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§0. The Gauss-Manin Connection.

Let p > 2 be a prime and N ≥ 4. The p-adic modular curve X1(Np) will be denoted
X. We let X = W0 ∪W∞ denote the usual decomposition of X as the union of two wide
open sets. Hence Wi (i = 0 or ∞) is a wide open neighborhood of the ordinary component
Zi containing the cusp i (= 0 or ∞) and the intersection W = W∞ ∩W0 is the union
the supersingular annuli. We have Z∞ := W∞ \ W and Z0 := W0 \ W . Let X(v) be
the largest connected wide open neighborhood of Z∞ on which the canonical subgroup
is defined. Let π : E −→ X denote the universal generalized elliptic curve over X and
let H := H1

DR(E/X) denote the De Rham cohomology sheaf on X. Let ∇ : H −→ H
denote the Gauss-Manin connection on H. One knows from Katz that H has a natural
decomposition as

H = ω−1 ⊕ ω

where ω := π∗Ω1
E/X

(
log(cusps)

)
. Now choose two sections X,Y of H(X(v)) as follows.

Choose X ∈ ω(X(v)) ⊆ H(X(v)) corresponding to the weight one Eisenstein series E1,
and let Y be the generator of ω−1(X(v)) for which the cup product of X and Y is 1. It
follows then that the q-expansions of X and Y at the ∞ cusp are

X = E1(q)ωcan,

Y = E1(q)−1ηcan.

There is a matrix
(
α β
γ δ

)
of regular 1-forms on X(v) such that

∇
(
X
Y

)
=

(
α β
γ δ

) (
X
Y

)

Since 〈X,Y 〉 = 1 we have 〈∇X,Y 〉+ 〈X,∇Y 〉 = 0. This is equivalent to the assertion
α+ δ = 0. Hence the above matrix has trace zero. In particular, we may write ∇ in terms
of the Lie algebra sl(2) as

∇ = (αh + βx + γy)

where h :=
(

1 0
0 −1

)
, x =

(
0 1
0 0

)
, and y :=

(
0 0
1 0

)
.

§1. Representations of sl(2) and the Gauss-Manin connection.

Our basic observation is that the above description of ∇ gives us a natural way of
making vector bundles with connection on X out of representations of sl(2), as follows.

Consider a category R of representations of sl(2). I won’t give a precise definition of
what this category ought ot be right now, but I’ll need to give one at some point, since



I want to allow representations to be infinite dimensional, and to have coefficients which
are functions on the space X defined below. The simplest thing to do would be to require
the objects to be Banach modules, but I think this may be too restrictive.

Also consider a category C of quasi-coherent O-modules with connection on Z†
∞.

Again, I should be more precise, but I’m not ready to commit to a particular definition of
what an object in this category should be. For now, let me just say that I want to include
O†-modules of infinite rank. For example, we could fix a radius v of overconvergence and
then consider orthonormalizable O(X(v))-Banach modules. This is a good model to start
with, but again, I think it is too restrictive.

In the last section we saw how the choice of a basis for H over Z†
∞ gives rise to an

element
∇ ∈ sl(2)⊗O†

Now we make the simple observation that ∇ gives rise to a functor from R to C in the
obvious way. Namely, if V is an object of R then

∇ : V ⊗̂O† −→ V ⊗̂Ω†

v ⊗ 1 �−→ h(v)⊗ α + x(v)⊗ β + y(v)⊗ γ

defines an object of C.
I have to add another word of caution. In practice, I will often want to take for V the

dual of a Banach space. In that case, I will want the above ⊗̂ product to be a completed
tensor with respect to the weak topology on V , not the strong (Banach space) topology.
The moral of the story is that it will be pretty clear what we want to do in examples, but
I’m having some trouble saying it at the right level of generality.

§2. Verma modules.

Let X := Hom(Z×
p ,C

×
p ). We view Z as embedded in X by n �→ (t �→ tn). The

building blocks of our Verma modules will be the formal symbols

X [κ1]Y κ2 , (κ1, κ2) ∈ X 2.

