
Computations on X0(11)

§0. Overview.
Let’s start with a quick overview of the structure of the computation. Let Γ = Γ0(11),

let p be a prime of good ordinary reduction for the elliptic curve X0(11), and let Γ0 =
Γ0(11p). Consider the p-adic topological vector spaces

D := D(P(Qp)),

D† := D†(P(Qp), 1/p
)
,

D0 := D(Zp),

D†
0 := D†(Zp, 1).

These are all described in the notes on distributions. The spaces D, D† are Γ-modules,
while D0, D†

0 are Γ0-modules. There is a natural commutative diagram

D ↪→ D† ρ−→ IndΓ
Γ0

Qp� � �
D0 ↪→ D†

0

ρ0−→ Qp

in which the maps in the first row are Γ-morphisms, those in the second row are Γ0-
morphisms, and the vertical arrows commute with the action of Γ0. The vertical maps are
defined by “restriction to Zp”.

These maps induce a sequence of maps on modular symbols

H1
c (Γ,D) ↪→ H1

c (Γ,D†)
ρ∗−→ H1

c (Γ, IndΓ
Γ0

Qp)
r
� r

� r
�

H1
c (Γ0,D0) ↪→ H1

c (Γ0,D†
0)

ρ0∗−→ H1
c (Γ0,Qp).

The Hecke operators Tn (p � |n) act on all of these spaces and all of the above arrows
commute with these operators. We also have operators Up, which commute with all arrows
in the diagram. The operators Tn and Up all commute with one another.

Important Fact: All maps in the above diagram, except ρ∗ and ρ0∗, are isomorphisms
when restricted to the “finite slope subspaces” for Up. Moreover, the maps ρ∗, ρ0∗ are
isomorphisms when restricted to the “slope < 1” subspaces.

Our Goal: Let ϕ be a Hecke eigenvector in H1
c (Γ0,Qp) of slope 1. Our goal is to compute

a Hecke eigenvector Φ ∈ H1
c (Γ0,D†

0) such that ρ0∗(Φ) = ϕ.

More precisely, we let ϕ be a Hecke eigenvector in H1
c (Γ0,Qp) associated to the elliptic

curve X0(11) (i.e. an “old” cohomology class) and assume also that the eigenvalue β of Up

acting on ϕ is divisible by p, in fact ordp(β) = 1. Thus ϕ is one of the two (either even or
odd) modular symbols to which the method of Vishik-Amice-Velu fails to attach a p-adic
L-function. To attempt to construct such a p-adic L-function, we proceed in three steps:

Step 1: Compute an element Φ0 ∈ H1
c (Γ0,D†

0), which lifts ϕ, i.e. such that ρ0∗(Φ0) = ϕ.
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Step 2: For each n ≥ 0 compute Φn := β−n · Φ0|Un
p and compute the limit

Φ := lim
n→∞

Φn ∈ H1
c (Γ0,D†

0).

I expect this limit exists, but I still have no complete proof. For now, let’s assume the
limit exists. In that case, we must have Φ|Up = βΦ, so Φ has finite slope, and it follows
that Φ lives in the image of the inclusion H1

c (Γ,D0) ↪→ H1
c (Γ,D†

0). Thus we may regard Φ
as an element of H1

c (Γ,D0). As a double-check, we should now confirm that this Φ is an
eigenvector for all the Hecke operators with the same eigenvalues as ϕ.

Step 3: Finally, we calculate the p-adic L-function Lp(Φ, s). This is the p-adic L-function
we are looking for.

Remarks:
1. Though the above outline does not explicitly mention any of the Γ-cohomology spaces,

i.e. the first row of the above diagram, I think we will want to use them. I expect it
will be easier to do some of our calculations at level 11 rather than level 11p.

2. I believe the limit in (2) will exist, but am not certain. In that case, the p-adic L-
function in (3) will interpolate the critical values of the complex L-function in the
usual way. If I am wrong, and the limit does not exist, then we will have to find
another way of constructing a Hecke eigenclass out of the lifting Φ0. In any case, I
don’t think it will be hard to make such an eigenclass, but we’ll have to see what
comes out.

§1. The Steinberg module as Γ-module.

We need to have a very easy to use description of the Steinberg module as a Γ-module.
This is given to us by the well-known Manin relations (see reference [3] in the notes on
distributions), but it will be convenient to make these explicit in our special case. The
theorem at the end of this section explains how, in this case, the Manin relations reduce
to a single relation.

