
Distributions and Log-Differentials on Wide Open Subspaces.

§1. Distributions.

Let V be a two dimensional Qp-vector space and let P := PV be the projective line
associated to V . Now choose, once and for all, a coordinate system on V , i.e. identify V
with Q2

p, whose elements we will write as row vectors (x, y). For any p-adic field K we use
these coordinates to make the following identifications:

P(K) = P1(K) = K ∪ {∞}
(
via [x, y] �→ z :=

y

x

)
;

AutQp(V ) = GL2(Qp);
AutQp(P) = PGL2(Qp).

The actions of the groups GL2(Qp) and PGL2(Qp) are given by matrix multiplication on
the right. The coordinate system also also endows V and P with Zp-structures. In partic-
ular, we may define the groups GL2(Zp), PGL2(Zp) of automomorphisms that preserve
the integral structure. We also have a reduction map P(Qp) −→ P(Fp) = Fp ∪{∞}. The
group PGL2(Zp) acts naturally on P(Fp). The standard Iwahori subgroup is the subgroup
I ⊆ PGL2(Zp) of elements that stabilize the point ∞ ∈ P(Fp).

For each point s ∈ P(Qp) we fix the following choice of a uniformizer at s:

ws(z) :=



z − s if s ∈ Zp;

1
z − 1

s if s �∈ Zp.

For r ∈ |C×
p | and s ∈ P1(Cp) we define the affinoid disk of radius r about s to be

B[s, r] :=
{
z ∈ P1(Cp)

∣∣∣∣ |ws(z)| ≤ r

}
.

Note that in fact, B[s, r] is a closed disk centered at s in the usual sense, but if s �∈ Zp

then r is not what one usually calls the radius of this disk.
More generally, if S ⊆ P1(Qp) is a non-empty compact subset, then we define

B[S, r] :=
⋃
s∈S

B[s, r].

Because of our assumption that S is compact, the above union is actually a finite union
of disjoint closed disks. It is possible that B[S, r] = P(Cp), but if B[S, r] �= P(Cp), then
B[S, r] is the set of Cp-points of a Qp-affinoid variety. In this case, we say r is an admissible
radius for S. One checks easily that if r < 1 then r is admissible for every S.

Let S be a non-empty compact subset of P(Qp). Then for each r ∈ |C×
p | with r

admissible for S we let A[S, r] denote the Qp-Banach algebra of Qp-affinoid functions on
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B[S, r]. For admissible r1, r2 with r1 > r2, the restriction map A[S, r1] −→ A[S, r2] is
completely continuous, injective, and has dense image. We define

A(S) := lim−→
r>0

A[S, r] and A†(S, r0) := lim−→
r>r0

A[S, r]

where r0 is any admissible radius for S. (It should be pointed out that the set of all
admissible radii for S does not have a largest element, hence the direct limit defining
A†(S, r0) is not vaccuous.) We endow each of these spaces with the inductive limit topology.
Then A(S) is naturally identified with the space of locally analytic Qp-valued functions on
S, while A†(S, r0) is identified with the space of Qp-overconvergent functions on B[S, r0].
Note that there are natural continuous inclusions

A†(S, r0) ↪→ A[S, r0] ↪→ A(S).

Moreover, the image of each of these maps is dense in its target space.
The distribution modules are defined as the dual spaces to the topological rings defined

above. As before, we let S ⊆ P(Cp) be a non-empty compact subset and let r0 ∈ |C×
p | be

admissible for S.

Definition. Define D[S, r0] to be the space of continuous Qp-linear functionals on A[S, r0].
We also define

D(S) := lim←−
r>0

D[S, r] and D†(S, r0) := lim←−
r>r0

D[S, r]

for an admissible radius r0 for S. Each of these is endowed with the projective limit
topology.

Equivalently, the spaces D(S), D[S, r0], D†(S, r0) are the spaces of continuous linear
functionals on the topological vector spaces A(S), A[S, r0], A†(S, r0) respectively, and the
topology on each is the strong topology. By duality we have continuous linear injective
maps

D(S) ↪→ D[S, r0] ↪→ D†(S, r0).

