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Implicit Functions

11.1 Partial derivatives

To express the fact that z is a function of the two independent variables x and y we write
z = z(x, y). If variable y is fixed, then z becomes a function of x only, and if variable x is
fixed, then z becomes a function of y only. The notation ∂z/∂x, pronounced ’partial z with
respect to x’, is the derivative function of z with respect to x with y considered a constant.
Similarly, ∂z/∂y is the derivative function of z with respect to y, with x held fixed. In any
event, unlike dy/dx, the partial derivatives ∂z/∂x and ∂z/∂y are not fractions. For the sake
of notational succinctness the partial derivatives may be written as zx and zy.

Examples.

1. For z = x2 + x3y−1 + y3 − 2x + 3y − 5 we have

∂z

∂x
= 2x + 3x2y−1 − 2,

∂z

∂y
= x3(−y−2) + 3y2 + 3.

2. For z =
√

1 + x2y3 we have

∂z

∂x
=

2xy3

2
√

1 + x2y3
,

∂z

∂y
=

3y2x2

2
√

1 + x2y3
.

We shall now linearize function z(x, y) of two variables. For
this we assume the function to be differentiable with respect to
both x and y on a rectangle that includes points A,B,C in the
figure to the right. Additionally we assume that the two partial
derivatives of z, ∂z/∂x ≡ zx and ∂z/∂y ≡ zy are continuos on the
rectangle. A B

C

δx

δy

Substitution of

F (B) = F (A) + (
∂F

∂x
)Aδx + g1δx, g1 → 0 as δx → 0

into

F (C) = F (B) + (
∂F

∂y
)Bδy + g2δy, g2 → 0 as δy → 0

results in

δz = F (C) − F (A) = ((
∂F

∂x
)A + g1)δx + ((

∂F

∂y
)B + g2)δy.

By continuity assumption on the partial derivatives we have that

lim
δx→0

(
∂F

∂x
)A + g1 = (

∂F

∂x
)A and lim

δx,δy→0
((
∂F

∂y
)B + g2) = (

∂F

∂y
)A.

resulting in

dz = (
∂F

∂x
)Adx + (

∂F

∂y
)Ady
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Chapter 11

which is the equation of a plane.

11.2 Implicit Functions

The totality of points (x, y) satisfying the equation F (x, y) = 0 forms a curve. Given a
value of the independent variable x, evaluation of y, supposing one exists, may require the
approximate solution of F (x, y) = 0 by numerical means, such as the method of bisections
or the metod of successive linearizations. It is possible that for one given x value there is
a number of corresponding y values. Yet, it may happen that a restricted portion of the
plane delineated by a (finite or infinite) rectangle contains an arc of the
total curve that is the graph of some function y = y(x). We say then
that F (x, y) = 0 is an implicit representation of the function y = y(x).
The figure to the right shows the tilted ψ shaped curve implicit in some
F (x, y) = 0. Intersection point B of the linear and parabolic branches
of the curve is often referred to as a bifurcation point since the curve
branches or forks at such a pont. The figure also shows three rectangles
such that for any x in a rectangle there is only one corresponding y(x)
in the same rectangle, and the three arcs within the three rectangles
shown are thus each the graphs of a function.

B

Examples.

1. The curve described by the equation F (x, y) = y2−2yx2 +x4 = 0 is the parabola y = x2,
a fact discovered by observing that F (x, y) = (y−x2)2 = 0. Hence F (x, y) = 0 is the implicit
representation of the (explicit) function y(x) = x2.

2. The curve of the equation F (x, y) = x2 + y2 = 0 consists of the single point (0, 0).

3. The curve of F (x, y) = x2 + y2 + 1 is empty. Not one (real) pair (x, y) is found to satisfy
this equation.

4. The curve of the equation F (x, y) = x2 − y2 = (x − y)(x + y) = 0 consists of the
union of the two lines y = x and y = −x. The intersection point (0, 0) of the two lines
is a bifurcation point. Under the restriction y ≥ 0 the equation F (x, y) = 0 becomes the
implicit representation of the sole explicit function y(x) = |x|, and under the restriction
y ≤ 0 the same equation F (x, y) = 0 becomes the implicit representation of the (single)
explicit function y(x) = −|x|
5. The curve shown to the right is the locus of the totality of points satisfying

F (x, y) = x4 + 10x2y2 + 9y4 − 13x2 − 45y2 + 36 = 0.

