) as in item (2) above a “pair of pseduo-projectors”.
Proof: First we invoke the theorem in the Appendix to this section that shows

(possibly after shrinking K) that the Fredholm determinant f(T ) of U on the ON-
able A = A(K)(OL)-module C = C(EK(OL)) has a factorization

f(T ) = Q(T )S(T )

such that S is entire, Q is a polynomial relatively prime to S whose leading coef-
ficient is a unit, Q(0) = 1, the slope of Q∗ is ≤ h, and the slope of the inverse of
every root of every specialization of S to a point in K is > h.

We apply Theorem 4.2 of [Coleman] to derive the existence of a direct sum
decomposition C ⊗ Qp = N(Q) ⊕ F (Q) into closed submodules, where the projec-
tions are given by entire power series in A[[T ]] evaluated at T = U , and such that
Q∗(U)N(Q) = 0 and Q∗(U) is invertible on N(Q).
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Morever, if P (T ) is any monic polynomial of slope ≤ h it is easy to see that P ∗ is
relatively prime to S: Saying that it is relatively prime to S means that the resultant
Res(P ∗, S) is a unit. Taking the resultant, which is just a certain determinant made
from the coefficients of the power series involved, commutes with specialization. So
it suffices to show that for any ξ in the disk, Res(P ∗

ξ , Sξ) �= 0. This will be true if
for each ξ, P ∗

ξ and Sξ together generate the unit ideal. This is true because they
have no common root on the disk. Indeed the inverse roots of P ∗

ξ all have slope
≤ h and those of Sξ all have slope > h.

It follows then from Lemma 4.0 in [Coleman] that P (U) acts invertibly on F (Q)
with an inverse again given by evaluating an entire power series at U .

Since the powers of p in the denominators of the coefficients of an entire power
series is bounded, we can multiply the projectors through by an appropriate power
of p and obtain item (2). Since the projectors are power series in U , they commute
with U , hence item (1). Finally, item (3) follows easily from the preceding two
paragraphs.

Because Z andB are closed U -stabele submodules in C and the pseudo-projectors
qi are given by convergent power series in U , they induce a pair of pseduo-projectors
on Z, B and H. Clearly the properties (1), (2), and (3) carry over. The ring
A(K)(OL) is noetherian, so the finite generation of the slope ≤ h part of Z follows
from that of C.

We get the following corollary:

Corollary 5.3. There is a splitting H ⊗L = N ⊕F as A(K(L))[u]-modules where
N is the image of p−mq1 and F is the image of p−mq2. This is the unique splitting
such that N ⊂ H ⊗ L is a slope ≤ h decomposition.

Proof: It is easy to check the uniqueness. The existence follows immediately
from the Theorem.

Remarks: (1) H⊗L may not have a canonical Banach A-module structure since
the obvious “norm” may only be a semi- norm.

(2) If K is just a single point, we can derive all of the above using Serre’s theory,
without Coleman’s additions.

(3) If K ′ is subdisk of K, possibly of smaller dimension, the structure of the
pseudo-projectors with properties (1) - (3) passes over to EK′ compatibly with the
restriction maps on cochains etc. induced by EK → EK′ .

We now obtain the first step of the Control Theorem:

Theorem 5.4. Given κ0 ∈ K and h, there exists (after possibly shrinking K) an
exact sequence of H and A(K)-modules (with commuting actions), for any i,

0 → I0H
i(DK(L))h → Hi(DK(L))h → Hi(D0(L))h → Hi+1(I0DK(L))(h)

where the first nontrivial map is inclusion and the second is induced by π0,n.

Proof: We have the exact sequence (with all maps defined over L)

0 → I0DK → DK → D0 → 0

given from Theorem 3.3 with m = 0 and l = n. Therefore

0 → I0DK(L) → DK(L) → D0(L) → 0
12



is also exact. Take the long exact sequence of cohomology (which is H-equivariant
by [AS-Crelle]) and apply Lemma 3.6. It is easy to see using the direct sum de-
composition into slope leh and ≥ h parts that the slope ≤ h part of I0H(DK(L))
is I0H(DK(L))h. The rest of the proof is similar. That the image of the last arrow
lies in the (h)-part is obvious from the definitions.

