
If Josephus Had Played Russian Roulette

Hunter Glanz

Dr. Matt Carlton

Statistics Department

California Polytechnic State University

San Luis Obispo

June 12, 2009

1

Contents

1 Introduction 3

2 Variations 6

2.1 Probabilistic Josephus Game . 6

2.2 Multiple Wounds . 14

2.3 Multiple Probabilistic Wounds . 16

3 Conclusion 20

4 Appendix 20

2

1 Introduction

The Josephus Problem is a classic scenario used in many computer science and mathematics classes
to help teach iteration, recursion, and modular arithmetic. The original problem dates back to
ancient Rome. Josephus was a first century historian who was able to record the destruction of
Jerusalem in AD 70. He actually fought the Romans in The First Jewish-Roman War (66-73 AD)
as a Jewish military leader. After attacking and eventually cornering Josephus and his troops, the
Romans asked him to surrender. Josephus’ soldiers preferred suicide to capture and so Josephus
devised a strategy for him and his comrades to die together. He suggested forming a circle and
then proceeding to kill every third person. Josephus utilized some keen mathematical ability to
discern where he and a friend should stand in order to be the last two standing. After doing so,
the two of them surrendered to the Romans and later Josephus became known as Titus Flavius
Josephus as a new Roman citizen.

The more general problem, or game, involves n people in a circle with a particular skip
number, k. Starting at position 1, we move forward k places and eliminate the player at that
position. At each step in the game, only the “living” players are considered when skipping ahead.
The game ends when there is only one person left “alive”.

Example
7 players n = 7
Skip number is 3 k = 3

1 2 3 4 5 6 7
4 5 6 7 1 2
7 1 2 4 5
4 5 7 1
1 4 5
1 4
4

Here we have strung out the circle of people into a line. The boxed player in each row (or each
step) is the one being eliminated. At each step of the game, players eliminated during any previous
turns have been removed. Also, the “living” players have been reordered so that the counting
always starts on the far left: 1, 2, 3 (since 3 is the skip number). During the second to last turn,
when only the first and fourth players remain, we must cycle back through them while counting.
Hence, to determine that the first player was eliminated and the fourth player was the winner we
counted 1, 4, 1.

Mapping out a game like the one above seems easy enough, but for larger n and k the winner
could become more difficult to determine. The most important question is: does there exist a
closed formula for the winning position in a game of n people with skip number k? As I stated
before, the problem arises in a number of subject areas and with the abundance of attention a
few results have been reached. Let J(n, k) denote the winning position in the Josephus Game

3

with n players and skip number k. When the skip number is 2, there is indeed a formula for the
winning position. Write n = 2a + t, where 2a is the highest power of 2 such that 2a < n. Then,

J(2a + t, 2) = 2t + 1

This solution as well as a proof can be found at [?] under Games.

Example 1
7 players n = 7
Skip number is 2 k = 2

⇒ 7 = 22 + 3
⇒ a = 2, t = 3

So, we have
J(22 + 3, 2) = 2(3) + 1 = 7

Thus the winner is the seventh player, J(7, 2) = 7.

Example 2
49 players n = 49
Skip number is 2 k = 2

⇒ 49 = 25 + 17
⇒ a = 5, t = 17

So, we have
J(25 + 17, 2) = 2(17) + 1 = 35

Thus the winner is the thirty-fifth player, J(49, 2) = 35.

4

In the general case with n people and skip number k, the solution is a recurrence of the form:

J(n + 1, k) ≡ (J(n, k) + k) mod (n + 1), with J(1, k) = 0

This recursive solution can be observed by considering a particular n and k for which the winner,
J(n, k), is known. Then consider the same game with n+1 people and eliminate the first person.
We have now arrived back at the original game for which the winner was known. By rotating the
remaining positions, it is simple to pick out the known winner and hence J(n + 1, k). See the
example below.

First Game: n = 5, k = 2

Original Order 1 2 3 4 5
Order Eliminated 2 4 1 5 3

Hence the winner is the third player: J(5, 2) = 3.

Second Game: n = 6, k = 2

Original Order 1 2 3 4 5 6
Order Eliminated 2 4 6 3 1 5

Reordered After First Elimination 3 4 5 6 1

After the first elimination, the five remaining players (all those but 2) were reordered to display
their line-up in a five person game (such as our first game). But we know the winner to this
scenario: the third player. As demonstrated by the bold faced players, the winner could have
been arrived at either of these two ways. Thus J(6, 2) is the fifth player.

J(6, 2) ≡ (J(5, 2) + 2) mod 6
≡ (3 + 2) mod 6
= 5

While this algorithm works, it is a recursive solution and so far no analysis has produced a
closed formula for the winner, J(n, k), of a general game. For the remainder of this paper, the
total number of people in a particular Josephus Game will be denoted n, and the skip number
will be denoted k.