If G ⊆ PGL2(Zp) is a subgroup that preserves the compact set S ⊆ P(Qp) then
G also preserves B[S, r] for all r < 1. On the other hand, if r0 > 0 is any admissible
radius for S such that G preserves B[S, r0] then G also acts naturally (and continuously)
on of the spaces A(S), A[S, r0], and A†(S, r0) and by duality on D(S), D[S, r0], and
D†(S, r0). All of the maps defined above commute with this action. More precisely, let

γ =
(
a b
c d

)
∈ GL2(Zp) be an element that preserves S. Then for f ∈ A(S) the function

γf ∈ A(S) is given by

(γf)(z) := f(zγ) = f

(
b+ dz

a+ cz

)
,
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and for µ ∈ D†(S), the distribution µ|γ ∈ D†(S) is given by the integration formula∫
S

f · dµ|γ =
∫

S

γf · dµ

for any f ∈ A†(S). These actions respect the filtrations A†(S) ⊆ A[S, r0] ⊆ A(S, r0), and
D(S) ⊆ D[S, r0] ⊆ D†(S, r0).

We will be interested in the special cases S = P(Qp), Zp, or x∞ (the congruence
class of ∞ ∈ P(Fp)). We note that P(Qp) is the disjoint union of Zp and x∞, that
PGL2(Zp) acts naturally (and continuously) on P(Qp), and that the Iwahori subgroup
I acts naturally on Zp and on x∞. Moreover, I preserves B[Zp, r0] for any r0 < p. To
emphasize the special cases of interest to us, we make the following definitions.

A := A(P(Qp)) D := D(P(Qp));
A† := A†(P(Qp), 1/p) D† := D†(P(Qp), 1/p);
A0 := A(Zp) D0 := D(Zp);
A†

0 := A(Zp, 1) D†
0 := D†(Zp, 1).

We have canonical isomorphisms

A† =
⊕

x∈P(Fp)

A†(x, 1/p) and D† =
⊕

x∈P(Fp)

D†(x, 1/p).

Moreover, we have injective continuous maps

A†
0 −→

⊕
bx∈P(Fp)

x�=x∞

A†(x, 1/p) ↪→ A†

where the first is defined by restriction and the second is given by extension by zero, which
is a strict inclusion. Extension by zero also gives us a continuous map A0 −→ A, so by
duality we obtain continuous maps

r : D† −→ D†
0 and r : D −→ D0

both of which will be called restriction to Zp. Summarizing, we have a commutative
diagram

D ↪→ D†

r
� r

�
D0 ↪→ D†

0

in which the top horizontal arrow is a morphism of topological PGL2(Zp)-modules, and
all other arrows are morphisms of topological I-modules.

Finally, we remark that if wp ∈ GL2(Qp) is any element of determinant p, whose
entries are in Zp, and whose reduction modulo p is

wp ≡
(

0 ∗
0 0

)
(mod p),
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then Zp · wp = x∞ and x∞ · wp = Zp. Such an element will be called an involution of I,
since it normalizes I. For each r ∈ |C×

p | with r < 1, we have B[Zp, r] · wp = B[x∞, r/p].
Thus pullback by wp induces continuous linear functions

A† −→ A†(x∞, 1/p)
wp−→ A†

0

and, by duality, also a continuous map

D†
0

wp−→ D†(x∞, 1/p) −→ D.

§2. Differentials on wide open subspaces of P(Cp).

We need a good method of representing overconvergent distributions. Whatever
method we use should be well suited for calculating the action of PGL2(Zp) on it. Here’s
a method based on differential forms on wide open subspaces of P(Cp) that I think might
actually work fairly well. For an easy to read introduction to affinoids in P(Cp), I recom-
mend a quick reading of the first chapter or so of [1].

Let S ⊆ P(Qp) be a compact set and let r0 ∈ |C×
p |. For simplicity, I will assume r0

is an integral power of p. We define

W (S, r0) := P1(Cp) \B[S, r0].

