When we started the course, we talked about how we want to take a function like position and not only find the average rate of change (average velocity) but also the instantaneous rate of change (velocity) at any point.

Slope of secant = average rate of change on \([a, b]\)

So we see that

slope of tangent at \(a\) = inst. rate of change at \(a\) = \(\lim_{x \to a} \frac{f(x) - f(a)}{x-a}\)

Slope of tangent = instantaneous rate of change at \(a\).
Ex. Find the equation of the tangent line to \(f(x) = -16x^2 + 96x \) at the point \((1, 80)\).

\[
\begin{align*}
 m_{\text{tan}} &= \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} \\
 &= \lim_{x \to 1} \frac{-16x^2 + 96x - 80}{x - 1} \\
 &= \lim_{x \to 1} \frac{-16(x^2 - 6x + 5)}{x - 1} \\
 &= \lim_{x \to 1} \frac{-16(x - 1)(x - 5)}{x - 1} \\
 &= -16 \lim_{x \to 1} (x - 5) \\
 &= -16 \cdot 4 \\
 &= -64
\end{align*}
\]

So the equation of the tangent line is \(y - 80 = 64(x - 1) \) or \(y = 64x + 16 \).
Now, there's a second way to write out this limit with just the point we're finding the slope at.

\[\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{a+h \to a} \frac{f(a+h) - f(a)}{a+h - a} \]

\[= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \]

Ex. Find the equation of the tangent line to \(g(x) = x^2 + 3x \) at 1 using the second limit.
Now, as our point changes, our tangent line changes, and so does the slope. So the slope is actually a function of the point \(x \). We call this function the **derivative** of \(f \) and write it as \(f'(x) \) (\(f \) "prime").

But formally,

\[
f''(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

as long as \(f(x) \) exists and the limit exists.

If \(f'(x) \) does in fact exist, we say \(f \) is differentiable at \(x \) and the process of finding \(f'(x) \) is called differentiation.

Ex. Compute \(f''(1) \) if \(f(x) = -16x^3 + 96x \).
Note as far as notation,

\[f'(x) = \frac{df}{dx} \quad \text{and} \quad f'(a) = \frac{df}{dx}\bigg|_{x=a} = \frac{df}{dx} \bigg|_{x=a} \]

or if \(y = f(x) \),

\[f'(x) = y'(x) = \frac{df}{dx} = \frac{dy}{dx} \]

Ex. Find the derivative of \(f(x) = \sqrt{x} \).

Ex. Find the derivatives of \(1, x, x^2, x^3, x^4 \).

Ex. Find the derivatives of \(\frac{1}{x}, \frac{1}{x^2} \).