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Abstract. Let X(t), t = 0,±1, . . . , be a real-valued stationary Gaussian sequence with a
spectral density function f(λ). The paper considers the question of applicability of the central limit
theorem (CLT) for a Toeplitz-type quadratic form Qn in variables X(t), generated by an integrable
even function g(λ). Assuming that f(λ) and g(λ) are regularly varying at λ = 0 of orders α and β,
respectively, we prove the CLT for the standard normalized quadratic form Qn in a critical case
α + β = 1

2
.

We also show that the CLT is not valid under the single condition that the asymptotic variance
of Qn is separated from zero and infinity.

Key words. stationary Gaussian sequence, spectral density, Toeplitz-type quadratic forms,
central limit theorem, asymptotic variance, slowly varying functions

DOI. 10.1137/S0040585X97981299

1. Introduction. Let X(t), t = 0,±1,±2, . . . , be a centered (EX(t) = 0) real-
valued stationary Gaussian sequence with a spectral density f(λ) and a covariance
function r(t), i.e.,

r(t) =

∫ π

−π

eiλt f(λ) dλ.(1.1)

We consider a question concerning an asymptotic distribution (as n → ∞) of the
following Toeplitz-type quadratic form of the process X(t):

Qn =

n∑
k,j=1

a(k − j)X(k)X(j),(1.2)

where

a(k) =

∫ π

−π

eiλk g(λ) dλ, k = 0,±1,±2, . . . ,(1.3)

are the Fourier coefficients of some real, even, integrable function g(λ), λ ∈ T =
[−π, π]. We will refer to g(λ) as a generating function for the quadratic form Qn.
Throughout the paper the functions f(λ) and g(λ) are assumed to be 2π-periodic.

The limit distribution of the random variables (1.2) is completely determined by
the spectral density f(λ) and the generating function g(λ), and depending on their
properties it can be either Gaussian (that is, Qn with an appropriate normalization
obeys the central limit theorem (CLT)), or non-Gaussian.

We naturally raise the following two questions:
(a) Under what conditions on f(λ) and g(λ) will the limit distribution of Qn be

Gaussian?
(b) Describe the limit distribution of Qn if it is non-Gaussian.
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In this paper we essentially discuss question (a). This question goes back to the
classical monograph by Grenander and Szegö [9], where they considered this problem
as an application of their theory of the asymptotic behavior of the trace of products
of truncated Toeplitz matrices.

Later this problem was studied by Ibragimov [11] and Rosenblatt [12], in con-
nection with statistical estimation of the spectral (F (λ)) and covariance (r(t)) func-
tions, respectively. Since 1986, there has been a renewed interest in questions (a)
and (b), related to the statistical inferences for long-range dependent processes (see,
e.g., the papers by Avram [1], Fox and Taqqu [4], Giraitis and Surgailis [8], Terrin
and Taqqu [14], Taniguchi [17], and the monograph by Taniguchi and Kakizawa [18]).
In the papers [1], [4], and [8] sufficient conditions for quadratic form Qn to obey the
CLT were obtained.

To state the corresponding results, we need some notation: By Q̃n we denote the
normalized quadratic form

Q̃n =
1√
n

(Qn − EQn).(1.4)

The notation

Q̃n ⊂=⇒ N(0, σ2)(1.5)

will mean that the distribution of the random variable Q̃n converges (as n → ∞) to
the centered normal distribution with variance σ2.

By Tn(f) and Tn(g) we denote the n×n Toeplitz matrices generated by functions f
and g, respectively, i.e.,

Tn(f) =
∥∥r(k − j)

∥∥
k,j=1,n

and Tn(g) =
∥∥a(k − j)

∥∥
k,j=1,n

,(1.6)

where r(k) and a(k) are as in (1.1) and (1.3), respectively. By C,M,Ck,Mk we denote
constants that can vary from line to line.

Theorem A (Avram). Let the spectral density f(λ) and the generating function
g(λ) be such that f(λ) ∈ Lp1(T), g(λ) ∈ Lp2(T), where p1, p2 � 1 and 1/p1+1/p2 � 1

2 .
Then (1.5) holds with σ2 given by

σ2 = 16π3

∫ π

−π

f2(λ) g2(λ) dλ.(1.7)

Remark 1.1. For p1 = p2 = ∞, Theorem A was first established by Grenan-
der and Szegö [9, Theorem 11.6], while the case p1 = 2, p2 = ∞ was proved by
Ibragimov [11] and Rosenblatt [12].

Theorem B (Fox and Taqqu). Assume that the following conditions hold:

(a) The discontinuities of f(λ) and g(λ) have Lebesgue measure zero, and f(λ)
and g(λ) are bounded on [δ, π] for all δ > 0;

(b) there exist α < 1 and β < 1 such that α + β < 1
2 ,

f(λ) ∼ |λ|−αL1(λ) as λ → 0,(1.8)

g(λ) ∼ |λ|−βL2(λ) as λ → 0,(1.9)

where L1(λ) and L2(λ) are slowly varying at λ = 0 functions.

