
           

6. The Algebraic Eigenproblem

6.1 How independent are linearly independent vectors?

If the three vectors a1, a2, a3 in R3 lie on one plane, then there are three scalars x1, x2, x3,

not all zero, so that

x1a1 + x2a2 + x3a3 = o. (6.1)

On the other hand, if the three vectors are not coplanar, then for any nonzero scalar triplet

x1, x2, x3

r = x1a1 + x2a2 + x3a3 (6.2)

is a nonzero vector.

To condense the notation we write x = [x1 x2 x3]T , A = [a1 a2 a3], and r = Ax. Vector

r is nonzero but it can be made arbitrarily small by choosing an arbitrarily small x. To

sidestep this possibility we add the restriction that xTx = 1 and consider

r = Ax, xTx = 1 or r = (xTx)−
1
2Ax. (6.3)

Magnitude ‖r‖ of residual vector r is an algebraic function of x1, x2, x3, and if x can be

found that makes r small, then the three vectors a1, a2, a3 will be nearly coplanar. In this

manner we determine how close the three vectors are to being linearly dependent. But first

we must qualify what we mean by small.

Since colinearity is a condition on angle and not on length we assume that the three

vectors are normalized, ‖ai‖ = 1, i = 1, 2, 3, and consider r small when ‖r‖ is small relative
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to 1. The columns of A are now all of length 1, and we write

ρ2(x) = rT r = xTATAx, xTx = 1 or ρ2(x) =
xTATAx

xTx
, x =/ o. (6.4)

A basic theorem of analysis assures us that since xTx = 1 and since ρ(x) is a continuous

function of x1, x2, x3, ρ(x) possesses both a minimum and a maximum with respect to x,

which is also obvious geometrically. Figure 6.1 is drawn for a1 = [1 0]T , a2 =
√

2/2[1 1]T .

Clearly the shortest and longest r = x1a1 + x2a2, x
2
1 + x2

2 = 1 are the two angle bisectors

r1 =
√

2/2(a1 + a2) and r2 =
√

2/2(a1 − a2), respectively, which we also notice to be

orthogonal. We compute that rT1 r1 = 1−
√

2/2 and rT2 r2 = 1 +
√

2/2.

Fig. 6.1

A measure for the degree of the linear independence of the columns of A is provided by

ρmin = min
x
ρ(x),

ρ2
min = min

x
xTATAx, xTx = 1 (6.5)

or equally by

ρ2
min = min

x

xTATAx

xTx
, x =/ o. (6.6)

Clearly, what we argued for R3 carries over to m vectors in Rn.

If the columns of A are linearly dependent, then ATA is positive semidefinite and ρmin =

0. If the columns of A are linearly independent, then ATA is positive definite and ρmin > 0.
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In the case where the columns of A are orthonormal, ATA = I and ρmin = 1. We shall prove

that in this sense orthogonal vectors are most independent, ρmin being at most 1.

Theorem 6.1. If the columns of A are normalized and

ρ2
min = min

x

xTATAx

xTx
, x =/ o (6.7)

then 0 ≤ ρmin ≤ 1.

Proof. Choose x = e1 = [1 0 . . . 0]T for which r = a1 and ρ2(x) = aT1 a1 = 1. Since

ρmin = min ρ(x) it certainly does not exceed 1. End of proof.

Instead of normalizing the columns of A we could find min ρ(x) with A as given, then

divide ρmin by ρmax = max
x
ρ(x), or vice versa. Actually, it is common to measure the degree

of linear independence of the columns of A with

κ2 = ρ2
max/ρ

2
min = max

x
xTATAx/min

x
xTATAx , xTx = 1 (6.8)

where κ = κ(A) is the spectral condition number of A. Now 1 ≤ κ <∞. If A is orthogonal,

then κ = 1, while if A is singular κ =∞. A matrix with a large κ is said to be ill-conditioned,

and that with a small κ, well-conditioned.

A necessary condition for x to minimize (maximize) ρ2(x) is that

grad ρ2(x) =
2(xTx)ATAx− 2(xTATAx)x

(xTx)2
= o , x =/ o (6.9)

or

ATAx =
xTATAx

xTx
x , x =/ o. (6.10)

In short

ATAx = ρ2x , x =/ o (6.11)

which is an algebraic eigenproblem. It consists of finding scalar ρ2 and corresponding vector

x =/ o that satisfy the homogeneous vector equation (ATA− ρ2I)x = o.

An extension of our minimization problem consists of finding the extrema of the ratio

λ(x) =
xTAx

xTBx
, x =/ o (6.12)
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of the two quadratic forms with A = AT and a positive definite and symmetric B. Here

grad λ(x) =
2(xTBx)Ax− 2(xTAx)Bx

(xTBx)2
, x =/ o (6.13)

so that

Ax =
(
xTAx

xTBx

)
Bx x =/ o (6.14)

or in short

Ax = λBx (6.15)

which is the general symmetric algebraic eigenproblem.

The general eigenproblem is more prevalent in mathematical physics then the special

B = I case, and we shall deal with the general case in due course. Meanwhile we are

satisfied that, at least formally, the general symmetric eigenproblem can be reduced to the

special symmetric form by the factorization B = LLT and the substitution x′ = LTx that

turns Ax = λBx into L−1AL−Tx′ = λx′.

exercises

6.1.1. Let

x = α1




1
−1
1


+ α2




1
1
1


 , α2

1 + α2
2 = 1

for variable scalars α1, α2. Use the Lagrange multipliers method to find the extrema of xTx.

In this you set up the Lagrange objective function

φ(α1, α2) = xTx− λ(α2
1 + α2

2 − 1)

and obtain the critical α’s and multiplier λ from ∂φ/∂α1 = 0, ∂φ/∂α2 = 0, ∂φ/∂λ = 0.

6.1.2. Is x = [1 2 − 1]T an eigenvector of matrix

A =




1 −1 1
−2 −1 0
2 1 2


?

If yes, compute the corresponding eigenvalue.
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6.1.3. Is x = [1 1]T an eigenvector of the general eigenproblem

[
2 −1
−1 2

]
x =

[
2 1
1 2

]
x?

If yes, find the corresponding eigenvalue.

6.2 Diagonal and triangular matrices

There must be something very special and useful about vector x that turns Ax into a

scalar times x, and in this chapter we shall give a thorough consideration to the remarkable

algebraic eigenproblem Ax = λx. Not only for the symmetric A, that has its origin in the

minimization of the ratio of two quadratic forms, but also for the more inclusive case where

A is merely square.

We may look at the algebraic eigenproblem Ax = λx geometrically, the way we did in

Chapter 4, as the search for those vectors x in Rn for which the linear map Ax is colinear

with x, with |λ| = ‖Ax‖/‖x‖, or we may write it as (A− λI)x = o and look at the problem

algebraically as the search for scalars λ that render matrix A − λI singular, and then the

computation of the corresponding nullspace of A− λI.

Definition. Scalar λ that renders B(λ) = A − λI singular is an eigenvalue of A. Any

nonzero vector x for which B(λ)x = o is an eigenvector of A corresponding to eigenvalue λ.

Because the eigenproblem is homogeneous, if x =/ o is an eigenvector of A, then so is

αx, α =/ 0.

As with linear systems of equations, so too here, diagonal and triangular matrices are

the easiest to deal with. Consider

A =




0
1

2


 . (6.16)

We readily verify that A has exactly three eigenvalues, which we write in ascending order of

magnitude as

λ1 = 0, λ2 = 1, λ3 = 2 (6.17)
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affecting

A− λ1I =




0
1

2


 , A− λ2I =



−1

0
1


 , A− λ3I =



−2

−1
0


 (6.18)

which are all diagonal matrices of type 0 and hence singular. Corresponding to λ1 = 0, λ2 =

1, λ3 = 2 are the three eigenvectors x1 = e1, x2 = e2, x3 = e3, that we observe to be

orthogonal.

Matrix

A =




0
1

1


 (6.19)

also has three eigenvalues λ1 = 0, λ2 = 1, λ3 = 1, but the peculiarity of this eigenproblem

consists in the fact that eigenvalue λ = 1 repeats. Corresponding to λ1 = 0 is the unique (up

to a nonzero constant multiple) eigenvector x1 = e1, but corresponding to λ2 = λ3 = 1 is any

vector in the two-dimensional subspace spanned by e2 and e3. Any nonzero x = α2e2 +α3e3

is an eigenvector of A corresponding to λ = 1. The vector is orthogonal to x1 = e1, whatever

α2 and α3 are, and we may arbitrarily assign x2 = e2 to be the eigenvector corresponding

to λ2 = 1 and x3 = e3 to be the eigenvector corresponding to λ3 = 1 so as to have a set of

three orthonormal eigenvectors.

The eigenvalues of a triangular matrix are also written down by inspection, but eigen-

vector extraction needs computation. A necessary and sufficient condition that a triangular

matrix be singular is that it be of type 0, that is, that it has at least one zero diagonal entry.

Eigenproblem




1− λ
1 2− λ
1 1 3− λ






x1

x2

x3


 =




0
0
0


 , (A− λI)x = 0 (6.20)

for instance, is readily seen to have the three distinct eigenvalues λ1 = 1, λ2 = 2, λ3 = 3;

the eigenvalues of a triangular matrix are its diagonal entries. Corresponding to the three

eigenvalues we compute the three eigenvectors

x1 =




1
−1
0


 , x2 =




0
1
−1


 x3 =




0
0
1


 (6.21)
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that are not orthogonal as in the previous examples, but are nonetheless checked to be

linearly independent.

An instance of a tridiagonal matrix with repeating eigenvalues and a multidimensional

nullspace for the singular A− λI is

A =




1 3
1 −4

2


 (6.22)

that is readily verified to have the three eigenvalues λ1 = 1, λ2 = 1, λ3 = 2. Taking first the

largest eigenvalue λ3 = 2 we obtain all its eigenvectors as x3 = α3[3− 4 1]T α3 =/ 0, and we

elect x3 = [3 − 4 1]T to be the sole eigenvector for λ3 = 2.

For λ = 1 we have

A− I =




0 3
0 −4

1






x1

x2

x3


 = 0. (6.23)

The appearance of two zeroes on the diagonal of A − λI does not necessarily mean a two-

dimensional nullspace, but here it does. Indeed, x = α1[1 0 0]T + α2[0 1 0]T , and for any

choice of α1 and α2 that does not render it zero, x is an eigenvector corresponding to λ = 1,

linearly independent of x3. We may choose any two linearly independent vectors in this

nullspace, say x1 = [1 0 0]T and x2 = [0 1 0]T and assign them to be the eigenvectors of

λ1 = 1 and λ2 = 1, so as to have a set of three linearly independent eigenvectors.

On the other hand

A =




1 2 3
1 −4

2


 (6.24)

that has the same three eigenvalues λ1 = 1, λ2 = 1, λ3 = 2, has eigenvector x3 = [3 − 4 1]T

corresponding to λ3 = 2 as before, and x1 = [1 0 0]T corresponding to λ1 = λ2 = 1.

The nullspace of A − I is here only one-dimensional, and the matrix has only two linearly

independent eigenvectors.

One more instructive triangular example before we move on to the full matrix. Matrix

A =




1
1 1
1 1 1


 (6.25)
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has three equal eigenvalues (or one eigenvalue of multiplicity 3) λ1 = λ2 = λ3 = 1. To

compute the corresponding eigenvectors we solve

(A− I)x =




0
1 0
1 1 0






x1

x2

x3


 =




0
0
0


 (6.26)

and obtain from the system only the one eigenvector x = e3.

It is interesting that an (n× n) matrix can have n zero eigenvalues and yet be nonzero.

exercises

6.2.1. Compute all eigenvalues and eigenvectors of

A =




0 1
0

0 1
0


 .

6.2.2. Compute all eigenvalues and eigenvectors of

A =




1 1 1
−2 2

3


 , B =




1 2 0
1 2

1


 , C =




1 0 2
1 −3

2


 .

6.2.3. Give an example of two different 2 × 2 upper-triangular matrices with the same

eigenvalues and eigenvectors. Given that the eigenvectors of A are x1, x2, x3,

A =




1 α β
2 γ

3


 , x1 =




1

 , x2 =




1
1


 , x3 =




1
1
1


 ,

find α, β, γ.

6.2.4. Show that if matrix A is such that A3−2A2−A+I = O, then zero is not an eigenvalue

of A+ I.

6.2.5. Matrix A = 2u1u
T
1 − 3u2u

T
2 , u

T
1 u1 = uT2 u2 = 1, uT1 u2 = uT2 u1 = 0, is of rank 2. Find

β1 and β2 so that A3 + β2A
2 + β1A = O.
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6.3 The characteristic equation

Our chief conclusion from the previous section is that a triangular (diagonal) matrix of

order n has n eigenvalues, some isolated and some repeating. Corresponding to an isolated

eigenvalue (eigenvalue of multiplicity one) we computed in all instances a unique (up to length

and sense) eigenvector, but for eigenvalues of multiplicity greater than one we occasionally

found multiple eigenvectors.

In this section we shall mathematically consolidate these observations and extend them

to any square matrix.

Computation of the eigenvalues and eigenvectors of a nontriangular matrix is a consid-

erably harder task than that of a triangular matrix. A necessary and sufficient condition

that the homogeneous system (A − λI)x = o has a nontrivial solution x, is that matrix

B(λ) = A − λI be singular, or equivalent to a triangular matrix of type 0. So, we shall

reduce B(λ) by elementary operations to triangular form and determine λ that makes the

triangular matrix of that type. The operations are elementary but they involve parameter λ

and are therefore algebraic rather than numerical. In doing that we shall be careful to avoid

λ dependent pivots lest they be zero.

A triangular matrix is of type 0 if and only if the product of its diagonal entries —the

determinant of the matrix— is zero, and hence the problem of finding the λ’s that singularize

B(λ) is translated into the single characteristic equation

det (A− λI) = 0 (6.27)

that needs be solved for λ.

The characteristic equation may be written with some expansion rule for det (B(λ)) or it

may be obtained as the end product of a sequence of elementary row and column operations

that reduce B(λ) to triangular form. For example:

A− λI =
[

2− λ −1
−1 1− λ

]
row−→

[ −1 1− λ
2− λ −1

]
row−→

[−1 1− λ
0 (2− λ)(1− λ)− 1

]
(6.28)

and the characteristic equation of A is

det (A− λI) = (2− λ)(1− λ)− 1 = λ2 − 3λ+ 1 = 0. (6.29)
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Notice that since a row interchange was performed, to have the formal det (B(λ)) the diagonal

product is multiplied by −1.

The elementary operations done on A − λI to bring it to equivalent upper-triangular

form could have been performed without row interchanges, and still without λ dependent

pivots:

[
2− λ −1
−1 1− λ

]
→
[

2 −1− λ(1− λ)
−1 1− λ

]
→
[

2 −1− λ(1− λ)
0 (1− λ)− 1

2(1 + λ(1− λ))

]
(6.30)

resulting in the same characteristic equation.

Two real roots,

λ1 = (3−
√

5)/2 , λ2 = (3 +
√

5)/2 (6.31)

the two eigenvalues of matrix A, are extracted from the characteristic equation, with the

two corresponding eigenvectors

x1 =
[

2
1 +
√

5

]
, x2 =

[
2

1−
√

5

]
(6.32)

that we observe to be orthogonal.

Generally, for the 2× 2

B(λ) =
[
A11 − λ A12

A21 A22 − λ
]

(6.33)

det (B(λ)) = 0 expands into

(A11 − λ)(A22 − λ)− A12A21 = λ2 − λ(A11 + A22) + A11A22 − A12A21 = 0 (6.34)

which is a polynomial equation of degree two and hence has two roots, real or complex. If

λ1 and λ2 are the two roots of the characteristic equation, then it may be written as

det (A− λI) = (λ1 − λ)(λ2 − λ) = λ2 − λ(λ1 + λ2) + λ1λ2 (6.35)

and λ1 + λ2 = A11 + A22 = tr(A), and λ1λ2 = A11A22 − A12A21 = det (A) = det (B(0)).

As a numerical example to a 3×3 eigenproblem we undertake to carry out the elementary

operations on B(λ),



0− λ 1 0
0 0− λ 1
4 −17 8− λ


 row−→




4 −17 8− λ
0 −λ 1
−λ 1 0


 row−→




4 −17 8− λ
0 −λ 1
0 1

4(4− 17λ) 1
4λ(8− λ)



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column−→




4 8− λ −17
0 1 −λ
0 1

4λ(8− λ) 1
4(4− 17λ)


 row−→




4 8− λ −17
0 1 −λ
0 0 1

4(−λ3 + 8λ2 − 17λ+ 4)


 (6.36)

and the eigenvalues of A = B(0) are the roots of the characteristic equation

−λ3 + 8λ2 − 17λ+ 4 = 0. (6.37)

The same can be accomplished by elementary row operations only:



−λ 1

−λ 1
4 −17 8− λ


→




4 −17 8− λ
−λ 1

−4λ 4


→




4 −17
−λ 1

4− 17λ λ(8− λ)


→




4 −17
−λ 1
4 λ(8− λ)− 17


→




4 −17
4 λ(8− λ)− 17
−4λ 4




→




4 −17
4 −λ2 + 8λ− 17

−λ3 + 8λ2 − 17λ+ 4


 . (6.38)

Generally, for a 3× 3 matrix

det (A− λI) = −λ3 + λ2(A11 +A22 +A33)− λ(
∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ +
∣∣∣∣
A11 A13

A31 A33

∣∣∣∣ +
∣∣∣∣
A22 A23

A32 A33

∣∣∣∣)

+det (A) = 0 (6.39)

which is a polynomial equation in λ of degree 3 that has three roots, at least one of which is

real. If λ1, λ2, λ3 are the three roots of the characteristic equation, then it may be written

as

(λ1−λ)(λ2−λ)(λ3−λ) = −λ3+λ2(λ1+λ2+λ3)−λ(λ1λ2+λ2λ3+λ3λ1)+λ1λ2λ3 = 0 (6.40)

and

λ1 + λ2 + λ3 = A11 + A22 + A33 = tr(A), λ1λ2λ3 = det (A) = det (B(0)). (6.41)

What we did for the 2× 2 and 3× 3 matrices results (a formal proof to this is given in

Sec. 6.7) in the nth degree polynomial characteristic equation

det (A− λI) = pn(λ) = (−λ)n + an−1(−λ)n−1 + · · ·+ a0 = 0 (6.42)
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for A = A(n × n), and if matrix A is real, so then are coefficients an−1, an−2, . . . , a0 of the

equation.

There are some highly important theoretical conclusions that can be immediately drawn

from the characteristic equation of real matrices:

1. According to the fundamental theorem of algebra, a polynomial equation of degree n

has at least one solution, real or complex, of multiplicity n, and at most n distinct solutions.

2. A polynomial equation of odd degree has at least one real root.

3. The complex roots of a polynomial equation with real coefficients appear in conjugate

pairs. If λ = α + iβ is a root of the equation, then so is the conjugate λ = α− iβ.

Real polynomial equations of odd degree have at least one real root since if n is odd,

then pn(∞) = −∞ and pn(−∞) =∞, and by the reality and continuity of pn(λ) there is at

least one real −∞ < λ <∞ for which pn(λ) = 0.

We prove statement 3 on the complex roots of the real equation

pn(λ) = (−λ)n + (−λ)n−1an−1 + · · ·+ a0 = 0 (6.43)

by writing them as

−λ = α + iβ = |λ|eiθ = |λ|(cos θ + i sin θ), i2 = −1. (6.44)

Then, since einθ = cosnθ+i sinnθ and since the coefficients of the equation are real, pn(λ) =

0 separates into the real and imaginary parts

|λ|n cosnθ + an−1|λ|n−1 cos(n− 1)θ + · · ·+ a0 = 0 (6.45)

and

|λ|n sinnθ + an−1|λ|n−1 sin(n− 1)θ + · · ·+ a1 sin θ = 0 (6.46)

respectively, and because cos(−θ) = cos θ and sin(−θ) = − sin θ, the equation is satisfied by

both λ = |λ|eiθ and λ = |λ|e−iθ.

Root λ1 is of multiplicity m if λ−λ1 can be factored exactly m times out of pn(λ). Then

not only is pn(λ) = 0, but also

dpn(λ)/dλ = 0, . . . , dm−1pn(λ)/dλm−1 = 0 (6.47)
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at λ = λ1. Each is a polynomial equation satisfied by λ1 and λ1, and hence if λ1 has

multiplicity m so does λ1.

Finding the eigenvalues of an n×n matrix entails the solution of an algebraic equation of

the nth degree. A quadratic equation is solved algebraically in terms of the coefficients, but

already the cubic equation can become difficult. It is best treated numerically by an iterative

method such as bisection or that of Newton-Raphson, or any other root enhancing method.

In any event an algebraic solution is possible only for polynomial equations of degree less

than five. Equations of degree five or higher must be solved by an iterative approximation

algorithm. Unlike systems of linear equations, the eigenvalue problem has no finite step

solution.

Good numerical polynomial equation solvers yield not only the roots but also their

multiplicities. As we shall see the multiplicity of λ has an important bearing on the dimension

of the corresponding eigenvector space, and has significant consequences for the numerical

solution of the eigenproblem.

Figure 6.2 traces p3(λ) against λ, with p3(λ) = 0 having three real roots, one isolated and

one double. At λ = λ2 = λ3 both p3(λ) = 0 and dp3(λ)/dλ = 0, and the Newton-Raphson

root-finding method converges linearly to this root whereas it converges quadratically to λ1.

Since close to λ = λ2 = λ3, p3(λ) has the same sign on both sides of the root, bisection root

finding methods must also be carried out here with extra precaution.

On top of this, because a multiple root is just the limiting case between two real roots

and no real root, small changes in the coefficients of the characteristic equation may cause

drastic changes in these roots. Consider for instance

λ2 − 2λ+ 1 = 0 , λ2 − 2.1λ+ 0.9 = 0 , λ2 − 1.9λ+ 1.1 = 0. (6.48)

The first equation has a repeating real root λ1 = λ2 = 1, the second a pair of well separated

roots λ1 = 0.6, λ2 = 1.5, while the third equation has two complex conjugate roots λ =

0.95± 0.44i.

In contrast with the eigenvalues, the coefficients of the characteristic equation can be

obtained in a finite number of elementary operations, and we shall soon discuss algorithms
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Fig. 6.2

that do that. Writing the characteristic equation of a large matrix in full is generally unre-

alistic, but for any given value of λ, det (A− λI) can often be computed at reasonable cost

by Gauss elimination.

The set of all eigenvalues is the spectrum of matrix A, and we shall occasionally denote

it by λ(A).

exercises

6.3.1. Find λ so that matrix

B(λ) =
[

1− λ 1 + λ
−1 + 2λ −1− λ

]

is singular. Bring the matrix first to equivalent lower-triangular form but be careful not to

use a λ-containing pivot.

6.3.2. Write the characteristic equation of

C =




α0

−1 α1

−1 α2


 .

6.3.3. Show that if the characteristic equation of A = A(3× 3) is written as

−λ3 + α2λ
2 + α1λ+ α0 = 0

14



      

then
α2 = trace(A)

α1 =
1

2
(−α1trace(A) + trace(A2))

α0 =
1

3
(−α2trace(A)− α1trace(A

2) + trace(A3)).

6.3.4. What are the conditions on the entries of A = A(2 × 2) for it to have two equal

eigenvalues?

6.3.5. Consider the scalar function f(A) = A2
11 + 2A12A21 + A2

22 of A = A(2 × 2). Express

it in terms of the two eigenvalues λ1 and λ2 of A.

6.3.6. Compute all eigenvalues and eigenvectors of

A =
[

3 1
2 2

]
, B =

[
1 1
−1 1

]
, C =

[
1 i
−i 1

]
, D =

[
1 i
i −1

]
.

6.3.7. Write all eigenvalues and eigenvectors of

A =




0 0 1
0 0 0
1 0 0


 , B =




0 0 1
0 0 0
−1 0 0


 .

6.3.8. Fix α1 and α2 so that the eigenvalues of

A =
[
α1 1
1 α2

]

are the prescribed λ1 = 1 and λ2 = 3.

6.3.9 For what values of real α is λ(A) real?

A =
[

1 αi
αi 0

]
.

6.3.10. Fix the value of α so that x is an eigenvector of A.

x =




1
1
−1


 , A =




2 −1 α
2 −3 −1
α −2 −1


 .

What is the corresponding eigenvalue?

15



        

6.3.11. Show that vector u, uTu = 1 is an eigenvector of A = I + uuT . What is the

corresponding eigenvalue?

6.3.12. Let u and v be two orthogonal unit vectors, uTu = vT v = 1, uT v = vTu = 0. Show

that v is an eigenvector of A = I + uuT . What is the corresponding eigenvalue?

6.3.13. Let matrix A be such that A2 − I = O. What is vector x′ = Ax + x =/ o, where

vector x is arbitrary?

6.3.14. Show that if A2x− 2Ax+ x = o for some x =/ o, then λ = 1 is an eigenvalue of A. Is

x the corresponding eigenvector?

6.3.15. Show that if for real A and real x =/ o, A2x+ x = o, then λ = ±i are two eigenvalues

of A. What are the corresponding eigenvectors?

6.3.16. Show that the eigenvectors of circulant matrix

C =



α0 α1 α2

α2 α0 α1

α1 α2 α0




are of the form x = [1 ε ε2]T , where ε3 = 1. What are the corresponding eigenvalues?

6.3.17. Let A = A(n× n) and B = B(n× n). Show that the characteristic polynomial of

C =
[
A B
B A

]

is the product of the characteristic polynomials of A + B and A − B. Hint: Perform block

elementary row and column operations on

[
A− λI B
B A− λI

]
.

