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1 Abstract

My research interests and contributions mostly are in the areas of prediction, estimation and hypotheses
testing problems for second order discrete- or continuous-time stationary stochastic processes, and related
analytical problems: Toeplitz and Wiener-Hopf operators, orthogonal polynomials on the unit circle and
their continual analogs (Krein’s functions), and approximations in weighted Lebesgue spaces. The basic
problems are:

• Parametric estimation of unknown spectral parameters (approximation of the likelihood function,
local asymptotic normality of families of Gaussian distributions).

• Nonparametric estimation of spectral functionals (construction of asymptotically efficient estima-
tors, bounding the minimax risks of estimators).

• Limit theorems and the large deviation principle for Toeplitz type random quadratic forms and
functionals.

• Testing of simple and composite hypotheses about the spectrum of stationary processes (goodness-
of-fit tests).

• Prediction of discrete- and continuous-time stationary stochastic processes (asymptotic behavior of
the prediction error: direct and inverse problems).

• Asymptotic behavior of Toeplitz and Fredholm determinants, and traces of products of truncated
Toeplitz and Wiener-Hopf operators.

Statistical inferences for dependent data have attracted the attention of many mathematicians and statis-
ticians, not only because of their great theoretical interest, but also because of applications in differ-
ent fields of science. Many practical problems from astronomy, economy, finance, hydrology, statistical
physics, etc., require investigation of the above stated problems.

2 Basic Contributions

1. The above stated problems were considered for the class of Muckenhoupt processes.

2. The local asymptotic normality property of families of Gaussian distributions is established, and
proved that the Whittle statistics are unbiased, consistent, asymptotically normal and asymptoti-
cally efficient estimators for unknown spectral parameters.

3. It was proved that the simple ”plug-in” statistic Φ(IT ), where IT = IT (λ) is the periodogram of
the underlying process X(t) with an unknown spectral density f(λ), is H- and IK-asymptotically
efficient estimator for a linear functional Φ(f), while for a nonlinear smooth functional Φ(f) an H-
and IK-asymptotically efficient estimator is the non-simple ”plug-in” statistic Φ(f̂T ), where f̂T is a
sequence of ”undersmoothed” kernel estimators of the unknown spectral density f(λ).
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4. For different classes of smooth spectral densities (Hölder, Besov, Sobolev), the rate of decrease of
the minimax risks of estimators of spectral functionals is studied, and exact asymptotic bounds for
minimax mean square risks of estimators of linear functionals are obtained.

5. A goodness-of-fit test for composite hypothesis H0 that the hypothetical spectral density of the
underlying process X(t) has the specified form is constructed, extending the Chernov and Lehmann
well-known result for independent observations.

6. Sufficient (close to necessary) conditions in terms of spectral density and generating functions en-
suring central limit theorems for standard normalized Toeplitz-type quadratic forms and functionals
are obtained.

7. The Ibragimov-Giraitis-Surgailis conjecture that the finiteness of the asymptotic variance of a ran-
dom quadratic form is sufficient for applicability of central limit theorem was rejected.

8. For prediction error δT the estimates δT = O(T−γ) and δT = o(T−γ), γ > 0 as T →∞ were obtained
for classes of smooth spectral densities that can possess Muckenhoupt-type and/or polynomial
singularities.

9. Versions of Szegö weak theorem on Toeplitz determinants were obtained.

10. Error orders for integral limit approximations to the traces of products of truncated Toeplitz oper-
ators and matrices generated by integrable real symmetric functions were obtained.

3 The Model

Statistical analysis of Gaussian stationary processes usually involves two type of conditions imposed on
the spectral density f(λ):

(a) Conditions of the first type control the singularities (zeros and poles) of the spectral density function
f(λ), and specify the dependence structure of the underlying stochastic process.

(b) Conditions of the second type refer to smoothness properties of the spectral density function.