5

2 Variations

While the original Josephus Game is quite interesting and a very challenging mathematical sce-
nario, many other questions pop up when pondering the classic problem in a contemporary con-
text. For example, what if instead of everyone in the circle taking a sword to themselves in turn,
there were a designated shooter, who shot every kth person? Furthermore, what if that shooter
had limited accuracy and only had probability p of actually hitting a player on any given turn?
Finally, what if it took more than one shot to kill (eliminate) a player?

We have just defined two new parameters for the Josephus Game: the probability, p, of being
eliminated and the number of shots, s, it takes to eliminate a player. These questions will be
addressed in the remainder of this article.

2.1 Probabilistic Josephus Game

In this section, we will discuss the implementation of the parameter p into the original game. So,
for the time being, it will only take one shot to eliminate a player. It is important to observe
that when k = 1 we are in some sense playing Russian Roulette. For this section, let P (w;n, k, p)
denote the probability of the wth player (w = 1, . . . , n) winning in the Josephus Game with n
players, skip number k, and probability of being eliminated p. Though this may seem confusing at
first, we must change our notation as well as our perspective of the game. There no longer exists
a fixed winner for a game with particular n and k. Because there is now a probability associated
with being eliminated at each step of the game, there is now a probability of winning the game
for each player. Hence our new notation, P (w;n, k, p).

In Russian Roulette, there are n people in a circle who take turns sequentially, firing a gun at
themselves. In terms of the variables we have defined, this means that in Russian Roulette k = 1.
The gun is not fully loaded, so there is in fact a probability less than 1 of being eliminated (killed).
The game ends when there is only one person left standing, just as in the original Josephus game.
Quite a bit of work has been done mathematically analyzing Russian Roulette, and the results
we’ll emphasize are found in Blom et. al. [?]. They were able to produce an explicit solution to
this particular scenario:

P (w;n, 1, p) = p

∞∑
j=1

(1− qj+1)w−1(1− qj)n−wqj

for w = 1, . . . , n− 1. In the case that w = n, the expression changes slightly to the following:

P (n;n, 1, p) = p

∞∑
j=0

(1− qj+1)w−1(1− qj)n−wqj

Once dissected, the parts of this formula can be derived using the Geometric Distribution with
parameter p. Let Bj be the event that player w gets shot in the (j +1)st turn, where j = 0, 1,
The events Bj are disjoint and P (Bj) = qjp. If B0 occurs, then player w can never win. Given

6

that Bj , j > 0, occurs, player w wins if the following events Cj and Dj occur:

Cj : Players 1, 2, . . ., w − 1 get shot before player w (in the (j + 1)st step or earlier).
Dj : Players w + 1, w + 2, . . . , n get shot before player w (in the jth step or earlier).

It is these three independent events that have a geometric distribution. They establish that the
probability that player 1 gets shot on or before the (j + 1)st step is 1− qj+1. Consequently,

P (Cj) = (1− qj+1)w−1

P (Dj) = (1− qj)n−w

Thus

P (w;n, 1, p) =
∞∑

j=1

P (BjCjDj) =
∞∑

j=1

P (Bj)P (Cj)P (Dj)

From here we arrive at the initial formulation above. To help demonstrate this result, consider
the following example:

n = 3, k = 1, p = 2
3

P (1; 3, 1, 2
3) = 2

3

∑∞
j=1(1−

1
3

j+1)1−1(1− 1
3

j)3−1 · 1
3

j

= 2
3

∑∞
j=1(1−

1
3

j)2 · 1
3

j

= 2
3

∑∞
j=1(1− 2(1

3)j + (1
3)2j) · 1

3

j

= 2
3

∑∞
j=1[(

1
3)j − 2(1

3)2j + (1
3)3j]