It consists of the union of a circle and an ellipse, as in fact,

F (x, y) = G(x, y)H(x, y) = (x2 + y2 − 4)(x2 + 9y2 − 9).

The combined grapf of the circle and the ellipse shows four points of bifurcation.

6. The curve of the equation

F (x, y) = (x2 + y2)2 − 3(x2 + y2) + 2 = 0
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consists of two concentric circles as shown in the figure to the right,
a fact discovered by observing that

F (x, y) = (x2 + y2)2 − 3(x2 + y2) + 2 = (x2 + y2 − 1)(x2 + y2 − 2).

1

2

7. The curve described by the equation

F (x, y) = x2 + y2 − 1 = 0, −1 ≤ x ≤ 1

is a full circle, which we may consider as consisting of two branches: an upper half circle and
a lower half circle, represented by the two continuous functions, written explicitly as

y1(x) =
√

1 − x2 and y2(x) = −
√

1 − x2

which are moreover differentiable both on −1 < x < 1. Under the additional restriction
y ≥ 0 the equation F (x, y) = 0 becomes the (unique) implicit representation of the function
y1(x) only, and under the additional restriction y ≤ 0 the equation F (x, y) = 0 becomes the
(unique) implicit representation of the function y2(x) only.

Relinquishing continuity, the equation F (x, y) = 0 may be the
implicit representation of a host of other, discontinuous, functions
like the one chosen at random and shown in the figure to the right.
Here y(x) ≥ 0 if −1 ≤ x < −0.4 and 0.4 < x ≤ 1; and y < 0 if
−0.4 ≤ x ≤ 0.4.

–1

–1 –0.4 0.4 1

1

8. The graph of the equation

F (x, y) = x2 + xy + y2 − 3 = 0 (1)

consists of the union of two curves explicitly described by the two functions

y1(x) =
1

2
(−x +

√
12 − 3x2), y2(x) =

1

2
(−x−

√
12 − 3x2) (2)

which are continuous on −2 ≤ x ≤ 2 and differentiable on −2 < x < 2. See the figure below.

–2

–1
0

1

2

–2 –1 1 2

y1(x)

y2(x)

A B

C D

A B

C D

–2

–1

0

1

2

–2 –1 1 2

With the restrictions −2 ≤ x ≤ 1, 1 ≤ y ≤ ∞ the equation F (x, y) = 0 becomes the
implicit representation of the sole function y = y(x) with the graph in the box ABCD in
the figure above to the left. By the restrictions −1 ≤ x ≤ 2, −1 ≤ y ≤ −∞ the equation
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F (x, y) = 0 becomes the implicit representation of the sole function y = y(x) with the graph
in the box ABCD in the figure above to the right.

We were able to produce the two explicit differentiable functions y1(x) and y2(x) out of
implicit expression (1) because for any fixed x expression (1) reduces to a mere quadratic
equation for y which can be solved by simple and formal algebraic means.

9. consider the function F (x, y) = ey + x2 − 1 = 0. We rewrite the equation as ey = 1 − x2

and restrict x to (−1, 1) and conclude that y = ln(1 − x2) is the sole explicit solution of
F (x, y) = 0.

10. If we choose in the equation

F (x, y) = xey + yex + x2 + y2 − 9 = 0

x = 1, then we are left with the transcendental equation ey + y + y2 − 8 = 0 which can
be solved for y but numerically and approximately. Now, even if F (x, y) = 0 is an implicit
representation of the explicit y(x), near x = 1, there is no way this equation can be written
explicitly in terms of elementary functions.

Before entertaining some general arguments, we shall theoretically demonstrate that the
equation F (x, y) = y5 + y − x + 1 = 0 is an implicit representation of one single function
y = f(x) for any x, inspite of the fact that it can not be turned explicit by any algebraic
means. Indeed, for any x the equation F (x, y) = 0 is a polynomial equation of odd degree
in y and possesses at least one real root. Since ∂F/∂y = 5y4 + 1 > 0 the function F (x, y) is
increasing for any fixed x and F (x, y) = 0 only once. If |x| >> 1, then y = 5

√
x, nearly.