The Steinberg module is the Z[GL2(Q)]-module

∆0 := Div0(P1(Q)).

The action of GL2(Q) on ∆0 is given by standard fractional linear transformations acting
on P1(Q) on the left. Our interest in this module is motivated by the fact that

H1
c (Γ,M) ∼= HomΓ(∆0,M)

for any Γ-module M . Before continuing, I should explain my conventions. I will always
assume M is a right Γ-module. On the other hand, ∆0 is a left Γ-module, so I’d better
explain what I mean by a Γ-morphism ∆0 −→ M . My convention is that a right (left)
Γ-module M may be considered a left (right) Γ-module by defining γm := m|γ−1 (m|γ :=
γ−1m) for any γ ∈ Γ, m ∈ M . If M is a right Γ-module and ϕ : ∆0 −→ M is any Z-linear
map, then for γ ∈ Γ we define

ϕ|γ : ∆0 −→ M
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by the rule (ϕ|γ)(D) = ϕ(γD)|γ. Thus ϕ : ∆0 −→ M is a Γ-morphism if and only if
ϕ|γ = ϕ for all γ ∈ Γ.

If γ =
(

a b
c d

)
∈ GL+

2 (Q), I will use the notation [γ] =
[
a b
c d

]
to denote the

singular 1-chain in the extended upper half-plane H∗ represented by the geodesic path
joining a

c to b
d . I’ll call such a 1-chain a “modular path” and any finite formal sum of

such modular paths, a modular 1-chain. The Z-module of all such modular chains will be
denoted

Z1 := Z1(H∗,P1(Q)),

which we regard as a module of 1-cycles in H∗ relative to the boundary P1(Q) of H∗.
The group PGL+

2 (Q) acts on Z1 via standard fractional linear transformations on H∗,
hence Z1 is naturally a PGL2(Q)-module. If β, γ ∈ GL+

2 (Q) then we have

β · [γ] := [βγ].

The boundary map gives us a surjective GL+
2 (Q)-morphism

∂ : Z1 −→ ∆0.

We say two modular chains c, c′ are homologous if ∂c = ∂c′. Thus ∂ induces a PGL+
2 (Q)-

isomorphism from the one-dimensional relative homology of the pair (H∗,P1(Q)) to the
Steinberg module ∆0:

∂ : H1(H∗,P(Q);Z)
∼=−→ ∆0.

Let G = PSL2(Z). A modular path of the form [γ] with γ ∈ G is called a “unimodular
path” and any finite formal sum of such unimodular paths is called a unimodular 1-chain.
Using continued fractions it is easy to see (and is a well-known result of Manin [3]) that
every modular chain is homologous to a unimodular chain. Moreover, G acts transitively
on the unimodular paths. Indeed, the map

G −→ Z1

γ �−→ [γ]

is a bijection from G to the set of unimodular paths in Z1. Extending by linearity, we
obtain a G-morphism Z[G] −→ Z1, and composing with the boundary map ∂ we obtain a
surjective G-morphism

e : Z[G] −→ ∆0

is a surjective map of G-modules. We know from a result of Manin that the kernel of e is
the right ideal

I := Z[G](1 + τ + τ2) + Z[G](1 + σ)

where τ =
(

0 −1
1 −1

)
and σ =

(
0 −1
1 0

)
. These are the well-known Manin relations.

The Manin relations allow us to describe the structure of ∆0 as a Γ-module in terms of

generators and relations. The map G −→ P1(F11) defined by
(

a b
c d

)
�→ d

c is surjective
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and its fibers are the right Γ-cosets. We choose the section g : P1(F11) −→ G of this map
defined by

g∞ =
(

1 0
0 1

)
, g10 =

(
0 −1
1 −1

)
, g0 =

(
1 −1
1 0

)
;

g1 =
(

0 −1
1 1

)
, g9 =

(
−1 1

1 −2

)
, g5 =

(
1 0

−2 1

)
;

g2 =
(

0 −1
1 2

)
, g4 =

(
1 −1

−2 3

)
, g7 =

(
1 0

−3 1

)
;

g3 =
(

0 −1
1 3

)
, g6 =

(
−1 1

3 −4

)
, g8 =

(
1 0

−4 1

)
.

