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§0. Statement of results.

Let p be a prime > 2 and let X := Z/(p−1)Z×Zp with Z embedded in X diagonally.
Let f be a classical newform of weight k0 +2 ≥ 2 and assume that f is split multiplicative
at p. Then Coleman has defined an L-invariant L(f) which he conjectured should be equal
to the Mazur-Tate-Teitelbaum L-invariant. The purpose of this note is to outline a proof
of Coleman’s conjecture. More precisely we prove the following theorem.

Main Theorem. L′
p(f, 1 + k0/2) = L(f) · L∞(f, 1 + k0/2).

This was proved by Ralph Greenberg and the author in the special case k0 = 0 (weight
2) several years ago. Just as in the weight 2 case, the proof of the general case divides
naturally into two steps (Theorems A and B below).

To state Theorems A and B, we first recall that Robert Coleman has constructed a
p-adic analytic family fk of overconvergent p-adic modular forms passing through our fixed
newform f . This family is defined for k in an open set B ⊆ X containing k0 and satisfies
fk0+2 = f . Coleman’s family is an eigenfamily for the U -operator and we may therefore
consider the eigenvalue α(k) of U acting on fk. The function α(k) is a p-adic analytic
function of k ∈ B so we may consider the derivative of α at the special point k0 ∈ B.

Theorem A. L′
p(f, 1 + k0/2) = −2 · p−k0/2 · α′(k0) · L∞(f, 1 + k0/2).

Just as in the weight two case, the proof of Theorem A depends on the existence of
a two variable p-adic L-function with certain properties. The existence of such a p-adic
L-function was proven in the higher weight case about a year and a half ago. With the
two-variable p-adic L-function in hand, the proof of theorem A proceeds exactly as in the
weight two case. The details have been described elsewhere.

Theorem B. L(f) = −2 · p−k0/2 · α′(k0).

This note is dedicated to proving Theorem B. The Main Theorem above is an imme-
diate consequence of Theorems A and B.

§1. Coleman’s L-invariant.

We adopt Coleman’s notations as in the BU monodromy proceedings volume with
only one modification. Namely, we will add full level 2 structure to the moduli space. This
rigidifies the setup and simplifies the calculation in (2) of Proposition 1 in section 2. (I
have to admit that this point still confuses me. The calculation in (2) of proposition 1
really does seem to depend on this rigidification.) We fix a tame level N (the tame level of
the newform f) and let X be the modular curve X(Np, 2) with level Np structure (a cyclic
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subgroup of order Np) plus full level 2 structure. (If 2|N we assume that the additional
level 2 structure extends the 2-part of the level N structure.) The rigid analytic space Xan

underlying X is decomposed into the union of three disjoint parts, namely,

Xan = Z∞ ∪ W ∪ Z0

where Z∞ and Z0 are affinoids containing the ∞ and 0-cusps respectively, and W is the
union of the supersingular annuli. Following Coleman, we write W∞ = Z∞ ∪ W and
W0 = Z0 ∪ W .

Let Y = Y (N, p) denote X with the cusps deleted. Let E/Y be the universal elliptic
curve with level structure over Y and let H be the relative de Rham cohomology sheaf
over X with log singularities at the cusps. Then H is a coherent O-module locally free of
rank 2 over X. For any nonnegative integer k we let

Hk := Symmk(H).

