Computations on X;(11)

60. Overview.

Let’s start with a quick overview of the structure of the computation. Let I' = T'g(11),
let p be a prime of good ordinary reduction for the elliptic curve Xy(11), and let I’y =
['p(11p). Consider the p-adic topological vector spaces

These are all described in the notes on distributions. The spaces D, DT are I'-modules,
while Dy, Dg are I'g-modules. There is a natural commutative diagram

D — DI % Ind Q,

l l

Dy, — D) 2 Q,

in which the maps in the first row are I'-morphisms, those in the second row are I'p-
morphisms, and the vertical arrows commute with the action of I'y. The vertical maps are
defined by “restriction to Z,".

These maps induce a sequence of maps on modular symbols

oir,p) < HNT,D') X~ HYT,Ind;, Q,)
Ti T’l T
H!(To,Dy) — H&(FO,D(T)) 2o HNTo, Q).

The Hecke operators T, (p fn) act on all of these spaces and all of the above arrows
commute with these operators. We also have operators U, which commute with all arrows
in the diagram. The operators T;, and U, all commute with one another.

Important Fact: All maps in the above diagram, except p. and pg., are isomorphisms
when restricted to the “finite slope subspaces” for U,. Moreover, the maps p., po« are
isomorphisms when restricted to the “slope < 1” subspaces.

Our Goal: Let ¢ be a Hecke eigenvector in H (T, Q) of slope 1. Our goal is to compute
a Hecke eigenvector ® € Hcl(FO,D(TJ) such that po.(®) = ¢.

More precisely, we let ¢ be a Hecke eigenvector in H} (I'g, Q,) associated to the elliptic
curve Xo(11) (i.e. an “old” cohomology class) and assume also that the eigenvalue (5 of U,
acting on ¢ is divisible by p, in fact ord,(8) = 1. Thus ¢ is one of the two (either even or
odd) modular symbols to which the method of Vishik-Amice-Velu fails to attach a p-adic
L-function. To attempt to construct such a p-adic L-function, we proceed in three steps:

Step 1: Compute an element ®( € H&(FO,DS), which lifts ¢, i.e. such that po.(Pg) = ¢.
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Step 2: For each n > 0 compute ®,, := 7" - ®g|U}} and compute the limit

®:= lim ®, € H(To,D}).
n—oo
I expect this limit exists, but I still have no complete proof. For now, let’s assume the
limit exists. In that case, we must have ®|U, = P, so ® has finite slope, and it follows
that ® lives in the image of the inclusion H}(T', Dy) — H}(T, Dg). Thus we may regard ®
as an element of H!(T', Dy). As a double-check, we should now confirm that this ® is an
eigenvector for all the Hecke operators with the same eigenvalues as .

Step 3: Finally, we calculate the p-adic L-function L,(®, s). This is the p-adic L-function
we are looking for.

Remarks:

1. Though the above outline does not explicitly mention any of the I"-cohomology spaces,
i.e. the first row of the above diagram, I think we will want to use them. I expect it
will be easier to do some of our calculations at level 11 rather than level 11p.

2. I believe the limit in (2) will exist, but am not certain. In that case, the p-adic L-
function in (3) will interpolate the critical values of the complex L-function in the
usual way. If I am wrong, and the limit does not exist, then we will have to find
another way of constructing a Hecke eigenclass out of the lifting ®¢. In any case, 1
don’t think it will be hard to make such an eigenclass, but we’ll have to see what
comes out.

§1. The Steinberg module as ['-module.

We need to have a very easy to use description of the Steinberg module as a I'-module.
This is given to us by the well-known Manin relations (see reference [3] in the notes on
distributions), but it will be convenient to make these explicit in our special case. The
theorem at the end of this section explains how, in this case, the Manin relations reduce

to a single relation.
The Steinberg module is the Z[G'L2(Q)]-module

Ay = Div’(PY(Q)).