Note that the elements of each of the four rows above is a left coset of the subgroup
〈τ〉 ⊆ G. Hence by the Manin relations, the sum of any row is an element of Z[G] which
lies in the kernel of the map e : Z[G] −→ ∆0. For each i ∈ P1(F11) define

Di := e(gi) ∈ ∆0.

Theorem. ∆0 is generated as a Γ-module by D∞, D7, and D9. The only Z[Γ]-relation
between these elements is

((
1 −1
0 1

)
− 1

)
D∞ +

(
1 −

(
−5 −1
11 2

))
D7 +

(
1 −

(
4 3

−11 −8

))
D9 = 0.

Proof: A simple calculation shows that the above identity is valid. Indeed, D∞ = {0} −
{∞}, so

((
1 −1
0 1

)
− 1

)
D∞ = {−1} − {0}. Similarly, D7 = {0} − {−1/3}, hence(

1 −
(
−5 −1
11 2

))
D7 = {0} − {− 1

3} − {−1
2} + {− 2

5}; and D9 = {− 1
2} − {−1}, hence(

1 −
(

4 3
−11 −8

))
D9 = {− 1

2} − {−1} − {− 2
5} + {− 1

3}. These sum to zero.

It is not hard to see that this relation is equivalent to the Manin relations. I’ll leave
the details for later.

Corollary: Let M be an arbitrary right Γ-module and choose three elements m7,m9,m∞ ∈
M such that

m∞|∆ = m7

∣∣∣∣
((

2 1
−11 −5

)
− 1

)
+ m9

∣∣∣∣
((

−8 −3
11 4

)
− 1

)
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where ∆ is the difference operator ∆ :=
(

1 1
0 1

)
− 1. Now define

m∞ := m∞

m0 := −m∞

∣∣∣∣
(

1 −1
0 1

)

m1 := m∞

∣∣∣∣
((

1 1
0 1

)
− 1

)

m2 := m9 + m∞

∣∣∣∣
((

1 1
0 1

)
− 1

)

m3 := −m7

m4 := −m7 −m9 −m∞

∣∣∣∣
((

1 1
0 1

)
− 1

)

m5 := −m9 −m∞

∣∣∣∣
((

1 1
0 1

)
− 1

)

m6 := −m9

∣∣∣∣
(
−7 −2
11 3

)

m7 := m7

m8 := m7 + m9

∣∣∣∣
(
−7 −2
11 3

)

m9 := m9

m10 := m∞

∣∣∣∣
((

1 −1
0 1

)
− 1

)
.

Then there is a unique modular symbol ϕ ∈ H1
c (Γ,M) such that

ϕ(Di) = mi, for all i ∈ P1(F11).

Moreover, once the mi are known, the continued fraction algorithm of Manin will efficiently
compute the value of ϕ on any D ∈ ∆0. Conversely, every modular symbol ϕ ∈ H1

c (Γ,M)
arises in this manner.

Proof: This follows immediately from the Manin relations.

§2. The main diagram.

Our main diagram is

H1
c (Γ,D) ↪→ H1

c (Γ,D†)
ρ∗−→ H1

c (Γ, IndΓ
Γ0

Qp)
r
� r

� r
�

H1
c (Γ0,D0) ↪→ H1

c (Γ0,D†
0)

ρ0∗−→ H1
c (Γ0,Qp),

which was briefly described in §0. In this section I will recall what all the terms in the
diagram are and make a few remarks about how we might calculate in them.
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I will use the words “distribution” and “log-differential” almost interchangeably. The
dictionary between the two is described in the notes on distributions. With these identifi-
cations we have

D := D(P(Qp)) = Ωlog(Hp), and

D† := D†(P(Qp), 1/p) =
⊕

x∈P(Fp)

D†(x, 1/p) =
⊕

x∈P(Fp)

Ωlog(W (x, 1/p)).

We also have
D0 := D0(Zp) = Ωlog(Hp(Zp)), and

D†
0 := D†

0(Zp, 1) = Ωlog(W (Zp, 1)).

We will need programs that work efficiently with elements of D† and D†
0. Then D and D0

will take care of themselves.
Let’s start by describing the elements of D†. Let j run over the set {∞, 0, 1, . . . , p −

1} ⊆ P(Cp) and for each such j, let xj ∈ P(Fp) be the congruence class to which j belongs.
For each j we also choose the following uniformizer at j:

wj :=




z − j if j �= ∞;

1/z if j = ∞.