Definition Let F (x, y) = 0 is defined in the rectangle a ≤ x ≤ b, a′ ≤ y ≤ b′. We
shall say that F (x, y) = 0 is an implicit representation of y = f(x) in the rectangle, if for
any a ≤ x ≤ b there is a single a′ ≤ y ≤ b′, such that the pair x, y satisfies the equation
F (x, y) = 0.

Even if the explicit y = f(x) can not be extracted from F (x, y) = 0 we may still want
to trace the graph of this function passing through point P0(x0, y0). To construct this curve
we shall need a sequence of points P1(x1, y1), P2(x2, y2), P3(x3, y3) and so on closely strung
on the curve. A way of moving from point P0 on the curve to a nearby point P1 consists of
numerically solving the pair of equations

F (x, y) = 0, (x− x0)
2 + (y − y0)

2 = ε2 (5)

in which ε > 0 is chosen small enough to produce close points for a smooth looking curve.

Is the general F (x, y) = 0, actually represent y = f(x) in the neighborhood of some
P (x0, y0), for which F (x0, y0) = 0, even if this function can not be written explicitly? The
following theorem provides a sufficient condition for the existence of a rectangle containing
P inside which F (x, y) = 0 defines the single function y = y(x).

Implicit functions Theorem. If function F (x, y) of the two variables x and y satisfies
the four conditions:

1. F (x0, y0) = 0 for x = x0, y = y0
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2. F (x, y) is continuous in some neighborhood of x = x0, y = y0, that is to say,
F (x, y) → F (x0, y0) as x → x0 and y → y0

3. The partial derivatives Fx and Fy of F exist and are continuous in some neighborhood
of x = x0, y = y0

4. Fy(x0, y0) �= 0

then there is a neighborhood of point (x0, y0) in which there is one and only one contin-
uous and differentiable function y = f(x), y0 = f(x0), that satisfies F (x, f(x)) = 0.
Derivative function f ′(x) of the implicit function is continuous and is given by f ′(x) =
−Fx(x, y)/Fy(x, y) with y = f(x).

F=0

F>0

F<0

F>0

F<0

Fy>0

F=0C

δx
δy

A B

P Q

R S

Proof. Refer to the figure above in which the sides of the rectangle PQRS are parallel to
the x and y axes. Assume that the function F (x, y) satisfies the conditions of the theorem
in and on the rectangle. At point A the partial derivative Fy �= 0 and we assume that
(∂F/∂y)A > 0. Function F (x, y) is thus increasing with y, and on some interval above point
A, say up to point R, F > 0, and in some interval below point A, say up to pint P , F < 0.
The continuity of F along x implies the existence of δx such that F (S) > 0 and F (Q) < 0.
The continuity of F along y implies that F = 0 at point C strictly between S and Q. By the
assumption that Fy > 0 on the rectangle, F = 0 on the side QS only once. Implicit function
y = f(x) is the y coordinate of point C.

We will show now that y(x) is differentiable at point A and similarly that the function
is differentiable at any other intermediate point on the curve. Using the fact that F (A) =
F (C) = 0 we obtain from the previous paragraph that

0 = (
∂F

∂x
)A + (

∂F

∂y
)B

δy

δx
+ g1 + g2

δy

δx
.

The continuity assumption on the partial derivatives implies that

lim
δx→0

(
∂F

∂y
)B = (

∂F

∂y
)A
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and

(
∂F

∂x
)Adx + (

∂F

∂y
)Ady = 0

or y′(x) = −(∂F/∂x)/(∂F/∂y). Derivative function y′(x) is continuous since it consists of
the ratio of two continuous functions with Fy �= 0. Function y(x) is differentiable at point
A and is therefore also continuous there. End of proof.

Examples and counterexamples.

1. For y2 − x = 0 we obtain by implicit differentiation 2yy′ − 1 = 0 leading to the absurdity
0 = −1 if x = y = 0 because the function y =

√
x is not differentiable at x = 0.

2. For (x− y)2 = x2 − 2xy + y2 = 0 we obtain by implicit differentiation (x− y)(1− y′) = 0
and y′ = 1 if x− y �= 0. Actually y = x and y′ = 1 for any x.

