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§0. Introduction.

Let p be a prime > 3 and consider the Tate algebra A := Qp〈z〉 defined to be the
Banach algebra of formal power series over Qp that converge on the closed unit disk
B[0, 1] ⊆ Cp with the supremum norm ||f || := sup

z∈B[0,1]

|f(z)| for f ∈ A. Equivalently, we

have

(0.1) A =

{
f(z) =

∞∑
k=0

akzk

∣∣∣∣ ak ∈ Qp and lim
k→∞

ak = 0

}

and the norm is given by

(0.2) ||f || = sup
k

|ak|, for f =
∞∑

k=0

akzk.

The pair (A, || ||) defines a Banach algebra over Qp. We let D denote the Banach space of
Qp-valued continuous linear functionals on A. We will often regard the elements of A as
analytic functions on Zp and the elements of D as distributions on Zp. In this spirit we
will often use measure-theoretic conventions and write∫

f(z)dµ := µ(f)

for the value of a linear functional µ ∈ D on a power series f ∈ A.
Let κ : Z×

p −→ Z×
p be a locally analytic character and consider the semigroup

Σ0(p) :=
{(

a b
c d

)
∈ Mat(2 × 2,Zp)

∣∣∣∣ a ∈ Z×
p , c ∈ pZp, ad − bc �= 0

}
.

We define the weight κ action of Σ0(p) on A by the formulas

(0.3) (γκf)(z) := κ(a + cz) · f
(

b + dz

a + cz

)
,

for f ∈ A and γ =
(

a b
c d

)
∈ Σ0(p). A simple calculation shows that this defines a

continuous action of Σ0(p) on the Tate algebra A. Hence by duality, we also obtain a
continuous action of Σ0(p) on D, µ �→ µ|κγ (µ ∈ D, γ ∈ Σ0(p)), which we call the dual
weight κ action.



(0.4) Definition. We will denote by Aκ the Banach space A equipped with the weight
κ action of Σ0(p) described above. Similarly, we will denote by Dκ the dual space D
equipped with the dual weight κ action.

In general, to any Γ0(p)-space V there is associated a locally constant sheaf Ṽ on
Y0(p) and we may consider the space

(0.5) H1
c (Γ0(p), V ) := H1

c (Y0(p), Ṽ )

of one-dimensional compactly supported cohomology classes of Ṽ . As we will point out in
more detail later, this space can be conveniently described in terms of modular symbols.
In particular, if V is a Banach space with a unitary action of Γ0(p), then H1

c (Γ0(p), V ) has
a natural Banach space structure. If, furthermore, V is equipped with a continuous right
action of the semigroup

(0.6) S0(p) :=
{(

a b
c d

)
∈ Mat(2 × 2,Z)

∣∣∣∣ p � |a, c ∈ pZ, ad − bc �= 0
}

then H1
c (Γ0(p), V ) inherits a continuous action of the Hecke operators U and T�, � �= p.

In many examples, the U -operator is completely continuously on H1
c (Γ0(p), V ). This is

trivially the case if V is finite dimensional over Qp. We will see that it is also true for
V = Dκ.

In general, if we have a completely continuous U -operator on a Banach space H and
if h ≥ 0 is a real number, then we define H(h) ⊆ H to be the subspace on which U acts
with slope ≤ h. The space H(h) is characterized as the largest U -invariant closed subspace
of H satisfying the following properties:

(0.7)
(1) U : H(h) −→ H(h) is an isomorphism.

(2) The sequence pnhU−n, n ≥ 0 is a bounded sequence of operators on H(h).

The existence of H(h) follows from the theory of completely continuous operators. More-
over, H(h) is finite dimensional.

A locally analytic character κ : Z×
p −→ Z×

p is said to be arithmetic with signature
(k, ε) if κ(t) = ε(t)tk (t ∈ Z×

p ) where ε is a finite character of Z×
p and k is an integer ≥ 0.

