1. Determine whether each of the following sets is a vector space or not, and why. (Use the standard element-wise addition and scalar multiplication, with real scalars unless otherwise stated.)
(a) The set of points $(x, 1)$ in \mathbb{R}^{2}.
(b) The set of all continuous functions on the real interval $[a, b]$.
(c) The set of all points on the unit circle in \mathbb{R}^{2}.
(d) The set of complex n-tuples, \mathbb{C}^{n} (with element-wise addition and complex scalars).
(e) The set of polynomial functions on \mathbb{R}.
2. Determine whether each of the following bilinear operators is an inner product for its vector space or not, and why:
(a) $\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)}+f^{\prime}(x) \overline{g^{\prime}(x)} d x$, for the continuously differentiable complex-valued functions on the real interval $[a, b]$. (The complex derivative is, like the real derivative, a linear operation.)
(b) $\langle f, g\rangle=\int_{0}^{\infty} f(x) g(x) e^{-x} d x$, for the polynomials on \mathbb{R}_{+}.
3. Prove that in any inner product space, $\|\boldsymbol{x}+\boldsymbol{y}\|^{2}+\|\boldsymbol{x}-\boldsymbol{y}\|^{2}=2\|\boldsymbol{x}\|^{2}+2\|\boldsymbol{y}\|^{2}$ under the induced norm. Interpret this statement geometrically in \mathbb{R}^{2}.
4. Prove the triangle inequality under the induced norm for an inner product space, $\|\boldsymbol{x}+\boldsymbol{y}\|^{2} \leq$ $\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}$.
5. Consider a forward discretization of the differential operator ∂_{t},

$$
\boldsymbol{D}=\frac{1}{d t}\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & 0 & \cdots & 0 \\
0 & -1 & 1 & 0 & \cdots & 0 \\
0 & 0 & -1 & 1 & \cdots & 0 \\
\vdots & & & & & \vdots \\
0 & 0 & \cdots & 0 & -1 & 1
\end{array}\right)
$$

a $T \times T$ matrix.
(a) Calculate the left inverse of \boldsymbol{D}.
(b) Calculate the adjoint (transpose) of \boldsymbol{D}.
(c) Does there exist a solution to the difference system $\boldsymbol{D} \boldsymbol{x}=\boldsymbol{b}$? Why or why not?
(d) Does the difference system $\boldsymbol{D} \boldsymbol{x}=\boldsymbol{b}$ have a unique solution \boldsymbol{x} ? Why or why not?