APPENDICES:

(1) FACTORIZATION OF THE FREDHOLM DETERMINANT

Let A(K) = k < x1, . . . , xn > be the Tate algebra of functions on the closed
unit disk K given by convergent power series with coefficients in k, where k is a
finite extension of Qp. We give it the usual norm, which is multiplicative. In the
course of this appendix we will speak of “shrinking the disk”. This means we will
replace K by a smaller closed disk K ′ (or more generally a polydisk) whose radii
are elements in |k|. The Tate algebra A(K ′) of K ′ is isomorphic to that of K and
we will identify A(K) as a subring of A(K ′) by restriction.

Let A[T ]ent denote the ring of entire power series, so an element of it is a power
series f(T ) =

∑
aiT

i with M i|ai| → 0 for any M > 0. Give it the norm |f | =
sup|ai|. If f is any such power series, and ξ is a point in K, we denote by fξ the
entire power series in k[[T ]]ent obtained by evaluating all the coefficients of f at ξ.

If q(T ) is a polynomial of degree d, we denote q∗ = T dq(T−1). Thus if q(0) = 1
then q∗ is monic.

Theorem. Let h be a rational number. Let f ∈ A[T ]ent such that |f | = 1 and
f(0) = 1. Suppose there exists a polynomial q(T ) ∈ k[T ] and an entire power series
s(T ) ∈ k[T ]ent such that q(0) = s(0) = 1, all inverse roots of q have slope less than
or equal to h, all inverse roots of s have slope greater than or equal to h, and f0 = qs.
Then after possibly shrinking the disk, there exists a polynomial Q(T ) ∈ A[T ] and
an entire power series S(T ) ∈ A[T ]ent such that (1) Q(0) = S(0) = 1, (2) for all ξ
in the disk, all inverse roots of Qξ have slope less than or equal to h and all inverse
roots of Sξ have slope greater than or equal to h, and (3) f = QS. Moreover, Q
has for leading coefficient a unit and Q is relatively prime to S.

Proof: Suppose d is the largest index with |ad| = 1. After shrinking the disk, we
may assume that ad is a unit in A. Then f is T -distinguished of degree d. Then by
the Weierstrass Preparation Theorem (BGR p. 201) we have that f = we where
w is a distinguished polynomial of degree d, |w| = 1 and e is a unit in A[[T ]]. It
is easy to check that e is in fact entire. If d is larger than 0 we have accomplished
something, and we can continue inductively with e.

Of course we may have d = 0. So now suppose more generally that the Newton
polygon for f0 has first slope λ ≥ 0. This means that there is some d > 0 such that
d is the largest index for which ord(ad(0)) = λd and ord(ai(0)) ≥ λi for all i < d
and ord(aj(0)) = λj for all j > d.

Then we can shrink the disk so that ord(ai(ξ)) is constant for all i ≤ d and for
all ξ in the disk. Moreover, we can shrink the disk further if necessary so that
ord(aj(ξ)) > λj for all j > d and for all ξ in the disk. This is because the fact that
f is entire implies that ord(aj(ξ)) − λj tends to infinity uniformly in ξ as j → ∞.
So just pick J sufficiently large that ord(aj(ξ)) > λj for all j ≥ J and all ξ in the
disk, and then shrink the disk so that that ord(ai(ξ)) is constant for all i < J and
for all ξ in the disk.
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Having shrunk the disk, we’ve arranged things so that for all ξ in the disk, the
Newton polygon for fξ has first segment of slope λ and horizontal length d. Now
choose a number algebraic b over k whose slope is λ, and change variables by setting
g(T ) = f(bT ). Then the Newton polygon for gξ has first segment of slope 0 and
horizontal length d for every ξ in the disk. Now we are in the situation of the first
paragraph of this proof. We apply the Weierstrass Prepartion Theorem as in that
paragraph and then change variables back by T → b−1T .