6.3.18. Solve the generalized eigenproblems

[
1 −1
−1 2

]
x = λ

[
2 1
1 2

]
x,

[
1 −1
−1 1

]
x = λ

[
1 1
1 1

]
x

[
1 1
−1 1

]
x = λ

[
3 1
6 2

]
x,

[
1 1
1 1

]
x = λ

[−1 −1
2 2

]
x
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


1 −1
−1 2 −1

−1 1


 x = λ




2 −1 −1
−1 2 −1
−1 −1 2


 x

[
0 1
1 0

]
x = λ

[
1
−1

]
x.

6.4 Complex vector space Cn

Because real matrices can have complex eigenvalues and eigenvectors, we cannot escape

discussing vector space Cn, the space of vectors with n complex components. Equality of

vectors, addition of vectors, and the multiplication of a vector by a scalar is the same in Cn

as it is in Rn, but the inner or scalar product in Cn needs to be changed.

In Cn aT b is generally complex, and aTa can be zero even if a =/ o. For instance, if

a = [1 i]T , b = [i 1]T , then aT b = 2i and aTa = 1− 1 = 0. For the inner product theorems

of Rn to extend to Cn we must ensure that the inner product of a nonzero vector by itself

is a positive real number. Recalling that if ζ = α+ iβ is a complex number and ζ = α− iβ
is its conjugate, then ζζ = |ζ|2 = α2 + β2 and we introduce the

Definition. Let u ∈ Cn be of the form u = a+ib, a, b ∈ Rn. Then vector uH = aT −ibT

is the conjugate transpose of u. Similarly if C = A+iB, then CH = AT−iBT is the conjugate

transpose of matrix C.

Now uHu = aTa+ bT b is a real positive number that vanishes only if u = o

When C = CH , that is, when A = AT and B = −BT , matrix C is said to be Hermitian.

Theorem 6.2.

1. uHv = vHu, |uHv| = |vHu|

2. uHv + vHu is real

3. AB = A B

4. (αA)H = αAH

5. (AB)H = BHAH

6. If A = AH , then uHAv = vHAu

17



            

7. If A = AH , then uHAu is real

8. ‖u‖ = |uHu|1/2 has the three norm properties:

8.1 ‖u‖ > 0 if u =/ o, and ‖u‖ = 0 if u = o

8.2 ‖αu‖ = |α| ‖u‖
8.3 ‖u+ v‖ ≤ ‖u‖+ ‖v‖

Proof. Left as an exercise. Notice that | | means here modulus.

Definition. Let u and v be in Cn. Vector u is a unit vector if ‖u‖ = (uHu)
1
2 = 1.

Vectors u and v are orthogonal if uHv = vHu = 0. If in addition ‖u‖ = ‖v‖ = 1, then u and

v are orthonormal.

In Cn one must be careful to distinguish between uHv and uT v that coexist in the same

space. The Cauchy-Schwarz inequality in Cn remains

|uHv| ≤ (uHu)
1
2 (vHv)

1
2 (6.49)

except that | | stands now for modulus.

Example. To compute x ∈ C2 orthogonal to given vector a = [2 + i 3 − i]T we write

a = u+ iu′ and x = v + iv′, and have that

aHx = (uT v + u′
T

v′) + i(−u′T v + uT v′) (6.50)

so that aHx = 0 separates into

uT v + u′
T

v′ = 0, −u′T v + uT v′ = 0 (6.51)

or in matrix vector form [
uT

−u′T
]
v +

[
u′
T

uT

]
v′ = o. (6.52)

The two real vectors u and u′ are linearly independent. In case they are not, the given

complex vector a becomes a complex number times a real vector and x is real. The matrix

multiplying v is invertible, and for the given numbers the condition aHx = 0 becomes

v =
[

1 2
−1 −1

]
v′ , v = Kv′ (6.53)
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and x = (K + iI)v′, v′ =/ o. One solution from among the many is obtained with v′ = [1 0]T

as x = [1 + i − 1]T .

Example: To show that

a+ ib =
[

1
−1

]
+ i

[
1
1

]
and a′ + ib′ =

[−1
1

]
+ i

[
1
1

]
(6.54)

are linearly dependent. Separation of the real and imaginary parts of

(α + iβ)(a+ ib) + (α′ + iβ′)(a′ + ib′) = o (6.55)

results in the two real systems

αa− βb+ α′a′ − β′b′ = o

βa+ αb+ β′a′ + α′b′ = o
(6.56)

that we write in matrix vector form as




1 −1 −1 −1
−1 −1 1 −1
1 1 −1 1
−1 1 1 1







α
β
α′

β′


 = o. (6.57)

System (6.57) is solved by α′ = α, β′ = −β.

In the same manner we show that [1 2]T + i[1 1]T and [−1 1]T + i[−2 1]T are linearly

independent.

Theorem 6.3. Let u1 be a given vector in Cn. Then there are n− 1 nonzero vectors in

Cn orthogonal to u1.

Proof. Write u1 = a1 + ib1 and u2 = x+ ix′. The condition

uH2 u1 = (xT − ix′T )(a1 + ib1)

= (aT1 x+ bT1 x
′) + i(bT1 x− aT1 x′) = 0

(6.58)

separates into [
aT1 bT1
bT1 −aT1

] [
x

x′

]
=
[

0
0

]
(6.59)
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which are two homogeneous equations in 2n unknowns —the components of x and x′. Take

any nontrivial solution to the system and let u2 = a2 + ib2, where a2 = x and b2 = x′.

Write again u3 = x + ix′ and solve uH1 u3 = uH2 u3 = 0 for x and x′. The two orthogonality

conditions separate now into



aT1 bT1
bT1 −aT1
aT2 bT2
bT2 −aT2




[
x

x′

]

=




0

0

0

0




(6.60)

which are four homogeneous equations in 2n unknowns. Take any nontrivial solution to the

system and set u3 = a3 + ib3 where a3 = x and b3 = x′.

Suppose uk−1 orthogonal vectors have been generated this way in Cn. To compute uk

orthogonal to all the k− 1 previously computed vectors we need solve 2(k− 1) homogeneous

equations in 2n unknowns. Since the number of unknowns is greater than the number of

equations for k = 2, 3, . . . , n there is a nontrivial solution to the system, and consequently a

nonzero uk, for any k ≤ n. End of proof.

Definition. Square complex matrix U with orthonormal columns is called unitary. It is

characterized by UHU = I, or UH = U−1.

exercises

6.4.1. Do v1 = [1 i 0]T , v2 = [0 1 − i]T , v3 = [1 i i]T span C3? Find complex scalars

α1, α2, α3 so that α1v1 + α2v2 + α3v3 = [2 + i 1− i 3i]T .

6.4.2. Are v1 = [1 i − i]T and v2 = [1 − i i]T linearly independent? What about v1 =

[2− 3i 1 + i 3− i]T and v2 = [5− i 2i 4 + 2i]T ?

6.4.3. Fix α so that vectors u ∈ C3 and v ∈ C3 are orthogonal, namely so that uHv = 0.

u = [1 + i 1− i 2i], v = [1− 2i 2 + 3i α].

6.4.4. Vector space V : v1 = [1 i 0], v2 = [1 0 i], is a two-dimensional subspace of C3. Use the

Gram-Schmidt orthogonalization method to write an orthogonal basis for V . Hint: Write

q1 = v1, q2 = v2 + αv1, and determine α by the condition that qH1 q2 = 0.

6.4.5. Show that given complex vector x = u + iv, uTu =/ vT v, complex scalar ζ = α + iβ

can be found so that ζx = u′ + iv′ is with u′
T
u′ = v′

T
v′ = 1. What are α and β if uT v = 0?
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6.5 Basic Theorems

The computational aspects of the algebraic eigenproblem are not dealt with until Chapter

8. The present chapter is all devoted to theory, to the amassing of a wealth of theorems on

eigenvalues and eigenvectors.

Theorem 6.4. If λ is an eigenvalue of matrix A, and x a corresponding eigenvector,

then:

1. λ2 is an eigenvalue of A2, with corresponding eigenvector x.

2. λ+ µ is an eigenvalue of A+ µI, with corresponding eigenvector x.

3. λ−1 is an eigenvalue of A−1, with corresponding eigenvector x.

4. αλ is an eigenvalue of αA, with corresponding eigenvector x.

5. λ is also an eigenvalue of P−1AP , with corresponding eigenvector x′ = P−1x.

Proof. Left as an exercise.

The next theorem extends Theorem 6.4 to include multiplicities.

Theorem 6.5. If pn(λ) = det(A− λI) = 0 is the characteristic equation of A, then:

1. det(AT − λI) = pn(λ).

2. det(A2 − λ2I) = pn(λ)pn(−λ).

3. det(A+ µI − λI) = pn(λ− µ).

4. det(A−1 − λI) = det(−λA−1)pn(λ−1), λ =/ 0.

5. det(αA− λI) = det(αI)pn(λ/α).

6. det(P−1AP − λI) = pn(λ).

Proof.

1. det(AT − λI) = det(A− λI)T = det(A− λI).

2. det(A2 − λ2I) = det(A− λI)det(A+ λI).

3. det(A+ µI − λI) = det(A− (λ− µ)).
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4. det(A−1 − λI) = det(−λA−1(A− λ−1I)).

5. det(αA− λI) = det(αI(A− λ/αI)).

6. det(P−1AP − λI) = det(P−1(A− λI)P ).

End of proof.

The eigenvalues of A and AT are equal but their eigenvectors are not. However,

Theorem 6.6. Let Ax = λx and ATx′ = λ′x′. If λ =/ λ′, then xTx′ = 0.

Proof. Premultiplication of the first equation by x′
T

, the second by xT , and taking their

difference yields (λ− λ′)xTx′ = 0. By the assumption that λ =/ λ′ it happens that xTx′ = 0.

End of proof.

Notice that even though matrix A is implicitly assumed to be real, both λ, λ′ and x, x′

can be complex, and that the statement of the theorem is on xTx′ not xHx′. The word

orthogonal is therefore improper here.

A decisively important property of eigenvectors is proved next.

Theorem 6.7. Eigenvectors corresponding to different eigenvalues are linearly indepen-

dent.

Proof. By contradiction. Let λ1, λ2, . . . , λm be m distinct eigenvalues with correspond-

ing linearly dependent eigenvectors x1, x2, . . . , xm. Suppose that k is the smallest number

of linearly dependent such vectors, and designate them by x1, x2, . . . , xk, k ≤ m. By our

assumption there are k scalars, none of which is zero, such that

α1x1 + α2x2 + · · ·+ αkxk = o. (6.61)

Premultiplying the equation by A and remembering that Axi = λixi, gives

α1λ1x1 + α2λ2x2 + · · ·+ αkλkxk = o. (6.62)

Multiplication of equation (6.61) above by λk and its subtraction from eq. (6.62) results in

α1(λ1 − λk)x1 + α2(λ2 − λk)x2 + · · ·+ αk−1(λk−1 − λk)xk−1 = o (6.63)
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with αi(λi − λk) =/ 0. But this implies that there is a smaller set of k − 1 linearly depen-

dent eigenvectors contrary to our assumption. The eigenvectors x1, x2, . . . , xm are therefore

linearly independent. End of proof.

The multiplicity of eigenvalues is said to be algebraic, that of the eigenvectors is said to

be geometric. Linearly independent eigenvectors corresponding to one eigenvalue of A span

an invariant subspace of A. The next theorem relates the multiplicity of eigenvalue λ to the

largest possible dimension of the corresponding eigenvector subspace.

Theorem 6.8. Let eigenvalue λ1 of A have multiplicity m. Then the number k of linearly

independent eigenvectors corresponding to λ1 is at least 1 and at most m; 1 ≤ k ≤ m.

Proof. Let x1, x2, . . . , xk be all the linearly independent eigenvectors corresponding to

λ1, and write X = X(n × k) = [x1 x2 . . . xk]. Construct X ′ = X ′(n × n − k) so that

P = P (n× n) = [X X ′] is nonsingular. In partitioned form

P−1 =
[

Y (k × n)
Y ′(n− k × n)

]
(6.64)

and

P−1P =
[
Y
Y ′
]

[X X ′] =
[
Y X Y X ′

Y ′X Y ′X ′
]

=
[
Ik O
O In−k

]
. (6.65)

Now

P−1AP =
[
Y
Y ′
]

[AX AX ′] =
[
Y
Y ′
]

[λ1X AX ′ ]

=




k n− k

k λ1Ik Y AX ′

n− k O Y ′AX ′


 (6.66)

and
det(P−1AP − λI) = det(λ1I − λI)det(Y ′AX ′ − λI)

= (λ1 − λ)kpn−k(λ).
(6.67)

On the other hand

det(A− λI) = (λ1 − λ)mpn−m(λ), pn−m(λ1) =/ 0. (6.68)

Equating

(λ1 − λ)kpn−k(λ) = (λ1 − λ)mpn−m(λ) (6.69)
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and taking into consideration the fact that pn−m(λ) does not contain the factor λ1 − λ, but

pn−k(λ) might, we conclude that k ≤ m.

At least one eigenvector exists for any λ, and 1 ≤ k ≤ m. End of proof.

Theorem 6.9. Let A = A(m×n) and B = B(n×m) be two matrices such that m ≤ n.

Then AB(m ×m) and BA(n × n) have the same eigenvalues with the same multiplicities,

except that the larger matrix BA has in addition n−m zero eigenvalues.

Proof. Construct the two matrices

M =
[−λIm A
−B In

]
and M ′ =

[
Im O
B −λIn

]
(6.70)

so that

MM ′ =
[
AB − λIm −λA

O −λIn

]
and M ′M =

[−λIm A
O BA− λIn

]
. (6.71)

From det(MM ′) = det(M ′M) it results that

(−λ)n det(AB − λIm) = (−λ)m det(BA− λIn) (6.72)

or in short (−λ)npm(λ) = (−λ)mpn(λ). Polynomials pn(λ) and (−λ)n−mpm(λ) are the same.

All nonzero roots of pm(λ) = 0 and pn(λ) = 0 are the same and with the same multiplicities,

but pn(λ) = 0 has extra n−m zero roots. End of proof.

Theorem 6.10. The geometric multiplicities of the nonzero eigenvalues of AB and BA

are equal.

Proof. Let x1, x2, . . . , xk be the k linearly independent eigenvectors of AB corresponding

to λ =/ 0. They span a k-dimensional invariant subspace X and for every x =/ o ∈ X, ABx =

λx =/ o. Hence also Bx =/ o. Premultiplication of the homogeneous equation by B yields

BA(Bx) = λ(Bx), implying that Bx is an eigenvector of BA corresponding to λ. Vectors

Bx1, Bx2, . . . , Bxk are linearly independent since

α1Bx1 + α2Bx2 + · · ·+ αkBxk = B(α1x1 + α2x2 + · · ·+ αkxk) = Bx =/ o (6.73)

and BA has therefore at least k linearly independent eigenvectors Bx1, Bx2, . . . , Bxk. By a

symmetric argument for BA and AB we conclude that AB and BA have the same number

of linearly independent eigenvectors for any λ =/ 0. End of proof.
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exercises

6.5.1. Show that if

A(u+ iv) = (α + iβ)(u+ iv),

then also

A(u− iv) = (α− iβ)(u− iv)

where i2 = −1.

6.5.2. Prove that if A is skew-symmetric, A = −AT , then its spectrum is imaginary, λ(A) =

βi, and for every eigenvector x corresponding to a nonzero eigenvalue, xTx = 0. Hint:

xTAx = 0.

6.5.3. Show that if A and B are symmetric, then λ(AB − BA) is purely imaginary.

6.5.4. Let λ be a distinct eigenvalue of A and x the corresponding eigenvector, Ax = λx.

Show that if AB = BA, and Bx =/ o, then Bx = λ′x for some λ′ =/ 0.

6.5.5. Specify matrices for which it happens that

λi(αA+ βB) = αλ(A) + βλ(B)

for arbitrary α, β.

6.5.6. Specify matrices A and B for which

λ(AB) = λ(A)λ(B).

6.5.7. Let λ1 =/ λ2 be two eigenvalues of A with corresponding eigenvectors x1, x2. Show

that if x = α1x1 + α2x2, then
Ax− λ1x = αx2

Ax− λ2x = βx1.

Write α and β in terms of α1, α2, λ1, λ2.

6.5.8. Show that if A2 = A, then λ(A) = 0 or 1.

6.5.9. Show that if A2 = −A, then λ(A) = 0 or −1.
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6.5.10. Show that if A2 = I, then λ(A) = ±1.

6.5.11. What are the eigenvalues of A if A2 = 4I, A2 = 4A, A2 = −4A, A2 +A− 2I = O?

6.5.12. Show that for the nonzero eigenvalues

λ(XTAX) = λ(AXXT ) = λ(XXTA).

6.5.13. Show that if A2 = O, then λ(A) = 0. Is the converse true? What is the characteristic

polynomial of nilpotent A2 = O? Hint: Think about triangular matrices.

6.5.14. Show that if QTQ = I, then |λ(Q)| = 1. Hint: If Qx = λx, then xHQT = λxH .

6.5.15. Write A = abT as A = BC with square

B = [a o . . . o] and C =




bT

oT
...
oT


 .

Using the fact that the characteristic equation of BC is the same as

CB =
[
bTa oT

o O

]

show that the characteristic equation of A is

λn−1(−λ+ bTa) = 0.

What are the eigenvectors of A = abT ? In the same manner show that the characteristic

equation of A = bcT + deT is

λn−2((−λ+ cT b)(−λ+ eTd)− (eT b)(cTd)) = 0.

6.5.16. Every eigenvector of A is also an eigenvector of A2. Bring a triangular matrix example

to show that the converse need not be true. When is any eigenvector of A2 an eigenvector

of A? Hint: Consider A =/ I, A2 = I.
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6.5.17. Matrix A has eigenvalue α + iβ and corresponding eigenvector u + iv. Given u

compute α, β and v. Hint: If Au =/ αu, then β =/ 0, and vector v can be eliminated between

(A− αI)u = −βv and (A− αI)v = βu.

Introduction of vector w such that wTu = 0 is then helpful.

Apply this to

A =




1 1
1 1

−1 1


 , λ =

3

2
+

√
3

2
, x =



−1
1
2


+
√

3i



−1
1




assuming that only the real part u of x is known.

6.5.18. Let Q be an orthogonal matrix, QTQ = QQT = I. Show that if λ is a complex

eigenvalue of Q, |λ| = 1, with corresponding eigenvector x = u + iv, then uT v = 0. Hint:

xTQT = λxT , xTx = λ2xTx, λ2 =/ 1.

6.5.19. Matrices A and B are similar if B = P−1AP for some invertible P . According

to Theorem 6.5 similar matrices have the same characteristic polynomial. Bring a (2 × 2)

upper-triangular matrix example to show that the converse is not true—that matrices having

the same characteristic polynomial need not be similar.

6.5.20. Prove that AB and BA are similar if A or B are nonsingular.

6.5.21. Prove that if AB = BA, then A and B have at least one common eigenvector.

Hint: Let matrix B have eigenvalue λ with the two linearly independent eigenvectors v1, v2

so that Av1 = λv1, Av2 = λv2. From ABv1 = BAv1 and ABv2 = BAv2 it follows that

B(Av1) = λ(Av1) and B(Av2) = λ(Av2), meaning that vectors Av1 and Av2 are both in the

space spanned by v1 and v2. Hence scalars α1, α2, β1, β2 exist so that

Av1 =α1v1 + α2v2

Av2 =β1v1 + β2v2.

Consequently, for some δ1, δ2,

A(δ1v1 + δ2v2) = (δ1α1 + δ2β1)v1 + (δ1α2 + δ2β2)v2.
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You need to show now that scalar µ exists so that

[
α1 β1

α2 β2

] [
δ1

δ2

]
= µ

[
δ1

δ2

]
.

6.6 Diagonalization

If matrix A = A(n×n) has n linearly independent eigenvectors x1, x2, . . . , xn, then they

span Cn and any x ∈ Cn is uniquely written as x = α1x1 + α2x2 + · · · + αnxn, so that

Ax = α1λ1x1 + α2λ2x2 · · ·+ αnλnxn. Such matrices have special properties.

Definition Matrix A and matrix P−1AP , are similar. If P = U, UHU = I, then

A and UHAU are unitarily similar. Matrix A is said to be diagonalizable if a similarity

transformation exists that renders P−1AP diagonal.

Theorem 6.11. Matrix A = A(n × n) is diagonalizable if and only if it has n linearly

independent eigenvectors.

Proof. Let A have n linearly independent eigenvectors x1, x2, . . . , xn and n eigenvalues

λ1, λ2, . . . , λn so that Axi = λixi i = 1, 2, . . . , n. With X = [x1x2 . . . xn] this is written

as AX = XD where D is the diagonal Dii = λi. Because the columns of X are linearly

independent X−1 exists and X−1AX = D.

Conversely if X−1AX = D, then AX = DX and the columns of X are the linearly

independent eigenvectors corresponding to λi = Dii. End of proof.

An immediate remark we can make about the diagonalization X−1AX = D of A, is that

it is not unique since even with distinct eigenvalues the eigenvectors are of arbitrary length.

An important matrix not similar to diagonal is the n× n Jordan matrix

J =




λ 1
λ 1

. . . 1
λ 1

λ




(6.74)

that has n equal eigenvalues λ1 = λ2 = . . . = λn = λ, but only one single eigenvector x = e1.

A matrix that cannot be diagonalized is scornfully named defective.
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Theorem 6.12. If matrix A is diagonalized by matrix X, then AT is diagonalized by

matrix Y = X−T , Y XT = XY T = I.

Proof. If A = XDX−1 then AT = X−TDXT , and Y = X−T . End of proof

exercises

6.6.1. Let diagonalizable A have real eigenvalues. Show that the matrix can be written

as A = HS with symmetric H and symmetric and positive definite S. Hint: Start with

A = XDX−1 and recall that symmetric matrix XXT is positive definite if X is nonsingular.

6.6.2. Prove that if for unitary U both UHAU and UHBU are diagonal, then AB = BA.

6.6.3. Do n linearly independent eigenvectors and their corresponding eigenvalues uniquely

fix A = A(n× n)?

6.6.4. Prove that A = A(n× n) is similar to AT , AT = P−1AP .

6.6.5. Show that if X−1AX and X−1BX are both diagonal, then AB = BA. Is the converse

true?

6.7 Elementary similarity transformations

We do not expect to be able to reduce any square matrix to triangular form by an

ending sequence of similarity transformations alone, for this would imply having all the

eigenvalues in a finite number of steps, but we should be able to reduce the matrix by such

transformations to forms more convenient for the computation of the eigenvalues or the

writing of the characteristic equation.

Similarity transformation B−1AB, we recall, leaves the characteristic equation of A in-

variant. Any nonsingular matrix B can be expressed as a product of elementary matrices

that we know have simple inverses. We recall from Chapter 2 that the inverse of an ele-

mentary operation is an elementary operation, and that premultiplication by an elementary

matrix operates on the rows of the matrix, while postmultiplication affects the columns.

Elementary matrices of three types build up matrix B in B−1AB, in performing the

elementary operations of:
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1. permutation of two rows (columns)

P =




1
1

1


 , P−1 = P. (6.75)

2. multiplication of a row (column) by a nonzero scalar α

E =




1
α

1


 , E−1 =




1
α−1

1


 . (6.76)

3. addition to one row (column) another row (column) times a scalar

E =




1
1

α 1


 , E−1 =




1
1

−α 1




E =




1 α
1

1


 , E−1 =




1 −α
1

1


 . (6.77)

The permutation similarity transformation P−1AP = PAP means the interchange of

rows k and l of A followed by the interchange of columns k and l of PA. Diagonal entries

remain in this row and column permutation on the diagonal.

In the next section we shall need sequences of similarity permutations as described below




1 2 3 4 5

1 λ1 0 1

2 λ2 1

3 λ3 1

4 λ4 0

5 λ5




→




1 2 3 5 4

1 λ1 1

2 λ2 1

3 λ3 1

5 λ5

4 λ4




→




1 2 5 3 4

1 λ1 1

2 λ2 1

5 λ5

3 λ3 1

4 λ4




→




1 5 2 3 4

1 λ1 1

5 λ5 0

2 λ2 1

3 λ3 1

4 λ4




(6.78)
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the purpose of which is to bring all the off-diagonal 1’s onto the first super-diagonal. It is

achieved by performing the row and column permutation (1, 2, 3, 4, 5)→ (1, 5, 2, 3, 4) in the

sequence (1, 2, 3, 4, 5)→ (1, 2, 3, 5, 4)→ (1, 2, 5, 3, 4)→ (1, 5, 2, 3, 4).

Another useful similarity permutation is




1 2 3

1 A11 A12 A13

2 0 A22 A23

3 1 A32 A33



→




1 3 2

1 A11 A13 A12

3 1 A33 A32

2 0 A23 A22




(6.79)

the purpose of which is to have the first column of A start with a nonzero off-diagonal.

Elementary similarity transformation number 2 multiplies row k by α =/ 0 and column

k by α−1. It leaves the diagonal unchanged, but off-diagonal entries can be modified by it.

For instance:



(αβγ)−1

(βγ)−1

γ−1

1







λ1 α
λ2 β

λ3 γ
λ4







αβγ
βγ

γ
1




=




λ1 1
λ2 1

λ3 1
λ4


 . (6.80)

If it happens that some super-diagonal entries are zero, say β = 0, then we set β = 1 in the

elementary matrix and end up with a zero on this diagonal.

The third elementary similarity transformation that combines rows and columns is of

great use in inserting zeroes into E−1AE. Schematically, the third similarity transformation

is described as

− α

←−−−−−↓


× ×
× × × × ×
× ×

× × × × ×
× ×




←

↓

α
+ or

α −
↓−−−−−→



× ×
× × × × ×
× ×

× × × × ×
× ×




↑
←

+
α

. (6.81)

That is, if row k times α is added to row l, then column l times −α is added to column k;

and if row l times α is added to row k, then column k times −α is added to column l.
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exercises

6.7.1. Find α so that
[

1
α 1

] [
3 −1
1 1

] [
1
−α 1

]

is upper-triangular.