Depending on the dependence structure, the stationary processes may display short, intermediate or long
memory. Much of statistical inferences (parametric and non-parametric) is concerned with the short-
memory stationary models, in which case the spectral density of the model is separated from zero and
infinity. However, the data in many fields of science (e.g. in economics, engineering, finance, hydrology,
etc.) occur in the form of a realization of a stationary process X(t) with possibly unbounded or vanishing
spectral density.
A short memory processes is a second order stationary processes possessing a covariance function ρ(u)
and a spectral density function f(λ) which is bounded above and below, i.e.

0 < C1 ≤ f(λ) ≤ C2 <∞,

where C1 and C2 are absolute constants. A typical example of short memory processes is the ARMA
process whose covariance function ρ(u) is exponentially bounded, i.e. |ρ(k)| ≤ Crk, k = 1, 2, . . . , where
0 < C <∞ and 0 < r < 1.
An intermediate memory processes is a second order stationary processes possessing a spectral density
f(λ) that tends to zero as λ→ 0, and covariance function ρ(u) satisfying

∞∑
k=−∞

|ρ(k)| <∞ with
∞∑

k=−∞

ρ(k) = 0.

A typical example of intermediate memory processes is a stationary process whose covariance function
ρ(u) satisfies the condition ρ(k) ∼ Ckα as k →∞, where C 6= 0 and α < −1.
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A long memory processes is a second order stationary processes with covariance function ρ(u) satisfying

∞∑
k=−∞

|ρ(k)| =∞.

A typical example of long memory processes is a stationary process whose covariance function ρ(u)
satisfies the condition ρ(k) ∼ Ckα as k →∞, where C > 0 and −1 < α < 0.
Another well-known example of discrete-time long memory processes, which appears in many applied
problems is a FARIMA(p, d, q) process whose spectral density f(λ) is given by

f(λ) = |1− eiλ|−2dh(λ), 0 < d < 1/2,

where h(λ) is the spectral density of an ARMA(p, q) process.
In the continuous context, a basic process which has commonly been used to model long-range depen-

dence is fractional Brownian motion (fBm) BH with Hurst index H. This is a Gaussian process which
has stationary increments and spectral density of the form

f(λ) =
c

|λ|2H+1
, c > 0, 0 < H < 1, λ ∈ R, (1)

where the form (1) can be understood in the sense of time-scale analysis, or in a limiting sense, since the
fBm BH is a nonstationary process.

A proper stationary model in lieu of fBm is the fractional Riesz-Bessel motion (fRBm), which is a
continuous-time Gaussian process X(t) with spectral density function of the form

f(λ) =
c

|λ|2α(1 + λ2)β
, λ ∈ R, (2)

where 0 < c <∞, 0 < α < 1 and β > 0.
Observe that the processX(t) is stationary if 0 < α < 1/2 and is nonstationary with stationary increments
if 1/2 ≤ α < 1, and under the conditions 0 < α < 1/2, β > 0 and α+β > 1/2, the function f(λ) in (2) is
well-defined for both |λ| → 0 and |λ| → ∞ due to the presence of the component (1+λ2)−β , β > 0, which
is the Fourier transform of the Bessel potential. The exponent α determines the long-range dependence,
or self-similarity of fRBm, while the exponent β indicates the second-order intermittency of the process.
Comparing (1) and (2), we observe that the spectral density of fBm is the limiting case as β → 0 that of
fRBm with Hurst index H = α− 1/2. Thus, the form (2) means that fRBm may exhibit both LRD and
second-order intermittency.

Finally, the data can also occur in the form of a realization of a ”mixed” short-long-memory stationary
process X(t) with spectral density given by f(λ) = fL(λ)fS(λ), where fL(λ) and fS(λ) are the long- and
short-memory components, respectively.

So, it is important to consider a model that will include the above discussed cases. To specify the
model we need the following definition: we say that a nonnegative locally integrable function f(λ) satisfies
the Muckenhoupt condition (A2) (or has Muckenhoupt type singularities), if

sup
1
|J |2

∫
J

f(λ) dλ
∫
J

1
f(λ)

dλ <∞, (A2)

where the supremum is over all intervals J , and |J | stands for the length of an interval J.