Continuing in this way, since the Newton polygon of the original f has only a
finite number of slopes less than or equal to h, we obtain a factorization f = QS
as stated in the theorem, except that the coefficients may be in a finite extension
of k.

Suppose we had two factorizations f = QiSi, i = 1, 2, with the properties of the
statement of the theorem. Then for any specialization at a point ξ of the disk, and
for each i, the factorization fξ = (Qi)ξ(Si)ξ is the usual slope ≤ h factorization of
the entire power series fξ, which is unique. Hence Q1 = Q2 and S1 = S2. Now
let σ be any element of the absolute Galois group of k. Then f = σ(Q)σ(S) is
another such factorization. Hence Q = σ(Q) and S = σ(S). Therefore our desired
factorization is defined over k.

Finally, in order to use this factorization in Theorem 4.2 of Coleman’s red
preprint, we need Q to have leading coefficient a unit, and we need Q to be rel-
atively prime to S. By our construction, having shrunk the disk, the slope ≤ h
part of the Newton polygon of fξ is independent of ξ in the disk. In particular, the
degree of Qξ is constant, so the leading coefficient of Q is nonvanishing on the disk.
Hence it is a unit. Saying that Q is relatively prime to S means that the resultant
Res(Q,S) is a unit. Taking the resultant, which is just a certain determinant made
from the coefficients of the power series involved, commutes with specialization. So
it suffices to show that for any ξ in the disk, Res(Qξ, Sξ) �= 0. This will be true if
for each ξ, Qξ and Sξ together generate the unit ideal. This is true because they
have no common root on the disk. See Corollary 5 p. 263 of BGR.

(2) THE UNIT BALL IN THE TATE ALGEBRA IS NOETHERIAN

The following lemma and reference was kindly provided by Keith Conrad.

Lemma. Let (R,m) be a discrete valuation ring with respect to them-adic topology.
Then the Tate ring R < X1, . . . , Xn > is noetherian.

Proof. The ideal m is principal, say m = pR. The Tate ring is the completion of
the polynomial ring R[X1, . . . , Xn] relative to the ideal (p). The lemma follows from
paragraph (23.K), p.169 of H. Matsumura’s book Commutative Algebra, second
edition, Benjamin, Reading, MA, 1980.

Section 6: Highest weights and
representations, nebentype characters

We recall the from [AS-Barcelona] the definition of the ∗ action on certain finite
dimensional modules.

We let λ denote the highest weight of an irreducible right rational G = GL(n)-
module V with respect to (B, T ). We fix a highest weight vector vλ in V (Qp), so
that vn = v for n ∈ N and vt = λ(t)v for t ∈ T .

Althought S is in G(Qp), we only let S̃ act on V in the usual way. We extend this
S̃-action on V to the semigroup S generated by S̃ and π as follows: Let the usual
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action of GL(n,Zp) on V be denoted by juxtaposition, and define the ∗-action of
π by

w ∗ π = λ−1(π)(wπ) .

It is easily checked that putting these together defines a group action by the group
generated by GL(n,Zp) and π, and in particular a semigroup action of S. It induces
an action of the Lie algebra g of GL(n,Zp) which is compatible with the action of
π. That is, if Z ∈ g, w∗Zπ = w∗π(Ad(π)(Z)), where Ad refers to the right adjoint
action.

Warning: We are forced to use the ∗-action on X because the ordinary action
doesn’t preserve X. Then we are forced to introduce the ∗-action on V so that
Lemma 7.2 will be true. As a consequence, our Hecke operator u corresponding to
the double coset of π is λ−1(π) times the usual Hecke operator Tπ. This normal-
ization has to be taken into account when translating our results to more standard
language.

