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§0. Introduction.
In this paper, we define the module D̃(V ) of distributions with rational poles on a

finite dimensional rational vector space a V . This is an infinite dimensional vector space
over Q endowed with a natural action of the reductive group GV := Aut(V ). Indeed,
this action extends to a natural action of the adelic group GV (AQ). For each prime p,
we define we define the notion of p-adic continuity of elements of D̃(V ) and explain how
p-adically continuous distributions with rational poles give rise to p-adic L-functions.

In section 2, we construct a special element ξ ∈ D̃(Q), and explain its connection to
the Kubota-Leopoldt p-adic L-functions. The key feature of our construction is that ξ is a
global distribution, which is p-adically continuous for every prime p and therefore gives rise
to p-adic L-functions for every p. In other words, we obtain a global object that specializes
to the p-adic Kubota-Leopoldt p-adic L-functions.

In section 3, we extend the constructions of section 2 and construct a GL(n)-symbol
ψn for every n ≥ 1. When n ≥ 1, ψn is a GLn(Q)-invariant linear map from the (n − 1)-
dimensional cohomology of the Borel-Serre boundary of the symmetric space for GL(n) to
D̃(Qn). When n = 1, ψ1 is determined by its value on the fundamental class, and this value
is just the Kubota-Leopoldt distribution. When n = 2, we show that the coboundary of
ψ2 vanishes identically and therefore gives rise to a classical modular symbol over GL2(Q).

In section 4 (not yet included), we will explain how to associate p-adic L-functions to
ξ2 and explain how these can be viewed as p-adic L-functions attached to Eisenstein series
over the weight space. We will also use ξ2 to construct explicit overconvergent modular
symbols, as defined by R. Pollack and G. Stevens. These are modular symbols taking
values in the space of rigid analytic distributions on the p-adic upper half-plane.

§1. p-adic Distributions on Rational Vector Spaces.

Let V be a Q-vector space of finite dimension n. A lattice in V is a finitely generated
Z-submodule that spans V over Q. By an affine lattice, we mean a coset v + L where
v ∈ V and L is a lattice. A subset U is said to be uniform if there is a lattice L such that
v + L ⊆ U whenever v ∈ U . In this case we also say U is uniform with respect to L. We
endow V with the lattice topology, in which the collection of affine lattices forms a basis
of open sets. Thus every uniform set is open (but not conversely). A subset U ⊆ V will
be called bounded if U is contained in some lattice.
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§1.1: Locally polynomial and locally analytic distributions.
Recall that a function f : V −→ W , where W is an m-dimensional Q-vector space, is

called a polynomial function if for some, hence any, choice of linear isomorphisms V ∼= Qn,
W ∼= Qm, the induced map F : Qn −→ Qm is a polynomial function with rational
coefficients (i.e. each of the m coordinate functions of F is defined by a polynomial in n
variables with rational coefficients). More generally, for a subset U of V , we say a function
f : U −→ W is polynomial if f is the restriction to U of a polynomial function on V .

A function f : V −→ Q is said to be polynomial mod L, where L is a lattice in V ,
if the restriction of f to each L-coset is a polynomial function. In this case we define the
support of f to be the set supp(f) ⊆ V defined as the union of all L-cosets on which f is
not the zero polynomial. We note that this definition of supp(f) does not depend on the
choice of L. If U is an L-uniform subset of V , then we define

A(U : L) := {f : V −→ Q
∣∣ f is polynomial mod L and supp(f) ⊆ U }.

A function f : V −→ Q is said to be locally polynomial if f is polynomial mod L for some
lattice L. If U is a uniform subset of V then we define

A(U) := { f : V −→ Q
∣∣ f is locally polynomial and supp(f) ⊆ U }.

Finally, we define

A := { f : V −→ Q
∣∣ f is locally polynomial and supp(f) is bounded }.

Dually, we have the notion of locally polynomial distributions. For an arbitrary Q-
vector space W , let W ∗ := HomQ(W,Q) be the space of linear functionals on W . We
define the “distribution spaces”

D := A∗, D(U) := A(U)∗, and D(U : L) := A(U : L)∗

for any lattice L and any L-uniform set U . We will sometimes use the notation of “inte-
gration” and write ∫

U

f(v)dµ(v)

for the value of µ on the function cU ·f ∈ A(U) where f is any locally polynomial function,
U is a bounded uniform set, and cU is the characteristic function of U .

