1. Prove that for $\boldsymbol{x} \in \mathbb{C}^{m}, \boldsymbol{y} \in \mathbb{C}^{n}, A \in \mathbb{C}^{m \times n}$ and the standard complex inner (dot) products, $\langle\boldsymbol{a}, \boldsymbol{b}\rangle=\sum_{i=1}^{m} a_{i} \bar{b}_{i}$ and $\langle\boldsymbol{a}, \boldsymbol{b}\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i},\langle\boldsymbol{x}, \boldsymbol{A} \boldsymbol{y}\rangle=\left\langle\left\langle\boldsymbol{A}^{*} \boldsymbol{x}, \boldsymbol{y}\right\rangle\right.$ where \boldsymbol{A}^{*} is the conjugate transpose of \boldsymbol{A}. That is, prove that the adjoint of a complex matrix is its conjugate transpose.
2. Prove the Fredhold Alternative Theorem for complex matrices:

Theorem For any complex matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}, \boldsymbol{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$, the range of \boldsymbol{A} is the orthogonal complement of the null space of \boldsymbol{A}^{*}.
3. Prove that if the matrix \boldsymbol{A} has linearly independent columns, the Moore-Penrose pseudoinverse of \boldsymbol{A} is its least-squares pseudo-inverse.
4. Consider the matrix $\boldsymbol{A}=\left(\begin{array}{ll}1+\epsilon / \sqrt{10}, & 1-2 \epsilon / \sqrt{10} \\ 2-\epsilon / \sqrt{10}, & 2+\epsilon / \sqrt{10}\end{array}\right)$, with $\epsilon \ll 1$.
(a) Compute the least-squares pseudo-inverse of \boldsymbol{A}.
(b) Compute $\tilde{\boldsymbol{A}}$, the matrix given by discarding the smaller singular value of \boldsymbol{A}.
(c) What is the least-squares pseudo-inverse of $\tilde{\boldsymbol{A}}$? Compare the two pseudo-inverses.
5. Prove that the adjoint of a linear operator is also a linear operator.
6. Let $L: U \rightarrow V$ and $M: V \rightarrow W$. Show that the composite operator $M \circ L$ has adjoint $(M \circ L)^{*}=L^{*} \circ M^{*}$.
7. True or false: the adjoint of the divergence operator (with respect to the standard L^{2} inner products) is the negative gradient: $(\nabla \cdot)^{*}=-\nabla$? If true, what boundary conditions do you need to assume? If false, what is the adjoint?

