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Abstract. The paper considers a problem of construction of asymptotically efficient estimators for
functionals defined on a class of spectral densities. We define the concepts of H0- and IK-efficiency
of estimators, based on the variants of Hájek–Ibragimov–Khas’minskii convolution theorem and
Hájek–Le Cam local asymptotic minimax theorem, respectively. We prove that �(θ̂T ), where θ̂T
is a suitable sequence of T 1/2-consistent estimators of unknown spectral density θ(λ), is H0- and
IK-asymptotically efficient estimator for a nonlinear smooth functional �(θ).
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1. Introduction

Suppose we observe a finite realization XT = {X(1), . . . , X(T )} of a zero mean
real-valued stationary Gaussian process X(t) with an unknown spectral density
function θ(λ), λ ∈ [−π, π ]. We assume that θ(λ) belongs to a given class � ⊂
Lp = Lp[−π, π ] (p > 1) of spectral densities possessing some smoothness
conditions. Let �(·) be some known functional, the domain of definition of which
contains �. The distribution of the process X(t) is completely determined by the
spectral density, and we consider θ(λ) as an infinite-dimensional ‘parameter’ on
which the distribution of X(t) depends.

The problem is to estimate the value �(θ) of the functional �(·) at an unknown
point θ ∈ � on the basis of an observation XT , and to investigate the asymp-
totic (as T → ∞) properties of the suggested estimators. The main objective is
construction of asymptotically efficient estimators for �(θ).

The problem of asymptotically efficient nonparametric estimation of different
kind of functionals of a spectral density function has been considered by Mil-
lar [16], Ibragimov and Khas’minskii [9, 12], Dahlhaus and Wefelmeyer [2],
Ginovian [6, 7]. The main restriction imposed on spectral density θ(λ) was exis-
tence of constants C1 and C2, such that 0 < C1 � θ(λ) � C2 < ∞. The objective
of the present paper is to extend some results of these papers for broader class �
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that contains spectral densities possessing singularities. Asymptotically efficient
estimators we construct by a method suggested by Ibragimov and Khas’minskii
[9, 12]. Our plan will be as follows:

− We define the concept of local asymptotic normality (LAN) in the spirit of
Ibragimov and Khas’minskii [12], and derive conditions under which the un-
derlying family of Gaussian distributions is LAN at a point θ0 ∈ �.

− Using LAN we state variants of Hájek–Le Cam local asymptotic minimax
theorem and Hájek–Ibragimov–Khas’minskii convolution theorem.

− We define the concepts of H0- and IK-asymptotically efficient estimators,
and prove that the statistic �(θ̂T ), where θ̂T is a suitable sequence of T 1/2-
consistent estimators of unknown spectral density θ(λ), is H0- and IK-asymp-
totically efficient estimator for a nonlinear smooth functional �(θ).

2. Basic Definitions and Preliminary Results

2.1. THE MODEL

Statistical analysis of stationary Gaussian processes usually involves two type of
conditions imposed on the spectral density θ(λ). Conditions of the first type con-
trols the singularities of θ(λ), and describe the dependence structure of the under-
lying process X(t). Conditions of the second type refer to smoothness properties
of θ(λ). To specify the model we need the following definition [10].

DEFINITION 1. We say that a spectral density function θ(λ) satisfies the Muck-
enhoupt condition (A2) (or has Muckenhoupt type singularities), if

sup
1

|J |2
∫
J

θ(λ) dλ
∫
J

1

θ(λ)
dλ < ∞, (A2)

where the supremum is over all intervals J ⊂ [−π, π ], and |J | denotes the length
of J. The class of spectral densities satisfying (A2) we denote by A2.

Remark 1. The spectral densities from the class A2 may possess singularities.
In particular, A2 contains functions of the form θ(λ) ∼ |λ|α , −1/2 < α < 1/2.

Remark 2. In fact (A2) is a weak dependence condition, meaning that the maxi-
mal coefficient of correlation between the ‘past’ and the ‘future’ of the process X(t)

is less than 1. The class of processes X(t) with spectral densities θ(λ) satisfying
(A2) is contained in the class of linearly regular processes and contains the class of
completely regular processes.

Given numbers 0 < α < 1, r ∈ N0 (N0 is the set of nonnegative integers). We
put β = r + α, and denote by Hp(β) the Hölder class of functions, i.e. the class of
functions ψ(λ) ∈ Lp, which have rth derivatives in Lp and satisfy

‖ψ(r)(· + u) − ψ(r)(·)‖p � C|u|α,
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where C is a positive constant. Also by �p(β) we denote the set of all spectral
densities which belong to the class Hp(β).