Then (1.5) holds with variance σ2 as in (1.7).
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The proofs of Theorems A and B in [1] and [4] are based on the well-known repre-

sentation of the kth order cumulant χk(·) of the quadratic form Q̃n (see, e.g., [9], [11])

χk(Q̃n) =

{
0 for k = 1,

n−k/22k−1(k − 1)! tr
[
Tn(f)Tn(g)

]k
for k � 2,

where tr[A] stands for the trace of a matrix A.
A different approach, applied in [8], extended Theorems A and B to linear se-

quences. In the Gaussian case the corresponding result can be formulated as follows.
Theorem C (Giraitis and Surgailis). Assume that as n → ∞

χ2(Q̃n) =
2

n
tr
[
Tn(f)Tn(g)

]2 −→ 16π3

∫ π

−π

f2(λ) g2(λ) dλ < ∞.(1.10)

Then (1.5) holds with variance σ2 as in (1.7).
In [1] and [4] (see also [8]) it was established that each of the conditions of Theo-

rems A and B implies (1.10). Unfortunately (1.10) is not an explicit condition. In [8]
the following explicit sufficient condition was also obtained.

Theorem D (Giraitis and Surgailis). Let f ∈ L2(T), g ∈ L2(T), fg ∈ L2(T)
and for μ → 0 ∫ π

−π

f2(λ) g2(λ− μ) dλ −→
∫ π

−π

f2(λ) g2(λ) dλ.(1.11)

Then (1.5) holds with variance σ2 as in (1.7).
In the same paper [8] Giraitis and Surgailis conjectured that (1.10) holds under

the single condition that the integral on the right-hand side of (1.10) is finite. In [6]
one of the authors answered this conjecture negatively. To state this result, consider
the functions

f0(λ) =

⎧⎪⎨⎪⎩
(

2s

s2

)1/p

if 2−s−1 � λ � 2−s, s = 2m,

0 if 2−s−1 � λ � 2−s, s = 2m + 1,

(1.12)

and

g0(λ) =

⎧⎪⎨⎪⎩
(

2s

s2

)1/q

if 2−s−1 � λ � 2−s, s = 2m + 1,

0 if 2−s−1 � λ � 2−s, s = 2m,

(1.13)

where m is a positive integer and p, q � 1.
It is easy to see that f0(λ) ∈ Lp(T), g0(λ) ∈ Lq(T), f0(λ) g0(λ) ∈ Lr(T) for every r

and σ2 = 16π3
∫ π

−π
f2
0 (λ) g2

0(λ) dλ = 0. On the other hand, in [6] it was proved that
for 1/p + 1/q > 1

χ2(Q̃n) =
2

n
tr
(
Tn(f0)Tn(g0)

)2 −→ ∞ as n → ∞,(1.14)

and thereby the convergence in (1.10) breaks down. In [6] it was conjectured that the
condition

0 <

∫ π

−π

f2(λ) g2(λ) dλ < ∞

implies the convergence in (1.10).
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The problem (b), that is, description of the limit distribution of the quadratic
form Qn if it is non-Gaussian, was considered by Terrin and Taqqu in [14] and [15].
Let

f(λ) = |λ|−αL1(λ) and g(λ) = |λ|−βL2(λ),

where L1(λ) and L2(λ) are slowly varying at 0 bounded functions. In [14] and [15] it
was proved that if α < 1, β < 1, and α + β > 1

2 , then the random variable

Q̂n =
1

nα+βL1(1/n)L2(1/n)
(Qn − EQn)(1.15)

converges in distribution to some non-Gaussian random variable Y (α, β), which can
be represented as a double Wiener–Itô integral.

Note that the slowly varying functions L1(λ) and L2(λ) are of importance because
they provide great flexibility in the choice of functions f(λ) and g(λ). In [14] it was
proved that they influence only the normalization in (1.15) and not the limit Y (α, β).
In this paper we show that in the critical case α+ β = 1

2 the limit distribution of the
standard normalized quadratic form Qn depends on the functions L1(λ) and L2(λ).

The critical case α+β = 1
2 was partially investigated by Terrin and Taqqu in [16].

Starting from Y (α, β), which exists only when α + β > 1
2 , they showed that when

0 < α < 1, 0 < β < 1 the random variable (α+β− 1
2 )Y (α, β) converges in distribution

to a Gaussian random variable as α + β approaches 1
2 .

In this paper, assuming that f(λ) and g(λ) are regularly varying at λ = 0 of
orders α and β, respectively, we prove the CLT for standard normalized quadratic
form Qn in the critical case α + β = 1

2 . We also show that the CLT for Qn is not
valid under the single condition that the asymptotic variance of Qn is separated from
zero and infinity.

2. Main results. Let SV be a class of slowly varying at zero functions u(λ)
satisfying u(λ) ∈ L∞(R), limλ→0 u(λ) = 0, u(λ) = u(−λ), and 0 < u(λ) < u(μ) for
0 < λ < μ.

Theorem 2.1. Let

f(λ) � |λ|−αL1(λ)(2.1)

and ∣∣g(λ)
∣∣ � |λ|−βL2(λ),(2.2)

where

α < 1, β < 1, α + β � 1

2
,

Li(λ) ∈ SV, λ−(α+β) Li(λ) ∈ L2(T), i = 1, 2.