If κ is such a character, then we define the finite dimensional Σ0(p)-module

Lκ :=
{

F (Z) ∈ Qp[Z]
∣∣∣∣ deg(F ) ≤ k

}

where the action of γ =
(

a b
c d

)
∈ Σ0(p) on a polynomial F ∈ Lκ is given by

(F |γ)(Z) := ε(a) · (d − cZ)k · F
(−b + aZ

d − cZ

)
.



Now consider the function ϕκ : Zp −→ Lκ defined by

ϕκ(z) := (Z − z)k.

The coefficients of ϕ(z) are polynomials in z, hence are elements of Aκ. Integrating
coefficient by coefficient, we obtain a map

(0.8).
φκ : Dκ −→ Lκ

µ �−→
∫

ϕκ(z) dµ

and from the simple identity (γκϕκ)(z) = ϕκ(z)|κγ it follows that this map intertwines the
action of Σ0(p). It therefore induces a Hecke equivariant map

φκ,∗ : H1
c (Γ0(p),Dκ) −→ H1

c (Γ0(p), Lκ).

Since Lκ is a finite dimensional vector space over Qp the cohomology group on the right is
definitely finite dimensional. By the theory of Eichler and Shimura we know that classical
cusp forms of weight k + 2 contribute elements to this group. In this spirit, we regard
H1

c (Γ0(p), Lκ) as the space of classical modular symbols of weight κ. On the other hand,
the space H1

c (Γ0(p),Dκ) has all the appearances of being infinite dimensional. We will
refer to its elements as rigid analytic modular symbols of weight κ. Since the U -operator
acts completely continuously on H1

c (Γ0(p),Dκ), its subspaces of bounded slopes are finite
dimensional. We will prove the following theorem.

(0.9) Theorem. (Comparison Theorem). Suppose κ is an arithmetic character of signa-
ture (k, ε). Then for each real number h with 0 ≤ h < k + 1, the map φκ : Dκ −→ Lκ

induces an isomorphism

φ
(h)
κ,∗ : H1

c (Γ0(p),Dκ)(h)−̃→H1
c (Γ0(p), Lκ)(h).

It is interesting to compare this theorem with the construction of p-adic distributions
associated to classical modular symbols of slope less than k + 1 (by Mazur-Swinnerton-
Dyer, Vishik, Amice-Velu, and Mazur-Tate-Teitelbaum). Indeed, the theorem should be
viewed as an equivariant version of that construction. For more details, see section 8.

§1. Modular symbols.

Let V be a Qp-vector space with a right action of the semigroup S0(p) (see (0.6)). Then
we may form the space H1

c (Γ0(p), V ) of one-dimensional compactly supported cohomology
classes. This space is endowed with a natural action of the Hecke operators U and T�,
� �= p. As mentioned in the introduction, it is possible to give a fairly explicit description
of this space in terms of modular symbols. We recall that description here.



Let D0 = Div0(P1(Q)) be the group of divisors of degree zero supported on P1(Q)
and note that GL(2,Q) acts on D0 by fractional linear transformations. If Φ : D0 −→ V
is an additive homomorphism and γ ∈ S0(p) we define Φ|γ : D0 −→ V by

(1.1) (Φ|γ)(D) := Φ(γD)|γ

for D ∈ D0. We say that Φ is a V -valued modular symbol over Γ0(p) if Φ|γ = Φ for
each γ ∈ Γ0(p) and denote the space of all V -valued modular symbols over Γ0(p) by
SymbΓ0(p)(V ). Hence, for an additive homomorphism Φ : D0 −→ V , we have

(1.2) Φ ∈ SymbΓ0(p)(V ) ⇐⇒ Φ|γ = Φ for all γ ∈ Γ0(p).

The action of the Hecke operators is defined in the usual way in terms of double cosets.
In particular, the U -operator is defined by

(1.3) Φ|U :=
p−1∑
a=0

Φ|β(a, p), where β(a, p) :=
(

1 a
0 p

)
, a = 0, 1, . . . , p − 1.