The notation is intended to suggest that we are taking something like the κ1-divided power
of X and the usual κ2-power of Y . More precisely, if k1 (resp. k2) is the weight of κ1 (resp.
κ2), then we want X [κ1] (resp. Y κ2) to behave like the k1-divided power of X (resp. the
k2-power of Y ) with respect to differential operators. Here k1, k2 are the weights of κ1, κ2

respectively. I prefer to keep the κi’s in the notation because it will be more natural later
on when we exponentiate to obtain an action of the group

Gn :=
{(

a b
c d

)
∈ GL(2,Zp)

∣∣∣∣ c ≡ 0 mod p
b ≡ 0 mod pn

}

for some sufficiently large n.



For κ ∈ X define Vκ, V−
κ , and Dκ by

Vκ :=

{ ∞∑
n=0

λnX
[κ−n]Y n

∣∣∣∣ λn ∈ Cp, lim
n→∞

|n!λn| = 0

}
,

V−
κ :=

{ ∞∑
n=1

λnX
[κ+n]Y [−n]

∣∣∣∣ λn ∈ Cp, |(n− 1)!λn| = O(1)

}
,

Dκ :=

{ ∞∑
n=0

λnX
nY κ−n

∣∣∣∣ λn ∈ Cp, |n!λn| = O(1)

}
,

where we let sl(2) act by

x := Y
∂

∂X

y := X
∂

∂Y

h := X
∂

∂X
− Y

∂

∂Y
.

More generally, if S ⊆ X is a rigid subspace of X we may define VS , V−
S , and DS similarly,

by allowing the coefficients λn to be rigid functions on S satisfying the stated conditions
pointwise on S. (Here again, I’m not sure what the “right” condition should be).

If κ ∈ X is an arithmetic character of weight k ≥ 0 then we may also define

Vκ := Cp[X,Y ]k,

the finite dimensional space of homogeneous polynomials of degree k, with the action of
sl(2) induced by the above formulas for x, y, h.

Proposition. If κ ∈ X is an arithmetic character of weight k ≥ 0, then there is a natural
exact sequence

0 −→ Vκ −→ Dκ −→ V−
κ −→ 0,

where the map Vκ −→ Dκ is defined in the obvious way, and the map Dκ −→ V−
κ is

defined termwise by

XnY κ−n �−→




(−1)n−k−1n!
(n−k−1)! ·X [κ+n−k]Y [k−n] if n > k;

0 otherwise.

Proof. The proof is a straightforward calculation (assuming I’ve stated this correctly).

Remark. It is important to notice that the map Dκ −→ V−
κ is defined only at arithmetic

points κ and is not interpolizable on any affinoid subdomain S ⊆ X by a map DS −→ V−
S .

§3. Quasi-coherent O†-modules and the Gauss-Manin connection.



Now we apply the functor of §1 to the sl(2)-modules described in §2 to obtain O†-
modules Vκ, V−

κ , Dκ on Z†
∞ corresponding to the sl(2)-modules Vκ, V−

κ , Dκ respectively.
Here again, I haven’t written down a precise definition of these things. Presumeably, κ
should encode both the weight and the nebentype. To keep things simple for now I will
take κ in the identity component of X and close enough to the trivial character so that
the nebentype is trivial. Eventually, we will have to change point of view and replace Xκ

(which corresponds to the family Eκ
1 , whatever that means) by the family Eκ, κ ∈ X .

If κ is arithmetic, we also let Hκ be the coherent O†-module associated to Vκ. This
is the sheaf you have been considering in your papers.

We are interested in the long exact cohomology sequence associated to the short exact
sequence in the proposition of the last section.