(2.3)

Then (1.5) holds with variance σ2 as in (1.7).
Remark 2.1. Examples of the spectral density f(λ) and the generating func-

tion g(λ) satisfying the conditions of Theorem 2.1 provide the functions

f(λ) = |λ|−α | log |λ| |−γ and g(λ) = |λ|−β | log |λ| |−γ ,

where α < 1, β < 1, α + β � 1
2 , and γ > 1

2 .
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Remark 2.2. The functions f(λ) and g(λ) in Theorem 2.1 have singularities at the
point λ = 0 and are bounded in any neighborhood of this point. It is clear that the
choice of the point λ = 0 is not essential, and instead any point λ0 ∈ [−π, π] can be
taken. Using the properties of the product of the Toeplitz matrices Tn(f) and Tn(g) it
can be shown that the assertion of Theorem 2.1 remains valid in the case where f(λ)
and g(λ) have singularities of the form (2.1), (2.2) at the same finite number of points
of the segment [−π, π].

For the functions f, g ∈ L1(T) we denote

ϕ(t1, t2, t3) =

∫ π

−π

f(u) g(u− t1) f(u− t2) g(u− t3) du.(2.4)

Theorem 2.2. If the function ϕ(t1, t2, t3) ∈ L2(T3) is continuous at (0, 0, 0),
then (1.5) holds with variance σ2 as in (1.7).

Proposition 2.1. Theorem 2.2 implies Theorems A and D.
Remark 2.3. For the functions f(λ) = λ−3/4 and g(λ) = λ3/4 satisfying the

conditions of Theorem B, the function ϕ(t1, t2, t3) is not defined for t2 = 0, t1 	= 0,
t3 	= 0. This shows that Theorem 2.2 generally does not imply Theorem B.

The next result shows that the condition of positiveness and finiteness of the
asymptotic variance of the quadratic form Qn is not sufficient for Qn to obey the CLT.

Proposition 2.2. There exist a spectral density f(λ) and a generating func-
tion g(λ) such that

0 <

∫ π

−π

f2(λ) g2(λ) dλ < ∞(2.5)

and

lim
n→∞

supχ2(Q̃n) = lim
n→∞

sup
2

n
tr
[
Tn(f)Tn(g)

]2
= ∞;(2.6)

that is, the condition (2.5) does not guarantee convergence in (1.10).

3. Preliminaries. Recall (see [3], [13]) that a positive function u(x) is called
slowly varying at zero if

lim
x→0

u(λx)

u(x)
= 1

for any λ > 0. We list some properties of slowly varying functions, which we will use
below. The following property is well known (see, e.g., [13]).

Lemma 3.1. Let u(x) and v(x), x ∈ R, be slowly varying at zero functions. Then
(a) for any p < 1∫ y

0

x−pu(x) dx = O
(
y1−pu(y)

)
as y → 0;

(b) the function xpu(x) increases on some interval (0, δ) if p > 0, and decreases
if p < 0;

(c) u(x)v(x) and u(x)/v(x) are slowly varying at zero functions.
Lemma 3.2. For any functions u, v ∈ SV and numbers p, q < 1, p + q > 1, there

exists a constant M > 0 such that∫
T

|x|−p|x− y|−qu(x) v−1(x− y) dx � M |y|1−p−qu(y) v−1(y), y ∈ T.(3.1)
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Proof. Denote

Q(x, y) = |x|−p|x− y|−qu(x) v−1(x− y).

It is not hard to check that for any δ > 0

sup
|y|>δ

∫
T

Q(x, y) dx < ∞ and min
|y|>δ

y1−p−qu(y) v−1(y) > 0.

Therefore it is enough to prove (3.1) for y ∈ (−δ, δ) with sufficiently small δ > 0.
Applying Lemma 3.1(a) we obtain∫

0<|x|<|y|/2
Q(x, y) dx �

(
|y|
2

)−q

v−1

(
y

2

)∫
0<|x|<|y|/2

|x|−pu(x) dx

� Cy1−p−qu(y) v(y),(3.2)∫
|y|/2<|x|<2|y|

Q(x, y) dx �
(
|y|
2

)−p

u(2|y|)
∫
|y|/2<|x|<2|y|

|x− y|−qv−1(x− y) dx

� C|y|−pu(|y|)
∫

0<|x|<4|y|
|x|−q v−1(x) dx

� Cy1−p−qu(y) v(y),(3.3)

and ∫
2|y|<|x|<π

Q(x, y) dx � |y|−pv−1(y)

∫
2|y|<|x|<π

|x|−qu(x) dx

� Cy1−p−qu(y) v(y).(3.4)

From (3.2)–(3.4) we obtain (3.1). Lemma 3.2 is proved.
The following lemma can be proved similarly.
Lemma 3.3. Given functions u,w ∈ SV satisfying∫

T

x−1u(x)w−3(x) dx < ∞,

for any q ∈ (0, 1) there exists a constant M > 0 such that∫
T

|x|−1|x− y|−qu(x)w−2(x)w−1(x− y) dx � M |y|−qw−3(y), y ∈ T.