The Gauss-Manin connection ∇ : H −→ H⊗ Ω induces a connection

∇ : Hk −→ Hk ⊗ Ω

for each integer k ≥ 0, which we also call the Gauss-Manin connection.
The Deligne-Tate map preserves Z∞ and extends to a wide open neighborhood of Z∞

properly contained in W∞. Accordingly, the Gauss-Manin connection is endowed with a
natural frobenius structure over some sufficiently small wide open neighborhood of Z∞.
Katz spells out precisely how big this neighborhood can be, but this is a technical point
that we will not need. It will be convenient to simplify the notation and write Z†

∞ to denote
such a sufficiently small wide open neighborhood of Z∞ with the additional property that
the intersection of Z†

∞ with any supersingular annulus is a concentric subannulus.
We recall Coleman’s definition of the L-invariant L(f) of a split multiplicative p-

newform f of weight k + 2 ≥ 2. Let H∗
k denote the complex of sheaves associated to

Hk
∇−→ Hk⊗Ω and consider the hypercohomology H1(X,H∗

k) with respect to the covering
{W∞, W0} of X. The Hecke operators act on this space and the systems of eigenvalues
that occur in it are the same as those that occur in the space of classical modular forms of
weight k and corresponding level. In particular, letting K be the field generated over Qp

by the eigenvalues of the Hecke operators acting on f , we obtain a Qp-subspace H(f) ⊆
H1(X,H∗

k) endowed with an action of the field K with the property that H(f) is a 2-
dimensional K-vector space on which the Hecke operators act as scalars according to the
eigenvalues of f . Now what Coleman is able to do, using his theory of p-adic integration,
is to endow H(f) with a natural monodromy module structure in which the monodromy
is non-trivial. Every two dimensional monodromy module with non-trivial monodromy
has a well-definde L-invariant. Thus Coleman’s L-invariant can be defined simply as the
L-invariant of Coleman’s monodromy module.

We will use the more concrete definition that Coleman gives in his paper in the
BU monodromy proceedings volume. For simplicity, we assume k > 0 so that there are
no nonzero sections of Hk defined on all of W∞ nor on all of W0, i.e. H0(W∞,H∗

k) =
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H0(W0,H∗
k) = 0. On the other hand there are plenty of horizontal sections of Hk on

W = W∞ ∩ W0. Indeed, Coleman constructs two maps

σ, ρ : Mk+2 −→ H0(W,H∗
k)

defined on the space Mk+2 of classical modular forms of weight k+2 and appropriate level.
The map σ is defined using Coleman’s integration theory while the map ρ is defined in
terms of residues.

For k an integer, let M†
k+2 denote the space of overconvergent p-adic modular forms

of weight k + 2 and appropriate level. If k ≥ 0 we let

κ : M†
k+2 −→ Hk ⊗ Ω(Z†

∞)

be the Kodoaira Spencer map. There is also a Qp-linear map

ν : M†
−k −→ Hk(Z†

∞)

satisfying the equation

∇(ν(g)) = κ(θk+1g) ∈ Hk ⊗ Ω(Z†
∞)

for any g ∈ M−k.
We now turn to the definitions of σ and ρ. Let k ≥ 0 and f ∈ Mk+2 be a classical

Hecke eigenform. Let α be the eigenvalue of the U -operator acting on f . We suppose
α 
= 0. The differential form ωf := κ(f) ∈ Hk ⊗ Ω(W∞) represents a cohomology class
[ωf ] ∈ H1(W∞,Hk) and the Frobenius operator Φ acts on ωf and also on [ωf ]. Indeed,
we have Φ([ωf ]) = pk+1

α · [ωf ]. Now Coleman’s integration theory gives us a well-defined
flabby antiderivative I∞(f) defined on all of W∞ which is analytic on the ordinary residue
disks, is log-analytic on the supersingular annuli and satisfies the differential equation

∇(I∞(f)) = ωf on W∞.

The additional property that characterizes I∞(f) uniquely is that, though I∞(f) need not
be rigid analytic on W∞ (or even on Z∞), the section

I∞(f) − α

pk+1
Φ(I∞(f))

is rigid analytic on Z†
∞ (i.e. not only on Z∞, but also on some wide open neighborhood

of Z∞). Similar considerations give rise to a well-defined flabby solution I0(f) of the
differential equation

∇(I0(f)) = ωf on W0.