3. Expression (x−y)(x+y) = x2−y2 = 0 represents two orthogonal lines through x = y = 0.
By implicit differentiation x−yy′ = 0 and at x = y = 0 we get 0 = 0 because of the ambiguity
of the bifurcation.

4. Expression x2 + y2 = 0 represents the mere point x = y = 0. By implicit differentiation
x + yy′=0, and at x = y = 0 this reduces to 0 = 0.

5. The equation F (x, y) = y3 − x3 = 0 is equivalent to y = x for any x. We have here that
3y2y′ − 3x2 = 0 which reduces to 0 = 0 at P (0, 0).

6. Consider
F (x, y) = x3y + xy3 + x + y − 4 = 0.

Recalling the chain rules (y2)′ = 2yy′ and (y3)′ = 3y2y′, and diffrentiating both side of the
above equation with respect to x we have

(3x2 + x3y′) + (y3 + 3xy2y′) + 1 + y′ = 0

which is linear in y′, and is readily solved to produce

y′ = −3x2y + y3 + 1

x3 + 3xy2 + 1
= −Fx(x, y)

Fy(x, y)
.

For x = 1, y = 1, that satisfy the present F (x, y) = 0, yields y′(1) = −1

7. For F (x, y) = y3−6xy+5 = 0 we shall compute y′ and y′′ at P (1, 1). From (y3−6xy+5)′ =
0 we obtain y2y′ − 2y − 2xy′ = 0, and y′(1) = −2. From (y2y′ − 2y − 2xy′)′ = 0 we obtain
2y′y′ + y2y′′ − 4y′ − 2xy′′ = 0, and y′′(1) = 16.

8. Expression x2 + y2 = r2 describes both the upper and the lower arc of a circle centered
at C(0, 0) and having radius r. Repeated differentiation produces here

x + yy′ = 0 and 1 + (y′)2 + yy′′ = 0

so that the critical points of both functions implicit in the equation of the circle happen to
be at x = 0, y = ±r. But if y′ = 0, then y′′ = −1/y, and y′′ = −1/r if y = +r, implying a
local maximum, and y′′ = 1/r if y = −r implying a local minimum.
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9. For the function

F (x, y) = G(x, y)H(x, y) = (x2 + y2 − 4)(x2 + 9y2 − 9)

considered before we have

∂F

∂x
=

∂G

∂x
H + G

∂H

∂x
and

∂F

∂y
=

∂G

∂y
H + G

∂H

∂y

and both ∂F/∂x = 0 and ∂F/∂y = 0 at the bifurcation points at which at once G = H = 0.

Exercises.

1. Find all critical points of the folium of Descartes x3 + y + 3 − 3xy = 0. Ans. y′ =
−(x2 − y)/(y2 − x). x0 = 21/3, y0 = 41/3. Max.

2. Show that if f(x+y) = f(x)+f(y) for any x and y, then f(x) = ax for constant a. Hint:
First we observe that if x = y = 0, then f(0) = 2f(0), and hence f(0) = 0. We introduce
the auxiliary variable u = x+ y, and have upon differentiation with respect to x and y that
f ′(u) = f ′(x) and f ′(u) = f ′(y), or f ′(x) = f ′(y) for any x and y, implying that f ′(x) = a
for some constant a. Hence f(x) = ax + b, but b = 0.

3. Show that if function f(x) is such that

f(x + y)f(x− y) = f2(x) − f2(y)

for any x and y, then f(0) = 0, and f ′′(x)/f(x) =constant. Hint: Set in the above equation
x = (u + v)/2, y = (u− v)/2 and differentiate it twice with respect to u and v.

4. Prove that if differentiable function f(u) is such that f(x + y) = f(x) + f(y) for any x
and y, then f ′(x) = f ′(y) for any x and y.

5. Prove that if differentiable function f(u), u > 0 is such that f(xy) = f(x) + f(y) for any
positive x and y, then xf ′(x) = yf ′(y) for any positive x and y.

6. Prove that if differentiable function f(u) is such that f(x + y) = f(x)f(y) for any x and
y, then f ′(x)/f(x) = f ′(y)/f(y) for any x and y.