We denote by Dn(x) the Dirichlet kernel

Dn(x) =
sin(nx/2)

sin(x/2)
.(3.5)

It is not hard to see that∣∣Dn(x)
∣∣ � min{n, |x|−1} and

∣∣Dn(x)
∣∣ � Cnψn(x), x ∈ T,(3.6)

where ψn(x) = (1 + n|x|)−1.
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Lemma 3.4. For any function w ∈ SV and a number t ∈ (0, 1) there exists a
constant M > 0 such that∣∣Dn(x)

∣∣ � Mw(n−1)nt|x|t−1w−1(x).

Proof. According to Lemma 3.1(b) the functions xt−1w−1(x) and x−tw(x) are
decreasing in some interval (0, δ). Since

min
{
w(n−1)nt|x|t−1w−1(x)

}
> 0,

we can assume that n−1 < δ and |x| < δ. Now, if |x| � n−1, then n1−tw−1(1/n) �
xt−1w−1(x) and (3.6) imply

|Dn(x)| � n = w(n−1)ntn1−tw−1(n−1) � w(n−1)nt|x|t−1w−1(x).

The proof in the case |x| > n−1 is similar. Lemma 3.4 is proved.
The following lemma was proved in [8].
Lemma 3.5. For any δ ∈ (0, 1) there exists a constant Cδ > 0 such that

n

∫
T

ψn(x− y)ψn(x− z) dx � Cδψ
1−δ
n (y − z), y, z ∈ T.

Denote

Φn(x1, x2, x3) =
1

(2π)3n
Dn(x1)Dn(x2)Dn(x3)Dn(x1 + x2 + x3),(3.7)

where Dn(x) is as in (3.5). For given α ∈ (0, π) we set

Eα =
{
|x| � α

}
= {(x1, x2, x3); |xk| � α, k = 1, 2, 3},

E
c
α =

{
|x| � π

}
\
{
|x| � α

}
.

Lemma 3.6. The kernel Φn(x) defined by (3.7) with x = (x1, x2, x3) possesses
the following properties:

(a)
∫

T3 Φn(x) dx = 1;
(b) supn

∫
T3 |Φn(x)| dx = C1 < ∞;

(c) for any ε ∈ (0, π) we have limn→∞
∫

Ec
ε

∣∣Φn(x)
∣∣ dx = 0;

(d) for any δ > 0 there exists a positive constant Mδ such that∫
E
c
δ

Φ2
n(x) dx � Mδ, n = 1, 2, . . . .(3.8)

Proof. Proofs of (a)–(c) can be found in [2, Lemma 3.1]. To prove (d) first observe
that ∫

T

D2
n(x) dx � C n and

∣∣Dn(x)
∣∣ � Cδ as |x| > δ, n = 1, 2, . . . ,(3.9)

where Dn(x) is the Dirichlet kernel, while C and Cδ are some positive constants. We
have ∫

E
c
δ

Φ2
n(x) dx �

∫
|x1|>δ

Φ2
n(x) dx +

∫
|x2|>δ

Φ2
n(x) dx +

∫
|x3|>δ

Φ2
n(x) dx

=: I1 + I2 + I3.(3.10)
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Clearly, it is enough to estimate I1. We have

I1 �
∫
|x1|>δ,|x2|>δ/3

Φ2
n(x) dx +

∫
|x1|>δ,|x3|>δ/3

Φ2
n(x) dx

+

∫
|x1|>δ,|x2|�δ/3,|x3|�δ/3

Φ2
n(x) dx =: I

(1)
1 + I

(2)
1 + I

(3)
1 .(3.11)

Using (3.9) we obtain

I
(1)
1 � Cδ

1

n2

∫
T3

D2
n(x3)D

2
n(x1 + x2 + x3) dx1 dx2 dx3 � Mδ.(3.12)

Likewise,

I
(2)
1 � Mδ.(3.13)

Now, observing that in the integral I
(3)
1 the integration region is such that |x1 + x2 +

x3| > δ/3, from (3.9) we find

I
(3)
1 � Cδ

1

n2

∫
T3

D2
n(x2)D

2
n(x3) dx1 dx2 dx3 � Mδ.(3.14)

From (3.12)–(3.14) we obtain (3.11). Lemma 3.6 is proved.
Lemma 3.7. Let the function Ψ(u) ∈ L2(T3) be continuous at 0 = (0, 0, 0). Then

lim
n→∞

∫
T3

Ψ(u) Φn(u) du = Ψ(0),(3.15)

where u = (u1, u2, u3) and the function Φn(u) is defined by (3.7).
Proof. By Lemma 3.6(a) we have

Rn :=

∫
T3

Ψ(u) Φn(u) du − Ψ(0) =

∫
T3

[
Ψ(u) − Ψ(0)

]
Φn(u) du.(3.16)

For any ε > 0, a δ > 0 can be chosen to satisfy∣∣Ψ(u) − Ψ(0)
∣∣ < ε

C1
if u ∈ Eδ,(3.17)

where C1 is the constant from Lemma 3.6(b). We represent Ψ = Ψ1 + Ψ2 such that

‖Ψ1‖2 � ε√
Mδ

and ‖Ψ2‖∞ < ∞,(3.18)

where Mδ is the constant from Lemma 3.6(d). Applying Lemma 3.6(b)–(d) and
(3.16)–(3.18) for sufficiently large n we obtain

|Rn| �
∫

Eδ

∣∣Ψ(u) − Ψ(0)
∣∣ ∣∣Φn(u)

∣∣ du
+

∫
E
c
δ

∣∣Ψ1(u)
∣∣ ∣∣Φn(u)

∣∣ du +

∫
E
c
δ

∣∣Ψ2(u) − Ψ(0)
∣∣ ∣∣Φn(u)

∣∣ du
� ε

C1

∫
Eδ

∣∣Φn(u)
∣∣ du + ‖Ψ1‖2

[∫
E
c
δ

Φ2
n(u) du

]1/2

+ C2

∫
E
c
δ

∣∣Φn(u)
∣∣ du � 3 ε.