The space W (S, r0) is the standard example of a wide open subspace of P1(Cp).
LetW = W (S, r0). The ring of Qp-rigid analytic functionsA(W ) onW is a topological

Qp-algebra and the space Ω(W ) of Kähler differentials on W is an A(W )-module. Recall
that for each point s ∈ P(Qp) we have fixed the following choice of a uniformizer at s:

ws(z) :=



z − s if s ∈ Zp;

1
z − 1

s if s ∈ x∞.

Note that if s ∈ S then w−1
s ∈ A(W ) and consequently w−2

s dws ∈ Ω(W ).

Proposition. Suppose B[S, r] is the union B[S, r] :=
⋃

i∈I B[si, r] of disojoint disks
centered at si, i ∈ I. Then we have the following descriptions of A(W ), Ω(W ):
(1) Every function f ∈ A(W ) has a unique representation in the form

f = a+
∑
i∈I

∞∑
n=1

an(i)w−n
si
.

(2) Every ω ∈ Ω(W ) has a unique representation in the form

∑
i∈I

( ∞∑
n=0

an(i)w−n
si

· dwsi

wsi

)
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where
∑
i∈I

a0(i) = 0.

(3) Moreover, an expression of the form (1) (resp. (2)) represents an element of A(W )
(resp. Ω(W )) if and only if for every real number t > r0 the coefficients satisfy

|an(i)| = o(tn) as n→ ∞.

Now fix a subgroup G ⊆ PGL2(Zp) that preserves W . Then G acts on A(W ) and
on Ω(W ). Explicitly, the action on A(W ) is described by the following formulas: if γ =(
a b
c d

)
∈ G and f ∈ A(W ) then for all z ∈W we have

(γf)(z) = f

(
b+ dz

a+ cz

)
.

I prefer to write the action of G on Ω(W ) as a right action. If ω ∈ Ω(W ) is a differential,
and γ ∈ G, I will therefore write

ω|γ := γ−1(ω).

To describe the action of G on expressions for f or ω of the form given in the last
proposition, we only need to describe the action on the uniformizers and then plug these
back into the expression for f . If s ∈ S and γ ∈ G, then there is a unique power series
Pγ,s(T ) such that

γ(wsγ) = Pγ,s(ws).

Indeed, γwsγ is a rational function that is holomorphic on W that vanishes at s and there-
fore has an expansion of the desired type. It would be nice to have some good computer
programs that compute this action efficiently to a fairly high order of approximation. I
have never used Magma, but from what I have heard, it may be perfect for this type of
calculation.

§3. Log-Differentials on Wide Open Subspaces.

In fact, for the application to distributions, we need a slightly larger space, Ωlog(W ),
which contains Ω(W ) as a subspace of codimension one. Let P̃ denote affine space of V
with the origin deleted. Thus, for an arbitrary field K, we have P̃(K) = VK \ {0}. We
have a natural morphism π : P̃ −→ P, whose fibers are copies of the multiplicative group.
Let W̃ be the full preimage in P̃(Cp) under π of W . Thus the fibers of the natural map

π : W̃ −→W

are copies of C×
p . The space W̃ has a natural structure as Qp-rigid analytic space. The

action of Q×
p on the fibers of π induces an action of Q×

p on A(W ) and on Ω(W̃ ).
Define Ω0(W ) ⊆ Ω(W̃ ) to be the subspace on which Q×

p acts trivially. Notice that
Ω0(W ) contains Ω(W ) but this inclusion is far from an equality. Indeed, if L1, L2 are
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linearly independent Qp-linear forms on V , whose zeroes are in S, then every element
ω ∈ Ω0(W ) can be expressed uniquely in the form

ω = f(z)
dL1

L1
+ g(z)

dL2

L2

where f, g ∈ A(W ). We have ω ∈ Ω(W ) if and only if f + g = 0. We define

Ωlog(W ) :=
{
ω = f(z)

dL1

L1
+ g(z)

dL2

L2
∈ Ω0(W )

∣∣∣∣ f + g is a constant
}
.