7. For what function does it happen that f(xy) = f(x)f(y)?

11.3 Tracking an implicit curve

Pursuing an implicit differentiable curve, or trajectory, entails placing close points on it.
Presented here is a leap-and-land algorithm for doing that. Let F (x, y) = 0 be the implicit
equation of the curve and let A(x0, y0) be a point on it such that F (A) = 0. The equation
of the tangent line to the curve at point A is

(
∂F

∂x
)Adx + (

∂F

∂y
)Ady = 0 or (

∂F

∂x
)A(x− x0) + (

∂F

∂y
)A(y − y0) = 0

We propose to leap forward from point A and place point B on the tangent line at distance
ε from A. Point B is close to the curve (one must beware, though, of the danger of jumping
from one branch of the function to another that may happen to be nearby) and from it we
will attempt a short distance return that will land us back on the curve.
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The tangential leap is restricted to distance ε with dx2 + dy2 = ε2, resulting in

dx = ε
Fy√

F 2
x + F 2

y

, dy = −ε
Fx√

F 2
x + F 2

y

(1)

with the signs chosen to produce a clock-wise tracking, and with the partial derivatives
evaluated all at point A. For instance, if F (x, y) = x2 + y2 − 1, then Fx = 2x, Fy = 2y,
and dx = εy0 and dy = −εx0. A tangential leap originating at A(x0, y0) terminates at point
B(x0 + εy0, y0 − εx0). Look an the figure below.

ε
A

B

C

F=0

F=F(B)

(Fx)A dx+(Fy)A dy=0  

(Fx)B dx+(Fy)B dy=0  

(Fy)B dx-(Fx)B dy=0  

We consider point B(x1, y1) as situated on the curve F (x, y) = F (B) = F (x1, y1) having
the tangent line

(
∂F

∂x
)Bdx + (

∂F

∂y
)Bdy = 0 or (

∂F

∂x
)B(x− x1) + (

∂F

∂y
)B(y − y1) = 0.

Point C is the intersection point of the line orthogonal to this tangent line and the curve
F = 0. To reach point C from point B we need the corrections dx and dy such that

F (x1 + dx, y1 + dy) = 0 under the restriction that (Fy)Bdx− (Fx)Bdy = 0.

This system of equations is solved approximately by the linearization

F (x1 + dx, y1 + dy) = F (x1, y1) + (Fx)Bdx + (Fy)Bdy = 0

to yield

dx = − F

F 2
x + F 2

y
Fx, dy = − F

F 2
x + F 2

y
Fy

in which function F and its partial derivatives Fx and Fy are evaluated at point B(x1, y1).

If |F (C)|, evaluated at C(x1 + dx, y1 + dy), is less than some prescribed tolerance, then
a new leap is executed and a new landing on the curve attempted. If |F (C)| is deemed not
sufficiently small, then point C is taken instead of point B and the linearization is repeated.

8



Chapter 11

The above figure shows a fourteen-step tracking of the unit circle F (x, y) = x2 + y2 − 1
by linear leaps of ε = 0.49 and a single orthogonal correction.

11.4 The osculating line and circle

Let the equation F (x, y) = 0 be the implicit representation of the function y = f(x),
which we assume twice differentiable around some point P on its curve. The equation of the
tangent (osculating) line to the graph of the function at point P (x1, y1) on the curve is

(x− x1)(Fx)1 + (y − y1)(Fy)1 = 0

in which, for short, Fx = ∂F/∂x and Fy = ∂F/∂y, and where the subscript 1, refers to
evaluations at point P (x1, y1). Subsequently we will drop the subscript 1 for notational
neatness. The line is said to be osculating1 to the graph since y(x1) and y′(x1) for the line
are the same as for the function.

To obtain y′′(x) for the implicit function we start with

dF = 0 = Fx dx + Fy dy or G =
dF

dx
= 0 = Fx + Fyy

′

and proceed to obtain

dG

dx
=

d2F

dx2
= 0 =

dFx

dx
+

d(Fyy
′)

dx
=

dFx

dx
+

dFy

dx
y′ + Fyy

′′

and consequently
0 = Fxx + Fxy + (Fyx + Fyyy

′)y′ + Fyy
′′.