Now both I0(f) and I∞(f) are defined on the overlap W = W∞ ∩ W0. Coleman makes
the following definition.
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Definition 1. If f ∈ Mk+2 is a classical Hecke eigenform then we define σ(f) ∈ H0(W,H∗
k)

to be the horizontal section of Hk on W given by

σ(f) := I∞(f)|W − I0(f)|W .

The residue map ρ : Mk+2 −→ H0(W,H∗
k) is easier to define. Indeed, ρ is defined on

all overconvergent modular forms. Let

Res : Hk ⊗ Ω(Z†
∞) −→ H0(W,H∗

k)

be defined by Res(ω) := the unique horizontal section of Hk on W whose restriction to
Z†
∞ ∩ W is the residue of ω restricted to this disjoint union of oriented annuli. Given

f ∈ M†
k+2 we let ωf := κ(f) ∈ Hk × Ω(Z†

∞) and define ρ(f) as follows.

Definition 2. Given f ∈ M†
k+2 we define

ρ(f) := Res(ωf ).

Definition 3. Coleman’s L-invariant of a split multiplicative newform f ∈ Mk+2 is defined
to be the unique element L(f) ∈ K for which

σ(f) = L(f) · ρ(f).

The existence and uniqueness of such an L-invariant was, of course, proved by Coleman.

§2. Some families of modular forms.

First of all we have the Eisenstein family. For each integer k there is an overconvergent
p-adic modular form Ek of weight k whose q-expansion is given by

Ek := 1 + 2ζp(1 − k)−1
∑
k≥1

σ∗
k+1(n)qn.

Here ζp(s) is the Kubota–Leopoldt p-adic zeta function and when k = 0 the above equality
is understood to mean E0 = 1. (Recall ζp(s) has a simple pole at s = 1). For integral
k ≥ 0 we set

tk :=
1
2
ζp(1 + k) · E−k

Gk :=
1
2
ζp(−1 − k) · Ek+2

Then tk ∈ M†
−k is an overconvergent modular form of weight −k and Gk ∈ Mk+2 is a

classical modular form of weight k + 2. The family tk extends to a meromorphic family
of Eisenstein series for k ∈ X with a simple pole at k = 0 and Gk defines a meromorphic
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family with a simple pole at k = −2. Moreover Gk = t−2−k. The special point k = 0 will
play a crucial role in the proof of Theorem B.

Proposition 1.
1. The family tk, k ∈ X , has a simple pole at k = 0 with residue given by

lim
k→0

ktk =
1
2
·
(

1 − 1
p

)
.

2. The residue of G0 along any supersingular annulus is 1/2:

ρ(G0) =
1
2
.

Proof. The first assertion is an immediate consequence of the well-known fact that the
Kubota-Leopoldt p-adic zeta function ζp(s) has a simple pole at s = 1 and that the residue
at s = 1 is given by

lim
s→1

(s − 1)ζp(s) =
(

1 − 1
p

)
.

To prove the second assertion, we first consider the special case N = 1. Then η =
κ(G0) is a section of Ω over Y which extends to a meromorphic section over X with simple
poles along the cusps. We want to compute

Res(η) ∈ H0(W ).

We remark first of all that since the eigenvalues of the Hecke operators acting on η are
known, they are also known on Res(η). Indeed, the eigenvalues are the same as those acting
on constant functions on W . Hence Res(η) is a constant. To determine what the constant
is we use the fact that the sum of all of the residues along the supersingular annuli and
around the cusps contained in W∞ is equal to zero. Now there are a total of three cusps
in W∞ corresponding to the three cusps of X(2). The constant terms of G0 are the same
at all of these cusps since G0 is modular of level p. Since the natural map X −→ X0(p) is
ramified of order 2 at each of these cusps and since the constant term of G0 at the infinity
cusp is (1 − p)/24 we conclude that the sum of the residues along the cusps is (1 − p)/4.
Hence the sum of the residues along the supersingular annuli is (p − 1)/4. But a simple
calculation shows that the number of supersingular annuli in X is (p − 1)/2. Hence the
residue along any supersingular annulus is 1/2. This proves (2) when N = 1.