§1.2. Differential Operators.

For each x ∈ V , we let Dx be the derivative in the direction x acting on each of the
spaces A(U : L), A(U), and A. By duality we also let Dx act on D(U : L), D(U), and D.
Since the collection of operators Dx, x ∈ V , all commute with one another, the linear map

V −→ EndQ(D)
x �−→ Dx
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extends naturally to a Q-algebra homomorphism

Q[V ] −→ EndQ(D)
P �−→ DP

where Q[V ] is the symmetric algebra on V .

§1.3. Group actions.

We let G := Aut(V ) be the group of right automorphisms of V . For v ∈ V and γ ∈ G,
we let vγ denote the result of applying γ to v. By functoriality, this action induces a left
action of G on A and a right action of G on D. For any f ∈ A, µ ∈ D, and γ ∈ G we write
γf , respectively µ|γ, for the action of γ on f , respectively on µ. Thus, by definition, we
have the identities∫

f(v) · dµ|γ(v) =
∫

γf(v) · dµ(v) =
∫

f(vγ) · dµ(v).

We also note that G acts naturally on the right on Q[V ] and that the action of G on D
is semilinear with respect to the action of Q[V ]. Thus, for any P ∈ Q[V ], µ ∈ D and any
γ ∈ G we have the identity

(DP (µ))|γ = DP |γ(µ|γ).

§1.4. Distributions with rational poles.

Let S ⊆ Q[V ] be the multiplicative subset of Q[V ] generated by V and let Q[V ]S
denote the localization of Q[V ] with respect to S.

Definition. (Distributions with rational poles). We define

D̃ := D ⊗Q[V ] Q[V ]S .

We will refer to the elements of D̃ as distributions with rational poles.

Proposition. The canonical map D −→ D̃ is injective.

Proof. It suffices to show that for arbitrary x ∈ V , the differential operator Dx is injective
on D. But it is clear that the map Dx : A −→ A is surjective. Hence the dual map
Dx : D −→ D is injective. This completes the proof.

We will regard D̃ as a Q[V ]S-module. From the above proposition we see that D̃ is
generated by D as a Q[V ]S-module. Moreover, since S is preserved by G acting on Q[V ],
we see that the action of G on D extends to a Q[V ]S-semilinear action on D̃.

§1.5. Homogeneity.

Let χ : Q× −→ Q× be an arbitrary character. For each λ ∈ Q×, let zλ ∈ G denote
scalar multiplication by λ on V .
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Definition. We say a distribution µ ∈ D̃ is homogeneous of degree χ if χ(λ) · µ|zλ = µ
for all λ ∈ Q×. We define D̃χ by

D̃χ := {µ ∈ D̃
∣∣ µ is homogeneous of degree χ}.

§1.6. The Fourier transform.

Now let Symmk(V ) ⊆ Q[V ] be the space of homogeneous polynomials of degree k.
The map V −→ Symmk(V ) defined by v �→ vk is a polynomial function. Thus for any
bounded uniform set U we have a natural map Fk,U : D(U) −→ Symmk(V ) defined by

Fk,U (µ) :=
∫

U

vk · dµ(v).

Since
∏

k≥0 Symmk(V ) = Q[[V ]], we define a map

FU : D −→ Q[[V ]]

µ �−→
∞∑

k=0

Fk,U (µ)
k!

=:
∫

U

exp(v) · dµ(v).

Letting U vary, we obtain a map

F : D −→ D
(
V,Q[[V ]]

)
.

We will call F the Fourier transform.
We regard the space on the right of the last display as a Q[V ]-module via the action of

Q[V ] on Q[[V ]] given by multiplication of polynomials by power series. We also let G act
on this space by functoriality. Thus, G acts Q[V ]-semilinearly. The proof of the following
proposition is straightforward from these definitions.

Proposition. The Fourier transform is an isomorphism of Q-spaces. Moreover F com-
mutes with the action of G and with the action of Q[V ]. More precisely, we have

F(µ|γ) = F(µ)|γ and F(DP µ) = P · F(µ)

for every µ ∈ D, γ ∈ G, and P ∈ Q[V ].