Observe that the spectral densities satisfying Muckenhoupt condition may possess singularities. In
particular, functions of the form f(λ) ∼ |λ|α satisfy Muckenhoupt condition if and only if −1 < α < 1.
Condition (A2) controls the singularities of the spectral density θ(λ), and describes the dependence
structure of the underlying process X(t). It is a regularity condition for X(t), and means that the
maximal coefficient of correlation between the ”past” and the ”future” of the process X(t) is less than 1.
We say that a stationary process X(t) is a Muckenhoupt process, if its spectral density function f(λ)
satisfies Muckenhoupt condition.
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4 Descriptions of Problems and Some Results

1. The Parametric Estimation Problem. Assuming that the underlying process X(u) is Gaussian
and its spectral density f(λ) = f(λ, θ) depends on an unknown p-dimensional parameter θ = (θ1, . . . , θp),
investigate whether various estimators of θ, including the exact maximum likelihood, Whittle and mini-
mum contrast estimators of θ, constructed on the basis of an observation X = (X(1), . . . , X(T )) (in the
discrete-time case), and {X(u), 0 ≤ u ≤ T} (in the continuous-time case), possess ”nice” statistical
properties (unbiasedness, consistency, asymptotic normality, asymptotic efficiency and local asymptotic
minimaxity).

This and related problems such as approximation of the likelihood function, local asymptotic normality
of families of Gaussian distributions, were considered in papers [2] - [6] and [8], where for some classes of
discrete-time processes were found ”good” approximations of the likelihood function, was established the
local asymptotic normality property of parametric families of Gaussian distributions, and proved that the
Whittle statistics are unbiased, consistent, asymptotically normal and asymptotically efficient estimators
for unknown spectral parameters.

2. The Nonparametric Estimation Problem. Suppose we observe a finite realization XT =
{X(1), . . . , X(T )} of a zero mean real–valued stationary Gaussian process X(t) with an unknown spectral
density function f(λ), λ ∈ [−π, π]. We assume that f(λ) belongs to a given class F ⊂ Lp[−π, π] (p > 1) of
spectral densities possessing some smoothness properties. Let Φ(·) be some known functional, the domain
of definition of which contains F . The distribution of the process X(t) is completely determined by the
spectral density, and we consider f(λ) as an infinite–dimensional ”parameter” on which the distribution
of X(t) depends.
The problem is to estimate the value Φ(f) of the functional Φ(·) at an unknown point f ∈ F on the
basis of an observation XT , and to investigate the asymptotic (as T → ∞) properties of the suggested
estimators. The main objective is construction of asymptotically efficient estimators for Φ(f).
This and related problems were considered in papers [9] - [11], [16], [18], [19], [25] - [28], where, in
particular, the concepts of H– and IK– efficiency of estimators, based on the variants of Hájek–Ibragimov–
Khas’minskii convolution theorem and Hájek–Le Cam local asymptotic minimax theorem were defined,
and was proved that the simple ”plug-in” statistic Φ(IT ), where IT = IT (λ) is the periodogram of the
underlying process X(t) with an unknown spectral density f(λ), is H- and IK-asymptotically efficient
estimator for a linear functional Φ(f), while for a nonlinear smooth functional Φ(f) an H- and IK-
asymptotically efficient estimator is the non-simple ”plug-in” statistic Φ(f̂T ), where f̂T is a sequence of
”undersmoothed” kernel estimators of the unknown spectral density f(λ).
The problem for discrete-time stationary stochastic fields were discussed in papers [14] and [24], while
the papers [15] and [39] are devoted to the continuous-time case.