Remark: It’s not hard to verify directly that Ωlog(W ) is a G-invariant subspace of Ω0(W ),
which contains Ω(W ) as a subspace of codimension one. But to emphasize the connection
with the logarithm, it’s interesting to consider the multiplicative group U(W̃ ) of functions
on W̃ defined by

U(W̃ ) :=
{
u ∈ A(W̃ )×

∣∣∣∣ ∀(x, y) ∈ P̃, the function t �→ u(tx, ty)
u(x, y)

is a character of Q×
p

}
.

If u ∈ U(W̃ ) then log(u) is a well-defined locally analytic function on W̃ , which satisfies
the “homogeneity” relation

log(u(tx, ty)) = k log(t) + log(u(x, y))

for some integer k, for all (x, y) ∈ W̃ and all t ∈ C×
p . We also have an exact sequence

0 −→ Q×
p −→ U(W̃ )

d log−→ Ωlog(W )

where the image of d spans a dense Qp-subspace of Ωlog(W ).

For each s ∈ S we define

δs :=
dL

L
∈ Ωlog(W )

where L is any non-zero linear form that vanishes at s. For example

δ∞ =
dX

X
and δ0 =

dY

Y
.

The set of all δs where s ranges over S is invariant under the action of G. Indeed, δsγ = δsγ .
Moreover, these elements are all the same modulo the space of holomorphic forms: if
s, t ∈ S are given in our coordinate system by s = [a, b], t = [c, d] then

δt − δs = det
(
a b
c d

)
· dz

(az − b)(cz − d)
∈ Ω(W ).
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We therefore have a natural exact sequence of G-modules

0 −→ Ω(W ) −→ Ωlog(W )
ρ−→ Qp −→ 0

where the first map is the canonical inclusion and ρ is the “residue” map, which vanishes
on Ω(W ) and takes the value 1 on δs for every s ∈ S.

Here’s a little proposition that exhibits the elements of Ωlog(W ) in a form convenient
for computations. As before we write W = W (S, r0) and choose centers for the closed
disks in the complement of W : say B[S, r0] :=

⋃
i∈I B[si, r0].

Proposition. Every ω ∈ Ωlog(W ) has a unique representation in the form

ω =
∑
i∈I

(
a0(i)δsi +

∞∑
n=1

an(i)w−n
si

dwsi

wsi

)

where for every real number t > r0 the coefficients satisfy |an(i)| = o(tn) as n→ ∞. In
particular, the restriction maps Ωlog(W (si, r0)) −→ Ωlog(W ) (i ∈ I) induce a canonical
isomorphism ⊕

i∈I

Ωlog(W (si, r0))
∼=−→ Ωlog(W ).

If r1 < r2 in |C×
p | then W (S, r2) ⊆W (S, r1) and we have a continuous map

Ωlog(W (S, r1)) −→ Ωlog(W (S, r2)).

For any non-empty compact subset of P(Qp), let’s define

Hp(S) := P(Cp) \ S.

When S = P(Qp) we simply write Hp := Hp(P(Qp)), which is the standard notation for
the p-adic upper half plane. We define

Ωlog(Hp(S)) := lim←−
r>0

Ωlog(W (S, r)),

so that in particular we have

Ωlog(Hp) := lim←−
r>0

Ωlog(W (P(Qp), r)).

§4. Distributions and Log-Differentials on wide open subspaces.

As in the last section, we fix a non-empty compact subset S ⊆ P(Qp). We define a
Qp-linear map µ : Ωlog(W ) −→ D†(S, r) by the integration formula∫

S

f · dµω := ρ∂W (fω)
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for any f ∈ A†(S, r). The “residue” ρ∂W (fω) is defined in the obvious way as the sum of
the residues over the oriented annuli at the “ends” of W . In fact, µ induces an isomorphism
of topological vector spaces

µ : Ωlog(W (S, r))
∼=−→ D(S)

and passing to the limit as r → 0+, we also obtain an isomorphism

µ : Ωlog(Hp(S))
∼=−→ D(S).