Theorem. Let κ be an arithmetic character in X and let M†
κ denote the space of over-

convergent modular forms of weight κ. Then we have natural isomorphisms

ν :M†
−κ

∼−→ H0(Z†
∞,Dκ)

µ :M†
2+κ

∼−→ H0(Z†
∞,V−

κ )

Moreover, the cohomology sequence attached to the short exact sequence of the last propo-
sition corresponds to an exact sequence

0 −→ H0(Z†
∞,Hκ) −→M†

−κ
θk+1

−→ M†
2+κ

ω−→ H1(Z†
∞,Hκ) −→ · · ·

where θ is the usual θ-operator and ω is the composition of Kodaira-Spencer and the stan-
dard map (Hκ ⊗ Ω1)(Z†

∞) −→ H1(Z†
∞,Hκ)

Proof Sketch: The existence of the isomorphism ν is a consequence of transversality
of ∇, exactly as in your papers. (The module Vκ is filtered (not as sl(2)-module, just
as O-module) and ∇ defines a linear isoomorphism from Filr/F ilr+1 to Filr−1/F ilr for
every r > −k.) A similar argument proves the existence of µ. The exact sequence is an
easy consequence of the definitions of ν and µ.

§4. Frobenius Structure.

Let ϕ be the canonical lifting of Frobenius to H and let F : ϕ∗H −→ H be the
corresponding horizontal isomorphism. Then (H,∇, ϕ, F ) is an overconvergent F -crystal
on Z∞. Then one can also define a Frobenius structure on (Dκ,∇) for any κ (not necessarily
arithmetic. We just need to define a horizontal isomorphism

F : ϕ∗Dκ −→ Dκ.

For this, we let e be the overconvergent function defined by its q-expansion

e(q) = E1(qp)/E1(q).



Then, according to Katz (page Ka-109, SLN 350), we have

F (ϕ∗X) = peX

F (ϕ∗Y ) = GeX + e−1Y

where G is the overconvergent weight two modular form whose q-expansion is given by
G(q) = (pϕ(P ) − P )/12 (so here we may need to assume p > 3). So, for arbitrary κ we
define

F (ϕ∗(XrY κ−r)) = prerXr(GeX + e−1Y )κ−r

= prerXr
∞∑

m=0

em−2κ

(
m∑

n=0

pnλn

(
k − n
m− n

)
Gm−n

)
XmY κ−m

Moreover, if S is a rigid subspace of X contained in some sufficiently small neighborhood
of the origin, then this frobenius is analytic in κ ∈ S. Thus we also obtain a Frobenius on
the family DS of Verma modules:

F : ϕ∗DS −→ DS .

If κ is arithmetic, we can also define a Frobenius structure on Vκ and on V−
κ . However,

it should be emphasized that it is not possible to define a Frobenius structure on Vκ nor on
V−

κ unless k ∈ Z. In particular we do not obtain a family of Frobenii on the Vκ. However,
there does exist a “Verschiebung”-structure on these families.

Proposition. For any arithmetic point κ ∈ X the exact sequence of the last proposition
commutes with Frobenius.



§1. Some BIG Verma modules.

Let’s start by defining the biggest Verma modules one can imagine. Let X :=
Hom(Z×

p ,C
×
p ). We view Z as embedded in X by n �→ (t �→ tn). The building blocks

of our Verma modules will be the formal symbols

X [κ1]Y κ2 , (κ1, κ2) ∈ X 2.

The notation is intended to suggest that we are taking something like the κ1-divided power
of X and the usual κ2-power of Y . More precisely, if k1 (resp. k2) is the weight of κ1 (resp.
κ2), then we want X [κ1] (resp. Y κ2) to behave like the k1-divided power of X (resp. the
k2-power of Y ) with respect to differential operators. Here k1, k2 are the weights of κ1, κ2

respectively. I prefer to keep the κi’s in the notation because it will be more natural later
on when we exponentiate to obtain an action of the group

Gn :=
{(

a b
c d

)
∈ GL(2,Zp)

∣∣∣∣ c ≡ 0 mod p
b ≡ 0 mod pn

}

for some sufficiently large n.
For (κ1, κ2) ∈ X × X define

Vκ1,κ2 :=

{ ∑
n∈Z

λnX
[κ1−n]Y κ2+n

∣∣∣∣ λn ∈ Cp, |λ−n/n!| = O(1), |λn| = o(1) as n→∞
}
.