The general case follows at once since for arbitrary N , the map X(Np, 2) −→ X(p, 2)
is unramified over the supersingular annuli. This completes the proof of the proposition.

We can remove Euler factors at p using the operator V on overconvergent modular
forms defined on q-expansions by the formula V (f)(q) = f(qp). If F is an eigenform, then
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we let F 0 denote the eigenform obtained by removing the Euler factor at p. Thus, we have
the families

t0k := tk − V (tk)

G0
k := Gk − V (Gk)

f0
k := fk − α(k)V (fk)

For k ≥ 0 we let ηk := κ(Gk) and η0
k := κ(G0

k) where κ : Mk+2 −→ Hk ⊗ Ω is the
Kodaira-Spencer map. We also set gk := ν(tk) and g0

k := ν(t0k). Then since θk+1t0k = G0
k

it follows that
∇(g0

k) = G0
k.

Finally, for each integer k ≥ 0 we may let sk := I∞(fk) be the Coleman integral
of fk defined in section 1. Then sk is a flabby section of Hk over W∞. This section is
characterized by the property that

s0
k := sk − α(k)

pk+1
· Φ(sk)

is a rigid analytic section of Hk over Z†
∞. Hence there is an overconvergent modular form

φ0
k ∈ M†

−k such that
ν(φ0

k) = s0
k.

Hence θk+1(φ0
k) = f0

k . Finally, set

ωk := κ(fk),

ω0
k := κ(f0

k ).

§3. Some Pairings.

As in the introduction, we fix an integer k0 ≥ 0. For each integer k ≥ 0 cup product on
the de Rham cohomology of the fibers of E/X induces a natural pairing

[·, ·] : Hk ×Hk+k0 −→ Hk0 .

This pairing induces natural pairings

[·, ·] : Hk ×Hk+k0 ⊗ Ω −→ Hk0 ⊗ Ω;
[·, ·] : Hk ⊗ Ω ×Hk+k0 −→ Hk0 ⊗ Ω.

Proposition 2. These pairings satisfy the following identity for all x ∈ Hk, and y ∈ Hk+k0

∇[x, y] = [x,∇y] + [∇x, y].
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Proof. The proof follows from the product formula for differentiation.

We will attach a superscript † to denote over convergent section of a sheaf. For
example, H†

k := Hk(Z†
∞). We may then define pairings

〈·, ·〉 : H†
k ×H†

k+k0
⊗ Ω† −→ H0(W,Hk0)

〈·, ·〉 : H†
k ⊗ Ω† ×Hk+k0 −→ H0(W,H†

k0
)

by defining 〈x, y〉 := Res([x, y]) where Res : H†
k0

−→ H0(W,Hk0) is the residue map.

We next record some basic properties of the Frobenius operator Φ, the involution W ,
and the operator U . Here we normalize W so that it is an involution on Hk(W ): hence
W = p−k0/2w where w is the operator used by Coleman. We first remark that Φ = w on
horizontal sections on the supersingular annuli. Hence Φ = pk0/2W on H0(W,Hk0).

Proposition 3.
1. For any x ∈ H†

k and ω ∈ H†
k+k0

⊗ Ω† we have 〈x,Φ(ω)〉 = pk+
k0
2 +1 · W (〈U(x), ω〉);

2. For any η ∈ H†
k ⊗ Ω† and y ∈ H†

k+k0
we have 〈η,Φ(y)〉 = pk+

k0
2 · W (〈U(η), y〉).

Proof. A simple calculation confirms the identities

U(〈x,Φ(ω)〉) = pk+k0+1 · 〈U(x), ω〉
U(〈η,Φ(y)〉) = pk+k0 · 〈U(η), y〉.