This together with (3.16) implies (3.15). Lemma 3.7 is proved.
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4. Proofs of main results.
Proof of Theorem 2.1. For f, g ∈ L1(T) and x = (x1, x2, x3, x4) we set

F (x) = f(x1) f(x2) g(x3) g(x4),

and let

Hn(x) = Gn(x1 − x3)Gn(x2 − x3)Gn(x4 − x1)Gn(x4 − x2),

where

Gn(u) =

n∑
k=1

eiku = eiu(n+1)/2 Dn(u).(4.1)

It is easy to check that

tr
(
Tn(f)Tn(g)

)2
=

∫
T4

F (x)Hn(x) dx.(4.2)

By Theorem B it is enough to consider the case α + β = 1
2 . Thus, by Theorem C we

need to prove that

lim
n→∞

1

n

∫
T4

F (x)Hn(x) dx = 8π3

∫
T

f2(x) g2(x) dx,(4.3)

provided that

f(x) � |x|−αL(x), |g(x)| � |x|−βL(x), x ∈ T,(4.4)

where L = L1 + L2 ∈ SV and

α < 1, β < 1, α + β =
1

2
,

∫
T

x−1L2(x) dx < ∞.(4.5)

If α, β � 0, then (4.4) implies f ∈ L1/α(T), g ∈ L1/β(T), and Theorem 2.1 follows
from Theorem A. Assuming β < 0, from (4.5) we have

1

2
< α < 1, −1

2
< β < 0.(4.6)

For ε ∈ (0, 1), we set

fε(x) =

{
0 if |x| < ε,

f(x) if ε � |x| � π,

and

Ti,ε =
{
x ∈ T

4 : |xi| < ε
}
, i = 1, 2.

We have

1

n

∫
T4

F (x)Hn(x) dx = J1
n + J2

n,

where

J1
n :=

1

n

∫
T4

fε(x1)fε(x2) g(x3) g(x4)Hn(x) dx
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and

|J2
n| � 1

n

∫
T1,ε

∣∣F (x)Hn(x)
∣∣ dx +

1

n

∫
T2,ε

∣∣F (x)Hn(x)
∣∣ dx =: I1

n + I2
n.

Since fε, g ∈ L∞(T), we have

lim
n→∞

J1
n = 8π3

∫
T

f2
ε (x) g2(x) dx.

The last integral tends to
∫

T
f2(x) g2(x) dx as ε → 0; hence (4.3) follows from

lim
ε→0,n→∞

(I1
n + I2

n) = 0.(4.7)

It is enough to prove (4.7) for I1
n. Set

Bi,j =

{
x ∈ T

4 : |xi| � |xj |
2

}
, i = 1, 2, j = 3, 4,

B =

{
x ∈ T

4 : |x1| < ε, |xi| >
|xj |
2

, i = 1, 2, j = 3, 4

}
.

Then we have

I1
n � 1

n

2∑
i=1

4∑
j=3

∫
Bi,j

F (x)Hn(x) dx +
1

n

∫
B

F (x)Hn(x) dx.(4.8)

Let w ∈ SV be a function satisfying∫
T

x−1L2(x)w−4(x) dx < ∞.(4.9)

Since

|x3|
2

< |x1 − x3| < 2|x3| as x ∈ B1,3,

the bounds (4.4) and Lemma 3.4 imply

A1,3 :=
1

n

∫
B1,3

F (x)Gn(x) dx

� Cw4

(
1

n

)∫
B1,3

|x1|−α|x2|−α|x3|−β |x4|−βL(x1)L(x2)L(x3)L(x4)

× |x1 − x3|−3/4|x2 − x3|−3/4|x1 − x4|−3/4|x2 − x4|−3/4

×w−1(x1 − x3)w
−1(x2 − x3)w

−1(x1 − x4)w
−1(x2 − x4) dx

� Cw4

(
1

n

)∫
T2

|x2|−α|x4|−β |x2 − x4|−3/4L(x2)L(x4)w
−1(x2 − x4) dx2

×
∫

T

|x1|−α|x1 − x4|−3/4L(x1)w
−1(x1 − x4) dx1

×
∫

T

|x3|−β−3/4|x2 − x3|−3/4L(x3)w
−1(x3)w

−1(x2 − x3) dx3 dx2 dx4.
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Applying first Lemma 3.2, then Lemma 3.3, we obtain