6.8 Hessenberg and companion matrices

We readily see now how a unique sequence of elementary similarity transformations that

uses pivot p1 =/ 0 accomplishes




× × × ×
p1 × × ×
× × × ×
× × × ×


 →




× × × ×
p1 × × ×
0 × × ×
0 × × ×


 . (6.82)

If p1 is originally zero, then a preliminary elementary similarity permutation is carried out to

replace it by another, nonzero, entry from the first column, unless all entries in the column

below the diagonal are zero. Doing the same to all columns from the first to the (n − 2)th

reduces the matrix to

H =




× × × ×
p1 × × ×

p2 × ×
p3 ×


 (6.83)

which is now in Hessenberg form.

In case of an unavoidable zero pivot the matrix reduces to

H =
[
H11 H12

H22

]
(6.84)

where H11 and H22 are Hessenberg submatrices, and det(H) = det(H11)det(H22), effectively

decoupling the eigenvalue computations. Assuming that pi =/ 0, and using more elementary

similarity transformations of the second kind further reduces the Hessenberg matrix to

H =




× × × ×
−1 × × ×

−1 × ×
−1 ×


 . (6.85)
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To write the characteristic equation of the Hessenberg matrix we interchange rows so as to

have

H − λI →




−1 H22 − λ H23 H24

−1 H33 − λ H34

−1 H44 − λ
p1 H12 H13 H14


 , p1 = H11 − λ (6.86)

and bringing the matrix to upper-triangular form by means of elementary row operations

discover the recursive formula

p1(λ) = H11 − λ

p2(λ) = H12 + (H22 − λ)p1(λ)

p3(λ) = H13 +H23p1(λ) + (H33 − λ)p2(λ)

...

pn(λ) = H1n +H2np1(λ) +H3np2(λ) + · · ·+ (Hnn − λ)pn−1(λ)

(6.87)

for the characteristic equation of H.

We summarize it all in

Theorem 6.13. Any square matrix can be reduced to a Hessenberg form in a finite

number of elementary similarity transformations.

If the Hessenberg matrix

H =




× q1 × ×
−1 × q2 ×

−1 × q3

−1 ×


 (6.88)

is with qi =/ 0, i = 1, 2, . . . , n−2, then the same elimination done to the lower-triangular part

of the matrix may be performed in the upper-triangular part of H to similarly transform it

into tridiagonal form.

Similarity reduction of matrices to Hessenberg or tridiagonal form preceeds most realistic

eigenvalue computations. We shall return to this subject in chapter 8, where orthogonal

similarity transformation will be employed to that purpose. Meanwhile we return to more

theoretical matters.

The Hessenberg matrix may be further reduced by elementary similarity transformations

to a matrix of simple structure and great theoretical importance. Using the −1’s in the first
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subdiagonal of H to eliminate by elementary similarity transformations all other entries in

their column, it is reduced to

C =




a0

−1 a1

−1 a2

−1 a3


 (6.89)

which is the companion matrix of A. We shall show that a0, a1, a2, a4 in the last column are

the coefficients of the characteristic equation of C, and hence of any other matrix similar to

it. Indeed, by row elementary operations using the −1’s as pivots, and with n − 1 column

interchanges we accomplish the transformations




1 2 3 4

−λ a0

−1 −λ a1

−1 −λ a2

−1 a3 − λ




→




1 2 3 4

p4

−1 p3

−1 p2

−1 p1




→




4 1 2 3

p4

p3 −1

p2 −1

p1 −1




(6.90)

where
p4 = λ4 − a3λ

3 + a2λ
2 − a1λ+ a0 , p3 = −λ3 + a3λ

2 − a2λ+ a1

p2 = λ2 − a3λ+ a2, p1 = −λ+ a3

(6.91)

and

det(A− λI) = det(C − λI) = p4 = λ4 − a3λ
3 + a2λ

2 − a1λ+ a0 (6.92)

for any matrix A similar to C.

A Hessenberg matrix with zeroes on the first subdiagonal is transformed into the upper-

triangular block form

C =




C1 × × ×
C2 × ×

. . . ×
Ck


 (6.93)

where Ci = Ci(mi ×mi),m1 +m2 + · · ·mk = n, are companion submatrices, and

det(C − λI) = det(C1 − λI)det(C2 − λI) . . . det(Ck − λI) (6.94)

giving the characteristic equation in factored form.
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A formal proof is thus given to the long awaited

Theorem 6.14. If B(λ) = A− λI is a real n× n matrix and λ a scalar, then

det(B(λ)) = (−λ)n + an−1(−λ)n−1 + · · ·+ a0 (6.95)

with real an−1, an−2, . . . , a0.

6.9 Schur to Jordan to Frobenius

The most we can do with elementary similarity transformations is get matrix A into a

Hessenberg and then companion matrix form. To further reduce the matrix by similarity

transformations to triangular form, we need first to compute all eigenvalues of A.

Theorem (Schur) 6.15. For any square matrix A = A(n × n) there exists a unitary

matrix U so that U−1AU = UHAU = T is upper triangular with all the eigenvalues of A on

its diagonal, appearing in any specified order.

Proof. Let λ1 be an eigenvalue of A that we want to appear first on the diagonal of T ,

and let u1 be a unit eigenvector corresponding to it. Even if A is real both λ1 and u1 may

be complex. In any event there are in Cn n − 1 unit vectors u2, u3, . . . , un orthonormal to

u1. Then U1 = [u1 u2 . . . un] is unitary so that UH1 U1 = I or UH1 = U−1
1 with which

AU1 = [Au1 Au2 . . . Aun] = [λ1u1 u
′
2 . . . u′n] (6.96)

and

UH1 AU1 =




uH1
uH2

uHn




[λ1u1 u
′
2 . . . u′n]

=




λ1 aT1

o A1


 (6.97)

with the eigenvalues of A1 being those of A less λ1. By the same argument the (n−1)×(n−1)

submatrix A1 can be similarly transformed into

U ′
H

2 A1U
′
2 =



λ2 aT2

o A2


 (6.98)
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where λ2 is an eigenvalue of A1, and hence also of A, that we want to appear next on the

diagonal of T . Now, if U ′2(n− 1× n− 1) is unitary, then so is the n× n

U2 =




1 oT

o U ′2


 (6.99)

and

UH2 U
H
1 AU1U2 =




λ1 × × ×
λ2 × ×

o o A2


 . (6.100)

Continuing in this manner we construct n− 1 unitary matrices U1, U2, . . . , Un−1 so that

UHn−1 · · ·UH2 UH1 AU1U2 · · ·Un−1 =




λ1 × × × ×
λ2 × × ×

. . . × ×
. . . ×

λn




(6.101)

and since the product of unitary matrices is a unitary matrix, the last equation is concisely

written as UHAU = T , where U is unitary, UH = U−1, and T is upper-triangular.

Matrices A and T share the same eigenvalues including multiplicities, and hence

λ1, λ2, . . . , λn, that may be made to appear in any specified order, are the eigenvalues of A.

End of proof.

Even if matrix A is real, both U and T in Schur’s theorem may be complex, but if we

relax the upper-triangular restriction on T and allow 2× 2 submatrices on its diagonal, then

the Schur decomposition acquires a real counterpart.

Theorem 6.16. If matrix A = A(n × n) is real, then there exists a real orthogonal

matrix Q so that

QTAQ =




S11 × × ×
S22 × ×

. . . ×
Smm


 (6.102)

where Sii are submatrices of order either 1× 1 or 2× 2 with complex conjugate eigenvalues,

the eigenvalues of S11, S22, . . . , Smm being exactly the eigenvalues of A.
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Proof. It is enough that we prove the theorem for the first step of the Schur decompo-

sition. Suppose that λ1 = α + iβ with corresponding unit eigenvector x1 = u + iv. Then

λ = α− iβ and x1 = u− iv are also an eigenvalue and eigenvector of A, and

Au = αu− βv
Av = βu+ αv

β =/ 0. (6.103)

This implies that if vector x is in the two-dimensional space spanned by u and v, then so is

Ax. The last pair of vector equations are concisely written as

AV = VM , M =
[
α β
−β α

]
(6.104)

where V = V (n× 2) = [u, v], and where M is verified to have eigenvalues λ1 and λ1.

Let q1, q1, . . . , qn be a set of orthonormal vectors in Rn with q1 and q2 being in the

subspace spanned by u and v. Then qTi Aq1 = qTi Aq2 = 0 i = 3, 4, . . . , n, and

QT1 AQ1 =



S11 A′1

O A1


 (6.105)

where Q1 = [q1 q2 . . . qn], and where

S11 =



qT1 Aq1 qT1 Aq2

qT2 Aq1 qT2 Aq2


 . (6.106)

To show that the eigenvalues of S11 are λ1 and λ1 we write Q = Q(n × 2) = [q1 q2],

and have that V = QS, Q = V S−1, S = S(2× 2), since q1, q2 and u, v span the same two-

dimensional subspace. With this, AV = VM becomes AQS = QSM , and S11 = QTAQ =

SMS−1, implying that S11 and M share the same eigenvalues. End of proof.

The similarity reduction of A to triangular form T requires the complete eigensolution

of Ax = λx, but once this is done we expect to be able to further simplify T by means of

elementary similarity transformations only. The rest of this section is devoted to elementary

similarity transformations designed to bring the upper-triangular T as close as possible to

diagonal form, culminating in the Jordan form.

Theorem 6.17. Suppose that in the partitioning

T =




T11 × × ×
T22 × ×

. . . ×
Tmm


 (6.107)
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Tii are upper triangular, each with equal diagonal entries λi, but such that λi =/ λj. Then

there exists a similarity transformation

X−1TX =




T11

T22
. . .

Tmm


 (6.108)

that annulls all off-diagonal blocks without changing the diagonal blocks.

Proof. The transformation is achieved through a sequence of elementary similarity

transformations using diagonal pivots. At first we look at the 2× 2 block-triangular matrix

T =



T11 T12

T22


 =




λ1 T12 T13 T14 T15

λ1 T23 T24 T25

λ1 T34 T35

λ2 T45

λ2



→




λ1 T12 T13 T ′14 T15

λ1 T23 T ′24 T25

λ1 T ′34 T ′35

λ2 T45

λ2




(6.109)

where the shown above similarity transformation consists of adding α times column 3 to

column 4, and −α times row 4 to row 3, and demonstrate that submatrix T12 can be annulled

by a sequence of such row-wise elimination of entries T34, T35; T24, T25; T14, T15 in that order.

An elementary similarity transformation that involves rows and columns 3 and 4 does not

affect submatrices T11 and T22, but T ′34 = T34 + α(λ1 − λ2), and with α = −T34/(λ1 −
λ2), T ′34 = 0. Continuing the elimination in the suggested order leaves created zeroes zero,

and does not change the triangular submatrices.

The off-diagonal submatrices of T are eliminated in the same order and we are left with

a block-diagonal X−1TX. End of proof.

We are at the stage now where square matrix A is similarly transformed into a diagonal

block form with triangular diagonal submatrices that have the same λ on their own diagonal.

Suppose that T is such a typical triangular matrix with a nonzero first super-diagonal. Then

elementary similarity transformations exist to the effect that

T =




λ × × × ×
λ × × ×

λ × ×
λ ×

λ



→




λ 1 × × ×
λ 1 × ×

λ 1 ×
λ 1

λ



→




λ 1
λ 1

λ 1
λ 1

λ




(6.110)
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in which elimination is done with the 1’s on the first super-diagonal, row by row starting

with the first row.

Definition. The m×m matrix

J(λ) =




λ 1
λ 1

. . . 1
λ


 (6.111)

is a simple Jordan submatrix of order m.

Notice that the simple Jordan matrix may be written as J = λI+N where N is nilpotent,

Nm−1 =/ O,Nm = O, and is of nullity 1.

A simple Jordan submatrix of order m has one eigenvalue λ of multiplicity m, one

eigenvector e1, and m− 1 generalized eigenvectors e2, e3, . . . , em strung together by

(J − λI)e1 = o

(J − λI)e2 = e1

...

(J − λI)em = em−1.

(6.112)

Or Ne1 = o,N2e2 = o, . . . , Nmem = o, implying that the nullspace of N is embedded in its

range.

The existence of a sole eigenvector for J implies that nullity(J−λI) = 1, rank(J−λI) =

m − 1, and hence the full complement of super-diagonal 1’s in J . Conversely, if matrix T

in eq.(1.112) is known to have a single eigenvector, then its corresponding Jordan matrix is

assuredly simple. Non-simple Jordan matrix

J =




λ 1
λ 1

λ 0
λ 1

λ




(6.113)

is of rank(J − λI) = m − 2 and hence of nullity(J − λI) = 2, implying the existence of

two linearly independent eigenvectors, here e1 and e4, for the same repeating eigenvalue

λ. There are now two chains of generalized eigenvectors: e1, Ne2 = e1, Ne3 = e2, and
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e4, Ne5 = e4; five linearly independent eigenvectors in all.The appearance of two zeroes in

the super-diagonal of a non-simple J bespeaks the existence of three linearly independent

eigenvectors for the same repeating λ, three chains of generalized eigenvectors, and so on.

Jordan’s form is the closest matrix T can get by similarity transformations to diagonal

form. Every triangular diagonal submatrix with a nonzero first super-diagonal can be reduced

by elementary similarity transformations to a simple Jordan submatrix. Moreover,

Theorem (Jordan) 6.18. Any matrix A = A(n× n) is similar to

J =




J1

J2
. . .

Jk


 (6.114)

where Ji = (mi ×mi) are simple Jordan submatrices, and m1 +m2 + · · ·mk = n.

Proof. We know that a sequence of elementary similarity transformations exists by

which any n× n matrix is carried into the diagonal block form

T =




λ1 × ×
λ1 ×

λ1

λ2 ×
λ2

λ3 × × ×
λ3 × ×

λ3 ×
λ3

λ4




=




T11

T22

T33

T44


 (6.115)

with λ1 =/ λ2 =/ λ3 =/ λ4.

If the first super-diagonal of Tii is nonzero, then a finite sequence of elementary similarity

transformations, done in partitioned form reduce Tii to a simple Jordan matrix. Zeroes in

the first super-diagonal of Tii complicate the elimination and cause the creation of several

Jordan simple submatrices with the same diagonal λ in place of Tii. A constructive proof to

this fact is done by induction on the order m of T = Tii. A 2×2 upper-triangular matrix with

equal diagonal entries can certainly be brought by one elementary similarity transformation

to a simple Jordan form of order 2, and if the 2 × 2 matrix is diagonal, then it consists of

two 1× 1 Jordan blocks.
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Let T = T (m×m) be upper-triangular with diagonal entries all equal λ, as in eq. (6.110)

and suppose that an elementary similarity transformation exists that transforms the leading

m − 1 ×m − 1 submatrix of T to Jordan blocks. We shall show then that T itself can be

reduced by elementary similarity transformations to a direct sum of Jordan blocks with equal

diagonal entries.

For clarity’s sake we refer in the proof to a particular matrix, but it should be obvious that

the argument is general. The similarity transformation that reduces the leading m−1×m−1

matrix to Jordan blocks leaves a nonzero last column with entries α1, α2, α3, α4, as in the

left-hand matrix below


λ 1 α1

λ 0 α2

λ 1 α3

λ α4

λ



→




λ 1
λ 0 1

λ 1
λ 1

λ



. (6.116)

Entries α1 and α3 that have a 1 in their row are eliminated routinely, and if α2 = 0 we are

done since then the matrix is in the desired form. If α4 = 0, then α2 can be brought to

the first super-diagonal by the sequence of similarity permutations described in the previous

section, and then made 1. Hence the assumption that α2 = α4 = 1 as in the right-hand

matrix above.

One of these 1’s can be made to disappear in a finite number of elementary similarity

transformations. For a detailed observation of how this is accomplished look at the larger

9× 9 submatrices of eq. (6.117).




1 2 3 4 5 6 7 8 9

1 λ 1

2 λ 1 1

3 λ 1 ·
4 λ 1 ·
5 λ 0 1·
6 · λ 1

7 · λ 1

8 λ 1·
9 λ







1 2 3 4 5 6 7 8 9

1 λ 1 ·
2 λ 1 ·
3 λ 0 1·
4 λ 1

5 1 λ 1

6 · λ 1

7 · λ 1

8 λ 1·
9 λ




. (6.117)
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Look first at the right-hand matrix. If the 1 in row 8 is used to to eliminate by an elementary

similarity transformation the 1 above it in row 5, then a new 1 appears at entry (4,8) of the

matrix. This new 1 is ousted (it leaves behind a dot) by the super-diagonal 1 below it, but

still a new 1 appears at entry (3,7). Repeated, such eliminations push the 1 in a diagonal

path across the matrix untill it gets stuck in column 6—the column of the super-diagonal

zero. Our efforts are yet in vain. If the 1 in row 5 is used to eliminate the 1 below it in row

8, then a new 1 springs up at entry (7,5). Elimination of this new 1 with the super-diagonal

1 above it pushes it up diagonally across the matrix untill it is anihilated at row 6, the row

just below the row of the super-diagonal zero. We have now succeeded in getting rid of this

1. On the other hand, for the matrix to the right, the upper elimination path is successful

since the pushed 1 reaches row 1,where it is zapped, before falling into the column of the

zero super-diagonal. The lower elimination path for this matrix does not fare that well. The

chased lower 1 comes to the end of its journey in column 1 before having the chance to

enter row 4 where it could have been anihilated. In general, if the zero in the super-diagonal

happens to be in row k, then the upper elimination path is successful if n > 2k, while the

lower path is successful if n ≤ 2k + 2. In any event, at least one elimination path always

ends in an actual anihilation, and we are essentially done. Only a single 1 remains in the

last column and it can be brought upon the super-diagonal, if it is not already on it, by row

and column permutations.

In case of several Jordan blocks in one T there are more than two 1’s in the last columns

and there are several elimination paths to perform.

We have shown that if T (m−1×m−1) can be reduced by a finite number of elementary

similarity transformations to a Jordan blocks form, then T (m ×m) can also be reduced to

this form. Starting from m = 2 we have then the result for any m. End of proof.

As an exercise the reader can work out the details of elementary similarity transforma-
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tions



λ 1
λ 0 1

λ 1
λ 1

λ 0 1
λ 1

λ 0 1
λ 1

λ 1
λ




→




λ 1
λ 0

λ 1
λ 1

λ 0 1
λ 1

λ 0
λ 1

λ 0
λ




→




λ 1
λ

λ 1
λ 1

λ 1
λ

λ 1
λ

λ 1
λ




. (6.118)

The existence proof given for the Jordan form is constructive and in integer arithmetic the

matrix can be set up umambiguously. In floating-point computations the construction is

numerically problematic and the Jordan form has not found many practical computational

applications. It is nevertheless of considerable theoretical interest, at least in achieving the

goal of ultimate systematic reduction of A by means of similarity transformations.

Say matrix A has but one eigenvalue λ, and a corresponding Jordan form as in eq.(6.113).

Then nonsingular matrix X = [x1 x2 x3 x4 x5] exists so that X−1AX = J , or AX = XJ ,

where
(A− λI)x1 = o, (A− λI)x2 = x1, (A− λI)x3 = x2

(A− λI)x4 = o, (A− λI)x5 = x4

(6.119)

or
(A− λI)x1 = o, (A− λI)2x2 = o, (A− λI)3x3 = o

(A− λI)x4 = o, (A− λI)2x5 = o
(6.120)

and if A and λ are real, then so are x1, x2, x3, x4, x5.

Conversely, computation of the generalized eigenvectors x1, x2, x3, x4, x5 furnishes non-

singular matrix X that puts X−1AX into Jordan form.
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If A is real but λ complex with complex generalized eigenvectors, then λ is also an

eigenvalue of A with the same algebraic and geometrical multiplicities as λ, and hence with

corresponding conjugate complex generalized eigenvectors.

Instead of thinking about Jordan’s theorem concretely in terms of elementary operations

we may think about it abstractly in terms of vector spaces. Because of the block nature of

the theorem we need limit ourselves to just one of the triangular matrices Tii of theorem

6.17. Moreover, because X−1(λI +N)X = λI +X−1NX we may further restrict discussion

to nilpotent matrix N only, or equivalently to Jordan matrix J of eq.(6.111) with λ = 0.

First we prove

Lemma 6.19. If A is nilpotent of index m, then nullity(Ak+1) >nullity(Ak) for positive

integer k,m > k > 0; and −nullity(Ak+1) + 2nullity(Ak)−nullity(Ak−1) ≥ 0 for k > 0.

Proof. All eigenvalues of A are zero and hence by Schur’s theorem an orthogonal matrix

Q exists so that QTAQ = N is strictly upper-triangular. Since QTAkQ = Nk, and since

nullity (QTAkQ) =nullity(Ak), we may substitute N for A. Look first at the case k = 1.

If E is an elementary operations matrix, then nullity(N2) =nullity((EN)N). To be explicit

consider the specific N(5× 5) of nullity 2, and assume that row 2 of EN is annuled by the

operation so that (EN)N is of the form

EN


α1 × × ×

α3 ×
α4




N


α1 × × ×
α2 × ×

α3 ×
α4




=

EN2


α1α2 × ×

α3α4



. (6.121)

Rows 2 and 5 of EN2 are zero because rows 2 and 5 of EN are zero, but in addition, row

4 of EN2 is also zero and the nullity of EN2 is greater than that of EN . In the event that

α4 = 0, row 2 of EN does not vanish if nullity(EN) = 2, yet the last three rows of EN2 are

now zero by the fact that α3α4 = 0. The essence of the proof for k = 1 is, then, showing that

if corner entry (EN)45 = α4 = 0, then also corner entry (EN2)35 = α3α4 = 0. This is always

the case whatever k is. Say N = N(6×6) with N56 = α5. Then N2
46 = α4α5, N

3
36 = α3α4α5,

and if N2
46 = 0, then also N3

36 = 0. Consequently nullity(N3) >nullity(N2). Proof of the

44



         

second part, which is a special case of the Frobenius rank inequality of Theorem 5.25, is left

as an exercise. End of proof.

In the process of setting up matrix X in X−1AX that similarly transforms nilpotent

matrix A into the Jordan nilpotent matrix N = J(0) the need arises to solve chains of

linear equations such as the typical Ax1 = o, Ax2 = x1. Suppose that nullity(A) = 1,

and nullity(A2) = 2.This means a one dimensional nullspace for A, so that Ax = o is

inclusively solved by x = α1x1 for any α1 and x1 =/ o. Premultiplication by A turns the

second equation into A2x2 = Ax1 = o. Since nullity(A2) = 2, A2x = o is inclusivly solved by

x = β1x1 + β2x2, in which β1 and β2 are arbitrary and x1 and x2 are linearly independent.

Now, since Ax1 = o, Ax = β2Ax2, and since Ax is in the nullspace of A, A(Ax) = o, it must

so be that β2Ax2 = α1x1.

Theorem 6.20 Nilpotent matrix A of nullity k and index m, Am−1 =/ O, Am = O, is

similar to a block diagonal matrix N of k nullity-one Jordan nilpotent submatrices, with the

largest diagonal block being of dimension m, and with the dimensions of the other blocks being

uniquely determined by the nullities of A2, A3, . . . , Am−1; the number of j × j blocks in the

nilpotent Jordan matrix N being equal to −nullity(N j+1)+2nullity(N j)−nullity(N j−1) j =

1, 2, . . . ,m.

Proof. Let N be a block Jordan nilpotent matrix. If nullity(N) = k, then k rows of

N are zero and it is composed of k blocks. Raising N to some power amounts to raising

each block to that power. If Nj = Nj(j × j) is one such block, then N j−1
j =/ O,N j

j =

O, nullity(Nk
j ) = j if k ≥ j, and the dimension of the largest block in N is m. Also,

nullity(Nk
j )−nullity(Nk−1

j ) = 1 if k ≤ j. It results that the number of blocks in N larger

than j×j is equal to nullity(N j+1)−nullity(N j). The number of blocks larger than j−1×j−1

is then equal to nullity(N j)−nullity(N j−1), and the difference is the number of j × j blocks

in N . Doing the same to A = A(n×n) we determine all the block sizes, and they add up to

n.

We shall look at three typical examples that will expose the generality of the contention.

Say matrix A = A(4 × 4) is such that nullity (A) = 1, nullity (A2) = 2, nullity (A3) =
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3, A4 = O. The only 4× 4 nilpotent Jordan matrix N = J(0) that has these nullities is

N =




1
1

1


 . (6.122)

We show that a nonsingular X exists so that X−1AX = N . Indeed, if X = [x1 x2 x3 x4],

then AX = XN is written columnwise as

[Ax1 Ax2 Ax3 Ax4] = [o x1 x2 x3] (6.123)

and Ax1 = o, Ax2 = x1, Ax3 = x2, Ax4 = x3, or Ax1 = o, A2x2 = o, A3x3 = o, A4x4 = o.

Because nullity (A) = 1, Ax = o possesses a nontrivial solution x = x1. Because nullity

(A2) = 2, A2x = o has two linearly independent solutions of which at least one, call it

x2, is linearly independent of x1. Because nullity (A3) = 3, A3x = o has three linearly

independent solutions of which at least one, call it x3, is linearly independent of x1 and x2.

Because A4 = O, A4x = o has four linearly independent solutions of which at least one,

call it x4, is linearly independent of x1, x2, x3. Hence X = [x1 x2 x3 x4] is invertible and

X−1AX = N .