We let ε denote a nebentype character (which may be trivial), i.e., a character
ε:T (Z/pν) → O×

L . We can also then denote by ε the extended characters ε: S̃ → O×
L

and ε:X → O×
L where ε([x]) depends only on the values of the diagonal entries of

the upper triangular representative x modulo pν . We extend ε from S̃ to S by
setting ε(π) = 1.

Given a representation V , we can twist the action of S on V by ε, which we
denote by V (ε) = V ⊗ (OL)ε.

Finally, we obtain actions of the Hecke algebra H on H(Dλ) and H(Vλ(ε)).

Section 7: Comparison Theorem
between the cohomology of Dλ and Vλ.

Fix a highest weight λ. In this section, K is a single point {λ}. Write DK = Dλ
and AK = Aλ. We identify A(K) with Cp. We leave out the κ variable when writing
elements in Aλ. Thus Aλ consists of functions F (td) which are locally analytic in
t and rigid analytic in d, and such that F (tx) = λ(t)F (x).

We define
φλ: Dλ → Vλ

by φλ(µ) =
∫
X
vλx dµ(x). We define φλ,ε: Dλ(ε) → Vλ(ε) by twisting φλ by ε.

What the integral means: Let {vi} be a basis for V (Qp) and for any upper
triangular matrix g that represents an element in X, write vλg =

∑
vifi(g) where

the fi(g) are regular functions (i.e. rational functions without poles). Then for
each i, fi([g]) is in Aλ where x = [g] runs over the points of X. To see this, note
that fi is locally analytic in t and rigid analytic in d. Since vλ is a highest weight
vector, λ(t)vλg = vλtg =

∑
vifi(tg) shows that fi(tg) = λ(t)fi(g). The value of

the integral is then by definition the vector
∑
µ(fi)vi.

Lemma 7.1. The map φλ,ε is equivariant with respect to S.

Proof. It suffices to check this when ε = 1.
First, if s ∈ S has determinant prime to p, we have φλ(µs) =

∫
X
vλx d(µs)(x) =∫

X
vλ(xs) dµ(x) = [

∫
X
vλx dµ(x)]s = φλ(µ)s.

We now check the equivariance with respect to π: φλ(µπ) =
∫
X
vλx d(µπ)(x) =∫

X
vλ(x ∗ π)dµ(x) =

∫
X
vλ(π−1xπ) dµ(x) = λ−1(π)[

∫
X
vλx dµ(x)]π = φλ(µ) ∗ π.
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Lemma 7.2. The map φλ,ε induces an H-equivariant map on cohomology:

φλ,ε:H(Dλ(ε)) → H(Vλ(ε)) .

Proof. This follows from the equivariance of cohomology with respect to the Hecke
operators, given a morphism on coefficients that is equivariant with respect to the
semigroup.

We want to show that if h is not too large then the map in Lemma 7.2 induces an
isomorphism on the slope ≤ h parts of the cohomology. First, define the element
µλ ∈ Dλ as the delta function at the origin in X. In other words, if F ∈ Aλ,
µλ(F ) = F [1].

Since the elements of Dλ are continuous Cp-linear functionals in Aλ, and since
Aλ consists of locally analytic functions, we can differentiate the group actions and
view both Dλ and Aλ as Lie-algebra modules for the Lie algebra of the compact
open subgroup Iν ∩G(Zp) of G(Qp), i.e. for g = the Lie algebra of G(Qp). If Z ∈ g,
we have µZ(F ) = µ(ZF ). The action of Z is computed in the usual way using
the one-parameter subgroup esZ . Then they also become modules for the universal
enveloping algebra U of g. The ∗-action of π on these modules is compatible with
the g action in the usual way (cf. the similar comment in section 6.)

Lemma 7.3. µλ is a maximal vector of weight λ with respect to (B, T ).