1.4. Proposition. There is a canonical isomorphism H1
c (Γ0(p), V ) ∼= SymbΓ0(p)(V ) and

this isomorphism commutes with the action of the Hecke operators.
Henceforth we will identify the spaces H1

c (Γ0(p), V ) and SymbΓ0(p)(V ).
Now suppose V is complete with respect to a norm || ||. An operator L on V is called

unitary if ||L(f)|| = ||f || for all f ∈ V . If Γ0(p) acts as on the right as a group of unitary
operators on V , then H1

c (Γ0(p), V ) inherits a natural Banach space structure defined by
the norm

(1.5) ||Φ|| = sup
D∈D0

||Φ(D)||

for Φ ∈ H1
c (Γ0(p), V ). This supremum exists since ||Φ(−)|| is constant on Γ0(p)-orbits in

D0 and D0 is a finitely generated Z[Γ0(p)]-module.
In the applications, V will often be a Banach space endowed with a right action of

S0(p) satisfying the following properties for γ ∈ S0(p).
(1.6)

(1) If p � |det γ then γ induces a unitary operator on V .
(2) If p|det γ then γ induces a completely continuous operator on V with norm ≤ 1.

We have the following easily established proposition.

1.7. Proposition. Suppose V is a Banach algebra with a continuous right action of
S0(p) satisfying properties (1) and (2) above. Then (1.5) defines a Banach norm on
SymbΓ0(p)(V ). The Hecke operators U , T� define bounded linear operators of norm ≤ 1
and the U -operator is completely continuous.

§2. Rigid analytic function spaces and distributions.



For each r ∈ R+ we define

B[Zp, r] :={x ∈ Cp | ∃a ∈ Zp such that |x − a| ≤ r }.
A[r] :=the Qp-Banach algebra of rigid analytic functions on B[Zp, r] whose Taylor

expansions on Zp have Qp-coefficients.
D[r] :=the Banach dual of A[r].

The norm on A[r] is the usual supremum norm

(2.1) ||f ||r := sup
z∈B[Zp,r]

|f(z)|, (f ∈ A[r])

and the dual norm is defined by

(2.2) ||µ||r := sup
f∈A[r]

f �=0

|µ(f)|
||f ||r

, (µ ∈ D[r]).

(2.3) Proposition. Let r, s ∈ R with r > s > 0.
a. The restriction map ρr,s : A[r] −→ A[s] is a completely continuous monomorphism.

Moreover, the image is dense in A[s].
b. The dual map ρ∗r,s : D[s] −→ D[r] is also a completely continuous monomorphism.

Proof. The first assertion is a well-known property of rigid analytic functions. The second
assertion is then an immediate consequence of the first.

Define the limits

(2.4) A[0] := lim−→
r>0

A[r], D[0] := lim←−
r>0

D[r]

with the respect to the connecting morphisms rhor,s and ρ∗r,s defined in proposition 2.3.
We identify A[0] with the space of locally analytic Qp-valued functions on Zp and endow
it with the inductive topology. If f ∈ A[0] is a locally analytic function on Zp, we say that
r > 0 is a radius of definition for f if f ∈ A[r].

Similarly we identify D[0] with the space of continuous linear functionals on A[0]. The
topology on D[0] is induced by the family of norms || ||r, r > 0, defined in (2.2). These
norms increase as r approaches zero. More precisely,

(2.5) ||µ||r ≤ ||µ||s for r > s > 0.

§3. Representation spaces.

If κ : Z×
p −→ Z×

p is a locally analytic character then for each real number r with
0 < r < p, (0.3) defines an action of Σ0(p) on A[r] and hence by duality also on D[r].
These actions commute with the connecting morphisms A[r] −→ A[s] and D[s] −→ D[r]



for 1 ≥ r > s > 0, hence we also obtain a Σ0(p)-action on the limits (2.4). We will denote
the resulting Σ0(p)-spaces, respectively, by

(3.1) Aκ[r] and Dκ[r] for 0 ≤ r < p.