= 2
3

[∑∞
j=1(

1
3)j − 2

∑∞
j=1(

1
9)j +

∑∞
j=1(

1
27)j

]
= 2

3

[
1
2 −

1
4 + 1

26

]
= 5

26

P (2; 3, 1, 2
3) = 2

3

∑∞
j=1(1−

1
3

j+1)2−1(1− 1
3

j)3−2 · 1
3

j

= 2
3

∑∞
j=1(1−

1
3

j+1)(1− 1
3

j) · 1
3

j

= 2
3

∑∞
j=1(1− (1

3)j+1 − (1
3)j + (1

3)2j+1) · 1
3

j

= 2
3

[∑∞
j=1(

1
3)j − 1

3

∑∞
j=1(

1
9)j −

∑∞
j=1(

1
9)j + 1

3

∑∞
j=1(

1
27)j

]
= 2

3

[
1
2 −

1
24 −

1
8 + 1

78

]
= 3

13

P (3; 3, 1, 2
3) = 2

3

∑∞
j=0(1−

1
3

j+1)3−1(1− 1
3

j)3−3 · 1
3

j

= 2
3

∑∞
j=0(1−

1
3

j+1)2 · 1
3

j

= 2
3

∑∞
j=0(1− 2(1

3)j+1 + (1
3)2j+2) · 1

3

j

= 2
3

[∑∞
j=0(

1
3)j − 2

3

∑∞
j=0(

1
9)j + 1

9

∑∞
j=0(

1
27)j

]
= 2

3

[
3
2 −

3
4 + 3

26

]
= 15

26

7

So, in this scenario the third player is the most likely to win. In general if we leave the
parameter p in the above three expressions we can find the probability of each of the three players
winning as a function of p. You can see from the functions and graph below who is most likely to
win for various values of p (Player 1 is red, Player 2 is green, and Player 3 is blue).

P (1; 3, 1, p) = −2+4p−3p2+p3

−6+9p−5p2+p3

P (2; 3, 1, p) = 1−p
3−3p+p2

P (3; 3, 1, p) = 2−2p+p2

6−9p+5p2−p3

In light of Josephus’ scenario classic Russian Roulette is only the root of the probabilistic
version of the Josephus Game. Without a closed formula for the original game, I initially worked
towards creating a Josephus Game program in Mathematica that could simulate a game with all
of the parameters I’ve discussed so far (all Mathematica code can be found in the Appendix).
Because of the simplicity of the program and the high power of the computers available, I could
simulate hundreds of thousands of games in order to determine the long term frequencies of
winning positions. Even with these new capabilities, I was a bit unsatisfied. It was not until
later that we (Dr. Carlton and myself) discovered a way to explicitly calculate the probability of
winning for each player in a particular game. Consider the following:

Let p denote the probability of being eliminated on a given step (q = 1 − p) and let k denote
the skip step. Suppressing these arguments momentarily, let P (w, n) denote the probability that
player number w is the winner in an n player Josephus Game. Here we’ll be considering different
values of the n and k parameters in completely self-contained scenarios. To make the following
postulations imagine we’re at the first step of the game about to take the first shot. That first
shot can either be a success or failure, and the probability that each player wins the game will
be affected by the outcome of this first shot. Follow along in the very first scenario below as I

8

dissect this process.

k = 1

n = 2

P (1, 2) = p · 0 + q · P (2, 2)

In this scenario the first player to be shot at is player one. If the shot is successful (with probability
p), then player one has probability 0 of winning the game; hence the p·0. If the shot is unsuccessful
(with probability q), then the second player will be shot at next. This makes player one the
“second player” in this subsequent two-player game. Thus, his probability of winning has become
P (2, 2). We have now accounted for the two possible outcomes of the first shot and can write
P (1, 2) = q · P (2, 2).

P (2, 2) = p · 1 + q · P (1, 2)

Again, we know that the first player to be shot at is player one. If the shot is successful, then
player two has probability 1 of winning the game since player one has been eliminated; hence the
p · 1. If the shot is unsuccessful, then the second player will be shot at next. This makes player
two the “first player” in this subsequent two-player game. Thus, his probability of winning has
become P (1, 2). Once again we have accounted for the two possible outcomes of the first shot and
can write P (2, 2) = p · 1 + q · P (1, 2). Notice that we now have two equations and two unknowns
(P (1, 2) and P (2, 2)).

So, we have

P (1, 2) − q ·P (2, 2) = 0
−q ·P (1, 2) + P (2, 2) = p

which we can write [
1 −q
−q 1

][
P (1, 2)
P (2, 2)

]
=

[
0
p

]

n = 3
By the same logic, we can write a set of relationships based upon the first shot in a three-player
game.

P (1, 3) = p·0 + q ·P (3, 3)
P (2, 3) = p·P (1, 2) + q ·P (1, 3)
P (3, 3) = p·P (2, 2) + q ·P (2, 3)

9

So, we have

P (1, 3) − q ·P (3, 3) = 0
−q ·P (1, 3) + P (2, 3) = p·P (1, 2)
−q ·P (2, 3) + P (3, 3) = p·P (2, 2)

which we can write 1 0 −q
−q 1 0
0 −q 1

 P (1, 3)

P (2, 3)
P (3, 3)

 = p ·

 0
P (1, 2)
P (2, 2)

Note that above I have outlined the algorithm in the Russian Roulette case (k = 1). In any case,
it is a good place to start. As you can see, we can solve for P (1, 2) and P (2, 2) in the n = 2
case using matrix algebra. Using these computed values we can then solve for P (1, 3), P (2, 3),
and P (3, 3) in the n = 3 case using the same method. With this recursion we can solve for any
P (w;n, 1, p). This algorithm provides an excellent foundation from which to attack the scenario
where skip = k. Consider the following:

k = 2

n = 2

P (1, 2) = 1
P (2, 2) = 0

n = 3

P (1, 3) = p·P (2, 2) + q ·P (2, 3)
P (2, 3) = p·0 + q ·P (3, 3)
P (3, 3) = p·P (1, 2) + q ·P (1, 3)