These isomorphisms are simple extensions of a theorem of Vishik (see the appendix of [2])
and Teitelbaum [5]. Indeed, they proved (in different languages) that there is an exact
sequence

0 −→ Ω(Hp(S))
µ−→ D(S)

ρ−→ Qp −→ 0

where ρ is defined by

ρ(ν) :=
∫

S

1 · dν.

We just have to extend the map µ from Ω(Hp(S)) to Ωlog(Hp(S)). For a nice treatment
of the correspondence between differentials and distributions, also see [4].

It is not hard to see that these isomorphisms commute with the action of G: namely,

µω|γ = µω|γ

for every ω ∈ Ωlog(W ) and every γ ∈ G where G ⊆ PGL2(Zp) is any subgroup that
preserves S and W (S, r).

Remark. Let ω ∈ Ωlog(W ) be expressed as in the last proposition in the form:

ω =
∑
i∈I

(
a0(i)δsi +

∞∑
n=1

an(i)w−n
si

dwsi

wsi

)
.

For each i ∈ I, let Si = S ∩B[si, r]. Then the coefficients in the above expansion have the
following meaning in terms of the distribution µω: for each i ∈ I and each n ≥ 0 we have

ai(n) =
∫

Si

wn
si
· dµω.

In particular, we have

ρ(ω) =
∫

S

1 · dµω.

Thus ρ(ω) may be interpreted as the “total measure” of µω. It is perhaps also worth
noting that for each s ∈ S, the differential δs corresponds under the map µ to the Dirac
distribution supported at s, which is customarily denoted by the same symbol δsi .
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Henceforth, I will use the terms “distribution” and “log-differential” almost inter-
changeably.

§5. The difference equation µ|∆ = ν and the Kubota-Leopold p-adic L-function.

This is a side calculation that we need in order to lift classical modular symbols
to overconvergent ones. It is also a good test case for doublechecking our work with
differentials on wide open subspaces. I think it is also interesting in its own right because
of its unexpected connection to the Kubota-Leopoldt p-adic L-function.

Consider the difference operator ∆ :=
(

1 1
0 1

)
− I, which operates naturally on the

spaces D†(x∞, r) and D†(Zp, r) by µ �→ µ|∆.

Theorem. For each n ≥ 0 the following sequences are exact

0 −→ D†(Zp, p
−n) ∆−→D†(Zp, p

−n)
ρ−→ Qp −→ 0,

0 −→ Qp
·ω∞−→ D†(x∞, p

−1−n) ∆−→ D†(x∞, p
−1−n)

ρ−→ Qp −→ 0.

Proof Sketch: First of all, it is clear from the definition of ∆ that the image of ∆ is
contained in the kernel of ρ. Also, the kernel of ∆ on D†(Zp) must be zero since there are
no translation invariant analytic distributions on Zp. On x∞ the only translation invariant
distribution is δ∞. So the heart of the proof is to show that every distribution (on either
Zp or x∞) with total measure zero must be in the image of the difference operator. Rather
than writing down a complete proof of this, let me instead describe an algorithm which,
in either case, given ν ∈ ker(ρ) produces a µ ∈ D† such that ν = µ|∆.

Lemma. Let W be the wide open subspace W :=
{
z ∈ P(Cp)

∣∣ 1 < |z| < p
}
. For each

k ∈ Z we define ηk ∈ Ωlog(W ) by

ηk :=




∑∞
n=k

(
n
k

)
bn−k · z−n · dz

z if k �= 0

δ0 +
∑∞

n=1 bn · z−n · dz
z if k = 0.

where the coefficients bn are the Bernoulli numbers. Then for each integer k, ηk has an
analytic continuation to an element ηk ∈ Ωlog(Hp). Moreover, the following assertions
hold.
(1) ηk satisfies the difference equation

ηk|∆ =
k + 1
zk+1

· dz
z

;

(2) for each n ≥ 1, ηk satisfies the distribution law

ηk =
1

pn(k+1)
·

pn−1∑
a=0

ηk|βn(a)
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where βn(a) :=
(

1 a
0 pn

)
;

(3) if k < 0 then ηk extends to a meromorphic differential on P(Cp) with only one pole,
namely a pole of order 1 − k at ∞;

(4) If k ≥ 0 then ηk analytically continues to an element ηk ∈ Ωlog(Hp(Zp));
(5) If k > 0, then ηk ∈ Ω(Hp(Zp)), i.e. ηk is holomorphic.