In fact, a careful calculation reveals that if γ ∈ Σ0(p) and δ = |det γ|, then the action
of γ on Aκ[0] increases the radius of definition by a factor of δ−1. Indeed, we have the
following proposition whose proof is straightforward.

(3.2) Proposition. For each r ∈ (0, p), and each γ ∈ Σ0(p) with δ = |det γ|, γ induces
bounded linear operators of norm 1: γ′

κ : Aκ[rδ] −→ Aκ[r], f �−→ γ′
κf , and γ′

κ : Dκ[r] −→
Dκ[rδ], µ �−→ µ|γ′

κ. Moreover, the following diagrams are commutative:

Aκ[r]
γκ−→ Aκ[r] Dκ[r]

γκ−→ Dκ[r]

ρr,rδ

� ∥∥∥∥ and
∥∥∥∥ ρ∗r,rδ

Aκ[rδ]
γ′

κ−→ Aκ[r] Dκ[r]
γ′

κ−→ Dκ[rδ]

The semigroup S0(p) (see (0.6)) is contained in Σ0(p) and therefore acts on the right
on Dκ[r] for each r > 0. From proposition 3.2 it follows that this action satisfies the
conditions (1.6). Hence, by proposition 1.7 we see that H1

c (Γ0(p),Dκ[r]) is naturally a
Banach space on which the Hecke operators U , T� act as bounded operators of norm ≤ 1.
Moreover U is completely continuous on this space.

Since the action of Σ0(p) intertwines the morphism ρ∗r,s : Dκ[s] −→ Dκ[r] for each
r, s with p > r > s > 0, we can extend the Σ0(p)-action to an action on the limit Dκ[0].
Passing to cohomology, we obtain for each r, s with p > r > s ≥ 0 a natural morphism

(3.3) ρ∗r,s : H1
c (Γ0(p),Dκ[s]) −→ H1

c (Γ0(p),Dκ[r])

which commutes with the Hecke operators. Passing to the limit, we obtain an isomorphism
of Hecke modules

(3.4) H1
c (Γ0(p),Dκ[0])−̃→ lim←

r>0

H1
c (Γ0(p),Dκ[r]).

§4. Locally polynomial function spaces and distributions.
Fix a non-negative integer k ≥ 0 and for each real number r > 0, let Pk[r] ⊆ A[r]

denote the finite dimensional subspace consisting of functions on B[Zp, r] whose restriction
to each closed ball of radius r is a polynomial function of degree ≤ k. Let Lk[r] be the
space of linear functionals on Pk[r] and endow Lk[r] with the norm || ||r,k defined in the
usual way by

(4.1) ||µ||r,k := sup
0 �=f∈Pk[r]

|µ(f)|
||f ||r



for µ ∈ Lk[r]. For r > s > 0 we have the restriction map ρr,s : Pk[r] −→ Pk[s] and its
transpose ρ∗r,s : Lk[s] −→ Lk[r]. We form the limits

(4.2) Pk[0] := lim→
r>0

Pk[r] and Lk[0] := lim←
r>0

Lk[r]

with respect to the connecting morphisms ρr,s and ρ∗r,s. The space Pk[0] is canonically
isomorphic to the space of functions on Zp that are locally given by polynomials of degree
≤ k and Lk[0] is the space of linear functionals on Pk[0]. We endow the space Lk[0] with
the family of norms || ||r,k inherited from the spaces Lk[r], r > 0.

Now suppose κ : Z×
p −→ Z×

p is an arithmetic character of signature (k, ε). Then
the subspace Pk[r] ⊆ Aκ[r] is invariant under the weight κ action of Σ0(p). We let Pκ[r]
denote Pk[r] with this action of Σ0(p) and let Lκ[r] denote the dual space Lk[r] with the
dual right action. We write Lκ for Lκ[1] and note that there is a natural isomorphism
between this and the space Lκ defined in the introduction.

As in the last section, the cohomology groups H1
c (Γ0(p),Lκ[r]), r ∈ [0, p), are endowed

with natural actions of the Hecke operators U, T� and, analogous to (3.4), we have a natural
isomorphism of Hecke modules

(4.3) H1
c (Γ0(p),Lκ[0])−̃→ lim←

r>0

H1
c (Γ0(p),Lκ[r]).