Say matrix A = A(5 × 5) is such that nullity (A) = 2, nullity (A2) = 4, A3 = O. The

only 5× 5 compound Jordan nilpotent matrix N that has these nullities is the two-block

N =




1
1

0
1



. (6.124)

for which AX = XN is

[Ax1 Ax2 Ax3 Ax4 Ax5] = [o x1 x2 o x4] (6.125)

so that Ax1 = 0, Ax2 = x1, Ax3 = x2, Ax4 = 0, Ax5 = x4, or Ax1 = o, A2x2 = o,

A3x3 = o, Ax4 = o, A2x5 = o. Because nullity (A) = 2, Ax = o has two linearly

independent solutions, x = x1 and x = x4. Because nullity (A2) = 4, A2x = o has four

linearly independent solutions of which at least two, call them x2, x5, are linearly independent
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of x1 and x4. Because A3 = O, A3x = o has four linearly independent solutions of which at

least one, call it x3, is linearly independent of x1, x2, x4, x5. Hence X = [x1 x2 x3 x4 x5] is

invertible and X−1AX = N .

Say matrix A = A(8 × 8) is such that nullity (A) = 4, nullity (A2) = 7, A3 = O.

Apart from block ordering, the only 8× 8 compound nilpotent Jordan matrix that has these

nullities is the four-block

N =




1
1

0
1

0
1

0




(6.126)

for which AX = XN gives rise to Ax1 = o, A2x2 = o, A3x3 = o, Ax4 = o, A2x5 = o, Ax6 =

o, A2x7 = o, Ax8 = o. Because nullity (A) = 4, Ax = o has four linearly independent

solutions x1, x4, x6, x8. Because nullity (A2) = 7, Ax = o has seven linearly independent

solutions of which at least three, x2, x5, x7, are linearly independent of x1, x4, x6, x8. Because

A3 = O, A3x = o has eight linearly independent solutions of which at least one, call it x3, is

linearly independent of the other seven x’s. Hence X = [x1 x2 x3 x4 x5 x6 x7 x8] is invertible

and X−1AX = N .

One readily verifies that the blocks as given in the theorem correctly add up in size to

just fit in the matrix. End of proof.

We shall now use the Jordan form to prove the remarkable

Theorem (Frobenius) 6.21. Every complex (real) square matrix is a product of two

complex (real) symmetric matrices of which at least one is nonsingular.

Proof. It is accomplished with the aid of the symmetric permutation submatrix

P =




1
1

1
1


 , P−1 = P (6.127)

47



          

that has the decisive property of turning J into S,

PJ = S =




λ
λ 1

λ 1
λ 1


 (6.128)

which is symmetric. What is done to the simple Jordan submatrix J by one submatrix P is

done to the complete J in block form, and we shall write it as PJ = S and J = PS.

To prove the complex case we write A = XJX−1 = XPSX−1 = (XPXT )(X−TSX−1),

and see that A is the product of the two symmetric matrices XPXT and X−TSX−1, of

which the first is nonsingular.

The proof to the real case hinges on showing that if A is real, then XPXT is real;

the reality of X−TSX−1 follows then from X−TSX−1 = (XPXT )−1A. When A is real,

whenever complex J(m×m) appears in the Jordan form, J(m×m) is also there. Since we

are dealing with blocks in a partitioned form we permit ourselves to restrict the rest of the

argument to the Jordan form and block permutation matrix

J =



J1

J1

J3


 , P =



P1

P1

P3


 (6.129)

in which J3 is real. Accordingly, matrix X in X−1AX = J is partitioned as

X = [X1 X1 X3] = [X1 O O] + [O X1 O] + [O O X3] (6.130)

where X3 is real, and

XPXT = X1P1X
T
1 +X1P1X

T
1 +X3P3X

T
3 . (6.131)

With X1 = R + iR′, where R and R′ are real, XPXT becomes

XPXT = 2(RP1R
T −R′P1R

′T ) +X3P3X
T
3 (6.132)

proving that XPXT is real and symmetric. It is also nonsingular. End of proof.

exercises
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6.9.1. Show that the the Jordan form of

A =




λ 1
λ 1

λ
λ


 is J =




λ 1
λ

λ 1
λ


 .

6.9.2. If matrix A is of the form A = λI + N , then X−1AX = λI + X−1NX, and we may

consider N only. Perform the elementary similarity transformatoins needed to bring

A =




0 1
0 1

0 0 1
0 0 1

0 1
0 1

0




and B =




0 1
0 0 1

0 1
0 0 1

0 1
0 1

0




into Jordan form. Discuss the various possibilities.

6.9.3. What is the Jordan form of matrix A = A(16×16) if nullity(A) = 6, nullity(A2) = 11,

nullity(A3) = 15, A4 = O.

6.9.4. What is the Jordan form of J2, if

J =




0 1
0 1

0 1
0 1

0




?

6.9.5. Write all (generalized) eigenvectors of

A =




6 10 −3
−3 −5 2
−1 −2 2




knowing that λ(A) = 1.

6.9.6. Show that the eigenvalues of

A =




6 −2 −2
2 2 −4 2

6 −2
2 2



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are all 4 with the two (linearly independent) eigenvectors x1 = [1 0 1 1]T and x2 = [1 1 0 0]T .

Find generalized eigenvectors x′1 and x′2 such that Ax′1 = 4x′1 + x1 and Ax′2 = 4x′2 + x2 and

form matrix X = [x1 x
′
1 x2 x

′
2]. Show that J = X−1AX is the Jordan form of A.

6.9.7. Instead of the companion matrix of section 6.8 it is occasionally more convenient to

use the transpose

C =




−1
−1

α0 α1 α2


 .

Verify that the characteristic equation of C is −λ3 + α2λ
2 − α1λ + α0 = 0. Show that to

eigenvalue λ of C corresponds one eigenvector x = [1 − λ λ2]T , and that if λ repeats then

Cx = λx and Cx′ = λx′ + x, where x′ = [0 − 1 2λ]T and x are linearly independent.

Say the eigenvalues of C are λ1, λ1, λ2 with corresponding generalized eigenvectors x1, x
′
1, x2

and write X = [x1 x′1 x2]. Show that x1, x
′
1, x2 are linearly independent and prove that

J = X−1CX is the Jordan form of C.

Use the above argument to similarly transform

C =




−1
−1

1 3 3




to Jordan form.

6.9.8. Find all X such that JX = XJ ,

J =



λ 1

λ 1
λ


 .

Prove that if A = S−1JS, then also A = T−1JT if T = XS where X is nonsingular and

such that JX = XJ .

6.9.9. What is wrong with the following? Instead of A we write B,

A =




0 1
0 0 1

0 1
0


 , B =




0 1
0 ε 1

0 1
0


 ,

where ε is minute. We use ε to annul the 1 in its row then set ε = 0.
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Show that the eigenvectors of matrix

A =




1 1
1 + ε 1

1 + 2ε




corresponding to eigenvalues λ1 = 1, λ2 = 1 + ε, λ3 = 1 + 2ε, are x1 = [1 0 0]T , x2 =

[1 ε 0]T , x3 = [1 2ε 2ε2].

6.9.10. Show that if

J =




λ 1
λ 1

λ 1
λ


 then J4 =




λ4 4λ3 6λ2 4λ
λ4 4λ3 6λ2

λ4 4λ3

λ4




and Jm → O as m→∞ if and only if |λ| < 1. Show that Am → O as m→∞ if and only

if |λ(A)| < 1.

6.9.11. Prove that if zero is the only eigenvalue of A = A(n × n), then Am = O for some

m ≤ n.

6.9.12. Show that 

λ 1

λ 1
λ


X = X



µ 1

µ 1
µ




has a nontrivial solution if and only if λ =/ µ. Prove that AX = XB has a nontrivial

solution if and only if A and B have no common eigenvalues. Hint: Write A = S−1JS and

B = T−1J ′T for the Jordan matrices J and J ′.

6.9.13. Solve 

λ 1

λ 1
λ


 X −X



µ 1

µ 1
µ


 = C.

Prove that AX −XB = C has a unique solution for any C if and only if A and B have no

common eigenvalues.

6.9.14. Let A = I +CC ′, with C = C(n× r) and C ′ = C ′(r× n) both of rank r. Show that

if A is nonsingular, then

A−1 = (I + CC ′)−1 = I + α1(CC ′) + α2(CC ′)2 + . . .+ αr(CC
′)r.
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6.10 Hermitian (symmetric) matrices

Complex matrix A = R + iS is Hermitian if its real part is symmetric, RT = R, and

its imaginary part is skew-symmetric, ST = −S, A = AH . The algebraic structure of the

Hermitian (symmetric) eigenproblem has greater completeness and more certainty to it than

the unsymmetric eigenproblem. Real symmetric matrices are also most prevalent in discrete

mathematical physics. Nature is very often symmetric.

Theorem 6.22. All eigenvalues of a Hermitian matrix are real.

Proof. If Ax = λx, then xHAx = λxHx, and since by Theorem 6.2 both xHAx and

xHx are real so is λ. End of proof.

Corollary 6.23. All eigenvalues and eigenvectors of a real symmetric matrix A are real.

Proof. The eigenvalues are real because A is Hermitian. The eigenvectors x are real

because both A and λ in (A− λI)x = o are real. End of proof.

Theorem 6.24 The eigenvectors of a Hermitian matrix corresponding to different eigen-

values are orthogonal.

Proof. Let Ax1 = λ1x1 and Ax2 = λ2x2 be with λ1 =/ λ2. Premultiplying the first

equation by xH2 produces xH2 Ax1 = λ1x
H
2 x1. Since A = AH , λ is real, (xH2 Ax1)H =

λ1(xH2 x1)H , and xH1 Ax2 = λ1x
H
1 x2. With Ax2 = λ2x2 this becomes λ2x

H
1 x2 = λ1x

H
1 x2, and

since λ1 =/ λ2 x
H
1 x2 = 0. End of proof.

Theorem (spectral) 6.25. If A is Hermitian (symmetric), then there exists a unitary

(orthogonal) matrix U so that UHAU = D, where D is diagonal with the real eigenvalues

λ1, λ2, . . . , λn of A on its diagonal.

Proof. By Schur’s theorem there is a unitary matrix U so that UHAU = T is upper-

triangular. Since A is Hermitian, AH = A, TH = (UHAU)H = UHAU = T , and T is

diagonal, T = D. Then AU = UD, the columns of U consisting of the n eigenvectors of A,

and Dii = λi. End of proof.
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Corollary 6.26. If λ is an eigenvalue of symmetric matrix A of multiplicity k, then

there are k linearly independent eigenvectors corresponding to it.

Proof. Let the diagonalization of A be QTAQ = D with Dii = λ i = 1, 2, . . . , k

and Dii =/ λ i = k + 1, . . . , n. Then QT (A − λI)Q = D′, D′ii = 0 i = 1, 2, . . . , k, and

D′ii =/ 0 i > k. The rank of D′ is n− k, and because Q is nonsingular this is also the rank

of A− λI. The nullity of A− λI is k. End of proof.

Symmetric matrices have a complete set of orthogonal eigenvectors whether or not their

eigenvalues repeat. Let u1, u2, . . . , un be the n orthonormal eigenvectors of the symmetric

A = A(n× n). Then

I = u1u
T
1 + u2u

T
2 + · · ·+ unu

T
n , A = λ1u1u

T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n (6.133)

and

A−1 = λ−1
1 u1u

T
1 + λ−1

2 u2u
T
2 + · · ·+ λ−1

n unu
T
n . (6.134)

Corollary 6.27. Symmetric matrix A = A(n × n) is uniquely determined by its n

eigenvalues and n orthonormal eigenvectors u1, u2, . . . , un.

Proof. In case the eigenvalues are distinct the eigenvectors are unique (up to sense)

and, unambiguously, A = λ1u1u
T
1 + λ2u2u

T
2 + . . .+ λnunu

T
n . Say λ1 = λ2 =/ λ3 so that

A = λ1(u1u
T
1 + u2u

T
2 ) + λ3u3u

T
3 = λ1UU

T + λ3u3u
T
3 (6.135)

with U = [u1 u2]. According to Corollary 6.26 any nonzero vector confined to the space

spanned by u1, u2 is an eigenvector of A for eigenvalue λ1 = λ2. Let u′1, u
′
2 be an orthonormal

pair in the plane of u1, u2, and write

B = λ1(u′1u
′T
1 + u′2u

′T
2 ) + λ3u3u

T
3 = λ1U

′U ′
T

+ λ3u3u
T
3 (6.136)

for U ′ = [u′1 u
′
2]. Matrices U and U ′ are related by U ′ = UQ, where Q is orthogonal, and

hence

B = λ1UQQ
TUT + λ3u3u

T
3 = λ1UU

T + λ3u3u
T
3 = A. (6.137)

End of proof.
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Example. Consider the symmetric eigenproblem



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1







x1

x2

x3

x4


 = λ




1
1

1
1







x1

x2

x3

x4


 (6.138)

transformed by elementary row operations into



1 1 1 1






x1

x2

x3

x4


 = λ




1
−1 1
−1 1
−1 1







x1

x2

x3

x4


 . (6.139)

The first equation of the homogeneous system is

(1− λ)x1 + x2 + x3 + x4 = 0 (6.140)

while the last three are

λ(x4 − x1) = 0, λ(x3 − x1) = 0, λ(x2 − x1) = 0. (6.141)

We verify that λ = 0 is an eigenvalue with eigenvector x that has its components related by

x1 + x2 + x3 + x4 = 0, so that

x = x1




1
0
0
−1


 + x2




0
1
0
−1


 + x3




0
0
1
−1


 . (6.142)

Eigenvalue λ = 0, we conclude, is of multiplicity three. Assuming next that λ =/ 0, we have

from the last three homogeneous equations that x1 = x2 = x3 = x4, and from the first

that (4 − λ)x1 = 0. To have a nonzero eigenvector, x1 must be nonzero, and λ = 4 is an

eigenvalue with the corresponding eigenvector x = [1 1 1 1]T .

Let the eigenvalues be listed as λ1 = 0, λ2 = 0, λ3 = 0, λ4 = 4. To set up an orthogonal

eigenvector system we choose the first eigenvector to be x1 = [1 0 0 − 1]T , and the second

x2 = αx1 + [0 1 0 − 1]T . The condition xT2 x1 = 0 determines that α = −1/2, and

x2 = [−1 2 0 − 1]T . The third eigenvector corresponding to λ = 0 is written as x3 = αx1 +

βx2+[0 0 1 −1]T , and the conditions xT1 x3 = xT2 x3 = 0 determine that α = −1/2, β = −1/6,

and x3 = [−1 − 1 3 − 1]T . Now

x1 =




1
0
0
−1


 , x2 =




−1
2
0
−1


 , x3 =




−1
−1
3
−1


 , x4 =




1
1
1
1


 (6.143)
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with x1, x2, x3 being the eigenvectors of λ = 0, and x4 the eigenvector of λ = 4, and they

constitutes now an orthogonal set that spans R4.

Symmetric matrices have a complete set of orthogonal eigenvectors whether or not their

eigenvalues repeat, but they are not the only matrices that possess this property. Our next

task is to characterize the class of complex matrices that are unitarily similar to a diagonal

matrix.

Definition. Complex matrix A is normal if and only if AAH = AHA.

Hermitian, skew-Hermitian, unitary, and diagonal are normal matrices.

Lemma 6.28. An upper-triangular normal matrix is diagonal.

Proof. Let N be the upper triangular normal matrix

N =




N11 N12 N13 N14

N22 N23 N24

N33 N34

N44


 , NH =




N11

N12 N22

N13 N23 N33

N14 N24 N34 N44


 . (6.144)

Then

(NNH)11 = N11N11 +N12N12 + · · ·+N1nN1n = |N11|2 + |N12|2 + · · ·+ |N12|2 (6.145)

while

(NHN)11 = |N11|2. (6.146)

The condition NHN = NNH dictates that N12 = N13 = · · ·N1n = 0. Next

(NNH)22 = |N22|2 + |N33|2 + · · ·+ |N24|2 (6.147)

and

(NHN)22 = |N22|2 (6.148)

so that N23 = N24 = · · ·N24 = 0. Proceeding in this manner, we conclude that Nij =

0, i =/ j. End of proof.

Lemma 6.29. A matrix that is unitarily similar to a normal matrix is normal.
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Proof. If N is normal, U unitary, and N ′ = UHNU , then N ′
H

= UHNHU and

N ′N ′
H

= UHNUUHNHU = UHNNHU = UHNHNU = (UHNHU)(UHNU) = N ′
H

N ′.

(6.149)

End of proof.

Theorem (Toeplitz) 6.30. Complex matrix A is unitarily similar to a diagonal matrix

if and only if A is normal.

Proof. If UHAU = D, then A = UDUH , AH = UDHUH ,

AAH = UDUHUDHUH = UDDHUH = UDHDUH = (UDHUH)(UDUH) = AHA

(6.150)

and A is normal.

Conversely, let A be normal. By Schur’s theorem there exists a unitary U so that

UHAU = T is upper triangular. By Lemma 6.29 T is normal, and by Lemma 6.28 it is

diagonal. End of proof.

We have characterized now all matrices that can be diagonalized by a unitary similarity

transformation, but one question still lingers in our mind. Are there real unsymmetric

matrices with a full complement of n orthogonal eigenvectors and n real eigenvalues? The

answer is no.

First we notice that a square real matrix may be normal without being symmetric or

skew-symmetric. For instance

A =




1 1 1
1 1 1
1 1 1


+α




1 −1
−1 1
1 −1


 , ATA = AAT = 3




1 1 1
1 1 1
1 1 1


 +α2




2 −1 −1
−1 2 −1
−1 −1 2




(6.151)

is such a matrix for arbitrary α. Real unsymmetric matrices exist that have n orthogonal

eigenvectors but their eigenvalues are complex. Indeed, let U + iV be unitary so that

(U + iV )D(UT − iV T ) = A, where D is a real diagonal matrix and A a real square matrix.

Equating real parts we find that A = UDUT + V DV T which can happen only if A is

symmetric.
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Only real symmetric matrices have n real orthogonal eigenvectors.

exercises

6.10.1. If symmetric A and B have the same eigenvalues does this mean that A = B?

6.10.2. Prove the eigenvalues of A = AT are all equal to λ if and only if A = λI.

6.10.3. Show that if A = AT and A2 = A, then rank(A) = trace(A) = A11 +A22 + . . .+Ann.

6.10.4. Let A = AT (m × m) have eigenvalues α1, α2, . . . , αm and corresponding orthonor-

mal eigenvectors u1, u2, . . . , um. Let B = BT (n × n) have eigenvalues β1, β2, . . . , βn and

corresponding orthonormal eigenvectors v1, v2, . . . , vn. Show that the eigenvalues of

C =
[

A γu1v
T
1

γv1u
T
1 B

]

are α2, . . . , αm, β2, . . . , βn, γ1, γ2, where γ1 and γ2 are the eigenvalues of

T =
[
α1 γ
γ β1

]
.

Hint: Look for an eigenvector of the form x = [δ1u
T
1 δ2v

T
1 ]T .

6.10.5. Let matrix A+ iB be Hermitian so that A = AT =/ O,B = −BT =/ O. What are the

conditions on α and β so that C = (α + iβ)(A+ iB) is Hermitian?

6.10.6. Show that the inverse of a Hermitian matrix is Hermitian.

6.10.7. Is circulant matrix

A =



α0 α1 α2

α2 α0 α1

α1 α2 α0




normal?

6.10.8. Prove that if A,B, and AB are normal, then so is BA. Also that if A is normal,

then so are A2 and A−1.

6.10.9. Show that if A is normal, then so is Am, for any integer m, positive or negative.

6.10.10. Show that A = I + αQ is normal if Q is orthogonal.
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6.10.11. Show that the sum of two normal matrices need not be normal, nor the product.

6.10.12. Show that if A and B are normal and AB = O, then also BA = O.

6.10.13. Show that if normal A is with eigenvalues λ1, λ2, . . . , λn and corresponding or-

thonormatl eigenvectors x1, x2, . . . , xn, then A = λ1x1x
H
1 +λ2x2x

H
2 +· · ·+λnxnxHn and AH =

λ1x1x
H
1 + λ2x2x

H
2 + · · ·+ λnxnx

H
n .

6.10.14. Show that if A is normal and Ax = λx, then AHx = λx.

6.10.15. Prove that A is normal if and only if

trace (AHA) =
n∑

i=1

|λi|2.

Otherwise

trace (AHA) ≥
n∑

i=1

|λi|2.

6.10.16. Show that if A and B are normal and AB = O, then also BA = O.

6.10.17. Let A and B in C = A+ iB be both real. Show that the eigenvalues of

C ′ =
[
A −B
B A

]

are those of C and C.

6.10.18. A unitary matrix is normal and is hence unitarily similar to a diagonal matrix.

Show that real orthogonal matrix A can be transformed by real orthogonal Q into

QTAQ =




A1

A2
. . .

An




where

Ai =
[
c s
−s c

]
, c2 + s2 = 1

unless it is 1 or −1. Show that if the eigenvalues of an orthogonal matrix are real, then it is

necessarily symmetric.
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6.11 Positive definite matrices

Matrices that have their origin in physical problems where conservation of energy holds

are positive (semi) definite, and hence their special place in linear algebra. In this section we

consider some of the most important theorems on the positive (semi) definite eigenproblem.

Theorem 6.31. Matrix A = AT is positive (semi) definite if and only if all its eigen-

values are (non-negative) positive.

Proof. Since A = A(n × n) is symmetric it possesses a complete orthogonal set of

eigenvectors x1, x2, . . . , x2, and any x ∈ Rn may be expanded as x = α1x1+α2x2+· · ·+αnxn.

With this

xTAx = λ1α
2
1 + λ2α

2
2 + · · ·+ λnα

2
n (6.152)

and xTAx > 0 for any x =/ o if and only if λi > 0. If some eigenvalues are zero, then

xTAx ≥ 0 even with x =/ o. End of proof.

Theorem 6.32. To every positive semidefinite and symmetric A = A(n × n) there

corresponds a unique positive semidefinite and symmetric matrix B = A
1
2 , the positive square

root of A, such that A = BB.

Proof. If such B exists, then it must be of the form

B = µ1u1u
T
1 + µ2u2u

T
2 + · · ·+ µnunu

T
n (6.153)

where µi ≥ 0 and where u1, u2, . . . , un are orthonormal. Then

B2 = µ2
1u1u

T
1 + µ2

2u2u
T
2 + · · ·+ µ2

nunu
T
n = A (6.154)

implying that µ2
1, . . . , µ

2
n are the eigenvalues of A and u1, u2, . . . , un are the eigenvectors of

A. According to Corollary 6.27 there is no other B. End of proof.

Theorem (polar decomposition) 6.33. Matrix A = A(m × n) with linearly inde-

pendent columns admits the unique factorization A = QS, in which Q = Q(m × n) has

orthonormal columns, and where S = S(n× n) is symmetric and positive definite.
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Proof. The factors are S = (ATA)1/2 and Q = AS−1, and the factorization is unique

by the uniqueness of S. End of proof.

Every matrix of rank r can be written (Corollary 2.36) as the sum of r rank one matrices.

The spectral decomposition theorem gives such a sum for a symmetric A as A = λ1u1u
T
1 +

λ2u2u
T
2 + · · · + λnunu

T
n , where λ1, λ2, . . . , λn are the (real) eigenvalues of A and where

x1, x2, . . . , xn are the corresponding orthonormal eigenvectors. If nonsymetric A has distinct

eigenvalues λ1, λ2, . . . , λn with corresponding eigenvectors u1, u2, . . . , un, then AT has the

same eigenvalues with corresponding eigenvectors v1, v2, . . . , vn such that vi
Tuj = 0 if i =/ j

and vTi ui = 1. Then A = λ1u1v
T
1 + λ2u2v

T
2 + · · · + λnunv

T
n . The next theorem describes a

similar singular value decomposition for rectangular matrices.

Theorem (singular value decomposition) 6.34. Let matrix A = A(m × n) be of

rank r ≤ min(m,n). Then A may be decomposed as

A = σ1v1u
T
1 + σ2v2u

T
2 + · · ·+ σrvru

T
r (6.155)

where σi > 0, where u1, u2, . . . , ur are orthonormal in Rn, and where v1, v2, . . . , vr are or-

thonormal in Rm.

Proof. Matrices ATA(n× n) and AAT (m×m) are both positive semidefinite. Matrix

ATA has r nonzero eigenvalues. Let the eigenvalues of ATA be 0 < σ2
1 ≤ σ2

2 ≤ · · · ≤ σ2
r ,

σ2
i = 0 i = r + 1, . . . , n, with corresponding orthonormal eigenvectors u1, u2, . . . , ur, . . . un.

According to Theorem 6.9, the eigenvalues of AAT are also 0 < σ2
1 ≤ σ2

2 ≤ · · · ≤ σ2
r ,

and σ2
i = 0 i = r + 1, . . . ,m. Denote the corresponding orthonormal eigenvectors by

v1, v2, . . . , vr . . . vm.

Premultiplying ATAui = σ2
i ui by A we resolve that AAT (Aui) = σ2

i (Aui). Since σ2
i > 0

for i ≤ r, Aui =/ o, i ≤ r, are the orthogonal eigenvectors of AAT corresponding to σ2
i ,

uTi A
TAuj = 0 i =/ j, uTi A

TAui = σ2
i . Hence Aui = σivi i ≤ r. Also Aui = o if i > r.

Postmultiplying Aui = σivi by uTi i = 1, 2, . . . , n and adding we obtain

A(u1u
T
1 + u2u

T
2 + · · ·+ unu

T
n ) = σ1v1u

T
1 + σ2v2u

T
2 + · · ·+ σnvnu

T
n (6.156)
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and since u1u
T
1 + u2u

T
2 + · · · + unu

T
n = I, and σi = 0 i > r, the equation in the theorem is

established. End of proof.

Differently put, Theorem 6.34 states that A = A(m× n) may be written as A = V DU ,

for V = V (m× r) with orthonormal columns, for a positive definite diagonal D = D(r× r),
and for U = U(r × n) with orthonormal rows.