The action of GL2(Q) on Ay is given by standard fractional linear transformations acting
on P1(Q) on the left. Our interest in this module is motivated by the fact that

HX(T, M) = Homp(Ag, M)

for any I'-module M. Before continuing, I should explain my conventions. I will always
assume M is a right I'-module. On the other hand, Ay is a left I'-module, so I'd better
explain what I mean by a I'-morphism Ay — M. My convention is that a right (left)
I-module M may be considered a left (right) '-module by defining ym := m|y~! (m|y :=
v~ tm) for any v € ', m € M. If M is a right I-module and ¢ : Ag — M is any Z-linear
map, then for v € I' we define

oly: Ay — M
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by the rule (¢|v)(D) = @(yD)|y. Thus ¢ : Ag — M is a I-morphism if and only if
wly = ¢ for all v € T.

If v = “ Z € GL3(Q), I will use the notation [y] = CCL 21 to denote the
singular 1-chain in the extended upper half-plane H* represented by the geodesic path
joining ¢ to g. I’ll call such a 1-chain a “modular path” and any finite formal sum of

such modular paths, a modular 1-chain. The Z-module of all such modular chains will be
denoted
ARES Zl(H*7 Pl(Q))7

which we regard as a module of 1-cycles in H* relative to the boundary P1(Q) of H*.
The group PGLJ (Q) acts on Z; via standard fractional linear transformations on H*,
hence Z; is naturally a PGL(Q)-module. If 3,7 € GL3 (Q) then we have

B-Il= [
The boundary map gives us a surjective GL3 (Q)-morphism
0: Z1 — Ao.

We say two modular chains ¢, ¢’ are homologous if dc = d¢/. Thus 9 induces a PGL} (Q)-
isomorphism from the one-dimensional relative homology of the pair (H*,P*(Q)) to the
Steinberg module Ag:

0 Hi(H*,P(Q):;Z) — A,.

Let G = PSL4(Z). A modular path of the form [y] with v € G is called a “unimodular
path” and any finite formal sum of such unimodular paths is called a unimodular 1-chain.
Using continued fractions it is easy to see (and is a well-known result of Manin [3]) that
every modular chain is homologous to a unimodular chain. Moreover, G acts transitively
on the unimodular paths. Indeed, the map

G—>Zl
v— Dl

is a bijection from G to the set of unimodular paths in Z;. Extending by linearity, we
obtain a G-morphism Z[G| — Z;, and composing with the boundary map 0 we obtain a
surjective G-morphism

€. Z[G] — Ao

is a surjective map of G-modules. We know from a result of Manin that the kernel of e is
the right ideal
I:=Z[G)(1+7+7%)+Z[G)(1 +0)
0 -1 0 -1 . .
where 7 = 1 1 and o = 1 0/ These are the well-known Manin relations.
The Manin relations allow us to describe the structure of Ag as a I'-module in terms of

generators and relations. The map G — P!(Fy;) defined by (Z Z) — % is surjective
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and its fibers are the right I'-cosets. We choose the section g : P1(F1;) — G of this map

defined by
(1 0 (0 -1 (1
gOO - O 1 ) glO - 1 _1 ) gO - 1
0 —1 B
1 1 ) 99 —
0 —1 (1 -1
1 2) 9T \—2 3

(0 -1 (-1 1

gs = 1 3/ g6 = 3 _4 ) gs
Note that the elements of each of the four rows above is a left coset of the subgroup

(r) € G. Hence by the Manin relations, the sum of any row is an element of Z[G] which
lies in the kernel of the map e : Z[G] — Ag. For each i € P'(F;;) define

g1

g2

D, = 6(91) € Ao.

Theorem. Ay is generated as a T'-module by Do, D7, and Dg. The only Z[T'|-relation
between these elements s

(6 ) =)o OG0 ) e (- (0 3)) e

Proof: A simple calculation shows that the above identity is valid. Indeed, Do, = {0} —

{00}, s <(é _}) _1> Do = {—1} — {0}. Similarly, Dr — {0} — {=1/3}, hence

(=

(1_ (—11

3

3)) Dr =100 = (=4} = (=3} + (-3) and Do = (-4} = {1}, hence

_8>) Dy ={-1} —{-1} = {2} + {—%}. These sum to zero.

It is not hard to see that this relation is equivalent to the Manin relations. I'll leave
the details for later.