§5. The operator U ′.

From proposition 3.2 it easily follows that for each r ∈ (0, p) there is a unique operator

(5.1) U ′ : H1
c (Γ0(p),Dκ[r]) −→ H1

c (Γ0(p),Dκ[r/p])

satisfying U = ρ∗r,r/p ◦ U ′. Indeed, for Φ : D0 −→ Dκ[r] an additive homomorphism and
γ ∈ S0(p), define Φ|γ′ : D0 −→ Dκ[r/p] by (Φ|γ′)(D) := Φ(γD)|γ′

κ for D ∈ D0. Then
Φ|U ′ is given by Φ|U ′ :=

∑p−1
a=0 Φ|β(a, p)′ where β(a, p) ∈ S0(p) are as in (1.3). A standard

calculation shows that Φ|U ′ ∈ H1
c (Γ0(p),Dκ[r/p]). From the definitions we have

(5.2) U = ρ∗r,r/p ◦ U ′ = U ′ ◦ ρ∗pr,r

whenever r < 1.

(5.3) Proposition. The operator U ′ is unitary. In other words, for each r ∈ (0, p) and
each Φ ∈ H1

c (Γ0(p),Dκ[r]) we have

||Φ|U ′||r/p = ||Φ||r.

Proof. It follows immediately from the definitions that U ′ has norm ≤ 1. Hence, for any
Φ ∈ H1

c (Γ0(p),Dκ[r]) we have ||Φ|U ′||r/p ≤ ||Φ||r.



For each f ∈ A[r] define the function fp ∈ A[r/p] by

fp(z) :=

{
f(z/p) if z/p ∈ B[Zp, r];

0 otherwise.

A simple calculation confirms that ||fp||r/p = ||f ||r and moreover that (β(0, p)′κfp)(z) =
f(z) and (β(a, p)′κfp)(z) vanishes identically for a ∈ Z×

p . Hence

∫
fp(z) d(Φ|U ′)(β(0, p)−1D) =

p−1∑
a=0

∫
(β(a, p)κfp)(z) dΦ(β(a, p)β(0, p)−1D)

=
∫

f(z) dΦ(D).

We therefore have

||Φ||r = sup
0�=f∈A[r]

D∈D0

∣∣∫ f(z) dΦ(D)
∣∣

||f ||r

= sup
0�=f∈A[r]

D∈D0

∣∣∫ fp(z) d(Φ|U ′)(D)
∣∣

||fp||r/p

≤ ||Φ|U ′||r/p

This completes the proof of proposition 5.3.

(5.4) Corollary. For each r ∈ [0, p) the U -operator acts injectively on H1
c (Γ0(p),Dκ[r]).

Proof. If r > 0, then U = ρ∗r,r/p ◦ U ′ is the composition of two injective maps, hence is
injective. The statement for r = 0 follows by passing to the limit.

(5.5) Definition. If H is a vector space on which U operates, we define H# := ∩∞
n=1 H|Un.

In other words, for Φ ∈ H, we have

Φ ∈ H# ⇐⇒ ∀n > 0∃Φn ∈ H such that Φn|Un = Φ.

Note that if H is a Banach space, then H# is not necessarily a closed subspace, not
even if U is completely continuous.

(5.6) Proposition. For each r > 0 the natural maps

H1
c (Γ0(p),Dκ[0])#−̃→H1

c (Γ0(p),Dκ[r])#, H1
c (Γ0(p),Lκ[0])#−̃→H1

c (Γ0(p),Lκ[r])#

are isomorphisms. Moreover, for each r ∈ [0, p) the operator U acts invertibly on the
spaces H1

c (Γ0(p),Dκ[r])# and H1
c (Γ0(p),Lκ[r])#.