An element µ ∈ D† has a unique representation as a sum of log-differentials

µ =
⊕

j

µj

where each µj ∈ Ωlog(W (xj , 1/p)) and therefore has a unique expansion in the form

µj = a0(j)δj +
∞∑

n=1

an(j)w−n
j · dwj

wj

where δj is the Dirac distribution concentrated at j, or equivalently,

δj :=
d(Y − jX)
Y − jX

∈ Ωlog(W (xj , 1/p)).

There are growth conditions on the coefficients an(j) (see the proposition in section 3 of
the notes on distributions).

The elements of D†
0 are simpler to represent. Each µ ∈ D†

0 is a log-differential µ ∈
Ωlog(W (Zp, 1)) and can therefore be expressed uniquely in the form

µ = a0δ0 +
∞∑

n=1

anz
−n · dz

z
.
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There are also growth conditions on the coefficients an.
The map r : D† −→ D†

0 is given by

⊕
j

µj �−→
∑

j

µj |W (Zp,1).

Explicitly, if µj = a0(j)δj +
∑∞

n=1 an(j)w−n
j · dwj

wj
then to calculate the series of µj |W (Zp,1)

we use the identity

δj = δ0 + (δj − δ0) = δ0 +
d(1 − j/z)
1 − j/z

= δ0 + j · w−1
j

dz

z

and then replace w−1
j by its taylor series in z−1

w−1
j =

1
z − j

=
1/z

1 − j/z
=

∞∑
n=1

jn−1z−n.

The induced module IndΓ
Γ0

(Qp) is defined by

IndΓ
Γ0

(Qp) := Qp[P1(Fp)]

where we write the elements of P1(Fp) as homogeneous row vectors and let Γ act on
these by matrix multiplication on the right. We identify P(Fp) with Fp ∪ {∞} by the
correspondence [c, d] ↔ d

c .
The “residue” map ρ is defined by

ρ : D† −→ IndΓ
Γ0

(Qp)

µ �−→
∑

x∈P(Fp)

(∫
x

1 · dµ
)
· x =

∑
j

a0(j) · xj .

The “restriction map” r : IndΓ
Γ0

(Qp) −→ Qp is defined by

IndΓ
Γ0

(Qp) −→ Qp∑
x

mx · x �−→
∑

x	=x∞

mx.

We also have the Shapiro map

S :
∑
x

mx · x �→ mx∞ .

Both r and S commute with the action of Γ0.
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Lemma. The restriction map r induces an isomorphism on modular symbols:

r∗ : H1
c (Γ, IndΓ

Γ0
Qp)

∼−→ H1
c (Γ0,Qp).

Proof. Define the star operator St on IndΓ
Γ0

Qp by

IndΓ
Γ0

Qp
St−→ IndΓ

Γ0
Qp

∑
x

ax · x �−→
∑
x


∑

y 	=x

ay


 · x

This map is easily seen to be a Γ-isomorphism, hence induces an isomorphism on coho-
mology. Moreover, the following diagram is commutive

H1
c (Γ, IndΓ

Γ0
Qp)

St∗−→ H1
c (Γ, IndΓ

Γ0
Qp)

r∗
� S∗

�
H1

c (Γ0,Qp)
=−→ H1

c (Γ0,Qp).

where S∗ is the Shapiro isomorphism.

Corollary. The operator Up : H1
c (Γ0,Qp) −→ H1

c (Γ0,Qp) is invertible.

Proof: The following diagram is commutative.

H1
c (Γ, IndΓ

Γ0
Qp)

=−→ H1
c (Γ, IndΓ

Γ0
Qp)

S∗
� r∗

�
H1

c (Γ0,Qp)
wpUp−→ H1

c (Γ0,Qp).

The result now follows from the lemma and the fact that wp is invertible on H1
c (Γ0,Qp).