We endow Vκ1,κ2 with an action of the Lie algebra sl(2) (or even gl(2)) defined term by
term by the formulas

x(X [κ1]Y κ2) = (k1 + 1)k2X
[κ1+1]Y κ2−1;

y(X [κ1]Y κ2) = X [κ1−1]Y κ2+1;

h(X [κ1]Y κ2) = (k1 − k2)X [κ1]Y κ2

for any (κ1, κ2) ∈ X × X . (For z =
(

1 0
0 1

)
∈ gl(2) we define z(X [κ1]Y κ2) = (k1 +

k2)X [κ1]Y κ2 .)
More generally, if S ⊆ X×X is an affinoid subspace (note: S need not be a subdomain.

It could be a point, or a disk × a point, or a disk × a disk), then we define

VS :=

{ ∑
n∈Z

λn(κ1, κ2)X [κ1−n]Y κ2+n

∣∣∣∣ λn ∈ A(S), ‖λn‖S = O(1), lim
n→∞

‖λn‖S = 0

}
.

If S ⊆ X ×X is an arbitrary rigid subspace, we define VS in the obvious way (as an inverse
limit over affinoid subdomains of S). In any case, the above formulas define an action of
sl(2) (or gl(2)) on VS .



Examples: Here are three important examples. Fix n ≥ 0 and let γ =
(
a b
c d

)
∈ Gn.

1. Let S = X × {0}. For κ ∈ X let

(aX + cY )[κ] :=
∞∑

n=0

aκ−ncn

n!
X [κ−n]Y n ∈ V(κ,0).

Letting κ range over X we may view (aX + cY )[κ] as an element of VX×{0}.

2. Let S = {0} × X [−n]. (Remark: X [−n] := {κ ∈ X | ordp(k) ≥ −n }.) For κ ∈ X [−n]
let

(bX + dY )κ :=
∞∑

m=0

k(k − 1) · · · (k −m + 1)bmdκ−mX [m]Y κ−m ∈ V(0,κ).

Letting κ range over X we may view (bX + dY )κ as an element of V{0}×X [−n].

3. Multiplying the above two expressions together formally, we get

(aX + cY )[κ1](bX + dY )κ2 =
∞∑

N=−∞
µN (κ1, κ2)X [κ1−N ]Y κ2+N ∈ Vκ1,κ2

where

µN (κ1, κ2) :=
∞∑

m=0

(
k2

m

) (
k1 −N

m

)
m!

(N + m)!
aκ1−N−mdκ2−mcN+mbm,

which clearly converges to a rigid function on X × X . Hence, letting (κ1, κ2) range over
X × X , we regard (aX + cY )[κ1](bX + dY )κ2 as an element of VX×X .

For arbitrary ν =
∑

n∈Z νn(κ1, κ2)X [κ1−n]Y κ2+n ∈ VX×X and γ ∈ G0 as above we define

γ(ν) :=
∑
n∈Z

νn(κ1, κ2)(aX + cY )[κ1−n](bX + dY )κ2+n ∈ VX×X .

This defines an action of G0 on VX×X . Moreover, if S ⊆ X × X is a rigid subspace, then
these formulas also define an action of G0 on the space VS .

Finally, we observe that the above action of Gn can be differentiated to obtain an action
of the Lie algebra sl(2) (or even gl(2)) on VS for any rigid space S ⊂ X ×X . In particular
we have

x(X [κ1]Y κ2) = (k1 + 1)k2X
[κ1+1]Y κ2−1;

y(X [κ1]Y κ2) = X [κ1−1]Y κ2+1;

h(X [κ1]Y κ2) = (k1 − k2)X [κ1]Y κ2 .