Proof: If g ∈ N(Zp) ∩ Iν , (µλg)(F ) = (gF )[1] = F [g] = F [1] = µλ(F ), so µλ is
killed by the Lie algebra of N(Zp). Similarly if t ∈ T (Zp), (µλt)(F ) = (tF )[1] =
F [t] = λ(t)F [1] = λ(t)µλ(F ).

Lemma 7.4. The map in Lemma 7.2 is surjective.

Proof: One easily checks that it maps µλ to vλ. Since V is irreducible, it must
be surjective.

Recall that we have the standard coordinate functions nij (i < j) on D, extended
in the unique way to functions ñij in Aλ. For any (a, b) let Zab denote the generator
of the Lie algebra corresponding to the (a, b)’th entry. (If we identify the Lie algebra
with gl(n) then Zab is the matrix which is all 0’s except a 1 in the (a, b)’th place.)
A simple calculation shows that Zabñij = ñij if b = j,i < a, = 1 if b = j,i = a, and
= 0 otherwise.

For any multi-index J we define µJ to be the functional on power series in the
nij that picks out the coefficient of nJ . We view µJ as a functional on Aλ by setting
µJ(F ) = µJ(F [d]) where F [d] is the power series giving F on D, written in terms
of the nij .

Lemma 7.5. The L-subspace Cλ of Dλ spanned by the translates of µλ under U(L)
is equal to the L-span of the µJ .

Proof: Since µλ is a maximal vector, it suffices to see what happens when we
repeatedly apply the various derivations Zab’s for a < b, using the formula above.
It’s clear that µJZab is a linear combination of µJ′ ’s of lower weight. So it only
remains to show that each µJ appears in µλU(L). For any power series

∑
aI ñ

I

we have (µJZab)
∑
aI ñ

I = µJ(
∑
aI(ZabñI). It’s easy to construct an argument

now by induction on the weight of µJ with respect to a total ordering on the roots
induced by the choice (B, T ).
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Note that each monomial in the ñJ is a weight vector for the torus. Given h,
partition these monomials into the set M1 of those whose weight, evaluated on π,
is also a weight appearing in Vλ or has slope ≤ h, and M2 consisting of the others.
Let Ai be the closure in Aλ of the L-span of the monomials in Mi, i = 1, 2. Then
A1 is finite dimensional and Aλ = A1 ⊕ A2.

Also define Di = {µ ∈ Dλ : µ(F ) = 0∀F ∈ Ai+1} (viewing the subscripts mod
2.) Then for i = 1, 2, Di is the continuous L-dual of Ai, they are closed in Dλ(L),
and Dλ(L) = D1 ⊕ D2. Also, D1 is finite dimensional.

Lemma 7.6. Let Kλ be the kernel of the map φλ,εin Lemma 7.2. Then D2 ⊂ Kλ.
Proof: Let w denote the operator given by the action of π on A2. It is completely

continuous, and if σ is any weight appearing in Vλ we have that 1 − σ(π)−1w acts
invertibly on A2. Therefore its transpose 1 − σ(π)−1w′ acts invertibly on D2 and
so does their product W over all such σ. Therefore W acts invertibly on the image
of D2 under φλ,ε. But W annihilates the target of the map. So the image must
vanish.

Let α1, 1 ≤ i ≤ n−1, run over the simple roots of SL(n) with respect to (B, T ).
For any two roots α, β we use the standard notation < β,α >= 2(β, α)/(α, α). It
is linear in β.

Lemma 7.7. Define f(λ) to be the minumum of < λ,αi > +1 for all i. If h < f(λ)
then π acting on Kλ is given by phΠ for some operator Π that preserves the unit
ball of Kλ.

Proof: By Lemma 7.6, Kλ is the sum of D2 and the finite dimensional space
Kλ ∩ D1. So it suffices to prove that p−hπ preserves the unit ball of each of these
spaces. By definition this is true for A2 and hence for its dual D2.

