
MA 562, Spring 2023 Midterm 1 practice

1. Consider the linear operator L : U → V . Prove that if L has a non-trivial null space, then
Lu = f does not have a unique solution.

If L has a non-trivial nullspace N (L), there exists some u0 6= 0 such that Lu0 = 0. Let Lu1 = f .
Then L(u1 + u0) = Lu1 + Lu0 = f + 0 = f so u1 + u0 is also a solution to Lu = f .



2. Consider the linear operator A : R3 → R2, with singular value decomposition A = UΣV T ,

U =

(
2 3 1
1 1 1

)
, V =

2 2 1
1 0 0
0 1 0

 , Σ =

2 0 0
0 1 0
0 0 ε

 .

(a) What is A?
(b) What is the least-squares pseudo-inverse of A?
(c) Assuming that ε � 1, consider the rank-two approximation to Ax = (3, 1)T . What is

the least squares solution to the approximate problem?
(d) Discuss where that approximate solution lies in relation to the range and/or nullspace of

U and V .

For (a, b, c), it is convenient to use the SVD formulation of the least-squares solution as in the
homework. For (d), recall that the columns of U and V are, respectively, the eigenvectors of
AAT and ATA.
An eigenvector v of a matrix C with a zero eigenvalue is in the nullspace of C.
The least squares solution is x̂ = V Σ′UT b. x̂ is thus in the range of V , which is the orthogonal
complement of the nullspace of V T . x̂ is formed by first projecting b first into the range of UT

(the orthogonal complement of the nullspace of U). However, components in the range of UT

are then scaled (and those in the nullspace of AAT discarded) before projecting into the range
of V .



3. The equilibrium conditions for deformation of a toroidal membrane (an inner tube) lead to
the Poisson equation on a rectangle, 0 < x < a, 0 < y < b, with periodic boundary conditions:

−uxx−uyy = f(x, y), u(x, 0) = u(x, b), uy(x, 0) = uy(x, b), u(0, y) = u(a, y), ux(0, y) = ux(a, y).

(a) Prove that this toroidal boundary value problem is self-adjoint with respect to the stan-
dard L2 inner product.

(b) Is this boundary value problem positive definite, positive semi-definite, or neither?
(c) What conditions, if any, must be imposed on the forcing function f(x, y) to ensure exis-

tence of a solution?

(a) This follows a direct computation.
(b) Since the adjoint of the gradient with respect to the L2 inner product is the negative
divergence, and ∆u = ∇·∇u, the negative Laplacian is a composite-adjoint operator. It is thus
guaranteed to be positive semidefinite. And, it is positive definite only if its nullspace is trivial.
That nullspace is the set of solutions to the homogenous BVP

−uxx − uyy = 0, u(x, 0) = u(x, b), uy(x, 0) = uy(x, b), u(0, y) = u(a, y), ux(0, y) = ux(a, y).

and is composed of the constant functions on the rectangle, so the nullspace is not trivial.
(c) The Fredholm alternative tells us that f must be orthogonal to the nullspace of the adjoint
operator. Since the negative Laplacian is self-adjoint, the forcing function must have zero integral
on the rectangle.



6. Let L = D2. Using the L2 inner products on its domain and target spaces, write down a set
of homogenous boundary conditions under which L∗ = D2 (the operator is self-adjoint). Then,
let S = L∗ ◦L = D4. Do your boundary conditions lead to a boundary value problem that is 1)
positive definite, 2) positive semi-definite, or 3) neither?

We proved that operators of the form L∗ ◦ L are always positive semi-definite, and positive
definite if and only if they have a trivial nullspace.
For example, you could take homogenous Dirichlet boundary conditions as in class. The null
space of S is then just the zero function, so S is positive definite. If you took homogenous
Neumann boundary conditions the nullspace would not be trivial (all constant functions) so the
operator would be just positive semi-definite.
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