So, we have

P (1, 3) − q ·P (2, 3) = p·P (2, 2)
−q ·P (3, 3) + P (2, 3) = 0
−q ·P (1, 3) + P (3, 3) = p·P (1, 2)

which we can write 1 −q 0
0 1 −q
−q 0 1

 P (1, 3)

P (2, 3)
P (3, 3)

 = p ·

 P (2, 2)
0

P (1, 2)

 (1)

Observe that this last line can also be written

10

 1 −q 0
0 1 −q
−q 0 1

 P (1, 3)

P (2, 3)
P (3, 3)

 = p ·

 0 1 0
0 0 1
1 0 0

 P (1, 2)

P (2, 2)
0

 (2)

Again, note that using this same type of recursion we can determine any P (w;n, 2, p). At this
stage it is important to note that the matrices involved in both of the above cases (k = 1, 2) are
circulant matrices. A circulant matrix is a special kind of Toeplitz matrix where each row vector
is rotated one element to the right relative to the preceding row vector. In general, circulant
matrices are of the following form:

C =

c0 cn−1 . . . c2 c1

c1 c0 cn−1 c2

... c1 c0
. . .

...

cn−2
. cn−1

cn−1 cn−2 . . . c1 c0

With the use of circulant matrices we can rewrite the solution vector in (??) as it’s displayed in
(??). In fact, we can rewrite the left-hand side of (??) using the same circulant matrix.

 1 0 0

0 1 0
0 0 1

− q ·

 0 1 0
0 0 1
1 0 0

 P (1, 3)

P (2, 3)
P (3, 3)

 = p ·

 0 1 0
0 0 1
1 0 0

 P (1, 2)

P (2, 2)
0

 (3)

The ability to rewrite our recursion in this way is neat, but is it predictable? Yes! Note that the
circulant matrix used above in the n = 3 and k = 2 case can be obtained by rotating each row of
the 3x3 identity matrix to the left 2 cells; or if you prefer, you could rotate each column down 2
cells. Indeed, if you look back at our short look at the k = 1 scenario on page 5 you’ll discover
that a similar circulant matrix could be used to rewrite that recursion. However, in the k = 1
case, each row is rotated only 1 cell to the left. More examples would easily confirm that these
circulant matrices correspond to the skip number in each situation. In a Josephus Game of n
people and skip number k, the appropriate circulant matrix could be obtained by rotating each
row of the nxn identity matrix to the left k cells.

We now have the tools to determine any P (w;n, k, p). We need only solve the following system
using the recursion we’ve outlined above:

(In − q ·Rn,k)

P (1, n)
P (2, n)

...
P (n, n)

 = p ·Rn,k

P (1, n− 1)
P (2, n− 1)

...
P (n− 1, n− 1)

0

11

where In is the n × n identity matrix, Rn,k is the n × n circulant matrix corresponding to skip
number k, and q is 1 − p. With the power of modern computers we are equipped to rigorously
verfiy these results through simulation. Using Mathematica and SAS, I implemented the algorithm
derived above as well as a program useful for simulating the Josephus Game and storing the results.
Below are results comparing what our recursion produced to long run frequencies observed through
the simulation. In these simulations 1,000,000 games were played with the specified parameters
and the winner recorded each time.

n = 6, k = 4, p = .25

P (1; 6, 4, .25) P (2; 6, 4, .25) P (3; 6, 4, .25) P (4; 6, 4, .25) P (5; 6, 4, .25) P (6; 6, 4, .25)
Recursion 0.1995 0.1247 0.2200 0.1048 0.2113 0.1396

Simulation 0.1997 0.1241 0.2196 0.1048 0.2121 0.1396

n = 5, k = 7, p = .83

P (1; 5, 7, .83) P (2; 5, 7, .83) P (3; 5, 7, .83) P (4; 5, 7, .83) P (5; 5, 7, .83)
Recursion 0.2040 0.0097 0.2188 0.5104 0.0571

Simulation 0.2036 0.0096 0.2181 0.5116 0.0571

Though these were just two arbitrary scenarios, the results are extremely close. The probabilities
produced by the recursion should be considered exact after observing such small deviances using
simulation. Thus our algorithm can indeed determine any P (w;n, k, p). Mathematica’s inherently
symbolic environment gives us a significant advantage in viewing P (w;n, k, p) as a function of p.
Consider the same two scenarios as above, but let p vary from 0 to 1.

n = 6, k = 4

12

For example, the probability of the fifth player winning the game as a function of p is

P (5; 6, 4, p) =
9− 35p + 66p2 − 69p3 + 42p4 − 14p5 + 2p6

(3− 3p + p2)2(5− 10p + 10p2 − 5p3 + p4)

n = 5, k = 7

Similarly, the probability of the fourth player winning the game as a function of p is