A1,3 � Cw4

(
1

n

)∫
T2

|x2|−α|x4|−β |x2 − x4|−3/4L(x2)L(x4)w
−1(x2 − x4)

× |x4|−α+1/4L(x4)w
−1(x4) |x2|−β−1/2L(x2)w

−2(x2) dx2 dx4

= Cw4

(
1

n

) ∫
T

|x4|−1/4L2(x4)w
−1(x4)

×
∫

T

|x2|−1|x2 − x4|−3/4L2(x2)w
−2(x2)w

−1(x2 − x4) dx2 dx4

� Cw4

(
1

n

)∫
T

|x4|−1L2(x4)w
−4(x4) dx4 = o(1),(4.10)

as n → ∞. Similarly we can prove that all the integrals in the first sum in (4.8) tend
to zero as n → ∞. To estimate the last integral in (4.8) we use (4.4) and Lemma 3.5
to obtain

A :=
1

n

∫
B

∣∣F (x)Hn(x)
∣∣ dx

� Cn3

∫
B

|x1|−α|x2|−α|x3|−β |x4|−βL(x1)L(x2)L(x3)L(x4)

×ψn(x1 − x3)ψn(x2 − x3)ψn(x1 − x4)ψn(x2 − x4) dx

� Cn3

∫
(−2ε,2ε)2

|x3|−1/2|x4|−1/2L(x3)L(x4)

×
∫

T

ψn(x1 − x3)ψn(x1 − x4)L(x1) dx1

×
∫

T

ψn(x2 − x3)ψn(x2 − x4)L(x2) dx2 dx3 dx4

� Cn

∫
(−2ε,2ε)

|x3|−1/2L(x3)

∫
T

|x4|−1/2ψ3/2
n (x3 − x4)L(x4) dx4 dx3

� C

∫ 2nε

−2nε

|y|−1/2 L

(
y

n

)∫ ∞

−∞

|x|−1/2

(1 + |x− y|)3/2 L

(
x

n

)
dx dy.(4.11)

Let us prove that∫ ∞

−∞

|x|−1/2

(1 + |x− y|)3/2L
(
x

n

)
dx � Cy−1/2L

(
y

n

)
, y ∈ T.(4.12)

Indeed, for y ∈ T∫
|x|�|y|

|x|−1/2

(1 + |x− y|)3/2 L

(
x

n

)
dx � CL

(
y

n

)∫
T

|x|−1/2 dx

� CL

(
y

n

)
� Cy−1/2 L

(
y

n

)
.(4.13)
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According to Lemma 3.1 the function t−1/2L(t) is decreasing on some interval (0, δ).
Hence, assuming without loss of generality that n > π/δ, we have for |x| > |y|

|x|−1/2L

(
x

n

)
= n−1/2

(
|x|
n

)−1/2

L

(
x

n

)
� n−1/2

(
|y|
n

)−1/2

L

(
y

n

)
= |y|−1/2 L

(
y

n

)
.

Therefore∫
|x|>|y|

|x|−1/2

(1 + |x− y|)3/2L
(
x

n

)
dx � C|y|−1/2L

(
y

n

)∫ ∞

−∞

1

(1 + |x|)3/2 dx

� C|y|−1/2L

(
y

n

)
.(4.14)

From (4.13), (4.14) we obtain (4.12), and from (4.11), (4.12), and (4.5)

A � C

∫ 2nε

−2nε

|y|−1L2

(
y

n

)
dy = C

∫ 2ε

−2ε

|t|−1L2(t) dt = o(ε),(4.15)

as ε → 0. A combination of (4.8), (4.10), and (4.15) yields (4.7). Theorem 2.1 is
proved.

Proof of Theorem 2.2. By the change of variables x1 = u, x1 − x3 = u1,
x3 − x2 = u2, and x2 − x4 = u3 from (4.2) we obtain

tr
(
Tn(f)Tn(g)

)2
=

∫
T4

Gn(u1)Gn(u2)Gn(u3)Gn(−u1 − u2 − u3)

× f(u) g(u− u1) f(u− u1 − u2)

× g(u− u1 − u2 − u3) du1 du2 du3 du4,(4.16)

where Gn(u) is as in (4.1). Taking into account the equality

eiu1(n+1)/2 eiu2(n+1)/2 eiu3(n+1)/2 e−i(u1+u2+u3)(n+1)/2 = 1

and that Dn(u) is an even function, from (4.16) we obtain

tr
(
Tn(f)Tn(g)

)2
= 8π3

∫
T3

Ψ(u1, u2, u3) Φn(u1, u2, u3) du1 du2 du3,(4.17)

where Φn(u1, u2, u3) is defined by (3.7), Ψ(u1, u2, u3) = ϕ(u1, u1 + u2, u1 + u2 + u3),
and ϕ(u1, u2, u3) is defined by (2.4). By Theorem C and (4.17) we need to prove that

lim
n→∞

∫
T3

Ψ(u) Φn(u) du =

∫
T

f2(x) g2(x) dx.(4.18)

Now, since the functions ϕ(u1, u2, u3) and Ψ(u1, u2, u3) = ϕ(u1, u1 +u2, u1 +u2 +u3)
are square integrable and continuous at (0, 0, 0) simultaneously, and

