1. Verify the Hubbard-Stratonovich transform,

$$
e^{\frac{b^2}{2}} = \int Dt e^{bt}
$$

where $Dx = \exp(-t^2/2)$ √ 2π is the standard Gaussian measure.

2. Consider the Bernoulli distribution,

(1)
$$
p(x) = \begin{cases} m, & \text{if } x = 1 \\ 1 - m, & \text{if } x = 0 \end{cases}
$$

Calculate its moment and cumulant generating functions.

3. Consider an Erdős-Rényi network of N neurons with a connection matrix J . Each neuron j projects to each neuron i with probability m . The existence of each connection is independent of the others. Since each neuron receives on average mN inputs, we will scale the connection strengths by N: each nonzero element of **J** is equal to \bar{J}/N . That is,

(2)

$$
p(\mathbf{J}) = \prod_{i,j} p(J_{ij}),
$$

$$
p(J_{ij}) = \begin{cases} m, \text{ if } x = \bar{J}/N \\ 1 - m, \text{ if } x = 0 \end{cases}
$$

- (a) Calculate the first three cumulants of the distribution of synaptic weights.
- (b) Repeat that calculation with synaptic weights scaling like $1/\sqrt{N}$ instead of $1/N$.

4. Complete the Gardner capacity calculation. Recall that the saddle point equation for the replica overlap leads to

(3)
$$
\alpha \int Dt \left(\int_u^\infty dz e^{-z^2/2} \right)^{-1} e^{-u^2/2} \frac{t + \kappa \sqrt{q}}{2\sqrt{q} (1-q)^{3/2}} = \frac{q}{1-q}
$$

where $\alpha = P/N$ is the capacity, $Dt = \exp(-t^2/2)$ $\overline{2\pi}$, and $u = (\kappa + t\sqrt{q})/q$ √ $\overline{1-q}$. Using this, compute the critical capacity

.

(4)
$$
\alpha_c \equiv \lim_{q \to 1} \alpha = \left(\int_{-\kappa}^{\infty} Dt (t + \kappa)^2 \right)^{-1}
$$

Hint: write Eq. [3](#page-0-0) in the form $\alpha = q/F(q;\kappa)$ and apply L'Hôpital's rule.

5. Verify the Garner calculation for the critical capacity of a binary perceptron by comparing the analytical result for the critical capacity against simulations with varying margins. For simulations, use the Margin Perceptron with output:

(5)
$$
y = \begin{cases} 1, & \mathbf{J}^T \mathbf{x} / ||\mathbf{J}|| \ge \kappa/2 \\ 0, & \mathbf{J}^T \mathbf{x} / ||\mathbf{J}|| \le -\kappa/2 \end{cases}
$$

trained with the standard Perceptron learning algorithm where, if $J^T x/||J|| \in (-\kappa/2, \kappa/2)$, the pattern x automatically produces an error.