P (4; 5, 7, p) = − 4− 15p + 26p2 − 24p3 + 14p4 − 5p5 + p6

(−2 + p)(2− 2p + p2)(5− 10p + 10p2 − 5p3 + p4)

It is great to be able to visualize these results. We can also use the graphs to verify things we
already had an idea about. For example, we know that the winners of the deterministic (p = 1)
Josephus Games above are the fifth and fourth players, respectively. So it makes sense that the
curves representing their probabilities of winning approach 1 as p goes to 1. For the same reason,
it makes sense that all of the other curves go to 0 as p goes to 1. Since 6 and 4 are not relatively
prime the second, fourth and sixth players in first scenario (n = 6, k = 4) will continue to be shot
at without interruption until one of them is eliminated. This is why half of the players for this
scenario start out at a different probability than the other half for p close to 0. On the other
hand, since 5 and 7 are relatively prime, in the second scenario (n = 5, k = 7) no one is destined
to be eliminated before the rest. Hence, all five players start out with the same probability of
winning for p close to 0.

To conclude this section on the probabilistic version of the Josephus Game observe that we
can use the recursion developed above with the stipulation that p = 1 to solve the deterministic
Josephus Game. When the probability of being eliminated is 1 we’ve arrived back at the classic
Josephus scenario. Mathematically,

13

lim
p→1−

P (w;n, k, p) =

{
0 if J(n, k) = w

1 if J(n, k) 6= w

2.2 Multiple Wounds

In this section, we will discuss the implementation of the s parameter into the original Josephus
Game. Up until we have been discussing the case where s = 1 (i.e. it takes only one shot to
eliminate a player). Intuitively it seems that if s 6= 1, then the game and thus the winner would
be different. However, n and k still heavily influence everything. For this section, let J(n, k, s)
denote the winning position of a Josephus Game with n people, skip number k, and s shots
to eliminate a player. Again, we are changing the language to reflect the effect of the current
parameters on the original game. In this section we address the deterministic game (p = 1) and
proceed to analyze the original Josephus Game where it takes s shots to eliminate a player. Thus,
there will be a unique winner for every combination of parameter values.

It turns out that if n and k are relatively prime (i.e. gcd(n, k) = 1), then it does not matter
what s is. The order the players are eliminated and the winner of the game remain the same in
this case. I’ve illustrated this in the following two games.

n = 8, k = 4

Original Order 1 2 3 4 5 6 7 8
Order Eliminated 4 8 5 2 1 3 7 6

In this scenario the winner is the sixth player, J(8, 4, 1) = 6. Here n and k are not relatively
prime, which contextually means that some players are destined to be eliminated before the rest.
Observe how the game changes when we change s from 1 to 2.

Original Order 1 2 3 4 5 6 7 8
Order Shot 4 8 4 8 5 2 7 5 2 1 1 3 6 7 6 3

Order Eliminated 4 8 5 2 1 7 6 3

When s = 2, the winner is the third player; J(8, 4, 2) = 3. The fourth and eighth players are
doomed to die before the rest; and notably before the other players have even been hit once. In
fact, the winner changes again if we increase s to 3. This is all linked to the fact that gcd(8, 4) = 4.
On the other hand, consider the next example where n and k are relatively prime.

n = 7, k = 3

Original Order 1 2 3 4 5 6 7
Order Eliminated 3 6 2 7 5 1 4

In this scenario the winner is the fourth player, J(7, 3, 1) = 4. As opposed to the first scenario, in

14

this one no player is doomed to be eliminated before the rest. Consequently, the value of s has no
effect on the outcome of this game. Observe the special thing that happens when s is increased
in the case that n and k are relatively prime.

Original Order 1 2 3 4 5 6 7
Order Shot 3 6 2 5 1 4 7 3 6 2 7 5 1 4

Order Eliminated 3 6 2 7 5 1 4

Because n and k are relatively prime, the order in which the players are shot during the final
round of shots is the same as in the s = 1 case. In other words, every player receives their
eliminating shot in the same order as they would in the original s = 1 game. This does mean
that in the s = 1 case, the kth player is indeed doomed to be eliminated first. The players do
not receive every shot in the order that they get eliminated. However, they do receive the shots
in a way such that no player is repeatedly shot at more than any other. We can observe this
phenomenon without going through Josephus Games using brute force.

n = 8, k = 4

4 · {1, 2, 3, 4, 5, 6, 7, 8}
= {4, 8, 12, 16, 20, 24, 28, 32}

Now, if we mod this list (the set of our positions multiplied by k = 4) by n = 8 we’ll arrive at a
reordering of our positions (treating a 0 as n). This will precisely be the order in which they will
be shot!