Proof of the lemma: To prove ηk extends to a log-differential on Hp it suffices to prove
the much stronger assertions (3), (4), and (5).

If k < 0, then the sum defining ηk is a finite sum since
(
n
k

)
=

(
n

n− k

)
= 0 unless

n < 0. In fact, the sum simplifies to ηk = b−1−k(z+1)·dz where bm(z) is the mth Bernoulli
polynomial. Since b−1−k(z) is a polynomial of degree −1− k it has only one pole at ∞ of
order −1− k. Also dz has a pole of order 2 at ∞ and is holomorphic elsewhere. So ηk has
a pole of order 1 − k at ∞, as claimed. Assertion (1) is an immediate consequence of the
relation bm(z + 1) − bm(z) = mzm−1 for m ≥ 0. Assertion (2) follows from the standard
distribution relation satisfied by the Bernoulli polynomials.

Now suppose k ≥ 0. We see at once that ηk extends to an element

ηk ∈ Ωlog(W (Zp, 1)).

Then a straightforward computation with power series shows that ηk is the unique element
of Ωlog(W (Zp, 1)) satisfying the difference equation (1). Here are the details in the case
k = 0. First of all we notice that δ0 = δ∞ + dz/z. Hence we may write η0 = δ∞ +µ where

µ =
∞∑

n=0

bn · z−n · dz
z
.

Since δ∞|∆ = 0, it therefore suffices to prove

µ|∆ =
1
z
· dz
z
.

Here’s the calculation:

µ

∣∣∣∣
(

1 1
0 1

)
=

∞∑
n=0

bn · z−n · dz
z

∣∣∣∣
(

1 1
0 1

)

=
∞∑

n=0

bn · (z − 1)−n · dz

z − 1

=
∞∑

n=0

bn · z−1−n(1 − z−1)−1−n · dz.
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Now apply the binomial theorem to obtain

µ

∣∣∣∣
(

1 1
0 1

)
=

∞∑
n=0

bn · z−1−n ·
∞∑

r=0

(
−1 − n

r

)
(−1)rz−r · dz

=
∞∑

n=0

bn · z−1−n ·
∞∑

r=0

(
n+ r
r

)
z−r · dz

=
∞∑

r=0

∞∑
n=0

(
n+ r
r

)
bn · z−n−r · dz

z

=
∞∑

m=0

m∑
r=0

(
m
r

)
bm−r · z−m · dz

z
.

A standard identity for Bernoulli numbers asserts that for m > 0,

m∑
r=1

(
m
r

)
bm−r =

{ 1 if m = 1;

0 otherwise.

Combining this with the last identity we obtain

µ

∣∣∣∣
(

1 1
0 1

)
= µ+

1
z
· dz
z

and the claim is established.
To prove (2), we note that the right hand side of (2) lies in Ωlog(W (Zp, 1)). It therefore

suffices to show that the right hand side satisfies the difference equation (1). Here’s the
calculation

(
1

pn(k+1)

pn−1∑
a=0

ηk|βn(a)

) ∣∣∣∣ ∆ =
1

pn(k+1)
·

pn−1∑
a=0

ηk|(βn(a+ 1) − βn(a))

=
1

pn(k+1)
· ηk|(βn(pn) − βn(0))

=
1

pn(k+1)
· ηk|∆βn(0)

=
k + 1

(pnz)k+1
· dz
z

∣∣∣∣ βn(0)

=
k + 1
zk+1

· dz
z
.

To prove (4), we note that for each a, ηk|βn(a) is a log-differential on

W (Zp, 1) · βn(a) = W (a+ pnZp, p
−n)
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and therefore the right hand side of (2) extends to the intersection of these wide open
spaces, which is just W (Zp, p

−n). Hence, ηk ∈ Ωlog(W (Zp, p
−n)) for every n > 0. This

proves ηk continues analytically to all of Hp(Zp). This completes the proof of the lemma.