§1. Analytic families



Let S be an arbitrary subset of Zp × Zp satisfying the relation

(a, b) ∈ S ⇐⇒ (a + 1, b− 1) ∈ S.

Let

Vnv
S :=

{
f : W∞ × S −→ Cp

∣∣∣∣ f(z, a, b) is rigid analytic in the first variable
}
.

We define an action of the Lie algebra sl(2) on Vnv
S by defining

(xf)(z, a, b) := a · f(z, a− 1, b + 1)
(yf)(z, a, b) := b · f(z, a + 1, b− 1)
(hf)(z, a, b) := (a− b) · f(z, a, b)

A straightforward calculation shows that this does indeed define an action of sl(2).
Now define

∇ : Vnv
S −→ Vnv

S ⊗ Ω1(W∞)
f �−→ (αhf + βxf + γyf)⊗ dz

Now suppose S is also an analytic subspace of Z2
p. Then we define the subspace

VS ⊆ Vnv
S by

VS :=
{
f : W∞ × S −→ Cp

∣∣∣∣ f(z, a, b) is rigid analytic on W∞ × S

}
.

It is clear from the above formulas that VS is preserved by the action of sl(2) and
also by the action of ∇. Hence we obtain a connection

∇ : VS −→ VS ⊗ Ω1(W∞).

Proposition. Suppose k is a nonnegative integer and that (k, 0) ∈ S. Then the map

σk : VS −→ Symmk(H)

f �−→
k∑

r=0

f(z, k − r, r) · Xk−r

(k − r)!
· Y

r

r!

commutes with ∇, i.e. is horizontal.
Proof: The proof is a straightforward calculation. For the sake of completeness, we include
the calculation here. First of all, we have



σk(∇f) =
k∑

r=0

(∇f)(z, k − r, r)X [k−r]Y [r]

=α(z)
k∑

r=0

(k − 2r)f(z, k − r, r)X [k−r]Y [r] ⊗ dz+

β(z)
k∑

r=0

(k − r)f(z, k − r − 1, r + 1)X [k−r]Y [r] ⊗ dz+

γ(z)
k∑

r=0

rf(z, k − r + 1, r − 1)X [k−r]Y [r] ⊗ dz.

On the other hand, we have

∇(σk(f)) =
k∑

r=0

f(z, k − r, r) · ∇(X [k−r]Y [r])

=f(z, k, 0)∇(X [k]) +

(
k−1∑
r=1

f(z, k − r, r)∇(X [k−r]Y [r])

)
+ f(z, 0, k)∇(Y [k])

=f(z, k, 0) · (kα(z)X [k] + γ(z)X [k−1]Y [1])⊗ dz+

α(z)
k−1∑
r=1

(k − 2r)f(z, k − r, r) ·X [k−r]Y [r] ⊗ dz+

β(z)
k−1∑
r=1

(k − r + 1)f(z, k − r, r) ·X [k−r+1]Y [r−1] ⊗ dz+

γ(z)
k−1∑
r=1

(r + 1)f(z, k − r, r) ·X [k−r−1]Y [r+1] ⊗ dz+

f(z, 0, k)
(
−kα(z)Y [k] + β(z)X [1]Y [k−1]

)
⊗ dz

=α(z)
k∑

r=0

(k − 2r)f(z, k − r, r) ·X [k−r]Y [r] ⊗ dz+

β(z)
k∑

r=0

(k − r)f(z, k − r − 1, r + 1) ·X [k−r]Y [r] ⊗ dz+

γ(z)
k∑

r=0

rf(z, k − r + 1, r − 1) ·X [k−r]Y [r] ⊗ dz.

Comparing this with the above expression for σk(∇f) we see that σk(∇f) = ∇(σk(f)) and
the proposition is proved.



Remark. In light of this proposition, we view ∇ : VS −→ VS ⊗ Ω1(W∞) as an analytic
family of differential operators with the property that ∇ specializes to the classical Gauss-
Manin connection at integral weights k ≥ 0.