The basic assumption on the observed process X(t) is the following.

ASSUMPTION 1. X(t) (t ∈ Z) is a zero mean real-valued stationary Gaussian
process with a spectral density θ(λ) satisfying Muckenhoupt condition (A2) and
belonging to a Hölder class �p(β).

2.2. LOCAL ASYMPTOTIC NORMALITY

The notion of local asymptotic normality (LAN) of families of distributions plays
an important role in asymptotic estimation theory. Le Cam, Hájek, Ibragimov and
Khas’minskii and others have shown (see, for instance, Ibragimov and Khas’minskii
[11, 12], Le Cam [14]) that many important properties of statistical estimators
(characterization of limiting distributions, lower bounds on the accuracy, asymp-
totic efficiency, etc.) follow from LAN condition. The significance of LAN for
nonparametric estimation problems has been emphasized by Levit [15], Millar
[16], Ibragimov and Khas’minskii [12] and others. The LAN condition for families
of distributions generated by a stationary Gaussian process with spectral density
depending on a finite-dimensional parameter has been studied by Davies [3], Dzha-
paridze [4] and Ginovian [5]. In [12] Ibragimov and Khas’minskii suggested a
new definition of LAN concept of families of distributions in the case where the
parametric set is a subset of an infinite-dimensional normed space.

Let PT ,θ be the probability distribution of the vector XT = {X(1), . . . , X(T )}
with spectral density θ(λ). The next definition follows Ibragimov and Khas’min-
skii [12] (see also Ginovian [8]).

DEFINITION 2. A family of distributions {PT ,θ , θ ∈ �} is called locally
asymptotically normal (LAN) at θ0 ∈ � in the direction L2 with norming factors
AT = AT (θ0) if there exist a linear manifold H0 = H0(θ0) ⊂ L2 with closure
H0 = L2 and a family {AT } of linear operators AT : L2 → L2 that satisfy:

(1) for any h ∈ H0, ‖AT h‖2 → 0 as T → ∞, where ‖ · ‖2 denotes the L2-norm;
(2) for any h ∈ H0 there is T (h) such that θ0 + AT h ∈ � for all T > T (h);
(3) for any h ∈ H0 and T > T (h), the representation

ln
dPT ,θ0+AT h

dPT ,θ0

(XT ) = �T (h, θ0) − 1
2‖h‖2

2 + φ(T , h, θ0)

is valid, where �T (h) = �T (h, θ0) is a random linear function on H0 asymp-
totically (as T → ∞) N(0, ‖h‖2

2) – normally distributed for any h ∈ H0 and
φ(T , h, θ0) → 0 as T → ∞ in PT ,θ0 – probability.

Note that the presence of LAN property depends on the point θ0, the space L2

and the family {AT }. As regards H0 = H0(θ0), we need only that H0 = L2.



148 M. S. GINOVIAN

DEFINITION 3. We say that a pair of functions (f (λ), g(λ)) satisfies condition
(H1), if f (λ) ∈ �p(β) for 1 < p � 2 and β > 1/p, and g(λ) ∈ Lq, where q is
the conjugate of p: 1/p + 1/q = 1.

We will always assume that � is a subset of the space Lp (p � 1) consisting
of spectral densities satisfying Muckenhoupt condition (A2) and belonging to the
Hölder class �p(β). Define H0 = H0(θ) to be the linear manifold consisting of
bounded on [−π, π ] functions h(λ) such that the pair (θ, hθ−1) satisfies the condi-
tion (H1). We also define AT : L2 → L2 by AT h = [T −1/2θ] · h, that is, AT is the
operator of multiplication by function T −1/2θ(λ). As an immediate consequence
of Theorem 1 in [8] we have

THEOREM 1. Let �, H0 and AT be defined as above. Then the family of distrib-
utions {PT ,θ , θ ∈ �} satisfies LAN condition at any point θ ∈ � in the direction
L2 with norming factors AT and

�T (h) = T 1/2

4π

∫ π

−π

IT (λ) − θ(λ)

θ(λ)
h(λ) dλ, (1)

where

IT (λ) = 1

2πT

∣∣∣∣∣
T∑
t=1

X(t)e−iλt

∣∣∣∣∣
2

(2)

is the periodogram of the process X(t).