Proof. By corollary 5.4, we have U acts injectively, hence invertibly on H1
c (Γ0(p),Dκ[r])#

for each r ∈ [0, p). If r > 0, then Lκ[r] is finite dimensional, hence H1
c (Γ0(p),Lκ[r])



is also finite dimensional. It follows that H1
c (Γ0(p),Lκ[r])# is the sum of the pseudo-

eigensubspaces for U with non-zero pseudo-eigenvalue. In particular U acts invertibly on
H1

c (Γ0(p),Lκ[r])#. Passing to the limit we obtain isomorphisms

H1
c (Γ0(p),Dκ[0])#−̃→ lim←

r>0

H1
c (Γ0(p),Dκ[r])#

H1
c (Γ0(p),Lκ[0])#−̃→ lim←

r>0

H1
c (Γ0(p),Lκ[r])#

The proof will be complete if we can show that ρ∗r,s is an isomorphism whenever p > r >
s > 0. For this, it suffices to prove that ρ∗pr,r is an isomorphism for every r ∈ (0, 1).

We first show that ρ∗pr,r is injective. On H1
c (Γ0(p),Dκ[r])# this follows from (4.3). So

suppose Φ ∈ H1
c (Γ0(p),Lκ[r])# and ρ∗pr,r(Φ) = 0. Then Φ|U = ρ∗pr,r(Φ)|U ′ = 0. But we

have already remarked that U is injective on H1
c (Γ0(p),Lκ[r])#. Hence Φ = 0.

Next we show that ρ∗pr,r is surjective. For Φ ∈ H1
c (Γ0(p),Dκ[pr])#, consider the

element Ψ := (Φ|U−1)|U ′ in H1
c (Γ0(p),Dκ[r])#. We have

ρ∗pr,r(Ψ) = ρ∗pr,r((Φ|U−1)|U ′) = (Φ|U−1)|U = Φ.

This proves that ρ∗pr,r is surjective on H1
c (Γ0(p),Dκ[pr])#. A similar argument shows that

ρ∗pr,r is surjective on H1
c (Γ0(p),Lκ[pr])#. This completes the proof of the proposition.



§6. Weakly h-admissible distributions.
It is customary to classify distributions µ ∈ D[0] (or Lk[0]) according to the “rate of

growth” of ||µ||r as r → 0+.

(6.1) Definition. (Weakly h-admissible distributions). For a real number h ≥ 0 we say
that a distribution µ ∈ Dκ[0] is weakly h-admissible if ||µ||r = O(r−h). The space of all
weakly h-admissible distributions will be denoted D(h). Hence, for µ ∈ D[0] we have

µ ∈ D(h) ⇐⇒ ||µ||r = O(r−h) as r → 0+

Similarly, we say that a locally polynomial distribution µ ∈ Lk[0] is weakly h-admissible if
||µ||r,k = O(r−h) as r → 0+ and denote the space of all weakly h-admissible elements by
L(h)

k . Hence for µ ∈ Lk[0] we have

µ ∈ L(h)
k ⇐⇒ ||µ||r,k = O(r−h) as r → 0+

For an aritrary locally analytic character κ : Z×
p −→ Z×

p , the weight κ action of Σ0(p) on

D[0] preserves the subspace D(h). We let D(h)
κ denote D(h) with this action of Σ0(p). If κ

is arithmetic of signature (k, ε), we define L(h)
κ similarly.

(6.2) Remarks.
(a) In the literature it is customary to say that µ ∈ D[0] is h-admissible if ||µ||r =

o(r−h). We find the above notion of weak h-admissibility more useful for our
purposes.

(b) The space of weakly 0-admissible distributions is just the space of bounded mea-
sures on Zp.

Every µ ∈ D[r] restricts to an element µ ∈ Lk[r] and we clearly have an inequality

||µ||r,k ≤ ||µ||r.

From this we see that restriction gives us a natural map

(6.3) D(h) −→ L(h)
k .

(6.4) Theorem. Let k be a non-negative integer and h be a positive real number < k + 1.
Then the restriction morphism (6.3) is an isomorphism: D(h)−̃→L(h)

k .