Corollary: Let M be an arbitrary right I'-module and choose three elements mz, mg, Mmoo €

M such that
2 1 -8 =3
(L 5)-1)+m (0 73) )
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1 1

where A is the difference operator A = <0 1

> — 1. Now define

Moo = Moo

)
e ((3 1))
e (3 1))

e (3 1))

Then there is a unique modular symbol o € H}(T', M) such that
o(D;) =m;, forall i€ P1(Fyy).

Moreover, once the m; are known, the continued fraction algorithm of Manin will efficiently
compute the value of ¢ on any D € Ag. Conversely, every modular symbol ¢ € HX(T', M)
arises in this manner.

Proof: This follows immediately from the Manin relations.

§2. The main diagram.
Our main diagram is
H)T,D) < HNT, DY) 25 HYT,Ind;, Q)
r| r| r
HX(To,Dy) — HM:To, D)) 2% HNTY,Q,),

which was briefly described in §0. In this section I will recall what all the terms in the
diagram are and make a few remarks about how we might calculate in them.
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I will use the words “distribution” and “log-differential” almost interchangeably. The
dictionary between the two is described in the notes on distributions. With these identifi-
cations we have

D :=DP(Q,)) = Qog(H,), and
Dl =DI(P(Q,),1/p)= P Dix1/p)= P Qoe(W(x 1/p)).

x€P(F,) xeP(F,)

We also have
Dy :=Dy(Z,) = Qlog(Hp(Zp)), and

D(JS = Dg(zpv 1) = Qlog(W(Zzﬂ 1)).
We will need programs that work efficiently with elements of DT and Dg. Then D and D,
will take care of themselves.
Let’s start by describing the elements of Df. Let j run over the set {c0,0,1,...,p —

1} € P(C,) and for each such j, let x; € P(F,) be the congruence class to which j belongs.
For each j we also choose the following uniformizer at j:

2—j if j# oo
’U)j =

1/z ifj=c0

An element ;1 € D has a unique representation as a sum of log-differentials
n=Du
J
where each 1; € Qi05(W(x;,1/p)) and therefore has a unique expansion in the form

_CLO 5 —l—Zan 711 dw]

where d; is the Dirac distribution concentrated at j, or equivalently,

diY —jX)

;1=
J Y —jX

€ Qlog(W(Xja 1/]9))-
There are growth conditions on the coefficients a,,(j) (see the proposition in section 3 of
the notes on distributions).

The elements of DS are simpler to represent. Each u € Dg) is a log-differential u €
Mog (W (Zp, 1)) and can therefore be expressed uniquely in the form

> dz
= Cl()(S() + Z:lanz” . 7



There are also growth conditions on the coefficients a,,.
The map r : DT — D(T) is given by

B ui— > wilwez,.n)-
j 7

Explicitly, if p; = ag(45)0; + > 0r an(j)w J_” de then to calculate the series of 15|y (z, 1)

we use the identity

d(1—j/2) _,dz
§j:50+(5j—50):50+w do+7J- wl

and then replace wj_l by its taylor series in z~!

1
—1 —1 —n

Z = .7
The induced module Indgo(Qp) is defined by

Indf, (Q,) == Q, [P (F,)

where we write the elements of P'(F,) as homogeneous row vectors and let T’ act on

these by matrix multiplication on the right. We identify P(F,) with F, U {oo} by the

correspondence [c, d] < 4.
C

The “residue” map p is defined by
p:DN — Ind;o (Qp)

[ Z (/xl-du)-x:zao(j) X;j

xeP(Fp)

The “restriction map” r : Indll:o (Qp) — Q, is defined by

Indr, (Q,) — Q,

We also have the Shapiro map

S E My - X — My
X

Both r and S commute with the action of I'y.
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Lemma. The restriction map r induces an isomorphism on modular symbols:

ro : HY(T,Ind}, Q) — H} (Lo, Qp).