For the second we can prove more: D1 is a subspace of Cλ defined in Lemma 7.5,
and we’ll prove that p−hπ preserves the unit ball of Kλ ∩Cλ. We use the fact that
Cλ is a “standard cyclic module” of weight λ in the terminology of [Humphreys].
Any“standard cyclic module” is a quotient of the Verma module (denoted Z(λ)
in [Humphreys]) and has a unique irreducible quotient module, which in our case
must be Vλ � Cλ/(Kλ ∩ Cλ). It follows from Theorem 21.4 in [Humphreys] that
Kλ ∩ Cλ is generated by vectors of the form µλy

mi+1
i Z, 1 ≤ i ≤ n − 1. Here yi is

the simple root vector corresopnding to −αi, or in our notation above, yi = Zi,i+1,
mi =< λ,αi >, and Z runs over the monomials in Zab with a < b. In particular, for
every Z, π−1Zπ = peZ for some positive power e. Since −αi(π) = p, we get that
π acts on µλymi+1

i as multiplication by pmi+1. (By our conventions µλπ = µλ.)
Therefore, under the condition on h, the operator norm of p−hπ on Kλ∩Cλ is ≤ 1.
QED.

Remark: Following the warning in section 6 we might want to translate the
condition on h into “classical” language. Let the highest weight of Vλ by given
by the n-tuple (b1, . . . , bn), where this notation means the character that takes the
diagonal matrix diag(t1, . . . , tn) to

∏
ti
bi . Then λ dominant means that b1 ≥ b2 ≥

· · · ≥ bn. The simple roots are (0, . . . , 0, 1,−1, 0, . . . , 0) with the 1 in the ith place,
i = 1, . . . , n− 1. The inner product on weight space is the usual dot product, and
< λ,αi >= 2(λ, αi)/(αi, αi) = (λ, αi) = bi − bi+1. Then the condition in Lemma
7.7 is that h < bi − bi+1 + 1 for all i = 1, . . . , n− 1.
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If we want to state this in terms of the slope of the usual Hecke operator Tπ acting
on H(Vλ), we must remember that u = λ−1(π)Tπ. Therefore to find the required
bound on the slope of the eigenvalue of the usual Tπ we should “subtract” the
logarithm base p of λ−1(π) = p−(b2+2b3+···+(n−1)bn) We get that our main theorem
applies when the slope of the eigenvalue of Tπ acting on H(Vλ) is less than

h < bi − bi+1 + b2 + 2b3 + · · · + (n− 1)bn + 1

for all i = 1, . . . , n− 1.
For example, if n = 2, and λ = (g, 0), we get the classical slope on weight

g+ 2 cuspforms must be less than g+ 1, which agrees with results of Coleman and
Stevens.

Lemma 7.8. Let U be a lift of the Hecke operator u to cochains as given in Formula
4.1. If h < f(λ), then U acting on the cochains C(Kλ(L)) equals phU ′ for some
completely continuous operator U ′ that preserves the unit ball of C(Kλ(L)).

Proof: The assertion about complete continuity follows in the same way as in the
proof of Lemma 4.2. The rest follows immediately from Formula 4.1 and Lemma
7.7.

Corollary 7.9. If h < f(λ), then with respect to U , the cochains C = C(Kλ(L))
have a slope ≤ h decomposition C1 ⊕ C2 with C1 = 0 and C2 = C. The same is
true where C is replaced by its unit ball C0.

Proof: The only thing that needs to be proved is that if P (T ) is any polynomial
with coefficients in L of slope ≤ h then P (U) acts invertibly on C and the inverse
is given by a convergent power series in U . We may assume P is linear, so P (U) =
(U − ρ) with ρ ∈ L of slope ≤ h.