{4, 8, 12, 16, 20, 24, 28, 32} mod 8
= {4, 8, 4, 8, 4, 8, 4, 8}

Again, what we have done is take a list of our players, multiplied through by k = 4 and mod
by n = 8. We know that we’ll be aiming at every fourth player until all eight players have been
eliminated. In a sense we’ve shuffled our list of players according to this knowledge. Our resulting
list is telling us that none of the other players will be eliminated until either players 4 or 8 have
been eliminated. At least one of these players is doomed to be eliminated before the rest are even
shot once. Compare this to our second scenario from above.

15

n = 7, k = 3

3 · {1, 2, 3, 4, 5, 6, 7}
= {3, 6, 9, 12, 15, 18, 21}

{3, 6, 9, 12, 15, 18, 21} mod 7
= {3, 6, 2, 5, 1, 4, 7}

Notice here that even though this is not the order that the players are eliminated, it is the order
that the players will be shot until the first player is eliminated. Because this new list is just a
reordering of all the original players we can see that there are no players doomed to die before
the rest. Each player will receive their first shot before anyone else receives their second; and so
forth.

To conclude this section, note that we were unable to formulate an algorithm to determine any
particular J(n, k, s). The best that we could do is actually run through a game with particular n,
k, and s in order to determine the winner. We are not empty-handed though. We established that
if n and k are relatively prime then the value of s does not matter, and the winner is actually
the same as in the game with n people, skip number k, and s = 1. Our lingering question is
whether a recursion exists for the s>1 case.

2.3 Multiple Probabilistic Wounds

In this section we’ll include both the p and s parameters to form a third variant of the Josephus
Game. Again, because there is a probability of being eliminated there will be no clear winner of a
particular game. Instead we’ll refer to P (w;n, k, s, p) as the probability of the wth player winning
the Josephus Game with n people, skip number k, probability of being eliminated p, and s shots
to be eliminated.

With the formulation of this new problem, it makes sense to start back at the most basic
forms this game could take on. We’ve considered the case where s = 1. We’ve considered the case
where p = 1. Now we’ll let both of these parameters vary along with n and fix k = 1. In other
words, we will start by looking at Russian Roulette when it takes s shots to eliminate a player.

Observe the following analogy. The expression for P (w;n, 1, 1, p) formulated by Blom et. al.
used a combination of events, each of which followed a geometric distribution. When we allow s
to take on values other than 1, these events should be thought in the context of being shot the
sth time and not just the once. Consequently, these new events will follow a negative binomial
distribution instead of a geometric distribution. We generalized the original expression to this
new scenario using the probability mass function of the negative binomial distribution.

16

P (w;n, 1, s, p) =
∞∑

j=1

(
j+1∑
x=s

(
x− 1
s− 1

)
psqx−s

)w−1(j∑
x=s

(
x− 1
s− 1

)
psqx−s

)n−w ((
j

s− 1

)
psqj+1−s

)

Note again that this expression only holds for w = 1, . . . , n − 1. The infinite sum must start at
j = 0 when w = n as in the original case. This expression is quite ugly. However, with the help
of mathematical software we can verify this result. If we set s = 1 and try any other values for n,
k, and p we can use both the original Russian Roulette expression and our matrix recursion from
above to check this result. Without pouring through the details involved in determining even
one player’s probability of winning with this new expression, this equation will simplify back to
the original and produce the correct answers. But how do we know it works for s 6= 1? We can
simulate the results and look at long run frequencies!

n = 6, k = 1, s = 2, p = 1
2

P (1; 6, 1, 2, .5) P (2; 6, 1, 2, .5) P (3; 6, 1, 2, .5) P (4; 6, 1, 2, .5) P (5; 6, 1, 2, .5) P (6; 6, 1, 2, .5)
Expression 0.1304 0.1413 0.1542 0.1699 0.1894 0.2147
Simulation 0.1295 0.1409 0.1534 0.1721 0.1891 0.2150

As you can see, the results are extremely close. Although we seem to have conquered Russian
Roulette with the inclusion of the s parameter, we must rely solely on simulation to achieve
arbitrary P (w;n, k, s, p). Dr. Carlton and I were unable to generalize our matrix recursion to the
case where s 6= 1. For this reason, when s 6= 1 and k 6= 1 we look to Mathematica for estimates
of the actual probabilities.

17

n = 6, k = 4, s = 2

For the sake of time, I merely changed s from 1 to 2. However, computing time aside, the
sensitivity of the game to these types of small changes is worth investigating. For each p =
.05, .1, . . . , 1, 10,000 games were simulated and the relative frequencies calculated. Keep in mind
that the winner of the game with n = 6, k = 4, s = 2 and p = 1 is the third player (blue on
the above graph) instead of the fifth player in the s = 1 case. Once again it is nice to be able
to observe seemingly intuitive things play out in the graph here. As in the s = 1 case we’re
seeing an uneven playing field from the start since n = 6 and k = 4 are not relatively prime. The
second, fourth and sixth players start out with and maintain a lower probability of winning. On
the other hand, the first, third and fifth players maintain higher probabilities. Just as we expect,
the probability of the third player winning approaches 1 as p approaches 1 (the winner of the
deterministic game).