2.3. CHARACTERIZATION OF LIMITING DISTRIBUTION. H 0-EFFICIENCY

We now consider the problem of estimating the value �(θ) of a known functional
�(·) at an unknown point θ ∈ � on the basis of an observation XT , which has
distribution PT ,θ . We assume that the family {PT ,θ , θ ∈ �} satisfies the LAN
condition at a point θ0 = f ∈ � in the direction L2 with norming factors AT . We
will also assume the functional �(θ) to be Fréchet differentiable with derivative
�′(θ) satisfying the condition: for f ∈ �

0 < ‖�′(f )f ‖2 < ∞. (3)

Let �̂T be a statistical estimator of �(θ), i.e. a measurable mapping �̂T =
�̂T (XT ): R

T → R
1. We need a version of Hájek–Ibragimov–Khas’minskii con-

volution theorem.
Recall that a statistical estimator �̂T of �(θ) is called H0-regular at θ0 ∈ �,

if for any h ∈ H0 there exists a proper limit distribution F of T 1/2(�̂T − �(θh)),
where θh = θ0 + AT h, and this limit distribution does not depend on h.

The next theorem follows from Theorem 1 and Theorem 3.1 in [12].
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THEOREM 2. Let �̂T be a H0-regular estimator of �(θ) at f ∈ �. Assume that
the pair (f,�′(f )) satisfies (3). Then under the assumptions of Theorem 1 the limit
distribution F of T 1/2(�̂T − �(f )) is a convolution of a probability distribution
G and a centered normal distribution with variance ‖�′(f )f ‖2

2:

F = N(0, ‖�′(f )f ‖2
2) ∗ G. (4)

By a lemma of Anderson (see, e.g., [11], Section 2.10), the distribution F in (4)
is less concentrated in symmetric intervals than N(0, ‖�′(f )f ‖2

2). This justifies
the following definition of H0-efficiency (cf. [2, 16]).

DEFINITION 4. Let the family {PT ,θ, θ ∈ �} be LAN at a point f ∈ �. An
estimator �̂T of �(θ) is called H0-asymptotically efficient at f (in the class of
H0-regular estimators) with asymptotic variance σ 2 = ‖�′(f )f ‖2

2, if

L
{
T 1/2(�̂T − �(θh)) | PT ,θh

} �⇒ N(0, σ 2) as T → ∞,

that is the distribution G in (4) is degenerate.

2.4. A LOWER BOUND FOR THE ASYMPTOTIC MINIMAX RISK. IK-EFFICIENCY

Denote by �T the set of all estimators of �(θ) constructed on the basis of an
observation XT . Let W denote the set of all loss functions w: R

1 → R
1, which are

symmetric and nondecreasing on (0,∞), and satisfy w(x) � 0, w(0) = 0. Also
by We we denote the subset of loss functions w ∈ W which for some constants
C1, C2 > 0 satisfy the condition w(x) � C1 exp{C2|x|}. The next theorem, which
is an immediate consequence of Theorem 1 and Theorem 4.1 in [12], contains a
minimax lower bound for the risk of all possible estimators �̂T of �(·) in the
neighborhood of f ∈ � (cf. [5, 9]).

THEOREM 3. Assume that the pair (f,�′(f )) satisfies (3). Then under the as-
sumptions of Theorem 1, for all w ∈ W

lim inf
δ→0

lim
T→∞

inf
�̂T ∈�T

sup
‖θ−f ‖2<δ

Eθ {w(T 1/2(�̂T − �(f )))} � Ew(ξ),

where ξ is a centered normal random variable with variance ‖�′(f )f ‖2
2.

Next, we define the notion of asymptotically efficient estimators in the spirit of
Ibragimov and Khas’minskii (IK-efficiency) [9, 12].

DEFINITION 5. Let the family {PT ,θ , θ ∈ �} be LAN at f ∈ �. An esti-
mator �̂T of �(θ) is called IK-asymptotically efficient at f for the loss function
w(x) ∈ W, with asymptotic variance σ 2 = ‖�′(f )f ‖2

2, if

lim inf
δ→0

lim
T→∞

sup
‖θ−f ‖2<δ

Eθ {w(T 1/2(�̂T − �(f )))} = Ew(ξ),

where ξ is a centered normal random variable with variance ‖�′(f )f ‖2
2.
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3. Asymptotically Efficient Estimators

First assume that the functional �(f ) is linear and continuous in Lp[−π, π ],
p > 1. It is well-known (see, e.g., [13]) that �(f ) admits the representation

�(f ) =
∫ π

−π

f (λ)g(λ) dλ, (5)

where g(λ) ∈ Lq ; 1/p + 1/q = 1. As an estimator for the functional �(f ) we
consider the averaged periodogram statistics:

�̂T = �(IT ) =
∫ π

−π

IT (λ)g(λ) dλ, (6)

where IT (λ) is the periodogram of X(t) defined by (2).