The singular value decomposition of A reminds us of the full rank factorization of A,

and in fact the one can be deduced from the other. According to Corollary 2.37 matrix

A = A(m × n) of rank r can be factored as A = BC with B = B(m × r) and C =

C(r × n), of full column rank and full row rank, respectively. Then according to Theorem

6.33, B = Q1S1, C = S2Q2, and A = Q1S1S2Q2. Matrix S1S2 is nonsingular and admits

the factorization S1S2 = QS. Matrix S = S(r × r) is symmetric positive definite and is

diagonalized as S = XTDX, XTX = XXT = I, so that finally A = Q1QX
TDXQ2 =

V DU .

exercises

6.11.1. Matrix A = A(n × n) is of rank r. Can it have less than n − r zero eigenvalues?

More? Consider

A =




0 1
0 1

0 1
0


 .

What if A is symmetric?

6.11.2. Prove that if A = AT is positive semidefinite and xTAx = 0,then Ax = o.

6.11.3. Let A = P + S be with a positive definite and symmetric P , and a skew-symmetric

S, S = −ST . Show that λ(A) = α + iβ with α > 0.

6.11.4. Let u1, u2, u3, and v1, v2, v3 be two orthonormal vector systems in R3. Show that

Q = δ1u1v
T
1 + δ2u2v

T
2 + δ3u3v

T
3

is orthogonal provided that δ2
i = 1. Is this expansion unique? What happens when Q is

symmetric?
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6.11.5. Prove that if A = AT and B = BT , and at least one of them is also positive definite,

then the eigenvalues of AB are real. Moreover, if both matrices are positive definite then

λ(AB) > 0. Hint: Consider Ax = λB−1x.

6.11.6. Prove that if A and B are positive semidefinite, then the eigenvalues of AB are real

and nonnegative, and that conequently εI + AB is nonsingular for any ε > 0.

6.11.7. Prove that if positive definite and symmetric A and B are such that AB = BA, then

BA is also positive definite and symmetric.

6.11.8. Show that if matrix A = AT is positive definite, then all coefficients of its character-

istic equation are nonzero and alternate in sign. Proof of the converse is more difficult.

6.11.9. Show that if A = AT is positive definite, then

det(A) = λ1λ2 · · ·λn ≤ A11A22 · · ·Ann

with equality holding for diagonal A only.

6.11.10. Let matrices A and B be symmetric and positive definite. What is the condition

on α and β so that αA+ βB is positive definite.

6.11.11. Bring an upper-triangular matrix example to show that a nonsymmetric matrix

with positive eigenvalues need not be positive definite.

6.11.12. Prove that if A is positive semidefinite and B is normal then AB is normal if and

only if AB = BA.

6.11.13. Let complex A = B + iC be with real A and B. show that matrix

R =
[
B −C
C B

]

is such that

1. If A is normal, then so is R.

2. If A is Hermitian, then R is symmetric.

3. If A is positive definite, then so is R.
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4. If A is unitary, then R is orthogonal.

6.11.14. For

A =




1 1
1 −1
1 1




compute the eigenvalues and eigenvectors of ATA and AAT , and write its singular value

decomposition.

6.11.15. Prove that nonsingular A = A(n × n) can be written (uniquely?) as A = Q1DQ2

where Q1 and Q2 are orthogonal and D diagonal.

6.11.16. Show that if A and B are symmetric, then orthogonal Q exists such that QTAQ

and QTBQ are both diagonal if and only if AB = BA.

6.11.17. Show that if A = AT and B = BT , then λ(AB) is real provided that at least one of

the matrices is positive semidefinite.

6.11.18. Let u1, u2 be orthonormal in Rn. Prove that P = u1u
T
1 + u2u

T
2 is of rank 2 and

that P = P T , P 2 = P .

6.11.19. Let P = P 2, Pn = P, n ≥ 2, be an idempotent (projection) matrix. Show that the

Jordan form of P is diagonal. Show further that if rank(P ) = r, then P = XDX−1, where

diagonal D is such that Dii = 1 if i ≤ r, and Dii = 0 if i > r.

6.11.20. Show that if P is an orthogonal projection matrix, P = P 2, P = P T , then α2P +

β2(I − P ) is positive definite provided α and β are nonzero.

6.11.21. Prove that projection matrix P is normal if and only if P = P T .

6.12 Congruency-Sylvester’s law of inertia

Transformation of square matrix A into square matrix B = P TAP with nonsingular P is

common, particularly with symmetric matrices, and it leaves an interesting invariant. Obvi-

ously symmetry, rank, nullity and positive definiteness are preserved by the transformation,

but considerably more interesting is the fact that if A is symmetric, then A and B have
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the same number of positive, negative, and zero eigenvalues for any P . In the language of

mechanics, matrices A and B have the same inertia.

We remain formal.

Definition. Square matrix B is congruent to square matrix A if B = P TAP and P is

nonsingular.

Theorem 6.35. Congruency of matrices is reflexive, symmetric, and transitive.

Proof. Matrix A is self-congruent since A = ITAI; congruency is reflexive. It is also

symmetric since if B = P TAP , then also A = P−TBP−1. To show that if A and B

are congruent, and if B and C are congruent, then A and C are also congruent we write

A = P TBP , B = QTCQ, and have by substitution that A = (QP )TC(QP ). Congruency is

transitive. End of proof.

If congruency of symmetric matrices has invariants, then they are best seen on the

diagonal form of P TAP . The diagonal form itself is, of course, not unique; different P

matrices produce different diagonal matrices. We know that if A is symmetric then there

exists an orthogonal Q so that QTAQ = D is diagonal with Dii = λi, the eigenvalues of A.

But diagonalization of a symmetric matrix by a congruent transformation is also possible

with symmetric elementary transformations.

Theorem 6.36. Every symmetric matrix of rank r is congruent to

D =




d1

d2
. . .

dr
0




(6.157)

where di =/ 0 if i ≤ r.

Proof. We shall give a constructive proof to this theorem. Assume that A =/ O. If

A11 =/ 0, then it is used as first pivot d1 = A11 in the symmetric elimination

E1AE
T
1 =



d1 oT

o A1


 (6.158)

64



           

but if A11 = 0, then it is replaced through symmetric elementary operations by a nonzero

pivot. First the diagonal is searched to see if Aii =/ 0 can be found on it. Any nonzero

diagonal Aii may be symmetrically interchanged with A11 by the interchange of rows 1 and

i followed by the interchange of columns 1 and i. If, however, Aii = 0 for all i = 1, 2, . . . , n,

then the whole matrix is searched for a nonzero entry. There is certainly at least one such

entry. To bring entry Aij = α =/ 0 to the head of the diagonal, row i is added to row j and

column i is added to column j so as to have




i j

i α

j α




→




i j

i α

j α 2α




(6.159)

after which rows and columns are appropriately interchanged.

If submatrix A1 =/ O, then the procedure is repeated on it, and on all subsequent nonzero

diagonal submatrices until a diagonal form is reached, and since P in D = P TAP is nonsin-

gular, rank(A) = rank(D). End of proof.

Corollary 6.37. Every symmetric matrix of rank r is congruent to the canonical

D =



I(p× p)

−I(r − p× r − p)
O(n− r × n− r)


 . (6.160)

Proof. Symmetric row and column permutations rearrange the diagonals d1, d2, . . . , dr

so that positive entries come first, negative second, and zeroes last. Multiplication of the ith

row and column of D in Theorem 6.36 by |di|−
1
2 produces the desired diagonal matrix. End

of proof.

The following important theorem states that not only is r invariant under congruent

transformations, but also index p.

Theorem (Sylvester’s law of inertia) 6.38. Index p in Corollary 6.37 is unique.
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Proof. Suppose not, and assume that symmetric matrix A = A(n × n) of rank r is

congruent to both diagonal D1 with p 1’s and (r − p) − 1’s, and to diagonal D2 with q 1’s

and (r − q) − 1’s, and let p > q.

By the assumption that D1 and D2 are congruent to A there exist nonsingular P1 and

P2 so that D1 = P T1 AP1, D2 = P T2 AP2, and D2 = P TD1P where P = P−1
1 P2.

For any x = [x1 x2 . . . xn]T

δ = xTD1x = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − x2
p+2 − · · · − x2

r (6.161)

while if x = Py, y = [y1 y2 . . . yn]T , then

δ = yTPD1Py = yTD2y = y2
1 + y2

2 + · · ·+ y2
q − y2

q+1 − · · · − y2
r . (6.162)

Since P is nonsingular, y = P−1x.

Set

y1 = y2 = · · · = yq = 0 and xp+1 = xp+2 = · · · = xn = 0. (6.163)

To relate x′ = [x1 x2 . . . xp]
T and y′ = [yq+1 yq+2 . . . yn]T , we solve y = P−1x in the

partitioned form

q
n− q

[
o
y′
]

=
[
P ′11 P ′12
P ′21 P ′22

] [
x′

o

]
p

n− p o = P ′11x
′, y′ = P ′21x

′. (6.164)

The first homogeneous subsystem consists of q equations in p unknowns, and since p > q a

nontrivial solution x′ =/ o exists for it, and

δ = x2
1 + x2

2 + · · ·+ x2
p > 0

δ = −y2
q+1 − y2

q+2 − · · · − y2
r ≤ 0

(6.165)

which is absurd, and p > q is wrong. So is an assumption q > p, and we conclude that p = q.

End of proof.

Sylvester’s theorem has important theoretical and computational consequences for the

algebraic eigenproblem. Here are two corollaries.

Corollary 6.39. Matrices A = AT and P TAP , for any nonsingular P , have the same

number of positive eigenvalues, the same number of negative eigenvalues, and the same num-

ber of zero eigenvalues.
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Proof. By virtue of being symmetric, both A and P TAP are diagonalizable by an

orthogonal similarity transformation. Let Q1 and Q2 be orthogonal matrices with which

QT1 AQ1 = D1 and QT2 P
TAPQ2 = (PQ2)TA(PQ2) = D2. Diagonal matrix D1 holds on its

diagonal the eigenvalues of A, and diagonal matrix D2 holds on its diagonal the eigenvalues

of P TAP . By Sylvester’s theorem D1 and D2 have the same rank r and the same index of

positive entries p. End of proof.

Corollary 6.40. If A is symmetric and B is symmetric and positive definite, then the

particular eigenproblem Ax = λx, and the general eigenproblem Ax = λBx have the same

number of positive, negative and zero eigenvalues.

Proof. Since B is positive definite it may be factored as B = LLT . With x =

L−Tx′, Ax = λBx becomes L−1AL−Tx′ = λx′, and since A and L−1AL−T are congru-

ent the previous corollary guarantees the result. End of proof.

A good use for Sylvester’s theorem is to count the number of eigenvalues of a symmetric

matrix that are larger than a given value.

example. To determine the number of eigenvalues of symmetric matrix

A =




2 −1
−1 2 −1

−1 2


 (6.166)

larger than 1, and the number of those less than 1.

Matrix A− I has eigenvalues λ1− 1, λ2− 1, λ3− 1. A sequence of symmetric elementary

operations is performed below on A− I until it is transformed into a diagonal matrix




1 2 3

1 1 −1

2 −1 1 −1

3 −1 1



→




1 2 3

1 1 −1

2 −1

3 −1 1



→




1 2 3

1 1

2 −1

3 −1 1



→




1 2 3

1 1

3 −1 1

2 −1



→




1 3 2

1 1

3 1 −1

2 −1



→




1 3 2

1 1

3 1 −1

2 −1



→




1 3 2

1 1

3 1

2 −1



. (6.167)
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Looking at the last diagonal matrix we conclude that two eigenvalues of A are larger than 1

and one eigenvalue is less than 1. Actually λ1 = 2−
√

2, λ2 = 2, λ3 = 2 +
√

2.

exercises

6.12.1. Use Corollary 6.37 to assure that only one eigenvalue of

A =




1 −1
−1 4 −3

−3 8 −5
−5 12




is less than 1.

6.12.2. Show that every skew-symmetric, A = −AT , matrix of rank r is congruent to

B =




S
S

. . .
S

O



, S =

[
1

−1

]

where the number of S principal submatrices equals r/2.

Perform symmetric row and column elementary operations to bring

A =




2 −4
−2 −2
4 2




to that form.

6.13 Matrix polynomials

Every polynomial and power series of square matrix A is affected by

Theorem (Cayley-Hamilton) 6.41. Let the n roots λ1, λ2, · · · , λn of characteristic

equation

pn(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) = 0 (6.168)

be the eigenvalues of matrix A = A(n× n). Then also

Z = pn(A) = (λ1I − A)(λ2I − A) · · · (λnI − A) = O. (6.169)
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That is, a matrix fulfils its own characteristic equation.

Proof. First we notice that λiI − A and λjI − A commute and that the factors of Z

can be written in any order.

Let U be the unitary matrix that according to Schur’s theorem causes the transformation

U−1AU = T , where T is upper-triangular with Tii = λi. We use this to write

Z = (λ1I − A)UU−1(λ2I − A)UU−1 · · ·UU−1(λnI − A) (6.170)

and obtain

U−1ZU = (λ1I − T )(λ2I − T ) · · · (λnI − T ). (6.171)

If U−1ZU = O, then also Z = O.

The last equation has the form

U−1ZU =




0 × × ×
× × ×
× ×
×







× × × ×
0 × ×
× ×
×


 · · ·




× × × ×
× × ×
× ×

0


 (6.172)

that we concisely write as U−1ZU = T1T2 · · ·Tn, Ti being upper-triangular and such that

(Ti)ii = 0. We prove that U−1ZU = O by showing that U−1ZUe1 = o, U−1ZUe2 =

o, . . . , U−1ZUen = o. It is enough that we show it for the last equation. Indeed, if en =

[0 0 0 . . . 1]T , then

Tnen = [× . . . × × × 0], Tn−1Tnen = [× . . . × × 0 0]T ,

Tn−2Tn−1Tnen = [× . . . × 0 0 0]T , . . . , T1T2 · · ·Tn−1Tnen = [0 . . . 0 0 0 0]T
. (6.173)

End of proof.

Corollary 6.42. If A = A(n × n), then Ak, k ≥ n is a polynomial function of A of

degree less than n.

Proof. Matrix A satisfies the nth degree polynomial equation

(−A)n + an−1(−A)n−1 + · · ·+ a0I = O (6.174)

and therefore An = pn−1(A), and An+1 = pn(A). Substitution of An into pn(A) leads back to

An+1 = pn−1(A) and then to An+2 = pn(A). Proceeding in this way we reach Ak = pn−1(A).

End of proof.
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What this corollary means is that there is no truly infinite power series with matrices.

We have encountered before

(I − A)−1 = I + A+ A2 + A3 + · · ·+ Am +Rm (6.175)

where if ‖A‖ < 1, then Rm → O as n→∞. Suppose that A is a 3× 3 matrix satisfying

−A3 + a2A
2 − a1A+ Ia0 = O, A3 = a2A

2 − a1A+ Ia0. (6.176)

Repeated substitution of this equation into eq. (6.175) results in

(I − A)−1 = (α2)mA
2 + (α1)mA+ (α0)mI +Rm (6.177)

for any m.

Another interesting application of the Cayley-Hamilton theorem: If a0 =/ 0, then

A−1 =
1

a0
(A2 − a2A+ a1I). (6.178)

It may happen that A = A(n× n) satisfies a polynomial equation of degree less than n.

The lowest degree polynomial that A equates to zero is the minimum polynomial of A.

Theorem 6.43. Every matrix A = A(n× n) satisfies a unique polynomial equation

pm(A) = (−A)m + am−1(−A)m−1 + · · ·+ a0I = O (6.179)

of minimum degree m ≤ n.

Proof. To prove uniqueness assume that pm(A) = O and p′m(A) = O are different

minimal polynomial equations. But then pm(A)−p′m(A) = pm−1(A) is in contradiction with

the assumption that m is the lowest degree. Hence pm(A) = O is unique. End of proof.

Theorem 6.44. The degree of the minimum polynomial of matrix A of rank r is at most

r + 1.

Proof. Write the minimum rank factorization A = BC of A with B = B(n × r), C =

C(r × n). It results from Ak+1 = BMkC,M = M(r × r) = CB, and the fact that the

characteristic equation λr + ar−1λ
r−1 + · · ·+ a0 = 0 of M is of degree r, that

B(M r + ar−1M
r−1 + · · ·+ a0I)C = Ar+1 + ar−1A

r + · · ·+ a0A = O. (6.180)
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End of proof.

We shall leave it as an exercise to prove

Theorem 6.45. If λ1, λ2, . . . , λk are the distinct eigenvalues of A(n × n), k ≤ n, then

the minimum polynomial of A has the form

pm(λ) = (λ1 − λ)m1(λ2 − λ)m2 · · · (λk − λ)mk (6.181)

where mi ≥ 1, i = 1, 2, . . . , k.

In other words, the roots of the minimum polynomial of A are exactly the distinct

eigenvalues of A, with multiplicities that may differ from those of the corresponding roots of

the characteristic equation.

The following is a fundamental theorem of matrix iterative analysis.

Theorem 6.46. An → ∞ as n → ∞ if for some i |λi| > 1, while An → O as n → ∞
only if |λi| < 1 for all i. An tends to a limit as n → ∞ only if |λ| ≤ 1, with the only

eigenvalue of modulus 1 being 1,and such that the algebraic multiplicity of λ = 1 equals its

geometric multiplicity.

Proof. Since (XAX−1)
n

= XAnX−1 we may consider instead of A any other convenient

matrix similar to it. Schur’s Theorem 6.15 and Theorem 6.17 assure us of the existance of a

block diagonal matrix similar to A with diagonal submatrices of the form λI + N , where λ

is an eigenvalue of A, and where N is strictly upper triangular and hence nilpotent. Since

raising the block diagonal matrix to power n amounts to raising each block to that power

we need consider only one typical block. Say that nilpotent N is such that N4 = O. Then

(λI +N)n = λnI + nλn−1N +
n(n+ 1)

2!
λn−2N2 +

n(n+ 1)(n+ 2)

3!
λn−3N3. (6.182)

If |λ| > 1, then λn →∞ as n→∞ and (λI +N)n grows out of all bounds. If |λ| < 1, then

λn → 0, nλn → 0, n2λn → 0 as n→∞ and (λI +N)n → O as n→∞.

In case |λ| ≤ 1, at least one eigenvalue of An is of unit modulus for any n, which is

impossible for a matrix with arbitrarily small entries. The reader should carefully work out

the details of this last assertion.
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For |λ| = 1 a limit to (λI +N)n is attained only if λ = 1 and N = O. End of proof.

The modulus of the eigenvalue largest in magnitude is the spectral radius of A. Notice

that since nonzero matrix A may have a null spectrum, the spectral radius does not qualify

to serve as a norm for A.

exercises

6.13.1. Write the minimum polynomials of

D =




1
1
−1


 and R =




1 1 1
1 1
−1


 .

6.13.2. Write the minimum polynomial of

A =




1 1 1
1 1 1
1 1 1


 .

6.13.3. Write the minimum polynomials of

A =




λ 1
λ 1

λ 1
λ


 , B =




λ 0
λ 1

λ 1
λ


 , C =




λ 1
λ 0

λ 1
λ


 , D =




λ 0
λ 0

λ 0
λ


 .

6.13.4. Show that Matrix A = A(n × n) with eigenvalue λ of multiplicity n cannot have n

linearly independent eigenvectors if A− λI =/ O.

6.13.5. Let matrix A have the single eigenvalue λ1 with a corresponding eigenvector v1. Show

that if v1, v2, v3 are are linearly independent then so are the two vectors v′2 = (A − λ1I)v2

and v′3 = (A− λ1I)v3.

6.13.6. Let matrix A = A(3×3) with eigenvalues λ1, λ2 of multiplicities 1 and 2, respectively,

be such that (A − λ1I)(A − λ2I) = (A − λ2I)(A − λ1I) = O. Let v1 be the eigenvector of

A corresponding to λ1, and v2, v3 two vectors such that v1, v2, v3 are linearly independent.

Show that (A − λ1I)v2 and (A − λ1I)v3 are two linearly independent eigenvectors of A for

λ2. Matrix A has thus three linearly independent eigenvectors and is diagonalizable.

72



        

6.13.7. Let matrix A = A(n× n) have two eigenvalues λ1 and λ2 repeating k1 and k2 times,

respectively, so that k1 + k2 = n. Show that if nonsingular matrix X exists so that XAX−1

is diagonal, then

X(A− λ1I)X−1X(A− λ2I)X−1 = O, and (A− λ1I)(A− λ2I) = O.

Consequently show that every nonzero vector x′ = (A − λ2I)x is in the nullspace of

A− λ1I, that is, is such that (A− λ1I)x′ = o, and hence is an eigenvector of A for λ1.

Use all this to prove that if the distinct eigenvalues of A = A(n × n), discounting

multiplicities, are λ1, λ2, . . . , λk then A is diagonalizable. if

(A− λ1I)(A− λ2I) . . . (A− λkI) = O,

and conversely.

6.13.8. Show that if Ak = I for some positive integer k, then A is diagonalizable.

6.13.9. Show that a nonzero nilpotent matrix is not diagonalizable.

6.13.10. Show that matrix A is diagonalizable if and only if its minimum polynomial does

not have repeating roots.

6.13.11. Show that A and P−1AP have the same minimum polynomial.

6.13.12. Show that [
1
−1

]n
,
[

1 1
1

]n
,
[

1
1

]n
,
[

1
−1

]n

tend to no limit as n→∞.

6.13.13. If A2 = I A =/ I what is the limit of An as n→∞?

6.13.14. What are the conditions on the eigenvalues of A = AT for An → B =/ O as n→∞?

6.13.15. When is the degree of the minimum polynomial of A = A(n× n) equal to n ?

6.13.16. For matrix

A =




6 4 −1
3 7 −1
−6 −8 5



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find the smallest m such that I, A,A2, . . . , Am are linearly dependent. If for A = A(n ×
n) m < n, then matrix A is said to be derogatory.

6.14. Systems of differential equations

The non-stationary behavior of a multiparameter physical system is often described by

a square system of linear differential equations with constant coefficients. The 3× 3


ẋ1

ẋ2

ẋ3


 =



A11 A12 A13

A21 A22 A23

A31 A32 A33






x1

x2

x3


 , ẋ = Ax, (6.183)

where overdot means differentiation with respect to time t, is such a system. Realistic

systems can become considerably larger making their solution by hand impractical.

If matrix A in typical example (6.183) happens to have three linearly independent eigen-

vectors v1, v2, v3 with three corresponding eigenvalues λ1, λ2, λ3, then matrix V = [v1 v2 v3]

diagonalizes A to the effect that V −1AV = D is such that D11 = λ1, D22 = λ2, D33 = λ3.

Linear transformation x = V y decouples system (6.183) into ẏ = V −1AV y,


ẏ1

ẏ2

ẏ3


 =



λ1

λ2

λ3






y1

y2

y3


 (6.184)

in which λ1, λ2, λ3 may be real or complex, distinct or repeating. Each differential equation

in system (6.184) is solved separately to yield y1 = c1e
λ1t, y2 = c2e

λ2t, y3 = c3e
λ3t for the

three arbitrary constants of integration c1, c2, c3. If λi is real, then yi is exponential, but if λi

is complex, then yi turns trigonometric. In case real eigenvalue λi > 0, or complex eigenvalue

λi = αi + iβi is with a positive real part, αi > 0, component yi = yi(t) of solution vector y

inexorably grows with the passage of time. When this happens to at least one eigenvalue of

A, the system is said to be unstable, whereas if αi < 0 for all i, solution y = y(t) subsides

with time and the system is stable.

Returning to x we determine that

x = c1v1e
λ1t + c2v2e

λ2t + c3v3e
λ3t (6.185)

and x(0) = x0 = c1v1 + c2v2 + c3v3. What we just did for the 3× 3 system can be done for

any n× n system as long as matrix A has n linearly independent eigenvectors.
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Matters become more difficult when A fails to have n linearly independent eigenvectors.

Consider the Jordan system



ẋ1

ẋ2

ẋ3


 =



λ 1

λ 1
λ






x1

x2

x3


 , ẋ = Jx (6.186)

with matrix J that has three equal eigenvalues but only one eigenvector, v1 = e1. Because

the last equation is in x3 only it may be immediately solved. Substitution of the computed x3

into the second equation turns it into a nonhomogeneous linear equation that is immediately

solved for x2. Unknown function x1 = x1(t) is likewise obtained from the first equation and

we end up with

x1 = (c1 + c2t+
1

2
c3t

2)eλt

x2 = (c2 + c3t)e
λt

x3 = c3e
λt

(6.187)

in which c1, c2, c3 are arbitrary constants. Equation (6.187) can be written in vector fashion

as

x =



c1
c2
c3


 eλt +



c2
c3
0


 teλt +




1
2c3
0
0


 t2eλt = w1e

λt + w2te
λt + w3t

2eλt (6.188)

and w1 = x0 = x(0).

But there is no real need to compute generalized eigenvectors, nor bring matrix A into

Jordan form before proceeding to solve system (6.183). Repeated differentiation of ẋ = Ax

with back substitutions yields

x = Ix, ẋ = Ax, ẍ = A2x,
...
x = A3x (6.189)

and according to the Cayley-Hamilton theorem, Theorem 6.41, numbers α0, α1, α2 exist so

that
...
x + α2ẍ+ α1ẋ+ α0x = (A3 + α2A

2 + α1A+ α0I)x = o. (6.190)

Each of the unknown functions of system (6.183) satisfies by itself a third-order linear dif-

ferential equation with the same coefficients as those of the characteristic equation

λ3 + α2λ
2 + α1λ+ α0 = 0 (6.191)
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of matrix A.

Suppose that all roots of eq.(6.191) are equal. Then

x = w1e
λt + w2te

λt + w3t
2eλt

ẋ = w1λe
λt + w2(eλt + λteλt) + w3(2teλt + λt2eλt)

ẍ = w1λ
2eλt + w2(2λeλt + λ2teλt) + w3(2eλt + 4λteλt + λ2t2)eλt

(6.192)

and
x(0) = x0 = w1

ẋ(0) = Ax0 = λw1 + w2

ẍ(0) = A2x0 = λ2w1 + 2λw2 + 2w3.