It follows from this proposition that the Fourier transform extends to an isomorphism

F : D̃ −→ D(V,Q[[V ]]S)

which is both G-equivariant and Q[V ]S-equivariant.
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§2. The Kubota-Leopoldt Distribution.

Let V = Q and let T ∈ V denote the basis vector 1 ∈ Q. Thus we have canonically

Q[[V ]] = Q[[T ]].

Also let L be the lattice L := ZT ⊆ V and ε : Q× −→ Q× be the character given by

ε(λ) = sign(λ) :=
λ

|λ| .

Theorem. There is a unique distribution ξ ∈ D̃ε such that

FL(ξ) =
1

eT − 1
+

1
2
∈ Q[[T ]].

Moreover, the Fourier transform of ξ is given by

F(ξ) =
1
T

·
∞∑

n=0

bnTn

where the bn, n ≥ 0, are the Bernoulli distributions defined in Duff’s thesis.

Proof. This is just a reformulation of well-known properties of the Bernoulli polynomials.
Indeed, we will produce a locally analytic distribution µ ∈ Dχ with χ defined by χ(λ) =
|λ|−1, for which

FL(µ) =
T

eT − 1
+

T

2

and then define ξ := T−1 · µ ∈ D̃ε.
We begin by defining an element µZ ∈ D(Q : Z). Note that any f ∈ A(Q : Z) has a

Taylor expansion at each t ∈ V of the form

f(z) =
df∑

n=0

cn,f (t) · (z − t)n.

Moreover, each coset has a unique representative t with 0 ≤ t < 1. We may therefore
define an element µZ ∈ D(Q : Z) the integration formula

∫
f · µZ :=

∑
t∈Q

0≤t<1

df∑
n=0

cn,f (t) · Bn

where the Bn are defined by their exponential generating function

T

eT − 1
+

T

2
=

∞∑
n=0

Bn · Tn

n!
.
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(Note: B1 = 0, and for n 	= 1, Bn is the nth Bernoulli number.)
Next, for any natural number m ∈ N we define µmZ ∈ D(Q : mZ) by

µmZ := m−1 · µZ|zm.

Finally, we must note that the system of distributions {µmZ}m is coherent under the
canonical map

D(Q : m1Z) −→ D(Q : m2Z)

whenever m2|m1. For this it suffices to show that the natural map

ϕmZ,Z : D(Q : mZ) −→ D(Q : Z)

sends µmZ to µZ which amounts to proving the identity∫
t+Z

xn · µmZ(x) =
∫

t+Z

xn · µZ(x)

for all n ≥ 0, t ∈ Q with 0 ≤ t < 1. By definition, the right hand side is equal to∫
t+Z

xn · µZ(x) =
∫

t+Z

((x − t) + t)n · µZ(x) =
n∑

i=0

(
n
i

)
tiBn−i = Bn(t).

On the other hand, the left hand side is given by∫
t+Z

xn · µmZ = m−1 ·
∫

t+Z

xn · µZ|m

= m−1 ·
∫

t
m + 1

m Z

(mx)n · µZ

= mn−1 ·
m−1∑
a=0

∫
t+a
m +Z

xn · µZ

= mn−1 ·
m−1∑
a=0

Bn

(
t + a

m

)
= Bn(t).

Thus the family µmZ, m ∈ N is coherent as claimed.
We therefore obtain a well-defined element µ ∈ D. Moreover, from its definition we

see that µ is homogeneous of degree χ and has the stated fourier transform. We define
ξ := T−1µ and thus obtain an element ξ ∈ D̃(V ) with the desired properties. This proves
existence of a distribution with the stated properties.

Uniqueness follows at once from the homogeneity condition. This completes the proof
of the theorem.
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§3. Eisenstein Symbols on GL(n)

§3.1. Symbols on GLn(Q).

Now let V = Qn with n ≥ 1. Let T be the standard torus in G := GLn(Q) and N :=
N(T ) be the normalizer of T in G. For γ ∈ GLn(Q) we define sign(γ) := sign(det(γ)).
Now let Γ ⊆ GLn(Q) be a subgroup and M be a (right) Γ-module, then a function

ψ : GLn(Q) −→ M

will be called an M -valued Γ-symbol if ψ(γxw)|γ = sign(w) · ψ(x) for every x ∈ GLn(Q),
γ ∈ Γ, and w ∈ N .