Ψ(0, 0, 0) =

∫
T

f2(x) g2(x) dx,

from Lemma 3.7 we obtain (4.18). Theorem 2.2 is proved.
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Proof of Proposition 2.1. To show that Theorem 2.2 implies Theorem A it is
enough to prove that the function

ϕ(t) :=

∫
T

f0(u) f1(u− t1) f2(u− t2) f3(u− t3) du, t = (t1, t2, t3),(4.19)

belongs to L2(T3) and is continuous at (0, 0, 0), provided that

fi ∈ Lpi(T), 1 � pi � ∞, i = 0, 1, 2, 3,

3∑
i=0

1

pi
� 1.(4.20)

It follows from the Hölder inequality and (4.20) that

∣∣ϕ(t)
∣∣ �

3∏
i=0

‖fi‖Lpi (T), t = (t1, t2, t3) ∈ T
3.

Therefore, ϕ(t) ∈ L2(T3). To prove the continuity of ϕ(t) at the point (0, 0, 0) we
consider three cases.

Case 1. pi < ∞, i = 0, 1, 2, 3. For an arbitrary ε > 0 we find δ > 0 satisfying
(see (4.20)) ∥∥fi(u− t) − fi(u)

∥∥
pi

� ε, i = 1, 2, 3, if |t| � δ.(4.21)

We fix t = (t1, t2, t3) with |t| < δ and denote f̄i(u) = fi(u + ti) − fi(u), i = 1, 2, 3.
Then (4.21) implies ‖f̄i‖pi � ε, i = 1, 2, 3, and hence

ϕ(t) =

∫
T

f0(u)

3∏
i=1

(
f̄i(u) + fi(u)

)
du = ϕ(0, 0, 0) + W,

where the quantity W is a sum of five integrals. Each of them contains at least one
function f i and can be estimated as the following integral:∣∣∣∣ ∫

T

f0(u) f̄1(u) f2(u) f3(u) du

∣∣∣∣ � ‖f0‖p0
‖f̄1‖p1

∥∥f2

∥∥
p2

‖f3‖p3
� Cε.

Case 2. pi � ∞, i = 0, 1, 2, 3,
∑3

i=0 1/pi < 1. There exist finite numbers p′i < pi,

i = 0, 1, 2, 3,
∑3

i=0 1/p′i � 1, for which we have fi ∈ Lpi(T). Hence the function ϕ is
continuous at (0, 0, 0) as in Case 1.

Case 3. pi � ∞, i = 0, 1, 2, 3,
∑3

i=0 1/pi = 1.
At least one of the numbers pi is finite. Suppose, without loss of generality, that

p0 < ∞. For any ε > 0 we find functions f ′
0, f

′′
0 such that

f0 = f ′
0 + f ′′

0 , f ′
0 ∈ L∞, ‖f ′′

0 ‖p0 < ε.(4.22)

Then

ϕ(t) = ϕ′(t) + ϕ′′(t),(4.23)

where the functions ϕ′ and ϕ′′ are defined as ϕ in (4.19) with f0 replaced by f ′
0

and f ′′
0 , respectively. It follows from (4.22) that ϕ′ is continuous at (0, 0, 0) (see
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Case 2), while for ϕ′′, an application of the Hölder inequality yields |ϕ′′(t)| � Cε.
Hence, for sufficiently small |t|∣∣ϕ(t) − ϕ(0, 0, 0)

∣∣ �
∣∣ϕ′(t) − ϕ′(0, 0, 0)

∣∣ +
∣∣ϕ′′(t) − ϕ′′(0, 0, 0)

∣∣ � (C + 1) ε,

and the result follows.
Now we prove that Theorem 2.2 implies Theorem D. To this end it is enough to

show that the function

ϕ(t) =

∫
T

f(u) g(u− t1) f(u− t2) g(u− t3) du, t = (t1, t2, t3) ∈ T
3,

is continuous at (0, 0, 0), provided that f and g satisfy the conditions of Theorem D,
i.e., f ∈ L2(T), g ∈ L2(T), fg ∈ L2(T), and (1.11) holds.

Since

ϕ2(t) � 2π

∫
T

f2(u) g2(u− t1) f
2(u− t2) g

2(u− t3) du,

we have∫
T3

ϕ2(t) dt �
∫

T

[∫
T

g2(u− t1) dt1

∫
T

f2(u− t2) dt2

∫
T

g2(u− t3) dt3

]
f2(u) du

= ‖f‖4
2 ‖g‖4

2 < ∞.

Now we prove the continuity of ϕ(t) at the point (0, 0, 0). Let ε be an arbitrary
positive number. We denote

EK = {u ∈ T : |f(u)| � K}, f1(u) = χEK
(u) f(u), f2(u) = f(u) − f1(u),

where K > 0 is chosen to satisfy∫
T\EK

f2(u) g2(u) du � ε.