THEOREM 4. Let �(f ) and �̂T be defined by (5) and (6). Assume that the pair
of functions (f, g) satisfies the conditions (H1) and 0 < ‖fg‖2 < ∞. Then under
the assumptions of Theorem 1, the statistics �̂T is

(a) H0-regular and H0-asymptotically efficient estimator of �(f ) with asymptotic
variance ‖fg‖2

2;
(b) IK-asymptotically efficient estimator of �(f ) for w(x) ∈ We with asymptotic

variance ‖fg‖2
2.

The problem of asymptotically efficient estimation becomes somewhat more
complicated for nonlinear functionals. In this case the statistics �(IT ) is not nec-
essary a consistent estimator for the functional �(f ), and hence instead of the
periodogram IT (λ), we need to use a suitable sequence of consistent estimators f̂T
of f (see [2, 9]). On the other hand, if f̂T is a sequence of consistent estimators
for f , the estimators �(f̂T ), in general, will converge to �(f ) too slowly to be
asymptotically efficient (cf. [9]).

We consider a sequence {f̂T } of estimators for f which are consistent of order
T 2α (α � 1/2), and derive conditions under which the statistics �̂T = �(f̂T )

is asymptotically efficient estimator for �(f ). (An estimator f̂T of f is called
T 2α-consistent with asymptotic variance σ 2, if limT→∞ T 2α

E(f̂T − f )2 = σ 2.)
We assume that f ∈ �p(β), and as an estimator for unknown f we take

f̂T (λ) =
∫ π

−π

WT (λ − µ)IT (µ) dµ. (7)

For the kernel WT (λ) we set down the following assumptions ([2, 9, 17]).

ASSUMPTION 2. WT (λ) = MTW(MT λ), where MT = O(T α). The choice of
α (0 < α < 1) will depend on the appriori knowledge about f and �.
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ASSUMPTION 3. W(λ) is nonnegative bounded even function with W(λ) ≡ 0
for |λ| > 1 and with r = [β],∫ 1

−1
W(λ) dλ = 1,

∫ 1

−1
λkW(λ) dλ = 0, k = 1, 2, . . . , r.

We assume the functional �(·) to be Fréchet differentiable with derivative �′(·)
satisfying (3) and a Hölder condition: there exist constants C > 0 and δ > 0 such
that for any f1, f2 ∈ L2,

‖�′(f1) − �′(f2)‖ � C‖f1 − f2‖δ2. (8)

THEOREM 5. Let the spectral density f (·) and the functional �(·) be such that:

(i) the pair (f,�′(f )) satisfies conditions (H1) and (3);
(ii) �(·) satisfies condition (8) with δ � (2β − 1)−1.

Let the estimator f̂T for f be defined by (7) with the kernel WT (λ) satisfying
Assumptions 2 and 3 with 1

2β < α < δ
δ+1 . Then under the conditions given in

Theorem 1 the statistics �(f̂T ) is:

(a) H0-regular and H0-asymptotically efficient estimator for �(f ) with asymp-
totic variance ‖�′(f )f ‖2

2;
(b) IK-asymptotically efficient estimator of �(f ) for w(x) ∈ We with asymptotic

variance ‖�′(f )f ‖2
2.

4. Proofs

In this section we outline the proof of Theorems 5. The following lemma is essen-
tial for the proof of assertion (a) of the theorem (see [2]).

LEMMA 1. Assume that the family {PT ,θ, θ ∈ �} is LAN at f ∈ �. Then an
estimator �̂T of �(f ) is H0-regular and H0-asymptotically efficient at f with
asymptotic variance ‖f�′(f )‖2

2 if and only if

T 1/2[�̂T − �(f )] − �T (f�
′(f )) = oP (1) as T → ∞,

where �T (·) is defined by (1).

The proof of the next lemma is similar to the proof of Theorem 3 in [6].