Proof of the Theorem (continued). First we suppose ν ∈ D†(Zp, p
−n) with ρ(ν) = 0.

Write

ν =
pn−1∑
j=0

νj

where each νj ∈ D†(xj , p
−n) = Ωlog(W (xj , p

−n)). Thus, for each j we may write

νj = a0(j)δj +
∞∑

m=1

am(j)w−m
j · dwj

wj
.

Now for each k ≥ 0, let ηk ∈ D be the kth Kubota-Leopoldt distribution described above.
For j = 0, 1, . . . , pn − 1 let s0(j) =

∑j
r=0 a0(r) and set

µxj
:= −s0(j)δj +

∞∑
m=1

am(j)
m

· ηm−1

∣∣∣∣
(

1 j
0 1

)
∈ D†(Zp, p

−n).

We then set

µ :=
p−1∑
j=0

µxj ∈ D†(Zp, p
−n).

This is the desired solution of the difference equation. To prove this, we have to show that
the series defining µ converge on W (Zp, p

−n). This is a consequence of the von Staudt–
Clausen Theorem (see [6]). I’ll come back to this later. To show that µ solves the difference
equation is a formal calculation.

Next we consider the case ν ∈ D†(x∞, p−1−n) with ρ(ν) = 0. Then

ν = a0(∞)δ∞ +
∞∑

m=1

am(∞)w−m
∞ · dw∞

w∞
.

In this case we define

µ :=
∞∑

n=1

am(∞)
m

· bm(z + 1) · dz ∈ D†(x∞, p
−1−n)

where bm(z) is the nth Bernoulli polynomial. This is the desired solution of the difference
equation, as one easily confirms.

To put this in perspective, the following result is of interest. The proof amounts to
using the above formulas for ηk to explicitly calculate the special values of Lp(µk, s) at
integers s ≤ 1 and compare with the values of Kubota-Leopoldt (see for example [6]).
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Proposition. Let k ≥ 0 and µk ∈ D0 be the distribution associated to ηk ∈ Ωlog(Hp(Zp)).
Let X (Cp) be the weight space:

X (Cp) := Homcont(Z×
p ,C

×
p )

and let Lp(µk, s) be the analytic function defined for s ∈ X (Cp) by

Lp(µk, s) :=
∫
Z×p

t1−s · dµk(t).

Then

Lp(µk, s) =
(

1 − wt(s)
k

)
(wt(s) + k − 1) · ζp(s+ k),

where ζp(s) is the Kubota-Leopoldt p-adic zeta function and wt(s) :=
dts

dt

∣∣∣∣
t=1

.

§6. Hecke Operators at p

Let Γ ⊆ SL2(Z) be a congruence subgroup of tame level and let Γ0 := Γ ∩ Γ0(p). We
define the Hecke operator

Up : H1
c (Γ,D†) −→ H1

c (Γ,D†)

to be the following composition:

H1
c (Γ,D†) r∗−→ H1

c (Γ0,D†
0)

wp−→ H1
c (Γ0,D†) Tr−→ H1

c (Γ,D†)

where these maps are explained as follows. The last map is the usual corestriction map
(or trace). The map r : D† −→ D†

0 is defined by the integration formula∫
P1(Qp)

f · dr(µ) :=
∫
Zp

f · dµ.

Let wp : D†
0 −→ D† be the map defined at the end of §1. We then define

wp : H1
c (Γ0,D†

0) −→ H1
c (Γ0,D†)

Φ �→ Φ|wp,

where (Φ|wp)(D) = Φ(wpD)|wp for all D ∈ ∆0. The operator Up : H1
c (Γ0,D†

0) −→
H1

c (Γ0,D†
0) is defined in the usual way in terms of double cosets. A straightforward calcu-

lation shows that the diagram

H1
c (Γ,D†)

Up−→ H1
c (Γ,D†)

r∗
� r∗

�
H1

c (Γ0,D†
0)

Up−→ H1
c (Γ0,D†

0)

is commutative.
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