Theorem. The map ρ∗ : H1
c (Γ,D†) −→ H1

c (Γ, IndΓ
Γ0

Qp) is surjective. More precisely, for
arbitrary ψ ∈ H1

c (Γ, IndΓ
Γ0

Qp) we may construct Ψ ∈ H1
c (Γ,D†) such that ρ∗(Ψ) = ψ as

follows. For each D ∈ ∆0 write

ψ(D) =:
∑

x∈P(Fp)

mx(D) · x

where the mx(D) ∈ Qp are uniquely determined by these identities. Choose µ7, µ9 ∈ D† to
be arbitrary overconvergent distributions for which∫

x

1 · dµi = mx(Di)

for i = 7 and i = 9 and for all x ∈ P1(Fp). If we set

ν := µ7

∣∣∣∣
((

2 1
−11 −5

)
− 1

)
+ µ9

∣∣∣∣
((

−8 −3
11 4

)
− 1

)
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then there is a unique solution µ∞ ∈ D† of the difference equation

µ∞|∆ = ν

with the property ρ(µ∞) = ψ(D∞). Then there is a unique modular symbol Ψ ∈ H1
c (Γ,D†)

such that Ψ(Di) = µi for i = ∞, 7, 9. Furthermore, we have ρ∗(Ψ) = ψ.

Proof. By the corollary at the end of the last section, we just need to show that the
difference equation µ∞|∆ = ν has a solution µ∞ ∈ D†.

By the results of the last section

ψ(D∞)|∆ = ψ(D7)
∣∣∣∣
((

2 1
−11 −5

)
− 1

)
+ ψ(D9)

∣∣∣∣
((

−8 −3
11 4

)
− 1

)
.

But the right hand side of this identity is just ρ(ν). Thus ρ(ν) is in the image of the
difference operator ∆. From this it follows at once that

∫
x∞

1 · dν =
∫
Zp

1 · dν = 0.

Thus, by our results on distributions, there is a unique µ∞ satisfying the difference equa-
tion. This completes the proof of the theorem.

§3. Step One:

Let ϕ ∈ H1
c (Γ0,Qp). We wish to compute Φ0 ∈ H1

c (Γ0,D†
0) such that ρ0∗(Φ0) = ϕ.

We do this by taking the following steps.

Step 1a. Compute ψ ∈ H1
c (Γ, IndΓ

Γ0
Qp) such that r∗(ψ) = ϕ.

First define a section of the map Γ −→ P(Fp), γ �→ x∞γ. In other words, for each
x ∈ P(Fp) choose an element γx ∈ Γ such that x∞γx = x.

Now regard ϕ as a Γ0-morphism ϕ : ∆0 −→ Qp and define ψ : ∆0 −→ IndΓ
Γ0

Qp by

ψ(D) :=
∑

x∈P(Fp)

mx(D) · x ∈ IndΓ
Γ0

Qp

where
mx(D) := −ϕ(γxD) +

1
p

∑
y

ϕ(γyD).

A simple calculation shows ψ|γ = ψ for all γ ∈ Γ, hence ψ ∈ H1
c (Γ, IndΓ

Γ0
Qp). Furthermore,

we have
r∗(ψ) = ϕ

as desired.

Step 1b. Compute an element Ψ ∈ H1
c (Γ,D†) such that ρ∗(Ψ) = ψ.
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For this, we just follow the steps described in the statement of the theorem at the end of
the last section. The key step is to solve the difference equation

µ∞|∆ = ν

for µ∞ ∈ D†. An explicit formula for such a µ is given in the notes on distributions.
Finally, define µi for i = ∞, 0, 1, . . . , 10 as in the statement of the corollary at the end

of section 1. We then define Ψ ∈ H1
c (Γ,D†) to be the unique modular symbol for which

Ψ(Di) = µi

for each i = ∞, 0, 1, . . . , 10. This modular symbol can be calculated quickly on any D ∈ ∆0

using this data and Manin’s continued fraction algorithm.

Step 1c. Compute Φ0 := r∗(Ψ) ∈ H1
c (Γ0,D†

0).

First compute a section of the map G −→ P1(Z/11pZ). In other words, for each
x ∈ P1(Z/11pZ), choose an element gx ∈ G whose bottom row represents x in the usual
way. Then for each x ∈ P1(Z/11pZ) let Dx := e(gx). and set

µx := r(Ψ(Dx)) ∈ D†
0.

We define Φ0 ∈ H1
c (Γ0,D†

0) to be the unique modular symbol for which

Φ0(Dx) = µx

for all x ∈ P1(Z/11pZ). This modular symbol can be calculated on any D ∈ ∆0 using
Manin’s continued fraction algorithm.

§4 ... Steps two and three.

These deserve to be the easy part. To be continued ...
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