If ψ : G −→ M is a Γ-symbol, then for each ordered basis v1, . . . , vn of V , we let
x ∈ G be the unique element whose columns are vi, . . . , vn and define

ψ(v1, . . . , vn) := ψ(x).

Then the condition that ψ is a symbol is equivalent to the conditions

ψ(λ1v1, . . . , λnvn) = sign(λ1 · · ·λn) · ψ(v1, . . . , vn),
ψ(vσ(1), . . . , vσ(n)) = sign(σ) · ψ(v1, . . . , vn)

whenever λ1, . . . , λn ∈ Q× and σ ∈ Sn is a permutation.
If ψ is a Γ-symbol and v0, v1, . . . , vn ∈ V is any set of vectors in general position (i.e.

any subset of n of these vectors spans V ), then we define

(∂ψ)(v0, v1, . . . , vn) :=
n∑

i=0

(−1)i · ψ(v0, . . . , v̂i, . . . , vn).

We will say that the Γ-symbol ψ is a modular symbol if

(∂ψ)(v0, v1, . . . , vn) = 0

for every sequence of vectors v0, v1, . . . , vn in general position.

We remark that Ash and Rudolph have defined a universal modular G-symbol

[ ] : G −→ Hn−1(X, ∂X;Z)

which maps onto the (n−1)-dimensional homology of the Borel-Serre completion X of the
symmetric space of GL(n)/Q relative to the Borel-Serre boundary. This homology group
has a natural action by the group G = GLn(Q).

§3.2. The Eisenstein Symbol.

As before, we let V = Qn and G := GLn(Q). Define Ψn : G −→ D̃ by

Ψn(γ) := sign(γ) · (ξ ⊗ ξ ⊗ . . . ⊗ ξ)|γ−1 ∈ D̃(V ).

It follows immediately from the properties of ξ that Ψn is a G-symbol. It is natural to
wonder if Ψn is a modular symbol. For n = 1, every symbol is a modular symbol, so there
is nothing more to prove in this case. In fact, it can be seen that for n = 2, 3, Ψn is not a
modular symbol.

Question. Can we give a simple closed formula for ∂Ψn for any n?

We will answer this question in the affirmative for n = 2.

7



§3.3. The boundary of the Eisenstein symbol on GL(2).

Let V = Q2, G = GL2(Q) and let X := (0,−1) ∈ V and Y := (1, 0) ∈ V so that a
typical vector v = (x, y) ∈ V is given by v = xY − yX. Then Q[[V ]] = Q[[X, Y ]] and the

action of an element γ =
(

a b
c d

)
∈ G on a polynomial P = P (X, Y ) ∈ Q[[V ]] is given by

(P |γ)(X, Y ) = P ((X, Y )γ∗)

where γ∗ =
(

d −b
−c a

)
is the adjugate of γ. Now define

Φ := F ◦ Ψ2 : G −→ D(V,Q[[X, Y ]]).

Since F is an isomorphism, to give a formula for ∂Ψ2 is equivalent to giving a formula for
∂Φ. For any v0, v1, v2 ∈ V in general position, we define

ε(v0, v1, v2) := sign
(
det(v0, v1) · det(v0, v2) · det(v1, v2)

)
.

Theorem. Let V := Q2 and Φ := F ◦ Ψ2. Then

Φ(I) =
1

XY
·

∞∑
r,s=0

(−1)s+1 · br × bs ·
Xs

s!
Y r

r!

and for any triple v0, v1, v2 ∈ V in general position, we have

∂Φ(v0, v1, v2) = ε(v0, v1, v2) ·
1
2
· δ0.

Proof. To prove the first identity it suffices to calculate the value ΦU (I) of Φ(I) on an
arbitrary factorizable uniform bounded set U = U1 × U2 ⊆ V . For such U we have

ΦU (I) = − 1
XY

·
∫

U

exp(v) · d(ξ × ξ)(v)

= − 1
XY

·
∞∑

k=0

∫
U

vk

k!
· d(ξ × ξ)(v)

= − 1
XY

·
∞∑

k=0

∫
U2

∫
U1

(xY − yX)k

k!
· dξ(x) · dξ(y)

= − 1
XY

·
∞∑

r,s=0

∫
U2

∫
U1

(−1)sxrys · Y r

r!
Xs

s!
· dξ(x) · dξ(y)

= − 1
XY

·
∞∑

r,s=0

(−1)s

(∫
U1

xr · dξ(x)
)
·
(∫

U2

ys · dξ(y)
)
· Xs

s!
Y r

r!