But U ◦Φ = pk0 on Hk0 , hence also on the finite dimensional space H0(W,Hk0). Therefore
Φ ◦ U = pk0 on H0(W,Hk0). Hence applying Φ to the above identities gives us

〈x,Φ(ω)〉 = pk+1 · Φ(〈U(x), ω〉)
〈η,Φ(y)〉 = pk · Φ(〈U(η), y〉).

But Φ = pk0/2 · W on H0(W,Hk0) so proposition 3 follows.

§4. Some Lemmas.

The operator W is an involution on H0(W,Hk0). We let superscript + denote pro-
jection to the +-component under the action of W . Consider the function ψ : X −→
H0(W,Hk0)

+ defined by

ψ(k) := ρ(t0kf0
k+k0

)+ ∈ H0(W,Hk0)
+.

Since t0kf0
k+k0

is an analytic family of overconvergent modular forms of weight k0 we see
at once that ψ(k) is an analytic function of k defined on a neighborhood of 0 in X . For
the proof of Theorem B we will calculate ψ(0) in two ways. First, by direct calculation we
express ψ(0) in terms of ρ(f). Then we apply the product rule (Proposition 2) to express
ψ(0) in terms of σ(f). Comparing these two expressions, Theorem B follows.

Define u(k) := p−k0/2 · α(k), the “unit part” of α(k).
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Lemma 1. We have

ψ(0) = −1
2
·
(

1 − 1
p

)
· u′(k0) · ρ(f).

Proof. For an arbitrary integer k ≥ 0 we have

ψ(k) = ρ
(
t0kf0

k+k0

)+
= 〈g0

k, ω0
k+k0

〉+.

We also have

〈g0
k, ω0

k+k0
〉 = 〈gk, ω0

k+k0
〉

=
〈

gk, ωk+k0 −
α(k + k0)
pk+k0+1

Φ(ωk+k0)
〉

= 〈gk, ωk+k0〉 −
α(k + k0)

pk0/2
W (〈U(gk), ωk+k0〉)

= 〈gk, ωk+k0〉 − u(k + k0) · W (〈gk, ωk+k0〉).

The first equality above follows from three facts: (1) g0
k − gk is in the image of Φ; (2)

ω0
k+k0

is in the kernel of U ; and (3) the image of Φ is perpendicular to the kernel of U by
proposition 2. The last equality above follows from the fact that the Eisenstein series tk
is an eigenform for the U -operator with eigenvalue 1, hence U(gk) = gk.

Now project the above identity to the +-component for W to get

ψ(k) = (1 − u(k + k0)) · 〈gk, ωk+k0〉+

=
1 − u(k + k0)

k
· ρ(ktkfk+k0)

+.

Setting k = 0, using (1) of propostion, and noting that ρ(f)+ = ρ(f) we obtain

ψ(0) = −1
2
·
(

1 − 1
p

)
· u′(k0) · ρ(f)

and the lemma is proved.

Let C∞ := Z†
∞ \ Z∞. Then C∞ is a union of concentric annuli in the supersingular

annuli. Note that the pairings 〈x, y〉 are well-defined so long as x, y are rigid on C∞. In
particular we have a well-defined pairing

〈·, ·〉 : Ω1(C∞) ×Hk0(C∞) −→ Hk0(W )∇.

defined by 〈ω, h〉 = ResW (hω), where this latter is defined to be the unique horizontal
section on W extending ResC∞(hω).

Lemma 2. Let e ∈ Oflog(W∞) be any Coleman integral of η0 (well-defined up to a
constant). Restrict e to the supersingular annuli W and let h = e−W (e) ∈ Olog(W ). Let
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z = h · ρ(f) ∈ Hk0,log(W ), and let z0 := z − p−1−k0/2Φ(z) ∈ Hk0(C∞). Then z, z0 have
the following properties.

(1) z0 is rigid on C∞.
(2) sk0 − z is rigid on W .
(3) 〈η0, z

0〉 = 0.
(4) W (z) + z = 0 on the supersingular annuli W .