(6.193)

Constant vectors w1, w2, w3 are readily expressed in terms of the initial condition vector x0

as

w1 = x0, w2 = (A− λI)x0, w3 =
1

2
(A− λI)2x0 (6.194)

and the solution of the 3× 3 system is thereby completed.

Examples.

1. Consider the system

ẋ =




1 1
1 0

1 1
1


 x, ẋ = Ax (6.195)

but ignore the fact that A is in Jordan form. All eigenvalues of A are equal to 1, the

characteristic equation of A being (λ− 1)4 = 0, and

x = w1e
t + w2te

t + w3t
2et + w4t

3et. (6.196)

Repeating the procedure that led to equations (6.192) and (6.193) but with the inclusion of
...
x we obtain

w1 = x0, w2 = (A− λI)x0, w3 =
1

2
(A− λI)2x0, w4 =

1

6
(A− λI)3x0 (6.197)

and if x T
0 = [c1 c2 c3 c4] for the arbitrary constants c1, c2, c3, c4, then

w1 =




c1
c2
c3
c4


 , w2 =




c2

c4


 , w3 = o, w4 = o. (6.198)
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and
x1 = c1e

t + c2te
t

x2 = c2e
t

x3 = c3e
t + c4te

t

x4 = c4e
t

(6.199)

disclosing to us, in effect, the Jordan form of A.

2. Suppose that the solution x = x(t) to ẋ = Ax, A = A(5× 5), is

x = c1




1


et + c2(




1



et +




1


tet) + c3




1



et

+ c4(


 1



et +




1



tet) + c5(




1



et +


 1



tet +




1




1

2
t2et)

(6.200)

or

x = c1v1e
t + c2(v2e

t + v1te
t) + c3v3e

t (6.201)

+c4(v4e
t + v3te

t) + c5(v5e
t + v4te

t + v3
1

2
t2et)

so that
x(0) = c1v1 + c2v2 + c3v3 + c4v4 + c5v5

ẋ(0) = c1v2 + c2(v1 + v2) + c3v3 + c4(v3 + v4) + c5(v4 + v5).
(6.202)

Writing ẋ(0) = Ax(0) we obtain from eq.(6.2042) that

c1(Av1 − v1) + c2(Av2 − v2 − v1) + c3(Av3 − v3)

+ c4(Av4 − v4 − v3) + c5(Av5 − v5 − v4) = o
(6.203)

and since c1, c2, c3, c4, c5 are arbitrary it must so be that

(A− I)v1 = o, (A− I)v2 = v1

(A− I)v3 = o, (A− I)v4 = v3, (A− I)v5 = v4.
(6.204)

Vectors v1 and v3 are two linearly independent eigenvectors of A, corresponding to λ = 1

of multiplicity five, while v2, v4, v5 are generalized eigenvectors; v2 emanating from v1, and
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v4, v5 emanating out of v3. Hence the Jordan form of A consists of two blocks: a 2× 2 block

on top of a 3× 3 block.

3. If it so happens that the minimum polynomial of A = A(n× n) is A2 − I = O, then

vector x = x(t) of ẋ = Ax satisfies the equation ẍ − x = o, and x = w1e
t + w2e

−t, with

w1 = 1/2(I + A)x0, w2 = 1/2(I − A)x0.

4. Consider the system

ẋ =




1 −1
−1 2 −1

−1 1


 x (6.205)

written in full as
ẋ1 = x1 − x2

ẋ2 = −x1 + 2x2 − x3

ẋ3 = −x2 + x3

. (6.206)

Repeated differentiation of the first equation with substitution of ẋ2, ẋ3 from the other two

equations produces
x1 = x1

ẋ1 = x1 − x2

ẍ1 = 2x1 − 3x2 + x3

...
x1 = 5x1 − 9x2 + 4x3

(6.207)

that we linearly combine as

...
x1 +α2ẍ1 +α1ẋ1 +α0x1 = x1(5 + 2α2 +α1 +α0) +x2(−9− 3α2−α1) +x3(4 +α2). (6.208)

Equating the coefficients of x1, x2, x3 on the right-hand side of the above equation to zero

we obtain the third-order differential equation
...
x1 − 4ẍ1 + 3ẋ1 = 0 for x1 without explicit

recourse to the Cayley-Hamilton theorem. It results that x1 = c1 + c2e
t + c3e

3t which we

may now put into x2 = −ẋ1 + x1, x3 = ẍ1 − 3ẋ1 + x1 to have the two other solutions.

exercises

6.14.1. Solve the linear differential systems

ẋ =
[

1
1

]
x, ẋ =

[
1

−1

]
x, ẍ =

[
1

1

]
x, ẋ =

[
1 −1
−1 1

]
x, ẋ =

[−1 2
2 −1

]
x
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and examine the behavior of each x = x(t) as t→∞.

6.14.2. The solution of the initial value problem

[
ẋ1

ẋ2

]
=
[

1 1
1

] [
x1

x2

]
, x(0) =

[
1
1

]

is x1 = (1 + t)et, x2 = et.

Solve [
ẋ1

ẋ2

]
=
[

1 1
1 + ε

] [
x1

x2

]
, x(0) =

[
1
1

]

and examine the solution as ε→ 0.

6.15 Difference and tridiagonal matrices

The highly structured tridiagonal finite difference matrices of Chapter 3 allow the explicit

computation of their eigenvalues and eigenvectors. Consider the n× n stiffness matrix

A =
1

h




2 −1
−1 2 −1

−1
. . . −1
−1 2 −1

−1 2




h =
1

n+ 1
(6.209)

for the string fixed at both ends.

Writing (A− λI)x = o equation by equation,

−xk−1 + (2− λh)xk − xk+1 = 0 k = 1, 2, . . . , n (6.210)

x0 = xn+1 = 0

we observe that the interior difference equations are solved by xk = eikθ, i =
√
−1, provided

that

λh = 2(1− cos θ). (6.211)

Because the finite difference equations are solved by both cos kθ and sin kθ, and since the

equations are linear they are also solved by the linear combination

xk = α1 cos kθ + α2 sin kθ. (6.212)
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Boundary condition x0 = 0 is satisfied with α1 = 0. To satisfy the second boundary condition

xn+1 = 0 we must have

α2 sin(n+ 1)θ = 0 (6.213)

and we avoid the trivial solution by taking

(n+ 1)θ = π, 2π, . . . , nπ (6.214)

so that

λjh = 2(1− cos πjh) h = 1/(n+ 1) (6.215)

or

λj = 4h−1 sin2 πjh

2
j = 1, 2, . . . , n (6.216)

which are the n eigenvalues of A. No new ones appear with j > n. The corresponding

eigenvectors are the columns of the n× n matrix X

Xij = sin
πij

(n+ 1)
(6.217)

that we verify to be orthogonal.

As the string is divided into smaller and smaller segments to improve the approximation

accuracy, matrix A increases in size. When h << 1, sin(πh/2) = πh/2, λ1 = π2h, λn =

4h−1, and

κ2(A) =
λn
λ1

=
4

π2
h−2. (6.218)

Matrix A becomes ill-conditioned as n increases. This is a basic computational fact of life

for finite difference and finite element matrices.

Matrix A we dealt with above is for a fixed-fixed string and we expect no zero eigenvalues.

Releasing one end point of the string still leaves the matrix nonsingular, but release of also

the second end point gives rise to a zero eigenvalue corresponding to the up and down rigid

body motion of the string. In all three cases matrix A has n distinct eigenvalues with possibly

one zero eigenvalue. We shall presently show that this property is shared by all symmetric

tridiagonal matrices.
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We refer to the n× n tridiagonal matrix

T =




α1 γ2

β2 α2 γ3

β3 α3 γ4

β4
. . . . . .
. . . αn




(6.219)

and enter the following

Definition. Tridiagonal matrix T is irreducible if β2, β3, . . . , βn and γ2, γ3, . . . , γn are

all nonzero, otherwise it is reducible.

Theorem 6.47.

1. For any irreducible tridiagonal matrix T there exists a nonsingular diagonal matrix

D so that DT = T ′ is an irreducible symmetric tridiagonal matrix.

2. For any tridiagonal matrix T with βiγi > 0 i = 2, 3, . . . , n there exists a nonsingular

diagonal matrix D so that T ′ in the similarity transformation T ′ = DTD−1 is a symmetric

tridiagonal matrix.

3. For any irreducible symmetric tridiagonal matrix T there exists a nonsingular diagonal

matrix D so that DTD = T ′ is of the form

T ′ =




α1 1
1 α2 1

1
. . . 1
1 αn


 . (6.220)

Proof.

1. Dii = di, d1 = 1, di+1 = (γi+1/βi+1)di.

2. Dii = di, d1 = 1, di = (γ2γ3 . . . γi/β2β3 . . . βi)
1/2.

3. Dii = di, d1 = 1, didi+1 = 1/βi+1.

End of proof.

Theorem 6.48. If tridiagonal matrix T is irreducible, then nullity (T ) is either 0 or 1,

and consequently rank (T ) ≥ n− 1.
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Proof. Elementary eliminations that use the (nonzero) γ’s on the upper diagonal as

pivots, followed by row interchanges produce

T ′ =




×
× 1
× 1
× 1
× 1




(6.221)

that is equivalent to T . If T ′11 = 0, then rank (T ′) = rank (T ) = n− 1, nullity (T ′) = nullity

(T ) = 1, and if T ′11 =/ 0, then rank (T ′) = rank (T ) = n, nullity (T ′) = nullity (T ) = 0. End

of proof.

Theorem 6.49. Irreducible symmetric tridiagonal matrix T = T (n× n) has n distinct

real eigenvalues.

Proof. The nullity of T−λI is zero when λ is not an eigenvalue of T , and is 1 when λ = λi

is an eigenvalue of T . This means that there is only one eigenvector corresponding to λi. By

the assumption that T is symmetric there is an orthogonal Q so that QT (T − λI)Q = D,

where Dii = λi−λ. Hence, rank (T −λI) = rank (D) = n− 1 if λ = λi, and the eigenvalues

of T are distinct. End of proof.

Theorem 6.49 does not say how distinct the eigenvalues of symmetric irreducible T are,

depending on the relative size of the off-diagonal entries β2, β3, . . . , βn. Matrix

T =




3 1
1 2 1

1 1 1
1 0 1

1 1 1
1 2 1

1 3




, (6.222)

in which αi = m+ 1− i i = 1, 2, . . . ,m+ 1, αn−i+1 = αi i = 1, 2, . . . ,m of order n = 2m+ 1

looks innocent, but it is known to have eigenvalues that may differ by a mere (m!)−2.

exercises

6.15.1. Show that the eigenvalues of the n× n

A =




α
β α

β α
β


 α, β > 0
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are

λj = 2
√
αβ cos

jπ

n+ 1
, j = 1, 2, . . . , n.

6.15.2. Show that the eigenvalues of

T =




α1 β2

β2 α2 β3

β3 α3 β4

β4 α4


 and T ′ =




α1 |β2|
|β2| α2 |β3|

|β3| α3 |β4|
|β4| α4




are the same.

6.15.3. Show that x = [0 × × . . . ×]T cannot be an eigenvector of a symmetric, irreducible

tridiagonal matrix, nor x = [× × × . . . × 0].

6.15.4. Show that if x = [x1 0 x2 . . . xn]T is an eigenvector of irreducible tridiagonal T, Tx =

λx, then λ = Tii = α1. Also, that if x = [x1 x2 0 x3 . . . xn]T is an eigenvector of T , then λ

is an eigenvalue of

T2 =
[
α1 β2

β2 α2

]
.

Continue in this manner and prove that the eigenvector corresponding to an extreme eigen-

value of T has no zero components.

Notice that this does not preclude the possibility of xj → 0 as n→∞ for some entry of

normalized eigenvector x.

6.16 Variational principles

We return to matters considered in the opening section of this chapter.

When xj is an eigenvector corresponding to eigenvalue λj of symmetric matrix A, then

λj = xTj Axj/x
T
j xj . The rational function

λ(x) =
xTAx

xTBx
(6.223)

where A = AT , and where B is positive definite and symmetric is Rayleigh’s quotient. Apart

from the obvious λ(xj) = λj , Rayleigh’s quotient has remarkable properties that we shall

discuss here for the special, but not too restrictive, case B = I.
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Theorem (Rayleigh) 6.50. Let the eigenvalues of A = AT be arranged in the ascending

order λ1 ≤ λ2 ≤ · · · ≤ λn, with orthogonal eigenvectors x1, x2, . . . , xn. Then

λk+1 ≤
xTAx

xTx
≤ λn if xTx1 = xTx2 = · · · = xTxk = 0, x =/ o (6.224)

with the lower equality holding if and only if x = xk+1, and the upper inequality holding if

and only if x = xn. Also

λ1 ≤
xTAx

xTx
≤ λn−k if xTxn = xTxn−1 = · · · = xTxn−k+1 = 0, x =/ o (6.225)

with the lower equality holding if and only if x = x1, and the upper if and only if x = xn−k.

The two inequalities reduce to

λ1 ≤
xTAx

xTx
≤ λn (6.226)

for arbitrary x ∈ Rn.

Proof. Vector x ∈ Rn, orthogonal to x1, x2, . . . , xk has the unique expansion

x = αk+1xk+1 + αk+2xk+2 + · · ·+ αnxn (6.227)

with which

xTAx = λk+1α
2
k+1 + λk+2α

2
k+2 + · · ·+ λnα

2
n. (6.228)

We normalize x by

xTx = α2
k+1 + α2

k+2 + · · ·+ α2
n = 1 (6.229)

and use this equation to eliminate α2
k+1 from xTAx so as to have

λ(x) = xTAx = λk+1 + α2
k+2(λk+2 − λk+1) + · · ·+ α2

n(λn − λk+1). (6.230)

By assumption λj − λk+1 ≥ 0 if j > k + 1 and hence

λ(x) = λk+1 + non-negative quantity (6.231)

or λ(x) ≥ λk+1, with equality holding if and only if

α2
k+2(λk+2 − λk+1) + · · ·+ α2

n(λn − λk+1) = 0. (6.232)
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In case of distinct eigenvalues, λj − λk+1 =/ 0 j = k + 2, . . . , n, equality holds if and only if

αk+2 = αk+3 = · · · = αn = 0, and λ(xk+1) = λk+1. If eigenvalues repeat and λj − λk+1 = 0,

then αj need not be zero, but equality still holds if and only if x is in the invariant subspace

spanned by the eigenvectors of λk+1.

To prove the upper bound we use

α2
n = 1− α2

k+1 − α2
k+2 − · · · − α2

n−1 (6.233)

to eliminate it from λ(x), so as to be left with

λ(x) = λn − α2
k+1(λn − λk+1)− · · · − α2

n−1(λn − λn−1) (6.234)

and λ(x) ≤ λn with equality holding if and only if x = xn.

The proof to the second part of the theorem is the same. End of proof.

Corollary 6.51. If A = AT , then the (k + 1)th and (n − k)th eigenvalues of A are

variationally given by

λk+1 = min
x =/ o

λ(x), xTx1 = xTx2 = · · · = xTxk = 0 (6.235)

λn−k = max
x =/ o

λ(x), xTxn = xTxn−1 = · · · = xTxn−k+1 = 0.

The two extremum statements reduce to

λ1 = min
x =/ o

λ(x), λn = max
x =/ o

λ(x) (6.236)

for arbitrary x ∈ Rn.

Proof. This is an immediate consequence of the previous theorem. If λj is isolated, then

the minimizing (maximizing) element of λ(x) is unique, but if λj repeats, then the minimizing

(maximizing) element of λ(x) is any vector in the invariant subspace corresponding to λj .

End of proof.

Minimization of λ(x) may be subject to the k linear constraints xT p1 = xT p2 = · · · =

xT pk = 0, where p1, p2, . . . , pk are any k constant vectors in Rn. Because of the constraints
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the minimum of λ(x) is raised, and the maximum of λ(x) is lowered. The question is by how

much.

Theorem (Fischer) 6.52. If A = AT , then

min
x =/ o

xTAx

xTx
≤ λk+1

xT p1 = xT p2 = · · · = xT pk = 0. (6.237)

max
x =/ o

xTAx

xTx
≥ λn−k

Proof. We order the eigenvalues of A in the ascending order λ1 ≤ λ2 ≤ · · · ≤ λn, with

the corresponding orthogonal eigenvectors x1, x2, . . . , xn. Any vector x ∈ Rn is uniquely

expanded in the form x = α1x1 + α2x2 + · · ·+ αnxn. We shall start with the one constraint

xT p1 = 0 that in terms of α1, α2, . . . , αn is

0 = α1x
T
1 p1 + α2x

T
2 p1 + · · ·+ αnx

T
np1. (6.238)

This is one homogeneous equation in the n unknowns α1, α2, . . . , αn and possesses a nontrivial

solution. We may even set α3 = α4 = · · · = αn = 0 and still be left with α1x
T
1 p1+α2x

T
2 p1 = 0

that has a nontrivial solution. Thus, when α3 = α4 = · · · = αn = 0, λ(x) = (λ1α
2
1 +

λ2α
2
2)/(α2

1 + α2
2), by Rayleigh’s theorem λ(x) ≤ λ2, and obviously minλ(x) ≤ λ2.

On the other hand if we choose α1 = α2 = · · · = αn−2 = 0, then we are left with

the constraint equation αn−1x
T
n−1p1 + αnx

T
np1 = 0, which we know posesses a nontrivial

solution. Now λ(x) = (λn−1α
2
n−1 +λnα

2
n)/(α2

n−1 +α2
n), by Rayleigh’s theorem λ(x) ≥ λn−1,

and obviously maxλ(x) ≥ λn−1.

Extension of the proof to k constraints is straightforward and is left as an exercise. End

of proof.

The following interlace theorem is the first important consequence of Fischer’s theorem.

Theorem 6.53. Let the eigenvalues of A = AT be λ1 ≤ λ2 ≤ · · · ≤ λn with correspond-

ing eigenvectors x1, x2, . . . , xn. If

λ′k = min
x =/ o

λ(x),

{
xTx1 = xTx2 = · · · = xTxk−1 = 0
xT p1 = · · · = xT pm = 0

, 1 ≤ k ≤ n−m (6.239)

86



           

then

λk ≤ λ′k ≤ λk+m (6.240)

In particular, for m = 1

λ1 ≤ λ′1 ≤ λ2, λ2 ≤ λ′2 ≤ λ3, · · · , λn−1 ≤ λ′n ≤ λn. (6.241)

Proof. The lower bound on λ′k is a consequence of Rayleigh’s theorem, and the upper

bound of Fischer’s with k +m− 1 constraints. End of proof.

Theorem (Cauchy) 6.54. Let A = AT with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, be

partitioned as

A =




n−m m

A′ C

CT B


n−m

m.
(6.242)

If λ′1 ≤ λ′2 ≤ · · · ≤ λ′n−m are the eigenvalues of A′ then

λk ≤ λ′k ≤ λk+m, k = 1, 2, . . . , n−m. (6.243)

Proof. min x′
T
A′x′/x′

T
x′, x′ ∈ Rn−m can be interpreted as minimization of xTAx/xTx,

x ∈ Rn under the m constraints xT en−m+1 = · · · = xT en = 0. Theorem 6.53 then assures

the inequalities. End of proof.

Theorem 6.55. Let x be a unit vector, λ a real scalar variable, and define for A = AT

the residual vector r(λ) = r = Ax− λx. Then λ = λ(x) = xTAx minimizes rT r.

Proof. If x happens to be an eigenvector, then rT r = 0 if and only if λ is the corre-

sponding eigenvalue. Otherwise

rT r(λ) = rT r = (xTA− λxT )(Ax− λx) = λ2 − 2λxTAx+ xTA2x. (6.244)

The vertex of this parabola is at λ = xTAx and min
λ
rT r = xTA2x− (xTAx)2. End of proof.

If x is given as an approximation to an eigenvector, then Rayleigh’s quotient λ = λ(x) is

the best approximation, in the sense of min rT r, to the corresponding eigenvalue. We shall

look more closely at this approximation.
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Theorem 6.56. Let λj be an eigenvalue of A = AT with corresponding unit eigenvector

xj. Consider unit vector x as an approximation to xj and λ = λ(x) as an approximation to

λj. Then

|λj − λ| ≤ (λn − λ1)4 sin2 φ

2
(6.245)

where φ is the angle between xj and x, and where λ1 and λn are the extreme eigenvalues of

A.

Proof. Decompose x into x = xj + e. Since xTx = xTj xj = 1, eT e+ 2eTxj = 0, and

λ = (xj + e)TA(xj + e) = λj + eT (A− λjI)e. (6.246)

But

|eT (A− λjI)e| ≤ max
k
|λk − λj |eT e ≤ (λn − λ1)eT e (6.247)

and therefore

|λj − λ| ≤ eT e(λn − λ1) (6.248)

which with eT e = 2(1− cosφ) = 4 sin2 φ
2 establishes the inequality. End of proof.

To see that the factor λn−λ1 in Theorem 6.56 is realistic take x = x1 +εxn, x
Tx = 1+ε2,

so as to have

λ− λ1 =
ε2

1 + ε2
(λn − λ1). (6.249)

Theorem 6.56 is theoretical. It tells us that a reasonable approximation to an eigen-

vector should produce an excellent Rayleigh quotient approximation to the corresponding

eigenvalue. To actually know how good the approximation is requires yet a good deal of

hard work.

Theorem 6.57. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A = AT with correspond-

ing orthonormal eigenvectors x1, x2, . . . , xn. Given unit vector x and scalar λ, then

min
j
|λj − λ| ≤ ‖r‖ (6.250)

if r = Ax− λx.

88



        

Proof. In terms of the n eigenvectors of A, x = α1x1 + α2x2 + · · ·+ αnxn so that

r = α1(λ1 − λ)x1 + α2(λ2 − λ)x2 + · · ·+ αn(λn − λ)xn. (6.251)

Consequently

rT r = α2
1(λ1 − λ)2 + α2

2(λ2 − λ)2 + · · ·+ α2
n(λn − λ)2 (6.252)

and

rT r ≥ min
j

(λj − λ)2(α2
1 + α2

2 + · · ·+ α2
n). (6.253)

Recalling that α2
1 + α2

2 + · · · + α2
n = 1, and taking the positive square root on both sides

yields the inequality. End of proof.

Theorem 6.57 does not refer specifically to λ = λ(x), but it is reasonable to choose this

λ, that we know minimizes rT r. It is of considerable computational interest because of its

numerical nature. The theorem states that given λ and ‖r‖ there is at least one eigenvalue

λj in the interval λ− ‖r‖ ≤ λj ≤ λ+ ‖r‖.

At first sight Theorem 6.57 appears disappointing in having a right-hand side that is

only ‖r‖. Theorem 6.56 raises the expectation of a power to ‖r‖ higher than 1, but as we

shall see in the example below, if an eigenvalue repeats, then the bound in Theorem 6.57 is

sharp; equality does actually happen with it.

Example. For

A =
[

1 ε
ε 1

]
x1 =

√
2

2

[
1
1

]
λ1 = 1 + ε, x2 =

√
2

2

[
1
−1

]
λ2 = 1− ε (6.254)

we choose x = [1 0]T and obtain λ(x) = 1, and r = ε[0 1]T . The actual error in both λ1 and

λ2 is ε, and also ‖r‖ = ε.

For

A =
[

1 ε
ε 2

]
, λ1 = 1− ε2, λ2 = 2 + ε2, ε2 << 1 (6.255)

we choose x = [1 0]T and get λ(x) = 1, and r = ε[0 1]T . Here ‖r‖ = ε, but the actual error

in λ1 is ε2.

A better inequality can be had, but only at the heavy price in practicality of knowing

the eigenvalues’ separation. See Fig.6.3 that refers to the following
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Fig. 6.3

Theorem (Kato) 6.58. Let A = AT , xTx = 1, λ = λ(x) = xTAx, and suppose that α

and β are two real numbers such that α < λ < β and such that no eigenvalue of A is found

in the interval α ≤ λ ≤ β.

Then

(β − λ)(λ− α) ≤ rT r = ε2, r = Ax− λx (6.256)

and the inequality is sharp.

Proof. Write x = α1x1 + α2x2 + α3x3 + · · ·+ αnxn to have

Ax− βx = (λ1 − β)α1x1 + (λ2 − β)α2x2 + · · ·+ (λn − β)αnxn

Ax− αx = (λ1 − α)α1x1 + (λ2 − α)α2x2 + · · ·+ (λn − α)αnxn.
(6.257)

Then

(Ax− βx)T (Ax− αx) = (λ1 − β)(λ1 − α)α2
1 + (λ2 − β)(λ2 − α)α2

2

+ · · ·+ (λn − β)(λn − α)α2
n ≥ 0 (6.258)

because (λj − β) and (λj − α) are either both negative or both positive, or their product is

zero.

But
Ax− αx = Ax− λx+ (λ− α)x = r + (λ− α)x

Ax− βx = Ax− λx+ (λ− β)x = r + (λ− β)x
(6.259)

and therefore

(r + (λ− α)x)T (r + (λ− β)x) ≥ 0. (6.260)

Since xT r = 0, xTx = 1, multiplying out yields

rT r + (λ− α)(λ− β) ≥ 0 (6.261)
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and the inequality is proved.

To show that equality does occur in Kato’s theorem assume that x = α1x1 +α2x2, α
2
1 +

α2
2 = 1. Then

λ = α2
1λ1 + α2

2λ2, λ1 − λ = α2
2(λ1 − λ2), λ− λ2 = α2

1(λ1 − λ2),

ε2 = α2
1(λ1 − λ)2 + α2

2(λ2 − λ)2 = α2
1α

2
2(λ1 − λ2)2

(6.262)

and in fact ε2 = (λ2 − λ)(λ− λ1). End of proof.