Then

f = f1 + f2, ‖f1‖∞ � K,

∫
T

f2
2 (u) g2(u) du � ε.(4.24)

Consider the decomposition

ϕ(t) =

∫
T

f1(u) g(u− t1) f1(u− t2) g(u− t3) du

+

∫
T

f2(u) g(u− t1) f(u− t2) g(u− t3) du

+

∫
T

f1(u) g(u− t1) f2(u− t2) g(u− t3) du =: ϕ1(t) + ϕ2(t) + ϕ3(t).(4.25)

We estimate the functions ϕk(t), k = 1, 2, 3, separately. We have

ϕ1(t) =

∫
T

f1(u) g(u− t1) f1(u− t2)
[
g(u− t3) − g(u)

]
du

+

∫
T

f1(u) g(u) f1(u− t2)
[
g(u− t1) − g(u)

]
du

+

∫
T

f1(u) g2(u) f1(u− t2) du =: I1 + I2 + I3.(4.26)
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Using the Hölder inequality, from (4.24) we get

|I1| � K2‖g‖2

∥∥g(u + t3) − g(u)
∥∥

2
= o(1) as t3 → 0.(4.27)

Similarly

|I2| = o(1) as t1 → 0(4.28)

and in view of (4.24) we have∣∣∣∣I3 − ∫
T

ϕ(0, 0, 0)

∣∣∣∣ =

∣∣∣∣ ∫
T

f1(u + t2) g
2(u + t2) f1(u) du−

∫
T

f2
1 (u) g2(u) du

∣∣∣∣
+

∣∣∣∣ ∫
T

f2
2 (u) g2(u) du

∣∣∣∣
� K

∥∥∥f1(u + t2) g
2(u + t2) − f1(u) g2

1(u)
∥∥∥

1
+ ε = o(1) + ε(4.29)

as t2 → 0. From (4.26)–(4.29) for sufficiently small |t| we obtain∣∣ϕ1(t) − ϕ(0, 0, 0)
∣∣ � 2ε.(4.30)

Next, for ϕ2(t) we have∣∣ϕ2(t)
∣∣2 �

∫
T

f2
2 (u) g2(u− t1) du

∫
T

f2
2 (u− t2) g

2(u− t3) du

=

∣∣∣∣ ∫
T

f2(u) g2(u− t1) du−
∫

T

f2
1 (u) g2(u− t1) du

∣∣∣∣
×

∫
T

f2(u) g2(u + t2 − t3) du

−→
∣∣∣∣ ∫

T

f2(u) g2(u) du−
∫

T

f2
1 (u) g2(u) du

∣∣∣∣ ∫
T

f2(u) g2(u) du,

as |t| → 0. Therefore, in view of (4.24) for sufficiently small |t|∣∣ϕ2(t)
∣∣ � ε

∫
T

f2(u) g2(u) du.(4.31)

Similarly we can prove that for sufficiently small |t|∣∣ϕ3(t)
∣∣ � ε

∫
T

f2(u) g2(u) du.(4.32)

A combination of (4.25) and (4.30)–(4.32) yields

lim
t→0

ϕ(t) = ϕ(0, 0, 0).

This completes the proof of Proposition 2.1.
Proof of Proposition 2.2. We construct functions f(λ) and g(λ) satisfying the

conditions (2.5) and (2.6). Let p � 2 be fixed; we choose a number q > 1 satisfying
1/p + 1/q > 1. For such p and q consider the functions f0(λ) and g0(λ) defined
by (1.12) and (1.13), respectively. For an arbitrary finite positive constant C we set
g±(λ) = g0(λ) ± C.
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Since the functions f0(λ) and g0(λ) have disjoint supports, we have∫ π

−π

f2
0 (λ) g2

±(λ) dλ =

∫ π

−π

f2
0 (λ) (g0(λ) ± C)2 dλ = C2

∫ π

−π

f2
0 (λ) dλ < ∞,

and hence (2.5) is fulfilled. Next, by (1.14)

1

n
tr
(
Tn(f0)Tn(g0)

)2 −→ ∞ as n → ∞,(4.33)

and by Theorem A with p1 = p � 2 and p2 = ∞,

1

n
C2 tr

(
T 2
n(f0)

)
−→ 8π3C2

∫ π

−π

f2
0 (λ) dλ < ∞.(4.34)

On the other hand, we have

tr
(
Tn(f0)Tn(g±)

)2
= tr

(
Tn(f0)Tn(g0 ± C)

)2
= tr

(
Tn(f0)Tn(g0)

)2 ± 2C tr
(
T 2
n(f0)Tn(g0)

)
+ C2tr

(
T 2
n(f0)

)
,

which combined with (4.33) and (4.34) implies

1

n
tr
(
Tn(f0)Tn(g+)

)2
+

1

n
tr
(
Tn(f0)Tn(g−)

)2
=

2

n
tr
(
Tn(f0)Tn(g0)

)2
+

2

n
C2tr

(
T 2
n(f0)

)
−→∞ as n → ∞.

Therefore, either

lim
n→∞

sup
1

n
tr
(
Tn(f0)Tn(g+)

)2
= ∞

or

lim
n→∞

sup
1

n
tr
(
Tn(f0)Tn(g−)

)2
= ∞.

Thus, we obtain

lim
n→∞

supχ2(Q̃n) = lim
n→∞

sup
2

n
tr
(
Tn(f)Tn(g)

)2
= ∞

with f = f0 and g = g+ or g = g−. This completes the proof of Proposition 2.2.
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