Proofs. (1) Since e is a Coleman integral of η0, we have e0 := e−p−1Φ(e) is rigid on Z†
∞.

Since W (η0) = −η0 we have W (e) + e is constant, and it follows that h0 := h − p−1Φ(h)
is also rigid on C∞. On the other hand, Φ(ρ(f)) = pk0/2ρ(f). Hence z0 = h0 · ρ(f), which
is rigid on C∞.

(2) By definition, ∇(sk0) = κ(f). Hence, ResW (∇(sk0)) = ρ(f). On the other hand,
ResW (∇(z)) = ResW (dh) · ρ(f). But dh = 2η0 and we have shown ResW (η0) = 1/2, hence
ResW (∇(z)) = ρ(f). We therefore have ResW (∇(sk0 − z) = 0 and it follows that sk0 − z
is rigid on W , as claimed.

(3) We have 〈η0, z
0〉 = 〈η0, h

0〉 ·ρ(f). Moreover, 〈η0, h
0〉 = 〈η0

0 , h0〉 because the image
of Φ is orthogonal to the kernel of U . But, 〈η0

0 , h0〉 = ResW (h0η0
0) = 1

2ResW (h0dh0) = 0,
since h0dh0 is an exact differential on C∞.

(4) Since W (ρ(f)) = ρ(f), this follows immediately from the definition of z.
This completes the proof of Lemma 2.

Lemma 3.
ψ(0) =

1
4
· σ(f).

Proof. As in the first line of the proof of lemma 1 we have

ψ(0) = 〈g0
0 , ω0

k0
〉+.

But ω0
k0

is an exact differential, indeed ∇s0
k0

= ω0
k0

. Moreover, ∇g0
0 = η0

0 . Hence, by
lemma 1 we have

∇[g0
0 , s0

k0
] = [η0

0 , s0
k0

] + [g0
0 , ω0

k0
].

Taking residues of both sides of this equality along the supersingular annuli we obtain

0 = 〈η0
0 , s0

k0
〉 + 〈g0

0 , ω0
k0
〉.

Hence ψ(0) = −〈η0
0 , s0

k0
〉+. Now we just calculate as before, but in the second line we

replace sk0 by sk0 − z. This gives us:

〈η0
0 , s0

k0
〉 = 〈η0, s

0
k0
〉

= 〈η0, s
0
k0

− z0〉

= 〈η0, (sk0 − z) − 1
pk0/2+1

· Φ(sk0 − z)〉

= 〈η0, sk0 − z〉 − 1
p
W (〈η0, sk0 − z〉)

= 〈η0, sk0 − z〉 − 1
p
W (〈η0, sk0 − z〉)
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Projecting to the +-component for W we obtain

ψ(0) =
(

1 − 1
p

)
· 〈η0, sk0 − z〉+.

On the other hand, we have

〈η0, sk0 − z〉+ =
1
2
·
(
〈η0, sk0 − z〉 + W (〈η0, sk0 − z〉)

)
=

1
2
·
(
〈η0, sk0 − z〉 − 〈W (η0), W (sk0 − z)〉

)
=

1
2
·
(
〈η0, sk0 − z〉 + 〈η0, W (sk0 − z)〉

)
=

1
2
· 〈η0, (sk0 − z) + W (sk0 − z)〉

=
1
2
· 〈η0, sk0 + W (sk0)〉

=
1
2
· 〈η0, σ(f)〉.

Finally, we use (2) of proposition 1 to conclude that 〈η0, σ(f)〉 = 1
2 · σ(f). Hence ψ(0) =

1
4 · σ(f) and lemma 3 is proved.

Proof of Theorem B. Combining lemma 2 and lemma 3 we obtain

−2 · u′(k0) · ρ(f) = σ(f).

Hence L(f) = −2 · u′(k0) = −2 · p− k0
2 · α′(k0) and Theorem B is proved.
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