Example. The three eigenvalues of matrix

A =




1 −1
−1 2 −1

−1 2


 (6.263)

are λj = 4 sin2(θj/2), θj = (2j − 1)π/7 j = 1, 2, 3, or numerically

λ1 = 0.1980623, λ2 = 1.5549581, λ3 = 3.2469796. (6.264)

We take

x′1 =




3
2
1


 , x′2 =




2
−1
−2


 , x′3 =




1
−2
2


 (6.265)

as approximations to the three eigenvectors of A and compute the corresponding Rayleigh

quotients

λ′1 =
3

14
= 0.2143, λ′2 =

14

9
= 1.5556, λ′3 =

29

9
= 3.2222. (6.266)

These are seen to be excellent approximations, and we expect them to be so in view of

Theorem 6.56, even with eigenvectors that are only crudely approximated. But we shall not

know how good λ′1, λ
′
2, λ
′
3 are until the approximations to the eigenvalues are separated.

We write rj = Ax′j − λ′jx′j , compute the three relative residuals

ε1 =
‖r1‖
‖x′1‖

=

√
5

14
= 0.1597, ε2 =

‖r2‖
‖x′2‖

=

√
2

9
= 0.1571, ε3 =

‖r3‖
‖x′3‖

=

√
5

9
= 0.2485 (6.267)

and have from Theorem 6.57 that

0.0546 ≤ λ1 ≤ 0.374, 1.398 ≤ λ2 ≤ 1.713, 2.974 ≤ λ3 ≤ 3.471. (6.268)
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Fig. 6.4

Figure 6.4 has the exact λ1, λ2, λ3, the approximate λ′1, λ
′
2, λ
′
3, and the three intervals marked

on it.

Even if the bounds on λ1, λ2, λ3 are not very tight, they at least separate the eigenvalue

approximations. Rayleigh and Kato’s theorems will help us do much better than this.

Rayleigh’s theorem assures us that λ1 ≤ λ′1, and hence we select α = λ1, β = 1.398 in

Kato’s inequality so as to have

(λ′1 − λ1)(1.398− λ′1) ≤ ε21 (6.269)

and

0.1927 ≤ λ1 ≤ 0.2143. (6.270)

If λ′2 ≤ λ2, then we select α = λ′1, β = λ2 in Kato’s inequality and obtain

λ′2 ≤ λ2 ≤ λ′2 +
ε22

λ′2 − λ′1
(6.271)

while if λ′2 ≥ λ2, then we select α = λ2, β = λ′3 in Kato’s inequality and

λ′2 −
ε22

λ′3 − λ′2
≤ λ2 ≤ λ′2. (6.272)

Hence, wherever the location of λ′2 relative to λ2

λ′2 −
ε22

λ′3 − λ′2
≤ λ2 ≤ λ′2 +

ε22
λ′2 − λ′1

(6.273)

or numerically

1.5407 ≤ λ2 ≤ 1.5740. (6.274)
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The last approximate λ′3 is, by Rayleigh’s theorem, less than the exact, λ′3 ≤ λ3, and we

select α = 1.5740, β = λ3 in Kato’s inequality,

(λ3 − λ′3)(λ′3 − 1.5740) ≤ ε23 (6.275)

to obtain

3.222 ≤ λ3 ≤ 3.260. (6.276)

Now that better approximations to the eigenvalues are available to us, can we use them

to improve the approximations to the eigenvectors? Consider λ1, x1 and λ′1, x
′
1. Assuming

the approximations are good we write

x1 = x′1 + dx1, λ1 = λ′1 + dλ1 (6.277)

and, upon neglecting the product dλ1dx1, obtain

(A− λ1I)x1 = (A− λ′1I)(x′1 + dx1)− dλ1x
′
1 = o

from which the approximation

x1 = dλ1(A− λ′1I)−1x′1 (6.278)

readily results. Factor dλ1 is irrelevant, but its smallness is a warning that (A − λ′1I)−1x′1

can be of a considerable magnitude because (A− λ1I) may well be nearly singular.

The enterprising reader should undertake the numerical correction of x′1, x
′
2, x
′
3.

Now that supposedly better eigenvector approximations are available, they can be used in

turn to produce better Rayleigh approximations to the eigenvalues, and the corrective cycle

may be repeated, even without recourse to the complicated Rayleigh-Kato bound tightening.

This is in fact the essence of the method of shifted inverse iterations, or linear corrections,

described in Sec. 8.5.

Error bounds on the eigenvectors are discussed next.

Theorem 6.59. Let the eigenvalues of A = AT be λ1 ≤ λ2 ≤ · · · ≤ λn, with corre-

sponding orthonormal eigenvectors x1, x2, . . . , xn, and x a unit vector approximating xj. If

ej = x− xj, and λ = xTAx, then

‖ej‖ ≤
(

2− 2
(

1−
(
εj
α

)2)1/2)1/2

,
εj
α
< 1 (6.279)
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where εj = ‖rj‖, rj = Ax− λx, and where

α = min
k =/ j
|λk − λ|. (6.280)

If |εj/α| << 1, then

‖ej‖ ≤
εj
α
. (6.281)

Proof. Write

x = α1x1 + α2x2 + · · ·+ αjxj + · · ·+ αnxn, α
2
1 + α2

2 + · · ·+ α2
n = 1 (6.282)

so as to have

ej = x− xj = α1x1 + α2x2 + · · ·+ (αj − 1)xj + · · ·+ αnxn (6.283)

and

eTj ej = α2
1 + α2

2 + · · ·+ (αj − 1)2 + · · ·+ α2
n. (6.284)

Because xTx = 1

eTj ej = 2(1− αj) , αj = 1− 1

2
eTj ej . (6.285)

Also,

ε2j = rTj rj = α2
1(λ1 − λ)2 + α2

2(λ2 − λ)2 + · · ·+ α2
j (λj − λ) + · · ·+ α2

n(λn − λ)2 (6.286)

and

ε2j ≥ α2
1(λ1 − λ)2 + α2

2(λ2 − λ)2 + · · ·+ 0 + · · ·+ α2
n(λn − λ)2. (6.287)

Moreover

ε2j ≥ min
k =/ j

(λk − λ)2(α2
1 + α2

2 + · · · 0 + · · ·+ α2
n) (6.288)

or

ε2j ≥ α2(1− α2
j ). (6.289)

But αj = 1− 1
2e
T
j ej and therefore

(1− 1

2
eTj ej)

2 ≥ 1−
(
εj
α

)2

. (6.290)
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With the proper sign choice for x, 1
2e
T
j ej < 1, and taking the positive square root on both

sides yields the first inequality. The simpler inequality comes from

(
1−

(
εj
α

)2) 1
2

= 1− 1

2

(
εj
α

)2

(6.291)

for (εj/α) << 1. End of proof.

Notice that Theorem 6.57 does not require λ to be xTAx, but in view of Theorem 6.55 it

is reasonable to choose it this way. Notice also that as x→ xj , λ may be replaced with λj ,

and α becomes the least of λj+1− λj and λj − λj−1. To compute a good bound on ‖x− xj‖
we need to know how well λj is separated from its left and right neighbors. To see that the

bounds are sharp take x = x1 + εx2, ε
2 << 1, so as to get ‖x− x1‖ = ‖r‖/(λ2 − λ1).

Lemma 6.60. If x ∈ Rn and xTx = 1, then

|x1|2 + |x2|2 + · · ·+ |xn|2 = 1 and |x1|+ |x2|+ · · ·+ |xn| ≤
√
n. (6.292)

proof. Select vector s with components ±1 so that sTx = |x1| + |x2| + · · · + |xn|.
Obviously ‖s‖ =

√
n. By the Caucy–Schwarz inequality

sTx ≤ ‖s‖‖x‖ =
√
n (6.293)

since ‖x‖ = 1, and hence the inequality of the lemma. Equality occurs in eq.(6.292) for

vector x with all components equal in magnitude. End of proof.

Theorem (Hirsch) 6.61. Let matrix A = A(n × n) have a complex eigenvalue λ =

α + iβ. Then

|λ| ≤ nmax
i,j
|Aij |, |α| ≤ nmax

i,j

1

2
|Aij + Aji|, |β| ≤ nmax

i,j

1

2
|Aij − Aji|. (6.294)

proof. Let x be a unit, xHx = 1, eigenvector corresponding to eigenvalue λ so that

Ax = λx. Then

λ = xHAx = A11x1x1 + A12x1x2 + A21x1x2 + · · ·+ Annxnxn (6.295)

and

|λ| ≤ max
i,j
|Aij |(|x1|2 + 2|x1||x2|+ · · ·+ |xn|2) (6.296)
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or

|λ| ≤ max
i,j
|Aij|(|x1|+ |x2|+ · · ·+ |xn|)2 (6.297)

and since |x1|2 + |x2|2 + · · · + |xn|2 = 1, Lemma 6.60 guarantees the first inequality of the

theorem. To prove the other two inequalities we write x = u + iv, uTu = 1 vT v = 1, and

separate the eigenproblem into

Au = αu− βv, Av = αv + βu (6.298)

from which we get through premultiplication by uT and vT

2α =
1

2
uT (A+ AT )u+

1

2
vT (A+ AT )v, 2β = uT (A− AT )v. (6.299)

From the second equation we derive the inequality

2β ≤ max
i,j
|Aij − Aji|(|u1||v1|+ |u1||v2|+ |u2||v1|+ · · ·+ |un||vn|) (6.300)

or

2β ≤ max
i,j
|Aij − Aji|(|u1|+ |u2|+ · · ·+ |un|)(|v1|+ |v2|+ · · ·+ |vn|). (6.301)

Recalling lemma 6.60 we acertain the third inequality of the theorem. The second enequality

of the theorem is proved likewise. End of proof.

For matrix A = A(n× n), Aij = 1, the estimate |λ| ≤ n of Theorem 6.61 is sharp; here

in fact λn = n. For upper-triangular matrix U,Uij = 1, |λ| ≤ n is a terrible over estimate;

all eigenvalues of U are here only 1. Theorem 6.61 is nevertheless of theoretical interest. It

informs us that a matrix with small entries has small eigenvalues, and that a matrix only

slightly asymmetric has eigenvalues that are only slightly complex.

We close this section with a monotonicity theorem and an application.

Theorem (Weyl) 6.62. Let A and B in C = A+B be symmetric. If α1 ≤ α2 ≤ · · · ≤
αn are the eigenvalues of A, β1 ≤ β2 ≤ · · · ≤ βn the eigenvalues of B, and γ1 ≤ γ2 ≤ · · · ≤ γn

the eigenvalues of C, then

αi + βj ≤ γi+j−1, γi+j−n ≤ αi + βj . (6.302)
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In particular

αi + β1 ≤ γi ≤ αi + βn. (6.303)

Proof. Let a1, a2, . . . , an be the n orthonormal eigenvectors of A, and b1, b2, . . . , bn the

orthonormal eigenvectors of B. Obviously

min
x

xTCx

xTx
≥ min

x

xTAx

xTx
+ min

x

xTBx

xTx
xTa1 = · · · = xTai−1 = 0 xTa1 = · · · = xTai−1 = 0 xT b1 = · · · = xT bj−1 = 0

xT b1 = · · · = xT bj−1 = 0.

(6.304)

By Fischer’s theorem the left-hand side of the above inequality does not exceed γi+j−1,

while by Rayleigh’s theorem the right-hand side is equal to αi + βj . Hence the first set of

inequalities.

The second set of inequalities are obtained from

max
x

xTCx

xTx
≤ max

x

xTAx

xTx
+ max

x

xTBx

xTx
xTai+1 = · · · = xTan = 0 xTai+1 = · · · = xTan = 0 xT bj+1 = · · · = xT bn = 0

xT bj+1 = · · · = xT bn = 0.

(6.305)

By Fischer’s theorem the left-hand side of the above inequality is not less than γi+j−n, while

by Rayleigh’s theorem the right-hand side is equal to αi + βj .

The particular case is obtained with j = 1 on the one hand and j = n on the other hand.

End of proof.

Theorem 6.62 places no limit on the size of the eigenvalues but it may be put into a

perturbation form. Let positive ε be such that −ε ≤ β1, βn ≤ ε. Then

|γi − αi| ≤ ε (6.306)

and if ε is small |γi−αi| is smaller. The above inequality together with Theorem 6.61 carry

an important implication: if the entries of symmetric matrix A are symmetrically perturbed

slightly, then the change in each eigenvalue is slight.
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One of the more interesting applications of Weyl’s theorem is the following. If in the

symmetric

A =
[
K RT

R M

]
(6.307)

matrix R = O, then A reduces to block diagonal and the eigenvalues of A become those of

K together with those of M . We expect that if matrix R is small, then the eigenvalues of

K and M will not be far from the eigenvalues of A, and indeed we have

Corollary 6.63. If

A =
[
K RT

R M

]
=
[
K

M

]
+

[
RT

R

]
= A′ + E (6.308)

then

|λi − λ′i| ≤ |ρn| (6.309)

where λi and λ′i are the ith eigenvalue of A and A′, respectively, and where ρ2
n is the largest

eigenvalue of RTR, or RRT .

Proof. Write [
RT

R

] [
x
x′
]

= ρ
[
x
x′
]
. (6.310)

Then RTRx = ρ2x or RRTx′ = ρ2x′, provided that ρ =/ 0. If ρ2
n is the largest eigenvalue

of RTR (or equally RRT ), then the eigenvalues of E are between −ρn and +ρn, and the

inequality in the corollary follows from the previous theorem. End of proof.

exercises

6.16.1. Let A = AT . Show that if Ax − λx = r, λ = xTAx/xTx, then xT r = 0. Also, that

Bx = λx for

B = A− (xrT + rxT )/xTx.

6.16.2. Use Fischer’s and Rayleigh’s theorems to show that

λ2 = max
p

(min
x⊥p

λ(x)), λn−1 = min
p

(max
x⊥p

λ(x))

where λ(x) = xTAx/xTx.
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6.16.3. Let A and B be symmetric positive definite. Show that

λn(AB) ≤ λn(A)λn(B)

and

λ1(A+B) ≥ λ1(A) + λ1(B) , λn(A+B) ≤ λn(A) + λn(B).

6.16.4. Show that for square A

α1 ≤
xTAx

xTx
≤ αn

where α1 and αn are the extremal eigenvalues of 1
2(A+ AT ).

6.16.5. Let A = AT and A′ = A′
T

have eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and λ′1 ≤ λ′2 ≤ · · · ≤
λ′n such that λ′j ≥ λj for all j. Is it true that xTA′x ≥ xTAx for any x? Consider

A =
[−1 −1
−1 −1

]
and A′ =

[ −1.1
√

0.88√
0.88 −0.8

]
.

6.16.6. Prove that if for symmetric A′ and A, xTA′x ≥ xTAx for any x, then pairwise

λi(A
′) ≥ λi(A).

6.16.7. Let A = AT be such that Aij ≥ 0. Show that for any x, xi ≥ 0,

(xTAx)2 ≤ (xTx)(xTA2x).

6.16.8. Use corollary 6.63 to prove that symmetric

A =
[
α aT

a A′
]

has an eigenvalue in the interval

|α− λ| ≤ (aTa)1/2

Generalize the bound to other diagonal elements of A using a symmetric interchange of rows

and columns.
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6.16.9. Let σi = (λi(A
TA))1/2 be the singular values of A = A(n × n), and let σ′i be the

singular values of A′ obtained from A through the deletion of one row (column). Show that

σi ≤ σ′i ≤ σi+1 i = 1, 2, . . . , n− 1.

Generalize to more deletions.

6.16.10. Let σi = (λi(A
TA))1/2 be the singular values of A = A(n × n). Show, after Weyl,

that

σ1σ2 · · · σk ≤ |λ1||λ2| · · · |λk|, and σk . . . σn−1σn ≥ |λk| . . . |λn−1||λn|, k = 1, 2, . . . , n

where λk = λk(A) are such that |λ1| ≤ |λ2| ≤ · · · ≤ |λn|.

6.16.11. Recall that

‖A‖F = (
∑

i,j

A2
ij)

1/2

is the Frobenius norm of A. Show that among all symmetric matrices, S = (A + AT )/2

minimizes ‖A− S‖F .

6.16.12. Let nonsingular A have the polar decomposition A = (AAT )1/2Q. Show that among

all orthogonal matrices, Q = (AAT )−1/2A is the unique minimizer of ‖A−Q‖F . Discuss the

case of singular A.

6.17 Bounds and perturbations

Computation of even approximate eigenvalues and their accuracy assessment is a seri-

ous computational affair and we appreciate any quick procedure for their enclosure. Ger-

schgorin’s theorem on eigenvalue bounds is surprisingly simple, yet general and practical.

Theorem (Gerschgorin) 6.64. Let A = A(n × n). If A = D + A′, where D is the

diagonal Dii = Aii, then every eigenvalue of A lies in at least one of the discs

|λ− Aii| ≤ |A′i1|+ |A′i2|+ · · ·+ |A′in| i = 1, 2, . . . , n (6.311)

in the complex plane.
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Proof. Even if A is real its eigenvalues and eigenvectors may be complex. Let λ be any

eigenvalue of A and x = [x1 x2 . . . xn]T the corresponding eigenvector so that Ax = λx x =/ o.

Assume that the kth component of x, xk, is largest in magnitude (modulus) and normalize

x so that |xk| = 1 and |xi| ≤ 1. The kth equation of Ax = λx then becomes

Ak1x1 + Ak2x2 + · · ·+ Akk + · · ·+ Aknxn = λ (6.312)

and
|λ− Akk| = |A′k1x1 + A′k2x2 + · · ·+ A′knxn|

≤ |A′k1| |x1|+ |A′k2| |x2|+ · · ·+ |A′kn| |xn|

≤ |A′k1|+ |A′k2|+ · · ·+ |A′kn|.

(6.313)

We do not know what k is, but we are sure that λ lies in one of these discs. End of proof.

Example. Matrix

A =




2 −3 1
−2 1 3
1 −4 2


 (6.314)

has the characteristic equation

−λ3 + 5λ2 − 13λ+ 14 = 0 (6.315)

with the three roots

λ1 =
3

2
+

√
19

2
i, λ2 = λ1 =

3

2
−
√

19

2
i, λ3 = 2. (6.316)

Gerschgorin’s theorem encloses the eigenvalues in the three discs

δ1 : |2− λ| ≤ 4, δ2 : |1− λ| ≤ 5, δ3 : |2− λ| ≤ 5 (6.317)

shown in Fig. 6.5. Not even a square root is needed to have these bounds.

Corollary 6.65. If λ is an eigenvalue of symmetric A, then

min
k

(Akk − |A′k1| − · · · − |A′kn|) ≤ λ ≤ max
k

(Akk + |A′k1|+ · · ·+ |A′kn|) (6.318)

where A′ij = Aij and A′ii = 0.
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Fig. 6.5

Proof. When A is symmetric λ is real and the Gershgorin discs become intervals on the

real axis. End of proof.

Gerschgorin’s eigenvalue bounds are utterly simple, but on difference matrices the theo-

rem fails where we need it most. The difference matrices of mathematical physics are, as we

noticed in Chapter 3, most commonly symmetric and positive definite. We know that for

these matrices all eigenvalues are positive, 0 < λ1 ≤ λ2 ≤ · · · ≤ λn but we would like to have

a lower bound λ1 in order to secure an upper bound on λn/λ1. In this respect Gerschgorin’s

theorem is a disappointment.

For matrix

A =




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2




(6.319)

Gerschgorin’s theorem yields the eigenvalue interval 0 ≤ λ ≤ 4 for any n, failing to predict
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the positive definiteness of A. For matrix

A2 =




5 −4 1
−4 6 −4 1
1 −4 6 −4 1

1 −4 6 −4
1 −4 5




(6.320)

Gerschgorin’s theorem yields −4 ≤ λ ≤ 16, however large n is, where in fact λ > 0.

Similarity transformations can save Gerschgorin’s estimates for these matrices. First

we notice that D−1AD and D−1A2D, with the diagonal D,Dii = (−1)i turns all entries

of the transformed matrices nonnegative. Matrices with nonnegative or positive entries are

common; A−1 and (A2)−1 are with entries that are all positive.

Definition. Matrix A is nonnegative, A ≥ O, if Aij ≥ 0 for all i and j. It is positive,

A > O, if Aij > 0.

Discussion of good similarity transformations to improve the lower bound on the eigen-

values is not restricted to the finite difference matrix A, and we shall look at a broader class

of these matrices.

Theorem 6.66. Let symmetric tridiagonal matrix

T =




α1 + α2 −α2

−α2 α2 + α3 −α3

−α3
. . . −αn
−αn αn + αn+1


 (6.321)

be such that α1 ≥ 0, α2 > 0, α3 > 0, . . . , αn > 0, αn+1 ≥ 0. Then eigenvector x correspond-

ing to its minimal eigenvalue is positive, x > o.

Proof. If x = [x1 x2 . . . xn]T is the eigenvector corresponding to the lowest eigenvalue

λ, then

λ(x) =
α1x

2
1 + α2(x2 − x1)2 + α3(x3 − x2)2 + · · ·+ αn(xn − xn−1)2 + αn+1x

2
n

x2
1 + x2

2 + · · ·+ x2
n

(6.322)

and matrix T is seen to be positive semidefinite. Matrix T is singular only if both α1 =

αn+1 = 0, and then x = [1 1 . . . 1]T . Suppose therefore that α1 and αn+1 are not both zero.
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Looking at the equation Ax = λx we readily observe that no two consecutive components

of x, including x1 and x2, may be zero, for this would imply x = o. No interior component of

x can be zero either; speaking physically the string may have no interior node, for this would

contradict the fact, by Theorem 6.49, that x is the unique minimizer of λ(x′). Say n = 4

and x2 = 0. Then the numerator of λ(x) is (α1 + α2)x2
1 + α3x

2
3 + α4(x3 − x4)2 + α5x

2
4, and

replacing x1 by −x1 leaves λ(x) un affected. The components of x cannot be of different signs

because sign reversals would lower the numerator of λ(x) without changing the denominator

contradicting the assumption that x is a minimizer of λ(x′). Hence we may choose all

components of x positive. End of proof.

For the finite difference matrix A of eq.(6.319), or for that matter for any symmetric

matrix A such that Aii > 0 and Aij ≤ 0, the lower Gerschgorin bound on first eigenvalue λ1

may be written as

λ1 ≥ min
i

(Ae)i (6.323)

for e = [1 1 1 . . . , 1]T . If D is a positive diagonal matrix, D > O, then also

λ1 ≥ min
i

(D−1ADe)i (6.324)

where equality holds for De = x1 if x1 > o.

Matrix A of eq.(6.319) has a first eigenvector with components that are all positive,

that is, approximately x′1 = [0.50 0.87 1.00 0.87 0.50]T . Taking the diagonal matrix D with

Dii = (x′1)i yields

D−1AD =




2 −1.740
−0.575 2 −1.15

−0.87 2 −0.87
−1.15 2 −0.575

−1.74 2




(6.325)

and from its five rows we obtain the five, almost equal, inequalities

λ1 ≥ 0.260, λ1 ≥ 0.275, λ1 ≥ 0.260, λ1 ≥ 0.275, λ1 ≥ 0.260 (6.326)

so that certainly λ1 ≥ 0.260, whereas actually λ1 = 4 sin2 15o = 0.26795.

On the other hand according to Rayleigh’s theorem λ1 ≤ λ1(x′1) = 0.26797, and 0.260 ≤
λ1 ≤ 0.26797.
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Gerschgorin’s theorem does not require the knowledge that x′1 is a good approximation

to x1, but suppose that we know that λ′1 = λ(x′1) = 0.26797 is nearest to λ1. Then from

r = Ax′1 − λ′1x′1 = 10−3[3.984 6.868 7.967 6.868 3.984]T we get that 0.260 ≤ λ1 ≤ 0.276.

Similarly, if symmetric A is nonnegative A ≥ O, then Gerschgorin’s upper bound on the

eigenvalues of A becomes

λn ≤ max
i

(D−1ADe)i (6.327)

for any D > O.

The following is a symmetric version of Perron’s theorem on positive matrices.

Theorem (Perron) 6.67. If A is a symmetric positive matrix, then the eigenvector

corresponding to the largest (positive) eigenvalue of A is positive and unique.

Proof. If xn is a unit eigenvector corresponding to λn, and x =/ xn is such that xTx = 1,

then

xTAx < λn = λ(xn) = xTnAxn (6.328)

and λn is certainly positive. Moreover, since Aij > 0 the components of xn cannot have

different signs, for this would contradict the assumption that xn maximizes λ(x). Say then

that (xn)i ≥ 0. But none of the (xn)i components can be zero since Axn = λnxn, and

obviously Axn > o. Hence xn > o.

There can be no other positive vector orthogonal to xn, and hence the eigenvector, and

also the largest eigenvalue λn, are unique. End of proof.

Theorem 6.68. Suppose that A has a positive inverse, A−1 > O. Let x be any vector

satisfying Ax− e = r, e = [1 1 . . . 1]T , ‖r‖∞ < 1. Then

‖x‖∞
1 + ‖r‖∞

≤ ‖A−1‖∞ ≤
‖x‖∞

1− ‖r‖∞
. (6.329)

Proof. Obviously x = A−1e+ A−1r so that

‖x‖∞ ≤ ‖A−1e‖∞ + ‖A−1r‖∞ ≤ ‖A−1‖∞ + ‖A−1‖∞‖r‖∞ (6.330)

and
‖x‖∞

1 + ‖r‖∞
≤ ‖A−1‖∞. (6.331)
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To prove the other bound write x = A−1e − (−A−1r), observe that ‖A−1e‖∞ = ‖A−1‖∞,

and have that
‖x‖∞ ≥ ‖A−1e‖∞ − ‖A−1r‖∞

≥ ‖A−1‖∞ − ‖A−1‖∞‖r‖∞.
(6.332)

Hence, if ‖r‖∞ < 1, then
‖x‖∞

1− ‖r‖∞
≥ ‖A−1‖∞. (6.333)

End of proof.

