1. Consider the linear operator $L: U \rightarrow V$. Prove that if L has a non-trivial null space, then $L u=f$ does not have a unique solution.
2. Consider the linear operator $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, with singular value decomposition $A=U \Sigma V^{T}$,

$$
U=\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right), V=\left(\begin{array}{lll}
2 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad \Sigma=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \epsilon
\end{array}\right)
$$

(a) What is A ?
(b) What is the least-squares pseudo-inverse of A ?
(c) Assuming that $\epsilon \ll 1$, consider the rank-two approximation to $A x=(3,1)^{T}$. What is the least squares solution to the approximate problem?
(d) Discuss where that approximate solution lies in relation to the range and/or nullspace of U and V.
3. The equilibrium conditions for deformation of a toroidal membrane (an inner tube) lead to the Poisson equation on a rectangle, $0<x<a, 0<y<b$, with periodic boundary conditions:
$-u_{x x}-u_{y y}=f(x, y), u(x, 0)=u(x, b), u_{y}(x, 0)=u_{y}(x, b), u(0, y)=u(a, y), u_{x}(0, y)=u_{x}(a, y)$.
(a) Prove that this toroidal boundary value problem is self-adjoint with respect to the standard L^{2} inner product.
(b) Is this boundary value problem positive definite, positive semi-definite, or neither?
(c) What conditions, if any, must be imposed on the forcing function $f(x, y)$ to ensure existence of a solution?
4. Does there exist a solution to the following boundary value problem? If so, write down all solutions.

$$
x u^{\prime \prime}(x)+u^{\prime}(x)=1, u^{\prime}(1)=u^{\prime}(2)=0 .
$$

5. Consider the Fourier transform, a linear integral operator \mathcal{F} defined by

$$
\mathcal{F}[f(x)]=\int_{-\infty}^{\infty} d x e^{i k x} f(x)
$$

(a) Prove that the Fourier transform is a linear operator.
(b) What is the adjoint of \mathcal{F} with respect to the standard Hermitian L^{2} inner product?
6. Let $L=D^{2}$. Using the L^{2} inner products on its domain and target spaces, write down a set of homogenous boundary conditions under which $L^{*}=D^{2}$ (the operator is self-adjoint). Then, let $S=L^{*} \circ L=D^{4}$. Do your boundary conditions from above lead to a boundary value problem that is 1) positive definite, 2) positive semi-definite, or 3) neither?
7. Consider the heat operator, $L=\left(\partial_{t}-\partial_{x}^{2}\right)$, associated with the forced heat equation

$$
L u(t, x)=f(t, x)
$$

on $x \in \mathbb{R}, t>0$. Is

$$
g(t, x ; \tau, \xi)=\frac{\theta(t-\tau)}{2 \sqrt{\pi(t-\tau)}} \exp -\frac{(x-\xi)^{2}}{4(t-\tau)}
$$

a Green's function for this problem? Why or why not? (10 points)

This page left blank.