Let h′ be a little bigger than h but still satisfying the condition of Lemma 7.8.
Then applying Lemma 7.8 to h′, we see that p−hU has operator norm strictly less
than 1 on C. Therefore it preserves the unit ball C0. It also follows that the
Fredholm determinant det(1− ρ−1UT ) of ρ−1U on C is congruent to 1 modulo the
maximal ideal in OL. Therefore it can’t have T = 1 as a root. By Proposition 11
and its proof in [Serre], 1 − ρ−1U is invertible on C and its inverse is given by a
convergent power series in U . So the same is true for (U − ρ).

Lemma 7.10. If h < f(λ), then for any monic polynomial P over Cp with slope
≤ h, there exists an inverse β to P (u) acting on the cohomology H = H(Kλ(L)).
Moreover, β is induced from a convergent power series in u acting on H(Kλ(L)0).

Proof: This is clear from Corollary 7.9, since H(Kλ(L)0) is a subquotient Z/B
of C0 = C(Kλ(L)0) where Z and B are closed.

The next theorem is the second step in the Control Theorem.

Theorem 7.11. If h < f(λ), then with respect to u, then the map φλ,ε in Lemma
7.2 induces an isomorphism H(Dλ)h → H(Vλ)h.

Proof: From the short exact sequence

0 → K0
λ → D0

λ → V 0
λ → 0

obtain the long exact sequence of cohomology:

Hi(K0
λ) → Hi(D0

λ) → Hi(V 0
λ ) → Hi+1(K0

λ)
18



Taking slope ≤ h parts, we obtain Hi(Dλ)h → Hi(Vλ)h. We claim this map is an
isomorphism. For suppose x ∈ Hi(Dλ)h. Then there is some monic polynomial Y of
slope ≤ h such that Y (u)x = 0. Now x comes from some element y in Hi(Kλ)h.
Multiplying everything by a high power of p we may assume that y is in Hi(K0

λ)
h.

Let β be the inverse to Y (u) on Hi(K0
λ)
h, given by a convergent power series f in

u. Then y = βY (u)y goes to f(u)Y (u)x = 0 in Hi(D0
λ)
h. In other words, x = 0.

So the map is injective.
To see that it is surjective, consider (without loss of generality) x ∈ Hi(V 0

λ )h and
let y denote its image in Hi+1(K0

λ)
h. Again, choose Y as above, so that Y (u)x = 0.

Then Y (u)y = 0 but Y (u) acts invertibly on Hi+1(K0
λ)
h. So y = 0. Thus x comes

from Hi(D0
λ). It is easy to see it must come from the slope ≤ h part.

We can combine this with Theorem 5.5, setting λ = κ0 to obtain our main
Control Theorem:

Theorem 7.12. Given κ0 ∈ K and h << κ0, αi > +1 for all i, there exists (after
possibly shrinking K) an exact sequence of H and A(K)-modules (with commuting
actions)

0 → I0H(DK(L))h → H(DK(L))h → H(Vκ0(L))h

where the first nontrivial map is inclusion and the second is induced by π0,n com-
posed with φλ,ε.

Remark: Since H(DK(L))h is a finitely generated module over the noetherian
Banach ring A(K)(L), it follows a posteriori from Proposition 3, p.164 of [BGR]
that it has a complete A(K)(L)-module norm, and that all such are equivalent.

Section 8: Lifting cuspidal classes

We ought to show that there are some interesting nontrivial classes in the coho-
mology of DK . We shall do this in this section. It seems to be difficult to show that
there are families of dimension greater than 0 when the ambient group is GL(n)
for n ≥ 3. We will leave that for a subsequent paper.

Assume n ≥ 3, and set m = n2/4+n/2−1 if n is even and m = (n−1)2/4+n−1
if n is odd. Then m is the highest dimension in which cuspidal cohomology can
exist for a congruence subgroup of GL(n,Z). Let λ be a highest weight and α ∈
Hm(Vλ) an H-eigenvector (as always we suppress the group Γν from the notation
for cohomology.)