= − 1
XY

·
∞∑

r,s=0

(−1)sbr(U1) · bs(U2) ·
Xs

s!
Y r

r!

= − 1
XY

·
∞∑

r,s=0

(−1)s(br × bs)(U) · Xs

s!
Y r

r!
.
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This proves the first identity of the theorem.

§4. p-Adic L-functions and overconvergent modular symbols

In this section, we will describe Φ in terms of periods of Eisenstein series. The proof of
the formula for ∂Φ will then follow from an application of Stokes’ theorem. We will explain
how the p-adic L-functions of Φ interpolate the critical L-values associated to Eisenstein
series.
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§5. p-Adic Locally Analytic Distributions

§5.1. p-Adic Continuity and the Kubota-Leopoldt Distribution.

Fix a positive rational prime p and let Cp be a completion of an algebraic closure of
Qp. Let Op be the ring of integers in Cp. As always, V is finite dimensional Q-vector
space. We embed V in VCp

:= V ⊗Q Cp in the obvious way. For each lattice L in V and
each v ∈ V , we let

BL := L ⊗ Op and BL(v) := v + BL ⊆ VCp .

Then BL(v) is a Qp-affinoid polydisk containing v + L. We let Ap(v + L) := Ap

(
BL(v)

)
be the Qp-affinoid algebra of BL(v). A function f : V −→ Qp is said to be p-adic analytic
on the affine lattice v + L if there is an F ∈ AL(v) whose restriction to v + L agrees with
f on v + L. More generally, we say the function f : V −→ Qp is p-adic analytic modulo L
if it is p-adic analytic on every L-coset. If U is an L-uniform subset of V we define

Ap(U : L) =
{
f : V −→ Qp

∣∣ f is p-adic analytic modulo L and supp(f) ⊆ U
}

.

If U is bounded and L-uniform then the canonical map Ap(U : L) −→
⊕

v∈U/L Ap(v + L)
is an isomorphism. We endow Ap(U : L) with the norm ‖ · ‖p,L induced from the affinoid
norms on the factors.

If M ⊆ L then any function that is p-adic analytic modulo L is also p-adic analytic
modulo M . Thus we have a natural continuous inclusion Ap(U : L) ↪→ Ap(U : M). We
define

Ap(U) := lim−→
L

Ap(U : L) and Ap := Ap(V ) := lim−→
U

Ap(U)

each endowed with the inductive limit topology. We refer to the elements of Ap(U) and
Ap as p-adic locally analytic functions.

Definition. (Locally Analytic Distributions). Let L be a lattice and U be a bounded
L-uniform subset of V . We define the spaces Dp(U : L), Dp(U), and Dp := Dp(V ) to be
the spaces of continuous linear functionals on Ap(U : L), Ap(U), and Ap respectively. We
endow each of these spaces with the strong topology. The elements of Dp(U : L), Dp(U),
and Dp will be called p-adic locally analytic distributions.

For each lattice L and every L-uniform set U we have natural inclusions

A(U : L) ↪→ Ap(U : L), A(U) ↪→ Ap(U), and A ↪→ Ap.

Moreover, the images of these inclusions are dense. The topologies on A(U : L), A(U),
and A induced by these inclusions will be called the p-adic topologies. Thus, in particular,
the p-adic topology on A(U : L) is the topology induced by the norm ‖ · ‖p,L.

Definition. A distribution µ ∈ D is said to be p-adically continuous if the map µ : A −→
Q is continuous with respect to the p-adic topologies on A and Q.
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By duality, we have canonical maps

Dp(U : L) ↪→ D(U : L) ⊗ Qp, Dp(U) ↪→ D(U) ⊗ Qp, and Dp ↪→ D ⊗ Qp.

These maps are injective by the density of locally polynomial functions in the space of
p-adic locally analytic functions. We note that a global distribution µ ∈ D is in the image
of p-adic locally analytic distributions if and only if µ is p-adically continuous.