3. Testing hypotheses about spectrum of stationary process. Suppose we observe a finite
realization XT = {X(1), . . . , X(T )} of a centered mean real–valued stationary Gaussian process X(t), t =
0,±1, .... The problem of hypotheses testing is: basing on XT construct goodness-of-fit tests for testing a
composite hypothesis H0 that the hypothetical spectral density of the process X(t) has the form f(λ, θ),
where λ ∈ [−π, π] and θ = (θ1, . . . , θp)′ is an unknown vector parameter.
This problem was considered in papers [7] and [29]. In the cases where f(λ, θ) can possess Muckenhoupt–
type ”weak” zeros and/or ”strong” zeros of polynomial type that does not depend on parameter θ, the
limiting distribution of the statistics Φ′T (θ̂)ΦT (θ̂), where θ̂T is the asymptotic estimate of maximum
likelihood of θ, and ΦT (θ̂) is a suitable chosen measure of divergence of the hypothetical spectral density
f(λ, θ) and empirical spectral density IT (λ), was described.
This result is an extension of the well-known Chernov and Lehmann result for independent observations.

4. Limit theorems and the large deviation principle for Toeplitz type stochastic quadratic
forms and functionals. Let X(t), t ∈ R, be a centered real-valued discrete- or continuous-time station-
ary Gaussian process with spectral density f(λ). The problem is: describe the asymptotic distribution
of the Toeplitz type quadratic form (or functional, in the continuous-time case) QT of process X(t),
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generated by an integrable even function g(λ), depending on the properties of spectral density f(λ) and
generating function g(λ). This problem arise both in parametric and nonparametric estimation of the
spectrum of the underlying process X(t). Sufficient (close to necessary) conditions in terms of f(λ) and
g(λ) ensuring central limit theorems for standard normalized quadratic functionals QT of continuous-time
stationary Gaussian process were obtained in papers [12], [15] and [35]. The problem for discrete-time
processes was solved in papers [14], [31] and [33]. The large deviation principle for Toeplitz type random
quadratic forms for discrete-time processes was partially discussed in [22].

5. The Prediction Problem. For simplicity we state the problem in the discrete-time case. Let
X(u), u ∈ Z = {0,±1, . . .}, be a second order discrete-time stationary process with spectral density f(λ),
λ ∈ [−π, π]. Suppose we have observed the past of our process X(u) for a length of time T , that is, the
stochastic variables X(−T ), . . . , X(−1), and want to predict the value X(0) of X(u) at u = 0. We look
for a best mean square linear predictor X̂(0), that is, X̂(0) should be a linear combination of the observed
values X(−T ), . . . , X(−1), and X̂(0) should minimize the mean square prediction error σ2

T (f):

σ2
T (f) = min

{ak}
E

∣∣∣∣∣X(0)−
T∑
k=1

akX(−k)

∣∣∣∣∣
2

,

where E[·] stands for expectation. Let σ2(f) be the prediction error based on the entire past of the
process X(u). The quantity δT (f) = σ2

T (f) − σ2(f) is the ”relative” prediction error of the predictor
X̂(0). It is clear that δT (f) ≥ 0 and δT (f)→ 0 as T →∞. One of the basic problem in prediction theory
of stationary processes is:
Direct Prediction Problem. Describe the rate of decrease of the ”relative” prediction error δT (f) =
σ2
T (f) − σ2(f) to zero as T → ∞, depending on the dependence structure (short, intermediate or long

memory) of the underlying stochastic process X(t) and the smoothness properties of its spectral density
f(λ). The problem for discrete-time processes was considered in papers [1] and [23], and for continuous-
time processes in [30] and [38]. In particular, in [23] was proved that for γ > 0 the estimates δT = O(T−γ)
and δT = o(T−γ) as T →∞ are valid for sufficiently broad classes of spectral densities that can possess
Muckenhoupt-type and polynomial zeros.
In [30] and [38] were obtained explicit expressions for prediction error in the cases of first and second
order continuous-time stationary mixed autoregressive/moving average (ARMA) processes with spectral
densities vanishing at zero.