Gerschgorin’s theorem has some additional interesting consequences.

Theorem 6.69. The eigenvalues of a symmetric matrix depend continuously on its

entries.

Proof. Let matrix B = BT be such that |Bij | < ε. The theorems of Gerschgorin and

Hirsch assure us that the eigenvalues of B are in the interval −nε ≤ β ≤ nε. If C = A+B,

then according to Theorem 6.62 |γi−αi| ≤ nε where α1 ≤ α2 ≤ · · · ≤ αn are the eigenvalues

of A and γ1 ≤ γ2 ≤ · · · ≤ γn are the eigenvalues of C. As ε → 0 so does |γi − αi|, and

|γi − αi|/ε is finite for all ε > 0. End of proof.

The eigenvalues of any matrix depend continuously on its entries. It is a basic result

of polynomial equation theory that the roots of the equation depend continuously on the

coefficients (which does not mean that roots cannot be very sensitive to small changes in

the coefficients.) We shall not prove it here, but will accept this fact to prove the second

Gerschgorin theorem on the distribution of the eigenvalues in the discs. It is this theorem

that makes Gerschgorin’s theorem invaluable for nearly diagonal symmetric matrices.

Theorem (Gerschgorin) 6.70. If k Gerschgorin discs of matrix A are disjoint from

the other discs, then precisely k eigenvalues of A are found in the union of the k discs.

Proof. Write A = D+A′ with diagonal Dii = Aii, and consider matrix A(τ) = D+ τA′

0 ≤ τ ≤ 1. Obviously A(0) = D and A(1) = A. For clarity we shall continue the proof for a

real 3× 3 matrix, but the argument is general.

Suppose that the three Gerschgorin discs δ1 = δ1(1), δ2 = δ2(1), δ3 = δ3(1) for A = A(1)

are as shown in Fig. 6.6 For τ = 0 the three circles contract to points λ1(0) = A11, λ2(0) =
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A22, λ3(0) = A33. As τ is increased the three discs δ1(τ), δ2(τ), δ3(τ) for A(τ) expand and

the three eigenvalues λ1(τ), λ2(τ), λ3(τ) of A vary inside them. Never is an eigenvalue of

A(τ) outside the union of the three discs. Disc δ1(τ) is disjoint from the other two discs for

any 0 ≤ τ ≤ 1. Since λ1(τ) varies continuously with τ it cannot jump over to the other two

discs, and the same is true for λ2(τ) and λ3(τ). Hence δ1 contains one eigenvalue of A and

δ1 ∪ δ2

Fig. 6.6

Example. Straightforward application of Gerschgorin’s theorem to

A =




1 −10−2 2 10−2

−5 10−3 2 10−2

10−2 −10−2 3


 (6.334)

yields

|λ1 − 1| ≤ 3.0 10−2, |λ2 − 2| ≤ 1.5 10−2, |λ3 − 3| ≤ 2.0 10−2 (6.335)

and we conclude that the three eigenvalues are real. A better bound on, say, λ1 is obtained

with a similarity transformation that maximally contracts the disc around λ1 but leaves it

disjoint of the other discs. Multiplication of the first row of A by 10−2 and the first column

of A by 102 amounts to the similarity transformation

D−1AD =




1 −10−4 210−4

−0.5 2 10−2

1 −10−2 3


 (6.336)
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from which we obtain the better |λ1 − 1| ≤ 3.0 10−4.

Corollary 6.71. A disjoint Gerschgorin disc of a real matrix contains one real eigen-

value.

Proof. For a real matrix all discs are centered on the real axis and there are no two

disjoint discs that contain λ = α + iβ and λ = α− iβ, β =/ 0. Hence β = 0. End of proof.

With a good similarity transformation Gerschgorin’s theorem may be made to do well

even on a triangular matrix. Consider the upper-triangular U,Uij = 1. Using diagonal

D,Dii = εn−i we have

DUD−1 =




1 ε ε2 ε3

1 ε ε2

1 ε
1


 (6.337)

and we can make the discs have arbitrarily small radii around λ = 1.

Gerschgorin’s theorem does not know to distinguish between a matrix that is only slightly

asymmetric and a matrix that is grossly asymmetric, and it is might be desirable to decouple

the real and imaginary parts of the eigenvalue bounds. For this we have

Theorem (Bendixon) 6.72. If real A = A(n× n) has complex eigenvalue λ = α+ iβ,

then α is neither more nor less than any eigenvalue of 1
2(A + AT ), and β is neither more

nor less than any eigenvalue of 1
2i(A− AT ).

Proof. As we did in the proof to Theorem 6.61 we write Ax = λx with x = u+iv, uTu =

vT v = 1, and decouple the complex eigenproblem into the pair of equations

2α =
1

2
uT (A+ AT )u+

1

2
vT (A+ AT )v, 2β = uT (A− AT )v. (6.338)

Now we think of u and v as being variable unit vectors. Matrix A+AT is symmetric, and it

readily results from Rayleigh’s Theorem 6.50 that α in eq.(6.338) can neither dip lower than

the minimum nor can it rise higher than the maximum eigenvalues of 1
2(A + AT ). Matrix

A − AT is skew-symmetric and has purely imaginary eigenvalues of the form λ = ±i2σ.

Also, uT (A − AT )u = 0 whatever u is. Therefore we restrict v to being orthogonal to u,

and propose to accomplish this by v = −1/2β(A − AT ), with factor −1/2β guaranteeing
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vT v = 1. Presently,

4β2 = −uT (A− AT )2u. (6.339)

Matrix −(A − AT )2 is symmetric and has nonnegative eigenvalues all of the form λ = σ2.

Rayleigh’s theorem assures us again that 4β2 is invariably located between the least and

most values of 4σ2, and the proof is done.

exercises

6.17.1. Show that the roots of λ2 − a1λ + a0 = 0 depend continuously on the coefficients.

Give a geometrical interpretation to λλ.

6.17.2. Use Gerschgorin’s theorem to show that the n× n

A =




α 1 1 1
1 α 1 1
1 1 α 1
1 1 1 α




is positive definite if α > n− 1. Compute all eigenvalues of A.

6.17.3. Use Gerschgorin’s theorem to show that

A =




5 −1
−1 4 2

1 −3 1
1 −2




is nonsingular.

6.17.4. Does

A =




2 1
−1 6 1

−1 10 1
−1 14 1

−1 18




have complex eigenvalues?

6.17.5. Consider

A =




1 −1
−1 4 −3

−3 8 −5
−5 12


 and D =




1
α

0.7
0.4


 .
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Show that the spectrum of A is nonnegative. Form D−1AD and apply Gerschgorin’s theorem

to this matrix. Determine α so that the lower bound on the lowest eigenvalue of A is as high

as possible.

6.17.6. Nonnegative matrix A with row sums all being equal to 1 is said to be a stochastic

matrix. Positive, Aij > 0, stochastic matrix A is said to be a transition matrix. Obviously

e = [1 1 . . . 1]T is an eigenvector of transition matrix A for eigenvalue λ = 1. Use the

Gerschgorin circles of Theorem 6.64 to show that all eigenvalues of transition matrix A are

such that |λ| ≤ 1, with equality holding only for λ = 1. The proof that eigenvalue λ = 1

is of algebraic multiplicity 1 is more difficult, but it establishes a crucial property of A that

assures, by Theorem 6.46, that the Markov process An = An has a limit as n→∞.

6.17.7. Let S = S(3 × 3) be a stochastic matrix with row sums all equal to λ. Show that

elementary operations matrix

E =




1 1
1 1

1


 , E−1 =




1 −1
1 −1

1




is such that E−1SE deflates matrix S to the effect that

E−1SE =



A11 − A31 A12 − A32 0
A21 − A31 A22 − A32 0

A31 A32 λ


 .

Apply this to

A =




2 3 2
1 2 4
5 1 1




for which λ = 7. Then apply Gerschgorin’s Theorem 6.64 to the leading 2×2 diagonal block

of E−1SE to bound the rest of the eigenvalues of S. Explain how to generally deflate a

square matrix with a known eigenvalue and corresponding eigenvector.

6.17.8. Referring to Theorem 6.68 take

A =




1 −1
−1 4 −3

−3 8 −5
−5 12 −7

−7 16



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and x = α[5 4 3 2 1]T . Fix α so that ‖r‖∞ is lowest and make sure it is less than 1. Bound

‖A−1‖∞ = ‖A−1e‖∞ and compare the bounds with the computed ‖A−1‖∞.

6.17.9. The characteristic equation of companion matrix

C =




−a0

1 −a1

1 −a2

1 −a3




is z4 + a3z
3 + a2z

2 + a1z + a0 = 0. With diagonal matrix D,Dii = αi > 0, obtain

D−1CD =




−a0α4/α1

α1/α2 −a1α4/α2

α2/α3 −a2α4/α2

α3/α4 −a3α4/α4


 .

Recall Gerschgorin’s theorem to deduce from it that root z of a polynomial equation of

degree n is of modulus

|z| ≤ max(
αi
αi+1

+ |ai|
1

αi+1
), i = 0, 1, . . . , n− 1

if α0 = 0 and αn = 1.

6.17.10. For matrix A define σi = |Aii| −
∑
i =/ j |Aij |. Show that if σi > 0 for all i, then

A−1 = B is such that |Bij | ≤ σ−1
i .

6.17.11. Prove Schur’s inequality:

n∑

i=1

|λi|2 ≤
n∑

i,j=1

|Aij |2

where λi i = 1, 2, . . . , n are the eigenvalues of A.

6.17.12. Prove Browne’s theorem: If A = A(n × n) is real, then |λ(A)|2 lies between the

smallest and largest eigenvalues of AAT .

6.17.13. Show that if A is symmetric and positive definite, then its largest eigenvalue is

bounded by

max
i
|Aii| ≤ λn ≤ nmax

i
|Aii|.
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6.17.14. Show that if A is diagonalizable, A = XDX−1 with Dii = λi, then for any given

scalar λ and unit vector x

min
i
|λi − λ| ≤ ‖X‖ ‖X−1‖ ‖r‖

where r = Ax− λx. Hint: Write x = Xx′.

6.17.15. Prove the Bauer-Fike theorem: If A is diagonalizable, A = XDX−1, Dii = λi then

for any eigenvalue λ′ of A′ = A+ E,

min
i
|λi − λ′| ≤ ‖X−1EX‖ ≤ ‖X‖ ‖X−1‖ ‖E‖.

6.17.16. Show that if A and B are positive definite, then C,Cij = AijBij , is also positive

definite.

6.17.17. Show that every A = A(n×n) with det(A) = 1 can be written as A = (BC)(CB)−1.

6.17.18. Prove that real A(n× n) = −AT , n > 2, has an even number of zero eigenvalues if

n is even and an odd number of zero eigenvalues if n is odd.

6.17.19. Diagonal matrix I ′ is such that I ′ii = ±1. Show that whatever A, I ′A + I is

nonsingular for some I ′. Show that every orthogonal Q can be written as Q = I ′(I −S)(I +

S)−1, where S = −ST .

6.17.20. Let λ1 and λn be the extreme eigenvalues of positive definite and symmetric matrix

A. Show that

1 ≤ xTAx

xTx

xTA−1x

xTx
≤ (λ1 + λn)2

4λ1λn
.

6.18 The Ritz reduction

Matrices raised by such practices as computational mechanics are of immense order n,

but usually only few eigenvalues at the lower end of the spectrum are of interest. We may

know a subspace of dimension m, much smaller than n, in which good approximations to

the first m′ ≤ m eigenvectors of the symmetric A = A(n× n) can be found.
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The Ritz reduction method tells us how to find optimal approximations to the first m′

eigenvalues of A with eigenvector approximations confined to the m-dimensional subspace

of Rn, by solving an m×m eigenproblem only.

Let v1, v2, . . . , vm be an orthonormal basis for subspace V m of Rn. In reality the basis

for V m may not be originally orthogonal but in theory we may always assume it to be so.

Suppose that we are interested in the lowest eigenvalue λ1 of A = AT only, and know that a

good approximation to the corresponding eigenvector x1 lurks in V m. To find x ∈ V m that

produces the eigenvalue approximation closest to λ1 we follow Ritz in writing

x = y1v1 + y2v2 + · · ·+ ymvm = V y (6.340)

where V = [v1v2 . . . vm], and where y = [y1 y2 . . . ym]T , and seek y =/ o in Rm that minimizes

ρ(y) =
xTAx

xTx
=
yTV TAV y

yT y
. (6.341)

Setting gradρ(y) = o produces

(V TAV )y = ρy (6.342)

which is only an m×m eigenproblem.

Symmetric matrix V TAV has m eigenvalues ρ1 ≤ ρ2 ≤ · · · ≤ ρm and m corresponding

orthogonal eigenvectors y1, y2, . . . , ym. According to Rayleigh’s theorem ρ1 ≥ λ1 and is as

near as it can get to λ1 with x ∈ V m. What about the other m − 1 eigenvalues? The next

two theorems clear up this question.

Theorem (Poincaré) 6.73. Let the eigenvalues of the symmetric n × n matrix A be

λ1 ≤ λ2 ≤ · · · ≤ λn. If matrix V = V (n × m), m ≤ n, is with m orthonormal columns,

V TV = I, then the m eigenvalues ρ1 ≤ ρ2 ≤ · · · ≤ ρm of the m×m eigenproblem

V TAV y = ρy (6.343)

are such that

λ1 ≤ ρ1 ≤ λn−m+1, λ2 ≤ ρ2 ≤ λn−m+2, . . . , λm−1 ≤ ρm−1 ≤ λn−1, λm ≤ ρm ≤ λn. (6.344)
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Proof. Let V = [v1v2, . . . , vm] and call V m the column space of V . Augment the basis

for V m to the effect that v1, v2, . . . , vm, . . . , vn is an orthonormal basis for Rn and start with

ρm = max
y

yTV TAV y

yT y
, y ∈ Rm (6.345)

or

ρm = max
x

xTAx

xTx
, x ∈ V m. (6.346)

This, in turn, is equivalent to

ρm = max
x

xTAx

xTx
, xT vm+1 = · · · = xT vn = 0 (6.347)

and Fischer’s theorem tells us that ρm ≥ λm. The next Ritz eigenvalue ρm−1 is obtained

from the maximization under the additional constraint yT y1 = xTV y1 = xTx′1, x ∈ V m,

ρm−1 = max
x

xTAx

xTx
, xTx′1 = xT vm+1 = · · · = xT vn = 0 (6.348)

and by Fischer’s theorem ρm−1 ≥ λm−1. Continuing this way we prove the m left-hand

inequalities of the theorem.

The second part of the theorem is proved starting with

ρ1 = min
x

xTAx

xTx
, xT vm+1 = · · · = xT vn (6.349)

and with the assurance by Fischer’s theorem that ρ1 ≤ λn−m+1, and so on. End of proof.

If subspace V m is given by the linearly independent v1, v2, . . . , vm and if a Gram-Schmidt

orthogonalization is impractical, then we still write x = V y and have that

ρ(y) =
xTAx

xTx
=
yTV TAV y

yTV TV y
(6.350)

with a positive definite and symmetric V TV . Setting gradρ(y) = o yields now the more

general

(V TAV )y = ρ(V TV )y. (6.351)

The first Ritz eigenvalue ρ1 is obtained from the minimization of ρ(y), the last ρm from

the maximization of ρ(y), and hence the extreme Ritz eigenvalues are optimal in the sense
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that ρ1 comes as near as possible to λ1, and ρm comes as close as possible to λn. All the

Ritz eigenvalues have a similar property and are optimal in the sense of

Theorem 6.74. Let A be symmetric and have eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. If

ρ1 ≤ ρ2 ≤ · · · ≤ ρm are the Ritz eigenvalues with corresponding orthonormal eigenvectors

x′1, x
′
2, . . . , x

′
m, then for k = 1, 2, . . . ,m

ρk − λk = min
x∈Vm

(
xTAx

xTx
− λk

)
, xTx′1 = · · · = xTx′k−1 = 0 (6.352)

and

λn+1−k − ρm+1−k = min
x∈Vm

(
λn+1−k −

xTAx

xTx

)
, xTx′m = · · · = xTx′m+2−k = 0. (6.353)

Proof. For a proof to the first part of the theorem we consider the Ritz eigenvalues as

obtained through the minimization

ρk = min
y

yTV TAV y

yT y
, yT y1 = · · · = yT yk−1 = 0 (6.354)

where V = V (n×m) = [v1v2, . . . , vm] has m orthonormal columns. Equivalently

ρk = min
x∈Vm

xTAx

xTx
, xTx′1 = · · · = xTx′k−1 = 0 (6.355)

where x = V y, and x′j = V yj . By Poincaré’s theorem ρk ≥ λk and hence the minimization

lowers ρk as much as possible to bring it as close as possible to λk under the restriction that

x ∈ V m and xTx1 = · · · = xTx′k−1 = 0.

The second part of the theorem is proved similarly by considering the Ritz eigenvalues

as obtained by the maximization

ρm+1−k = max
x∈Vm

xTAx

xTx
, xTx′m = · · · = xTx′m+2−k (6.356)

the details of which are left as an exercise. End of proof.

For any given Ritz eigenvalue ρj and corresponding approximate eigenvector x′j we may

compute the residual vector rj = Axj
′ − ρjxj ′ and are assured that the interval |ρj − λ| ≤

‖rj‖/‖xj ′‖ contains an eigenvalue of A. The bounds are not sharp but they require no
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knowledge of the eigenvalue distribution, nor that xj
′ be any special vector and ρj any

special number. If such intervals for different Ritz eigenvalues and eigenvectors overlap, then

we know that the union of overlapping intervals contain an eigenvalue of A. Whether or not

more than one eigenvalue is found in the union is not revealed to us by this simple error

analysis.

An error analysis based on Corollary 6.63 involving a residual matrix rather than residual

vectors removes the uncertainty on the number of eigenvalues in overlapping intervals.

Let X ′ = X ′(n ×m) = [x′1x
′
2 . . . x

′
m], D the diagonal Dii = ρi, and define the residual

matrix

R = AX ′ −X ′D. (6.357)

Obviously X ′
T
R = X ′

T
AX ′ −D = O, since the columns of X ′ are orthonormal. Augment

X ′ so that Q = [X ′X
′′
] is an orthogonal matrix and form

QTAQ =

[
X ′

T
AX ′ X ′

T
AX

′′

X ′′
T
AX ′ X ′′

T
AX

′′

]
=

[
D X ′′

T
R

RTX
′′

X ′′
T
AX

′′

]
. (6.358)

The maximal eigenvalue of X ′′
T
RRTX

′′
is less than the maximal eigenvalue of RRT or RTR.

Hence by Corollary 6.63 if ε2 is the largest eigenvalue of RTR, then the union of intervals

|ρi − λ| ≤ |ε| i = 1, 2, . . . ,m contains m eigenvalues of A.

Example. Let x be an arbitrary vector in Rn, and let A = A(n × n) be a symmetric

matrix. In this example we want to examine the Krylov sequence x,Ax, . . . , Am−1x as a

basis for V m. An obvious difficulty with this sequence is that the degree of the minimal

polynomial of A can be less than n and the sequence may become linearly dependent for

m−1 < n. Near-linear dependence among the Krylov vectors is more insidious, and we shall

look also at this unpleasant prospect.

To simplify the computation we choose A = A(100×100) to be diagonal, with eigenvalues

λi,j =
1

2.5
(i2 + 1.5j2) i = 1, 2, . . . , 10 j = 1, 2, . . . , 10 (6.359)

so that the first five are 1., 2.2, 2.8, 4.0, 4.2; and the last one is 100.0. It occurs to us

to take x =
√
n/n[1 1 . . . 1]T , and we normalize Ax, A2x, . . . , Am−1x to avoid very large

vector magnitudes.
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The table below lists the four lowest Ritz eigenvalues computed from V m with a Krylov

basis, as a function of m.

m ρ1 ρ2 ρ3 ρ4

4 7.615 31.47 61.83 91.85

6 4.141 17.08 36.78 58.94

8 2.680 10.57 23.42 39.38

12 1.469 5.049 11.19 19.63.

Since the basis of V m is not orthogonal, the Ritz eigenproblem is here the general V TAV y =

ρV TV y and we solved it with a commercial procedure. For m larger than 12 the eigenvalue

procedure returns meaningless results. Computation of the eigenvalues of V TV itself revealed

a spectral condition number κ(V TV ) = (1.5m)! which means κ = 6 · 5 1015 for m = 12, and

all the high accuracy used could not save V TV from singularity.

exercises

6.18.1. For matrix A

A =




1 −1
−1 4 −3

−3 8 −5
−5 12




determine α1 and α2 in x = α1[1 1 0 0]T + α2[0 0 1 1]T so that xTAx/xTx is minimal.

6.19 Round-off errors

In this section we consider the basic round-off perturbation effects on eigenvalues, mainly

for difference matrices that have large eigenvalue spreads.

Even if a matrix is exactly given the mere act of writing it into the computer perturbs it

slightly, and the same happens to any symbolically given eigenvector. Formation of Axj is

also done in finite arithmetic and is not exact. The perturbations may be minute but their

effect is easily magnified to disasterous proportions.

Suppose first that matrix A = AT is written exactly, that the arithmetic is exact, and

that the only change in eigenvector xj is due to round-off: x′j = xj + εw, ‖w‖ = 1, |ε| << 1.
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Then

λ′j − λj = ε2(wTAw − λj), λ′j = x′
T

j Ax
′
j/x
′T
j x
′
j (6.360)

is very small if ε is small. Round-off error damage does not come from eigenvector pertur-

bations but rather from the perturbation of A and the inaccurate formation of the product

Axj .

Both effects are accounted for by assuming exact arithmetic on the perturbed A + A′.

Now

λ′j = xTj (A+ A′)xj = λj − xTj A′xj (6.361)

and it is reasonable to assume here that xTj A
′xj = ελn for any xj so that

|λ′j − λj |
λj

= ε
(
λn
λ1

)
λ1

λj
. (6.362)

This is the ultimate accuracy barrier of the round-off errors, and it can be serious in finite

difference matrices that have large λn/λ1 ratios.

The finite difference matrices

A =




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2




and A2 =




5 −4 1
−4 6 −4 1
1 −4 6 −4 1

1 −4 6 −4
1 −4 5




(6.363)

are with λn/λ1 = n2 and λn/λ1 = n4, respectively. Figures 6.7 and 6.8 show the round-

off error in the eigenvalues of A and A2, respectively, computed from Rayleigh’s quotient

λ′j = xTj Axj/x
T
j xj with analytically correct eigenvectors and with machine accuracy ε =

10−7. The most serious relative round-off error is in the lower eigenvalues, and is nearly

proportional to n2 for A and nearly proportional to n4 for A2.
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Fig. 6.7 Fig. 6.8

Answers

section 6.1

6.1.1. λ = 2, α1 = −α2 = ±
√

2/2 or λ = 4, α1 = α2 = ±
√

2/2.

6.1.2. Yes, λ = −2.

6.1.3. Yes, λ = 1/3.

section 6.2

6.2.1. λ1 = λ2 = λ3 = λ4 = 0, x = α1e1 + α3e3 for arbitrary α1, α2.

6.2.2.

for A : λ1 = 1, x1 =




1
0
0


 ; λ2 = −2, x2 =



−1
3
0


 ; λ3 = 1, x3 =




7
4
10


 .

for B : λ1 = λ2 = λ3 = 1, x = e1.
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for C : λ1 = λ2 = 1, x = α1e1 + α2e2; λ3 = 2, x3 =




2
−3
1


 .

section 6.3

6.3.1. [
1− λ 1 + λ
−1 + 2λ −1− λ

]
→
[

1− λ 1 + λ
1 1 + λ

]
→
[−λ 0

1 1 + λ

]
.

6.3.2. −λ3 + α2λ
2 − α1λ+ α0 = 0.

6.3.5. f(A) = λ2
1 + λ2

2.

6.3.6.

for A : λ1 = 1, x1 =
[

1
−2

]
; λ2 = 4, x2 =

[
1
1

]
.

for B : λ = 1± i, x1 =
[

1
±i
]
.

for C : λ1 = 0, x1 =
[

1
i

]
; λ2 = 2, x2 =

[
1
−i
]
.

for D : λ1 = λ2 = 0, x1 =
[−i

1

]
.

6.3.7.

for A : λ1 = −1, x1 =



−1
0
1


 ; λ2 = 0, x2 =




0
1
0


 ; λ3 = 1, x3 =




1
0
1


 .

for B : λ1 = 0, x1 =




0
1
0


 ; λ2 = i, x2 =




1
0
i


 ; λ3 = −i, x3 =




1
0
−i


 .

6.3.8. α1 = α2 = 2.

6.3.9 α2 < 1/4.

6.3.10. α = 1, λ = 0.

6.3.11. λ = 2.

6.3.12. λ = 1.
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6.3.13. An eigenvector of A for λ = 1.

section 6.4

6.4.1. Yes. α1 = −3 + 4i, α2 = 2− 3i, α3 = 5− 3i.

6.4.2. Yes. No, v2 = (1 + i)v1.

6.4.3. α = 1 + i.

6.4.4. q2 = [1 − i 2i].

section 6.7

6.7.1. α1 = α2 = −1.

section 6.9

6.9.3. 1× 1, 2× 2, 3× 3, 3× 3, 3× 3, 4× 4 blocks.

6.9.5. (A− I)x1 = o, (A− I)x2 = x1, (A− I)x3 = x2, X = [x1 x2 x3].

X =




2 −1 −2
1 0 0
0 −1 −3


 , X−1AX =




1 1
1 1

1


 .

6.9.8.

X =



α β γ

α β
α


 .

section 6.10

6.10.5. β = 0.

section 6.13

6.13.1. D2 − I = O, (R− I)2(R + I) = O.

6.13.2. A2 − 3A = O.

6.13.3. (A− λI)4 = O, (B − λI)3 = O, (C − λI)2 = O, D − λI = O.
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