This is due to Vishik. A proof is outlined in the paper of Mazur, Tate, and Teitelbaum.

(6.5) Corollary. If κ is arithmetic of signature (k, ε) and if h < k + 1 then D(h)
κ −̃→L(h)

κ

is an isomorphism of Σ0(p)-modules.

(6.6) Proposition. For each r ∈ (0, p) the isomorphisms of proposition 5.6 restrict to
isomorphisms

H1
c (Γ0(p),D(h)

κ )#−̃→H1
c (Γ0(p),Dκ[r])(h), H1

c (Γ0(p),L(h)
κ )#−̃→H1

c (Γ0(p),Lκ[r])(h).



Proof. It suffices to show that ρ∗r,0(H
1
c (Γ0(p),D(h)

κ )#) = H1
c (Γ0(p),Dκ[r])(h) and corre-

spondingly that ρ∗r,0(H
1
c (Γ0(p),L(h)

κ )#) = H1
c (Γ0(p),Lκ[r])(h). For Φ ∈ H1

c (Γ0(p),D(h)
κ )#

and s > 0 we let Φs := ρ∗s,0(Φ). With this notation we have

||Φr|U−n||r = ||Φr|U−n|U ′n||r/pn (by proposition 5.3)

= ||Φr/pn ||r/pn

From this equality we therefore have

||Φr|U−n||r = O(pnh) as n → ∞ ⇐⇒ ||Φr/pn ||r/pn = O(pnh) as n → ∞.

Hence Φr ∈ H1
c (Γ0(p),Dκ[r])(h) if and only if Φ ∈ H1

c (Γ0(p),D(h)
κ )#. This proves the first

assertion. The second assertion follows similarly.

§7. The Comparison Theorem.

We are now prepared to prove the comparison theorem (0.9).

(7.1) Theorem. Let κ be an arithmetic character of signature (k, ε) and suppose 0 ≤ h <
k + 1. Then the map

φκ : H1
c (Γ0(p),Dκ)(h) −→ H1

c (Γ0(p),Lκ)(h)

is an isomorphism of Hecke modules.

Proof. Consider the following commutative diagram:

(7.4)

H1
c (Γ0(p),Dκ)(h) −→ H1

c (Γ0(p),Lκ)(h)

ρ∗1,0

 ρ∗1,0

H1
c (Γ0(p),D(h)

κ )# −→ H1
c (Γ0(p),L(h)

κ )#.

The vertical maps are isomorphisms by proposition 6.6 and the lower horizontal map is an
isomorphism according to theorem 6.4 and its corollary 6.5. The theorem follows from the
commutativity of the diagram.

§8. Final remarks. Since the U -operator is completely continuous on H1
c (Γ0(p),Dκ) we

may form the Fredholm determinant

(8.1) Pκ(t, U) := det(1 − tU).

This is an entire function of t with coefficients in Zp. It is tempting to guess that Pκ(t, U)
is in fact identical to the characteristic power series of the U -operator acting on overconver-
gent modular forms of weight κ. Even though the evidence is rather scant at the moment
we will call this a conjecture.



(8.2) Conjecture. Pκ(t, U) is equal to the characteristic power series of the U -operator
acting on overconvergent modular forms of weight κ.

The only evidence for this at the moment consists of the comparison theorem 7.1.

We view the comparison theorem as an equivariant version of the construction of p-
adic L-functions associated to classical modular symbols. More precisely, if κ is arithmetic
of signature (k, ε) and h < k+1, then the construction of Vishik, Amice-Velu, Mazur-Tate-
Teitelbaum associates to each modular symbol ϕ ∈ H1

c (Γ0(p), Lκ)(h) a weakly h-admissible
p-adic distribution µϕ ∈ D(h). The following theorem is easily confirmed.

(8.3) Theorem. Suppose Φ ∈ H1
c (Γ0(p),D(h)

κ )# corresponds to ϕ in diagram (7.4). Then

µϕ = Φ ({ 0 } − { i∞}) .