We assume that α is “strongly quasi-cuspidal” mod p. By the term in quotation
marks we mean that if the reduction mod p of the package of H-eigenvalues occur-
ring on α also occurs on β ∈ Hi(Vλ′) for any i and any highest weight λ′, then
β must be a cuspidal cohomology class, i.e. coming from a cuspidal automorphic
form.

For example, heuristically speaking, think of the p-adic Galois representation
that is conjectured to be attached to α. If it is irreducible mod p then it couldn’t
be attached to a cohomology class that comes from the Borel-Serre boundary or a
discrete, non-cuspidal automorphic representation, because they are Eisensteinian,
and would yield reducible Galois representations. So such an α would be “strongly
quasi-cuspidal”. When n = 3 it is not hard to show, using the last section of [AS
Crelle’s] that α is“strongly quasi-cuspidal” mod p if any of its Hecke polynomials
is irreducible mod p. This doesn’t depend on any conjectures.
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If Vλ′ restricted to SL(n) is not selfdual, it is a theorem of Borel and Wallach
that Hi

cusp(Vλ′) = 0 for all i. In such a case β would be forced to be 0.
For any Hecke module, let the subscript φ denote the sum of all the generalized

H-eigenspaces whose eigenvalues are strongly quasi-cuspidal mod p.

Theorem 8.1. Given λ, andm(n) as defined above, let α ∈ Hm(n)(Vλ) be “strongly
quasi-cuspidal” and an H-eigenvector of slope h < f(λ). Then, possibly after
shrinking K, α is in the image of the last map in Theorem 7.12.

Proof: Set i = m(n). We use the notation of section 3, where we set κ0 = λ.
In particular, we choose coordinates βj on K centered at λ as in section 3, and for
m < l we have the exact sequence of Theorem 3.3:

0 → (βm+1, . . . , βl)Dl → Dl → Dm → 0.

We obtain the long exact cohomology sequence

0 → Hi((βm+1, . . . , βl)Dl(L)) → Hi(Dl(L)) → Hi(Dm(L)) → Hi+1((βm+1, . . . , βl)Dl(L)).

We will prove by induction on l − m ≥ 1 that any α ∈ Hi(Dm(L))hφ lifts to
Hi(Dl(L)).

Lemma 8.2. Hi+1(Dl(L))hφ = 0.

Proof: Taking the φ-eigenspaces in Theorem 7.12 gives us the exact sequences,
for any κ ∈ Kl(L)

0 → IκH
i+1(Dl(L))hphi→ Hi+1(Dl(L))hphi→ Hi+1(Vκ(L))(h)phi.

Since i + 1 is outside the cuspidal range, Hi+1(Vκ(L))hphi = 0 for all κ. Let
La denote an algebraic closure of L. Then if we set M to be the finitely gener-
ated A(Kl)(La)-module Hi+1(Dl(La))hphi, we have that M ⊂ ∩IκHi+1(Dl(La))hphi
where the intersection is taken over all κ ∈ Kl(La). The conclusion now follows by
Nakayama’s lemma: M is a module with empty support (cf. Corollary 7 page 376
of BGR.)

Lemma 8.3. Hi+1(βlDl(L))(h)φ = 0.

Proof: By Corollary 3.5, multiplication by βl defines an isomorphism ofA(Kl)(L)[Γ]-
modules Dl(L) � βlDl(L). So this lemma follows immediately from the preceding
one.

Now suppose l−m = 1. Then αg goes to 0 in Hi+1(βlDl(L))(h)φ = 0 and hence
lifts to Hi(Dl(L))hφ.

Finally we do the induction step. If l −m ≥ 2, use the induction on the long
exact sequences stemming from the exact sequences

0 → βm+1Dm+1 → Dm+1 → Dm → 0

and
0 → (βm+1, . . . , βl)Dl → Dl → Dm+1 → 0

to lift α first to Hi(Dm+1(L))hφ and then to Hi(Dl(L))hφ.
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