18

n = 7, k = 3, s = 3

It took about 45 minutes to simulate the data displayed in the graph above. This makes sense
though. Since n = 7 and k = 3 are relatively prime and I increased s to 3 shots it might take
longer to simulate 1,000,000 games (10,000 for each value of p = .01, .02, . . . , 1). None of the
players in this scenario have a clear disadvantage because of their position, n, or k. This is further
confirmed by the common starting probability for every player on the left side of the graph at 1

7 .
As p goes to 1, the probability of the fourth player (the winner of the deterministic game) goes
to 1.

To conclude this section, observe that this third variant of the game grants us one more
interesting piece of information. The number of steps it takes to complete a game or determine
a winner (the duration) follows a negative binomial distribution. We are in a sense playing until
there have been n − 1 successful shots. Thus have the following expression for the expected
duration of a game with n people, skip number k, probability of being eliminated p, and 1 shot
to be eliminated. We can also look at the variance. Keep in mind that this is only true for the
s = 1 case. Once s is greater than one, we can’t be sure how many shots there will be before
n− 1 players have been eliminated.

19

E(duration) =
n− 1

p
V ar(duration) =

n− 1
p2

If s>1, then we can write the following knowing it takes s shots to eliminate a player and ns shots
to eliminate every player.

s(n− 1)
p

≤ E(duration) ≤ ns− 1
p

3 Conclusion

To conclude this paper I would like to acknowledge the tools and ideas most useful in discovering
the things we did about these different variations of the Josephus Problem. Key ideas in probabil-
ity, linear algebra and number theory helped us re-establish and improve things that had already
been shown for the classic scenario. We were able to utilize these subject areas along with Mathe-
matica to find new and exciting results about both the probabilistic and multiple wounds variants
of the original problem. We developed a useful recursion for finding any given P (w;n, k, p). We
can use simulation to verify our results and to estimate any given P (w;n, k, p, s). Though we
achieved much, I am still curious about new and different ways to expand this problem or analyze
untouched parts of what we have already done.

4 Appendix

Below is code from Mathematica used to do everything described above that couldn’t be done by
just typing in a formula.

Deadly[total_, skip_, shots_, p_, rules___] :=

Module[{ringarray, i, circ, temp, s, turnarray, j, shotarray, winner,

woundarray, k, m, deadarray, all, lucky},

winner = False;

circ = Range[total];

deadarray = Range[total];

woundarray = Table[0, {m, 1, total - 1}];

turnarray = Table[0, {j, 1, total}];

shotarray = Table[0, {k, 1, total}];

ringarray = Table[0, {i, 1, shots*total + 1}];

ringarray[[1]] = circ;

j = 1;

While[winner == False,

temp = {};

20

If[Mod[skip, Length[ringarray[[j]]]] != 0,

s = Mod[skip, Length[ringarray[[j]]]],

s = Length[ringarray[[j]]];

];

If[woundarray[[-1]] != 0, AppendTo[woundarray, 0]];

If[Length[ringarray[[j]]] >= skip,

turnarray[[ringarray[[j]][[skip]]]] += 1;

If[Floor[Random[] + p] == 1,

shotarray[[ringarray[[j]][[skip]]]] += 1;

woundarray[[Apply[Plus, shotarray]]] = ringarray[[j]][[skip]];

];

If[shotarray[[ringarray[[j]][[skip]]]] == shots,

temp = Delete[ringarray[[j]], skip];

deadarray[[total - Length[temp]]] = ringarray[[j]][[skip]];,

temp = ringarray[[j]];

];

If[Length[ringarray] == j, AppendTo[ringarray, 0];];

ringarray[[j + 1]] =

RotateRight[Flatten[{temp}], Length[ringarray[[j]]] - skip];,

If[Length[ringarray[[j]]] < skip,

turnarray[[ringarray[[j]][[s]]]] += 1;

If[Floor[Random[] + p] == 1,

shotarray[[ringarray[[j]][[s]]]] += 1;

woundarray[[Apply[Plus, shotarray]]] = ringarray[[j]][[s]];

];

If[shotarray[[ringarray[[j]][[s]]]] == shots,

temp = Delete[ringarray[[j]], s];

deadarray[[total - Length[temp]]] = ringarray[[j]][[s]];,

temp = ringarray[[j]];

];

If[Length[ringarray] == j, AppendTo[ringarray, 0];];

ringarray[[j + 1]] =

RotateRight[Flatten[{temp}], Length[ringarray[[j]]] - s];

];

];

j += 1;

21

If[Length[ringarray[[j]]] == 1, winner = True;

deadarray[[-1]] = ringarray[[j]][[1]];];

