Name:

Question	Points
1	
2	
3	
4	
Total	

1. Let $D u=u^{\prime}(x)$ so D is the derivative operator, acting on $C^{2}[0,1]$, the vector space of twice continuously differential functions defined on the closed interval $0 \leq x \leq 1$, with homogenous Dirichlet boundary conditions.
(a) Compute D^{*}, the adjoint of D with respect to the weighted inner product $\langle u, \tilde{u}\rangle=$ $\int_{0}^{1} u(x) \tilde{u}(x) e^{x} d x$. (5 points)
(b) Let $S=D^{*} \circ D$. Write down and solve the boundary value problem $S u=2 e^{x}$. (5 points)
(a)

$$
\begin{aligned}
\langle D u, \tilde{u}\rangle & =\int_{0}^{1} u^{\prime}(x) \tilde{u}(x) e^{x} d x \\
& =\left.\tilde{u}(x) e^{x} u(x)\right|_{0} ^{1}-\int_{0}^{1} u(x)\left(\tilde{u}^{\prime}(x) e^{x}+\tilde{u}(x) e^{x}\right) d x \\
& =-\int_{0}^{1} d x e^{x} u(x)(D+1) \tilde{u}(x) \\
& =\langle u,-(D+1) \tilde{u}\rangle
\end{aligned}
$$

The boundary terms vanish due to the homogenous Dirichlet boundary conditions. The adjoint of D with respect to this weighted inner product is $-(D+1)$.
(b) $S=-D(D+1)=-D^{2}-D$. As an aside, we know that $S=D \circ D^{*}$ must be self-adjoint and its nullspace is the same as that of D. With homogenous Dirichlet boundary conditions the nullspace of D is $\{0\}$, so $S u=f$ has a unique solution. Now back to the problem: what BVP does that solution satisfy, and what is the solution?

We have the boundary value problem:

$$
-u^{\prime \prime}(x)-u^{\prime}(x)=2 e^{x}
$$

with homogenous Dirichlet boundary conditions, $u(0)=u(1)=0$. Integrating on both sides,

$$
\begin{aligned}
u^{\prime}(x)-u^{\prime}(0)+u(x) & =-2 e^{x}-A \\
u^{\prime}(x) e^{x}+u(x) e^{x} & =-2 e^{2 x}-A e^{x}+u^{\prime}(0) e^{x} \\
\frac{d}{d x}\left(u(x) e^{x}\right) & =-2 e^{2 x}-A e^{x}+u^{\prime}(0) e^{x} \\
u(x) e^{x} & =-e^{2 x}-\left(A-u^{\prime}(0)\right) e^{x}+B \\
u(x) & =-e^{x}-\left(A-u^{\prime}(0)\right)+B e^{-x}
\end{aligned}
$$

And the boundary conditions require

$$
\begin{aligned}
& u(0)=-1-\left(A-u^{\prime}(0)\right)+B=0 \\
& u(1)=-e-\left(A-u^{\prime}(0)\right)+B / e=0
\end{aligned}
$$

Taking the derivative of $u(x)$ and then plugging in $x=0$, we see that

$$
u^{\prime}(0)=-1-B
$$

Together with the first boundary condition, this tells us that

$$
\begin{aligned}
& 0=-1-(A+1+B)+B \\
& 2=A
\end{aligned}
$$

and the second boundary condition gives us

$$
B=\left(\frac{e+1}{e}\right)(e+3) .
$$

The solution is thus

$$
u(x)=-e^{x}-\left(2-u^{\prime}(0)\right)+\frac{(e+1)(e+3)}{e^{2}}
$$

We resolve the derivative at 0 by again differentiating, to find that $u^{\prime}(0)=-1$.
2. Consider the Poisson equation on a one-dimensional domain with Dirichlet boundary conditions:

$$
-\partial_{x}^{2} u(x)=f(x), u(0)=u(1)=1
$$

(a) Is this boundary value problem positive definite, positive semi-definite, or neither? Why? (5 points)
(b) What conditions, if any, are required on f to guarantee existence of a solution? (5 points)
(a) With these boundary conditions, the adjoint of D with respect to the L^{2} inner product is

$$
\begin{aligned}
\langle D u, \tilde{u}\rangle & =\int_{0}^{1} u^{\prime}(x) \tilde{u}(x) d x \\
& =\left.u(x) \tilde{u}(x)\right|_{0} ^{1}-\int_{0}^{1} u(x) \tilde{u}^{\prime}(x) d x \\
& =\langle u,-D \tilde{u}\rangle
\end{aligned}
$$

where the boundary terms vanish because of the equal Dirichlet boundary conditions. So, $-D^{2}=D \circ D^{*}$ (where the adjoint is with respect to the standard L^{2} inner product). The boundary value problem is thus at least positive semi-definite. Is is positive definite only if the nullspace of $-D^{2}$ is trivial. The nullspace of $-D^{2}$ is the same as that of D, and with these boundary conditions the nullspace of D is $\{1\}$. So, this boundary value problem is positive semi-definite.
(b) The Fredholm alternative tells us that a solution exists if $f(x)$ is orthogonal to the nullspace of $\left(-D^{2}\right)^{*}$. As shown above, $-D^{2}=D \circ D^{*}$. So, $-D^{2}$ is self-adjoint with respect to the L^{2} inner product under these boundary conditions. Since the nullspace of D is $\{1\}$, we must have

$$
0=\langle f, 1\rangle=\int_{0}^{1} f(x) d x
$$

3. Consider the differential equation

$$
x^{\prime}(t)+x(t)=f(t)
$$

with $x(t):[0, \infty) \rightarrow \mathbb{R}, x(t) \in C^{1}[0, \infty)$. Is

$$
\exp (-(t-s)) \theta(t-s)
$$

where $\theta(x)$ is the Heaviside step function, a fundamental solution (Green's function) for this problem? Why or why not? (10 points)

A fundamental solution $G(t, s)$ to this initial value problem obeys

$$
\left(\partial_{t}+1\right) G(t, s)=\delta(t-s)
$$

Applying $\partial_{t}+1$ to the proposed Green's function directly,
$\left(\partial_{t}+1\right) \exp (-(t-s)) \theta(t-s)=-\exp (-(t-s)) \theta(t-s)+\exp (-(t-s)) \delta(t-s)+\exp (-(t-s)) \theta(t-$ $=\exp (-(t-s)) \delta(t-s)$.
Is this this same as just $\delta(t-s)$? If we view it as a function,

$$
\exp (-(t-s)) \delta(t-s)= \begin{cases}\exp (-(t-s)) \times 0=0, & t \neq s \\ \exp (-(s-s)) \times \delta(0)=\delta(0), & t=s\end{cases}
$$

so it matches the definition of $\delta(t-s)$. It also behaves the same way under integration:

$$
\int d s \exp (-(t-s)) \delta(t-s) f(s)=\int d s \delta(t-s)(\exp (-(t-s)) f(s))=f(t)
$$

So, $\exp (-(t-s)) \theta(t-s)$ is the fundamental solution for $\partial_{t}+1$.
4. Consider the matrix A with singular value decomposition $A=U \Sigma V^{T}$, where

$$
U=\left(\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right), V=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \Sigma=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right) .
$$

What is the least-squares solution, \hat{x}, to $A x=(1,-1)^{T}$? (10 points)
The least squares solution is given by

$$
\begin{aligned}
x & =V \Sigma^{\prime} U^{T} b \\
& =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right)\binom{1}{-1} \\
& =(0,0)^{T} .
\end{aligned}
$$