Proof. Define the star operator St on Indll:o Q, by

St
Indf, Q, —> Indf, Q,

Xx:ax-xn—>z Zay X

X Y#X
This map is easily seen to be a I'-isomorphism, hence induces an isomorphism on coho-
mology. Moreover, the following diagram is commutive
HMT,Ind- Q,) 2% HY(T,ndk Q)
Tl S|
Hcl(F()va) — Hcl(r()?Qp)-
where S, is the Shapiro isomorphism.
Corollary. The operator U, : H:(To, Q) — HY(To,Q,) is invertible.
Proof: The following diagram is commutative.
H}(I,Indr,Q,) — HY(T,Indp,Qp)
S*l r*l

wpUp

Hcl(FO’Qp) - Hcl(r()?Qp)'

The result now follows from the lemma and the fact that w, is invertible on H}!(Ty, Q,).

Theorem. The map p. : H:(I', D) — HX(T, IndFO Q,) is surjective. More precisely, for

arbitrary ¢ € H(T,Ind}, Qp) we may construct @ € HX(T, D) such that p.(¥) = 1 as
follows. For each D € Ag write

(D) =: Y mx(D) x

x€P(Fp)

where the myx (D) € Q, are uniquely determined by these identities. Choose pz, pg € Dt to
be arbitrary overconvergent distributions for which

/ 1-dp; = mx(D;)

(CIED

fori=17andi=9 and for all x € PY(F,). If we set

() 1) v
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then there is a unique solution s € DI of the difference equation
foo| A = v

with the property p(iiso) = ¥(Doso). Then there is a unique modular symbol ¥ € H!(T, DT)
such that W(D;) = p; for i = 00,7,9. Furthermore, we have p,(V) = 1.

Proof. By the corollary at the end of the last section, we just need to show that the
difference equation pio|A = v has a solution jio, € DI.
-8 =3
(3 3) )

By the results of the last section
But the right hand side of this identity is just p(r). Thus p(v) is in the image of the
difference operator A. From this it follows at once that

/ l-dl/:/ 1-dv=0.
X oo Z

P

vwaa=vo) | (L7 3) 1) +uon

Thus, by our results on distributions, there is a unique p, satisfying the difference equa-
tion. This completes the proof of the theorem.

63. Step One:

Let ¢ € H (T, Q,). We wish to compute &, € HY(Ty,D}) such that po.(Po) = .
We do this by taking the following steps.

Step 1la. Compute ¢ € Hcl(F,Indg0 Q,) such that r.(v) = .

First define a section of the map I' — P(F,), v — Xooy. In other words, for each
x € P(F,) choose an element v, € I' such that x.c7x = x.
Now regard ¢ as a I'p-morphism ¢ : Ag — Q,, and define ¢ : Ag — IndIEO Q, by

(D) = Z mx(D) - x € Indgon

where
mx(D) = —p(1xD) + ! > o(wD).

Py

A simple calculation shows ¢y = 1 for all v € ', hence ¢ € H}(T, IndIE0 Q,). Furthermore,
we have

(1Y) =

as desired.
Step 1b. Compute an element ¥ € H(T, D) such that p. (V) = ).
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For this, we just follow the steps described in the statement of the theorem at the end of
the last section. The key step is to solve the difference equation

foo| A = v
for f10 € DT. An explicit formula for such a p is given in the notes on distributions.
Finally, define u; for i = 00,0,1,...,10 as in the statement of the corollary at the end
of section 1. We then define ¥ € H}(I', D) to be the unique modular symbol for which
U(D;) = p

for each ¢ = 00,0, 1,...,10. This modular symbol can be calculated quickly on any D € A
using this data and Manin’s continued fraction algorithm.

Step 1lc. Compute g :=r,. (V) € Hcl(I‘o,Dg).
First compute a section of the map G — P(Z/11pZ). In other words, for each
x € PY(Z/11pZ), choose an element gx € G whose bottom row represents x in the usual
way. Then for each x € P1(Z/11pZ) let Dy := e(gy). and set
pix = 1(¥(Dy)) € D}
We define ®y € H} (T, Dg) to be the unique modular symbol for which

g (DX) = Ux

for all x € PY(Z/11pZ). This modular symbol can be calculated on any D € Ay using
Manin’s continued fraction algorithm.

84 ... Steps two and three.

These deserve to be the easy part. To be continued ...
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