];

all = everything /. {rules} /. {everything -> False};

If[all == True,

Print["Winner: ", ringarray[[j]]];

Print["Turns: ", turnarray];

Print["Shots: ", shotarray];

Print["Wounded ", woundarray];

Print["Dead ", deadarray];

];

lucky = survivor /. {rules} /. {survivor -> True};

If[lucky == True, Return[ringarray[[j]]];];

(*Return[{ringarray[[j]], shotarray, turnarray}];*)

];

StochJosephus[total_, skip_, p_, rules___] :=

Module[{q, Iarray, Rotarray, i, j, k, m, n, answarray, solarray,

deterwin, gensol, crossarray, genwin, smgensol, crossing, ord, desc,

descpos},

If[total == 1, Return[{1}],

q = 1 - p;

Iarray = Table[IdentityMatrix[i], {i, 1, total}];

Rotarray = Table[IdentityMatrix[m], {m, 1, total}];

For[i = 1, i <= total, i++,

For[j = 1, j <= i, j++,

Rotarray[[i, j]] = RotateLeft[Rotarray[[i, j]], skip];

];

];

matarray = Table[0, {n, 1, total}];

answarray = Table[0, {m, 1, total}];

solarray = Table[0, {j, 1, total}];

matarray[[2]] = Iarray[[2]] + (-q)*Rotarray[[2]];

If[EvenQ[skip], answarray[[2]] = {p, 0},

If[OddQ[skip], answarray[[2]] = {0, p}]];

solarray[[2]] = Inverse[matarray[[2]]].answarray[[2]];

For[k = 3, k <= total, k++,

matarray[[k]] = Iarray[[k]] + (-q)*Rotarray[[k]];

answarray[[k]] = p*Rotarray[[k]].(Append[solarray[[k - 1]], 0]);

solarray[[k]] = Inverse[matarray[[k]]].answarray[[k]];

];

22

(*deterwin = Deadly[total, skip];

crossing = intersect /. {rules} /. {intersect -> False};

If[crossing == True,

gensol = StochJosephus[total, skip, b];

genwin = gensol[[deterwin[[1]]]];

crossarray = Table[0, {j, 1, total - 1}];

smgensol = Delete[gensol, deterwin[[1]]];

For[i = 1, i <= total - 1, i++,

crossarray[[i]] = Solve[genwin == smgensol[[i]], b];

];

Print["Winner: ", deterwin];

Print[crossarray];

];

*)

picture = graph /. {rules} /. {graph -> False};

If[picture == True,

colorarray = Table[0, {i, 1, 7}];

colorarray[[1]] = RGBColor[1, 0, 0];

colorarray[[2]] = RGBColor[0, 1, 0];

colorarray[[3]] = RGBColor[0, 0, 1];

colorarray[[4]] = RGBColor[1, 1, 0];

colorarray[[5]] = RGBColor[1, 0, 1];

colorarray[[6]] = RGBColor[0, 1, 1];

colorarray[[7]] = RGBColor[0, 0, 0];

pics = Table[0, {k, 1, total}];

lists = Table[Table[0, {m, 1, 100}], {n, 1, total}];

r = 1;

For[prob = .01, prob <= 1, prob += .01,

game = StochJosephus[total, skip, prob];

For[col = 1, col <= total, col++,

lists[[col, r]] = {prob, game[[col]]};

];

r++;

];

For[plyr = 1, plyr <= total, plyr++,

pics[[plyr]] =

Graphics[{colorarray[[plyr]],

Line[lists[[plyr]]]}, {Axes -> True,

AxesLabel -> {"p", "P(w,n)"},

DisplayFunction -> Identity}];

];

Show[pics, DisplayFunction -> $DisplayFunction];

23

];

ord = order /. {rules} /. {order -> False};

If[ord == True,

descpos = Range[total];

desc = Sort[solarray[[total]], Greater];

For[j = 1, j <= total, j++,

descpos[[j]] =

Flatten[Position[solarray[[total]], desc[[j]]]];];

descpos = Flatten[descpos];

Print[descpos];

Print[desc];

];

greatest = maximum /. {rules} /. {maximum -> False};

If[greatest == True,

Print["Greatest Probability: ", Max[solarray[[total]]],

" at position ",

Flatten[

Position[solarray[[total]], Max[solarray[[total]]]]]];,

Return[solarray[[total]]];

];

];

];

24

References

[1] Bogomolny, Alexander. “Josephus Flavius Problem Recursive Solution.” Cut-The-Knot. 1996-
2009. <http://www.cut-the-knot.org/recurrence/r solution.shtml>.

[2] Gunnar Blom; Jan-Eric Englund; Dennis Sandell. “General Russian Roulette.” Mathematics
Magazine, Vol. 69, No. 4 (Oct., 1996), pp. 293-297.

25