LEMMA 2. Let �(f ) and �̂(IT ) be defined by (5) and (6) and let the pair (f, g)
satisfy the conditions (H1) and 0 < ‖fg‖2 < ∞. Then for w ∈ We

lim
T→∞

Ef {w(T 1/2(�̂(IT ) − �(f )))} = Ew(ξ),

where ξ is a centered normal random variable with variance ‖fg‖2
2.
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LEMMA 3. Assume that f ∈ �p(β), and let f̂T be defined by (7) with the kernel
WT (λ) satisfying Assumptions 2 and 3 with 1/2β < α < δ/(δ + 1), then

T 1/2‖f̂T − f ‖1+δ
2 = oP (1) as T → ∞.

Proof. Using the arguments of the proof of Theorem 3.1 in [1] we get

‖f̂T − f ‖2 = OP

(
M

1/2
T T −1/2

) + OP

(
M

−β

T

)
.

Hence, taking into account that MT = O(T α) we can write

T 1/2‖f̂T − f ‖1+δ
2 = OP

(
T

1
2 +( α2 − 1

2 )(1+δ)
) + OP

(
T

1
2 −αβ(1+δ)

)
. (9)

The assumptions imply

1

2
+

(
α

2
− 1

2

)
(1 + δ) < 0 and

1

2
− αβ(1 + δ) < 0.

Hence both terms in (9) are oP (1) as T → ∞, and the result follows. ✷
LEMMA 4. Assume that f ∈ �p(β), and Assumptions 2 and 3 are satisfied. Let
ψ(λ) be a continuous even function on [−π, π ] such that the pair (f,ψ) satisfies
the conditions (H1) and 0 < ‖fψ‖2 < ∞. Then the distribution of the random
variable

ηT = T 1/2
∫ π

−π

ψ(λ)[f̂T (λ) − f (λ)] dλ

as T → ∞ tends to the normal distribution N(0, σ 2), where

σ 2 = 4π
∫ π

−π

ψ2(λ)f 2(λ) dλ.

Proof. By Lemma 2 the distribution of the random variable

ξT = T 1/2
∫ π

−π

ψ(λ)[IT (λ) − f (λ)] dλ

tends to N(0, σ 2). To complete the proof it is enough to show that

|ξT − ηT | = oP (1) as T → ∞. (10)

Putting MT (λ − µ) = t with some easy calculations we have

ηT = T 1/2
∫ π

−π

1T (λ)(IT (λ) − f (λ)) dλ +

+ T 1/2
∫ π

−π

ψ(λ)

[∫ π

−π

f (µ)WT (λ − µ) dµ − f (µ)

]
dλ

= η
(1)
T + ST (say), (11)
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where

1T (λ) =
∫ MT (π−λ)

MT (−π−λ)

ψ

(
λ + t

MT

)
WT (t) dt − ψ(λ).

Along the lines of the proof of Theorem 3 in [17] and Lemma 2 we obtain

|ξT − η
(1)
T | = oP (1) as T → ∞. (12)

Applying Hölder and Minkowski generalized inequalities we can show that

|ST | � T 1/2‖ψ‖q(1 + ‖WT ‖1)EMT ,p(f ), (13)

where Em,p(f ) is the best approximation of f by polynomials of degree m in the
metric of Lp. The condition f ∈ �p(β) implies Em,p(f ) � Cm−β . Since by
assumption α > 1

2β , in view of (13) we get

ST = O
(
T 1/2M

−β

T

) = O
(
T 1/2−αβ

) → 0 as T → ∞. (14)

A combination of (11), (12) and (14) yields (10). Lemma 4 is proved. ✷
Proof of Theorem 5. It follows from (8) that (cf. [13], p. 454)∣∣∣∣�(f̂T ) − �(f ) −

∫ π

−π

�′(f )(λ)(f̂T (λ) − f (λ)) dλ

∣∣∣∣
� ‖f̂T − f ‖ sup

0�θ�1
‖�′(f + θ(f̂T − f )) − �′(f )‖ � C‖f̂T − f ‖1+δ.

Therefore

T 1/2[�(f̂T ) − �(f )] = T 1/2
∫ π

−π

�′(f )(λ)
[
f̂T (λ) − f (λ)

]
dλ +

+ O
(
T 1/2‖f̂T − f ‖1+δ

)
as T → ∞.

Hence, by Lemmas 3 and 4 we can write

T 1/2[�(f̂T ) − �(f )] = T 1/2
∫ π

−π

�′(f )(λ)[IT (λ) − f (λ)] dλ + oP (1). (15)

Now the assertion (a) of the theorem follows from Lemma 1 and (15), while
the assertion (b) is an immediate consequence of Lemma 2 and (15). Theorem 5
is proved. ✷
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