Recall, if we have a right triangle

\[\text{hypothenuse} \rightarrow h \]
\[\theta \]
\[\frac{\pi}{2} - \theta \]
\[a = \text{adjacent} \]
\[o = \text{opposite} \]

we can define a number of trigonometric functions:

\[\sin \theta = \frac{o}{h} \]
\[\cos \theta = \frac{a}{h} \]
\[\tan \theta = \frac{o}{a} \]

(SOHI CAH TOA)

Note: \[\tan \theta = \frac{o}{a} = \frac{o/h}{a/h} = \frac{\sin \theta}{\cos \theta} \]

Also, note that
\[\sin \left(\frac{\pi}{2} - \theta \right) = \cos \theta \]
\[\cos \left(\frac{\pi}{2} - \theta \right) = \sin \theta \]

which explains the graphs just being shifts of each other.
Inverse trig functions

\[y = \sin^{-1} x \quad \text{if} \quad x = \sin y \]

\[y = \cos^{-1} x \quad \text{if} \quad x = \cos y \]

\[y = \tan^{-1} x \quad \text{if} \quad x = \tan y \]

\[\text{Ex} \quad y = \sin^{-1} \frac{\sqrt{3}}{2} \]
\[y = 60^\circ = \frac{\pi}{3} \]

\[\text{Ex} \quad y = \cos^{-1} \frac{\sqrt{2}}{2} \]
\[y = 45^\circ = \frac{\pi}{4} \]

\[y = \sin^{-1} \left(-\frac{\sqrt{3}}{2} \right) \]
\[y = -\frac{\pi}{3} \]

\[y = \cos^{-1} \left(-\frac{\sqrt{2}}{2} \right) \]
\[y = -\frac{\pi}{4} \]
Ex \[\cos\left(\sin^{-1}\left(\frac{1}{2}\right)\right) = \frac{\sqrt{3}}{2} \]

\[
\begin{array}{cccc}
\sin^2\theta & 1 & \sqrt{3} \\
2 & \text{ } & \text{ }
\end{array}
\]

Other trig functions

\[\csc x = \frac{1}{\sin x} \quad \sec x = \frac{1}{\cos x} \quad \cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x} \]

Important things to remember

\[\cos^2 \theta + \sin^2 \theta = 1 \quad \text{Pythagorean theorem} \]

So the points \((\cos \theta, \sin \theta)\) lie on a circle.
Derivatives of Trig Functions

First, we will need a certain limit:

\[
\lim_{x \to 0} \frac{\sin x}{x}
\]

Consider the following picture:

Looking at areas:

\[
\frac{\pi}{2} \leq \frac{x}{2} \leq \frac{\pi}{2} \\
\frac{1}{2} \cos x \sin x \leq \frac{x}{2} \leq \frac{1}{2} \frac{\sin x}{\cos x}
\]

\[
\Rightarrow \cos x \leq \frac{x}{\sin x} \leq \frac{1}{\cos x}
\]

Using the squeeze theorem implies

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1
\]
\[\lim_{x \to 2} \frac{\sin(x-2)}{x^2-4} \]

\[\lim_{x \to 0} \frac{\sin 3x}{x} \quad \lim_{x \to 0} \frac{\sin 6x}{\sin 2x} \]

This limit is a necessary part in the proof of (which you should read)

\[\frac{d}{dx}(\sin x) = \cos x \quad \frac{d}{dx}(\cos x) = -\sin x \]

Of course, now we can use the product and quotient rules for all kinds of functions involving \(\sin x \) and \(\cos x \).

\[\frac{d}{dx} (\tan x) = \sec^2 x \]

\[\frac{d}{dx} (\csc x) = -\csc x \cot x \]

\[\frac{d}{dx} \left(\frac{\tan x}{1 + \sec x} \right) \]
Higher derivatives

If \(f(x) \) is a differentiable function, we say \(f'(x) \) is the first derivative of \(f \). If \(f'(x) \) is differentiable, we say \(f''(x) = (f')'(x) = f''(x) \) is the second derivative of \(f \).

\[f'''(x) = 3 \text{rd derivative}, \text{ etc.} \]

Ex. If \(f(x) = \sin x \)

\[f'(x) = \frac{d}{dx} \sin x = \cos x \]

\[f''(x) = \frac{d}{dx} \cos x = -\sin x \]

\[f'''(x) = \frac{d}{dx} (-\sin x) = -\cos x \]

\[f^{(4)}(x) = \frac{d}{dx} (-\cos x) = \sin x \]

So \(f(x) = f^{(10)}(x) \)

Ex. What is \(f^{(10)}(x) \)?