
MA 562, Spring 2024 Midterm 1 practice

1. Consider the linear operator L : U → V . Prove that if L has a non-trivial null space, then
Lu = f does not have a unique solution.



2. Consider the linear operator A : R3 → R2, with singular value decomposition A = UΣV T ,

U =

(
2 3 1
1 1 1

)
, V =

2 2 1
1 0 0
0 1 0

 , Σ =

2 0 0
0 1 0
0 0 ε

 .

(a) What is A?
(b) What is the least-squares pseudo-inverse of A?
(c) Assuming that ε � 1, consider the rank-two approximation to Ax = (3, 1)T . What is

the least squares solution to the approximate problem?
(d) Discuss where that approximate solution lies in relation to the range and/or nullspace of

U and V .



3. The equilibrium conditions for deformation of a toroidal membrane (an inner tube) lead to
the Poisson equation on a rectangle, 0 < x < a, 0 < y < b, with periodic boundary conditions:

−uxx−uyy = f(x, y), u(x, 0) = u(x, b), uy(x, 0) = uy(x, b), u(0, y) = u(a, y), ux(0, y) = ux(a, y).

(a) Prove that this toroidal boundary value problem is self-adjoint with respect to the stan-
dard L2 inner product.

(b) Is this boundary value problem positive definite, positive semi-definite, or neither?
(c) What conditions, if any, must be imposed on the forcing function f(x, y) to ensure exis-

tence of a solution?



4. Does there exist a solution to the following boundary value problem? If so, write down all
solutions.

xu′′(x) + u′(x) = 1, u′(1) = u′(2) = 0.



5. Consider the Fourier transform, a linear integral operator F defined by

F [f(x)] =

∫ ∞
−∞

dx eikx f(x).

(a) Prove that the Fourier transform is a linear operator.
(b) What is the adjoint of F with respect to the standard Hermitian L2 inner product?



6. Let L = D2. Using the L2 inner products on its domain and target spaces, write down
a set of homogenous boundary conditions under which L∗ = D2 (the operator is self-adjoint).
Then, let S = L∗ ◦ L = D4. Do your boundary conditions from above lead to a boundary value
problem that is 1) positive definite, 2) positive semi-definite, or 3) neither?



7. Consider the heat operator, L = (∂t − ∂2x), associated with the forced heat equation

Lu(t, x) = f(t, x)

on x ∈ R, t > 0. Is

g(t, x; τ, ξ) =
θ(t− τ)

2
√
π(t− τ)

exp−(x− ξ)2

4(t− τ)

a Green’s function for this problem? Why or why not? (10 points)
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