The space Dp of p-adic locally analytic distributions inherits all of the structures
we endowed on D. Namely, the group G = Aut(V ) acts the right on Dp. Indeed, this
action extends to a continuous action of the group Gp := Aut(Vp) of continuous Qp-linear
automorphisms of Vp := V ⊗Qp. Also the action of the ring of differential operators Q[V ]
on D extends to an action of Qp[V ]. Moreover, the elements of S act injectively. Thus
we may localize Dp with respect to S and define the space of locally analytic distribtuions
with rational poles to be the space

D̃p := Dp ⊗Qp[V ] Qp[V ]S .

We have a natural inclusion D̃p ⊆ D̃⊗Qp. We will say that an element µ ∈ D̃ is p-adically
continuous if the element µ⊗ 1 ∈ D⊗Qp lies in D̃p. We note that for any element µ ∈ D,
µ is p-adically continuous as an element of D if and only if µ is p-adically continuous as
an element of D̃. (This requires proof. It’s not totally obvious).

Theorem. The Kubota-Leopoldt distribution ξ ∈ D̃(Q) is p-adically continuous for every
prime p.

Proof. We use the notation of the previous section on Kubota-Leopoldt. Namely we write
T for 1 ∈ Q. Hence µ := DT ξ is in D. Now fix a prime p. It suffices to show µ is p-adically
continuous. For this we need to show

µ : A(t + mZ) −→ Q

is p-adically continuous for every affine lattice t + mZ with m a positive integer.
So we fix a positive integer m and, without loss of generality, we may then suppose

t ∈ Q satisfies the inequality 0 ≤ t < m. Then the sequence of polynomials
(

z−t
m

)k,
k = 0, 1, 2, . . ., is an orthonormal basis for Ap(t + mZ). We have the identity∫

t+mZ

(
z − t

m

)k

· dµ(z) =
1
m

Bk

for all k ≥ 0. Hence
‖µ‖p,mZ = sup

k
|Bk/m|p = |mp|−1

p

by the Clausen von Staudt theorem. Thus µ is p-adically continuous and the theorem is
proved.

The following corollary is an immediate consequence of the theorem.
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Corollary. For every n ≥ 1, the distribution ξ ⊗ ξ ⊗ · · · ⊗ ξ ∈ D̃(Qn) is p-adically
continuous.

§5.2. The Adelic Point of View.

Let V̂ be the completion of V with respect to the lattice topology and for each prime
q, let Vq := V ⊗ Qq be the q-adic completion of V . For an arbitrary lattice L ⊆ V , we let
Lq ⊆ Vq be the closure of L in Vq. Then the restricted product

∏′
q Vq with respect to the

sublattices Lq ⊆ Vq is well-defined independent of L and we have a canonical isomorphism

V̂
∼−→

∏
q

′ Vq.

We let L̂ ⊆ V̂ be the closure of L in V̂ and note that the canonical map

L̂
∼−→

∏
q

Lq

is an isomorphism. A subset Û ⊆ V̂ is said to be L̂-uniform if Û + L̂ = L̂. If Û is compact
and L̂-uniform, then Û is equal to a finite disjoint union of L̂-cosets in V̂ . In particular,
such a set is both compact and open. If we let U = Û ∩ V then it is not hard to see that
U is a bounded L-uniform subset of V and moreover that Û is the closure of U in V̂ (thus
justifying our notation Û).

We will say that a function f : V̂ −→ Qp is p-adic “analytic” modulo L̂ if for each
coset v + L̂ ⊆ V̂ (v ∈ V ) there is a p-adic rigid analytic function F ∈ Ap(v + L) such that
for every �̂ = (�q)q ∈ L̂ we have f(v + �̂) = F (v + �p). For a compact L-uniform subset
Û ⊆ V̂ we then define

Ap(Û : L̂) := {f : V̂ −→ Qp | f is p-adic rigid analytic mod L̂ and supp(f) ⊆ Û }.

The following proposition is an immediate consequence of the definitions.

Proposition. For every L-uniform bounded subset U ⊆ V the canonical restriction map

Ap(Û : L̂) −→ Ap(U : L)

is an isomorphism.

Thus p-adic locally analytic functions on V extend (uniquely) to p-adic local analytic
functions on V̂ .