6. Asymptotic behavior of Toeplitz and Fredholm determinants. The prediction problem is
closely related to the analytical problem of description of the asymptotic behavior of Toeplitz (discrete-
time processes) and Fredholm (continuous-time processes) determinants. These questions were considered
in [1], [23], [30] and [38].

7. Approximations of products of Toeplitz operators and matrices. These approximations
and the corresponding error bounds are of importance in the statistical analysis of stationary processes
(asymptotic distributions and large deviations of Toeplitz type quadratic functionals, estimation of the
spectral parameters and functionals, asymptotic expansions of the estimators, etc.). These questions were
considered in [10], [11], [15], [35] - [37], [40], and [41].

5 The Future

1. There are many new interesting results obtained in the field of statistics of stationary processes that
are not reflected in the existing monographs, and there is a need to summarize these results in a separate
book, and currently, I am working on the monograph ”Stationary Gaussian Processes: Estimation and
Prediction”. On the other hand,

2. Many aspects of the above stated, and related problems are still open, and require further investigation.
Some of these questions are the subject of the research project (joint with Professor at Boston University
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Murad Taqqu) ”Long and Short Memory Stationary Processes: Prediction and Estimation”, supported
by the National Science Foundation Grant # DMS-0706786 (2007-2010).

The papers [35] – [41] are completed within the above project, and the following works are in progress:

1. The prediction problem for discrete-time stationary Gaussian processes with M.S. Taqqu).

2. Asymptotically Efficient Nonparametric Estimation of Spectral Functionals for Gaussian Stationary
Models.

3. Asymptotic Efficiency of the Sample Covariances of Gaussian Stationary Processes.

4. Asymptotic Behavior of the Finite Predictor for Continuous-time Stationary Processes.

5. Trace Classes of Toeplitz Operators and Matrices (with A. A. Sahakyan).

6. Statistics of Stationary Gaussian processes.

3. Future Research: The following problems are of great interest.

1. The inverse prediction problem: For a given rate of decrease of the prediction error to zero, describe
the process compatible with that rate. Specify then dependence structure and the smoothness
properties of their spectral densities.

2. Description of the asymptotic behavior of prediction error for deterministic and generalized sta-
tionary processes.

3. Baxter’s inequality for continuous-time stationary processes and relationship with partial autocor-
relation function and the parameter function for Krein’s system.

4. Characterizations of regularity conditions of stationary processes (in particular, Muckenhoupt pro-
cesses) in terms of covariance and partial autocorrelation functions.

5. Asymptotic efficiency of minimum contrast estimators for continuous-time stationary processes.

6. Obtain necessary and sufficient conditions for applicability of central limit theorems for standard
normalized Toeplitz type random quadratic forms and functionals, and establish large deviation
principle for continuous-time processes.

7. Applications of the obtained and expected results in finance and economics.

6 Presentations

The above results were presented in a number of International Conferences, Workshops and Seminars.
In particular:

• International Congress of Mathematicians, Zurich, Switzerland (1994).

• Vilnius International Conferences on Probability and Statistics (1998, 2002).

• International Conference on Limit Theorems in Probability and Statistics, Hungary (1982).

• 27th International Conference on Stochastic Processes and their Applications, Cambridge, UK
(2001).

• International Conferences ”Harmonic Analysis and Approximations, Armenia (1998, 2001, 2005).

• International Conferences ”Mathematical Problems of Statistical Physics”, Armenia (2000, 2002).
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• International Conference ”Application of Multivariate Statistical Analysis in Economics and Esti-
mation Theory”, Armenia (2004).

• Brown University Analysis Seminar, November, 2005.

• Boston University Probability and Statistics Seminars, 2005, 2006, 2008.

• ”Barcelona Conference on Asymptotic Statistics (BAS2008)”, 2008.

• International Conference ”Statistique Asymptotique des Processus Stochastiques VII” LeMans,
France, March 2009.

• ”The 23rd New England Statistics Symposium”, University of Connecticut, April, 2009.

• Yale University Statistics Seminar, November, 2009.
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