We will say that a bounded L-uniform set U ⊆ V is “factorizable” if Û =
∏

q Uq

where each Uq is a (necessarily compact and open) subset of Vq. By a simple compactness
argument, it then follows that Uq = Lq for almost all q. For each q we let cLq be the
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characteristic function of Lq and let
⊗′

q Ap(Uq, Lq) be the restricted tensor product with
respect to the functions cLq

. The canonical map⊗
q

′Ap(Uq, Lq) −→ Ap(Û : L̂)

⊗qfq �−→
(

(vq)q �→
∏
q

fq(vq)

)

is an isomorphism, as one easily confirms. Composing this map with the isomorphism of
the last proposition, we obtain an isomorphism⊗

q

′Ap(Uq, Lq) ∼= Ap(U : L).

A p-adic locally analytic function f ∈ Ap(U : L) will be called factorizable if it corresponds
under this isomorphism to a factorizable element ⊗qfq ∈

⊗′
q Ap(Uq : Lq) and in this case

⊗qfq will be called a factorization of f .

§5.3. p-Adic Locally Analytic Dirichlet characters.

For a prime q, a p-adic locally analytic function χq ∈ Ap(Zq) will be called a Dirichlet
character on Zq if χq satisfies the following two properties:

(1) χq is multiplicative on Zq, i.e. for all a, b ∈ Zq we have χq(ab) = χq(a) · χq(b);

and

(2) the restriction of χq to Z×
q is a multiplicative character χq : Z×

q −→ K×.

If, moreover, χq is rigid modulo qn, then qn will be called a modulus for χq. The level
M(χq) of χq is defined to be the smallest modulus of χq.

We note that a Dirichlet character χq has level one if and only if either q 	= p and
χq = cZq , the characteristic function of Zq, or q = p and there is a non-negative integer
k ≥ 0 such that χp is given by

χp(t) :=

 tk if t ∈ Zp;

0 if t 	∈ Zp.

Definition. A p-adic Dirichlet character is a factorizable function χ ∈ Ap(Q) admitting
a factorization of the form ⊗qχq where each χq is a Dirichlet character on Zq. Then
M(χq) = 1 for almost all q, so we may (and do) define the level of χ to be the product
M(χ) :=

∏
q M(χq) of the levels of the χq.

We note that
Um := { a ∈ Z | (a, m) = 1 }.

13



A p-adic locally analytic function

χ : V −→ K

will be called a (p-adic locally analytic) Dirichlet character if χ satisfies the following two
properties:
(1) there is a natural number m such that χ ∈ Ap(Um : mZ); and
(2) χ is multiplicative (i.e. χ(ab) = χ(a)χ(b) for all a, b ∈ Ẑ).

If χ is a Dirichlet character, then any natural number m for which χ ∈ Ap(Um : mZ)
will be called a modulus for χ. We define the “level” Mχ of χ to be the smallest modulus
of χ. It’s not hard to see that a natural number m is a modulus of χ if and only if m is
divisible by Mχ and has the same prime divisors. We define

Xp[m] := {χ : V −→ Cp |χ is a Dirichlet character and m is a modulus of χ }.

If d|m then Um ⊆ Ud and restriction from Ud to Um induces a homomorphism

Xp[d] −→ Xp[m].

We say a pair of Dirichlet characters χi ∈ Xp[mi], i = 1, 2, are associated if they have the
same image in Xp[m1m2]. As in the classical theory of Dirichlet characters it’s not hard to
see that the relation of being associated is an equivalence relation on the set of Dirichlet
characters. Moreover, the associate class of any Dirichlet character χ contains exactly one
character whose level divides the level of every other character in the associate class. This
minimal level will be called the conductor of χ and denoted mχ. If mχ = Mχ we will say
χ is primitive of conductor mχ.

§5.4. p-adic L-functions.

Theorem. Let ξ ∈ D̃(Q) be the Kubota-Leopoldt distribution. Then for every prime p and
every primitive arithmetic Dirichlet character χ we have

Lp(ξ, χ) = L∞(χ).

If χ′ is a character of level M associated to χ then

Lp(ξ, χ′) =

(∏
�

(1 − χ(�))

)
· L∞(χ)

where the product is over all primes � that divide M but not mχ.
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