Assuming that Fxy = Fyx and using y′ = −Fx/Fy we obtain the second derivative in terms
of the partial derivatives as

y′′ =
−FxxF

2
y + 2FxyFxFy − FyyF

2
x

F 3
y

.

We write the equation of the general circle

(x− x0)
2 + (y − y0)

2 = r2

1 Related to scale, to mount, to climb up, to cover
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and repeatedly differentiate it to have

(x− x0) + (y − y0)y
′ = 0 and 1 + y′2 + (y − y0)y

′′ = 0

from which we obtain the center C(x0, y0) and radius r as

x0 = x− 1 + y′2

y′′
y′, y0 = y +

1 + y′2

y′′
r =

(1 + y′2)3/2

|y′′| .

Putting into the above expressions y′ and y′′ of any function we obtain the center and radius
of the osculating circle to the curve at point P (x, y) on it. If the function is given implicitly
as F (x, y), then in terms of the partial derivatives

x0 = x +
F 2
x + F 2

y

∆
Fx y0 = y +

F 2
x + F 2

y

∆
Fy r =

√
F 2
x + F 2

y

|∆|
∆ = −FxxF

2
y + 2FxyFxFy − FyyF

2
x .

Examples.

1. If f(x) = x2, then f ′(x) = 2x and f ′′(x) = 2. For this parabola

x0 = −x3, y0 =
1

2
(1 + 6x2), and r =

1

2
(1 + 4x2)3/2.

In particular, if x = 0, then x0 = 0, y0 = 1/2, and r = 1/2.

2. Take F (x, y) = y2 − x and P (0, 0). Here, at P

Fx = −1, Fy = 0 Fxx = 0, Fxy = 0, Fyy = 2 ∆ = −2

so that
x0 = 1/2, y0 = 0, r = 1/2

and the osculating circle is as in the figure below.

y=√x

(x-1/2)2+y2=1/4

0

vertical tangent line

In the tracking algorithm of the previous section instead of
leaping from point A on the curve to point B nearby, moving on
the tangent line, we could proceed along an arc of the osculating
circle to be even closer to the curve before attempting to land on
it.

Consider the figure below to the right. Geometrically, we my
construct the osculating circle this way. The center of a circle, and
consequently its radius is found at the intersection of two normals.
Let the arc in the figure to the right be the graph of function f ,
twice differentiable in some neighborhood of x1. A small portion of the bent arc between
points A and B appears circular. The two normals raised at point A and B intersect at
point C. If point C reaches a limit position as B → A, then point C is the center of the
osculating circle to the curve at point A.
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The coordinates of point C are found from the intersection of the two normals

y − y1 = − 1

y′1
(x− x1), y − y2 = − 1

y′2
(x− x2)

and

x0 = lim
x2→x1

(y2 − y1)y
′
1y

′
2 − x1y

′
2 + x2y

′
1

y′1 − y′2
.

Application of L’Hôpital’s rule produces the limit values

x0 = x− y′

y′′
(1 + y′2), y0 = y +

1

y′′
(1 + y′2)

in which the subscript 1 was removed. The radius r of the limit circle is

r = [(x− x0)
2 + (y − y0)

2]1/2 =
1

|y′′|(1 + y′2)3/2

as before.

x1

y1

x2

y2

slope=-1/y1'

slope=-1/y2'

A

B

C(x0,y0)

The inverse κ = 1/r is called the curvature of the curve at point A,

κ =
|y′′|

(1 + y′2)3/2
.

For a line κ = 0, and at a corner κ = ∞.

We can obtain the osculating circle also also this way. Let
f(x) be twice differentiable at x = 0 and such that f(0) =
f ′(0) = 0. The equation of a circle of radius r centered at
C(0, r) and passing through O(0, 0) is x2 + (y − r)2 = r2. The
intersection of this circle and f(x) occurs at points O and P .
See the figure to the right. At an intersection point y = f(x)
and at such a point x2 + (f − r)2 = r2 or

r =
x2 + f2

2f
.

circle

f(x)

O

P

C(0,r)

of radius r

Letting x → 0, or P → O, and using L’Hôpital’s rule we get

lim
x→0

x2 + f2

2f
= lim

x→0

2x + 2ff ′

2f ′
= lim

x→0

1 + f ′2 + ff ′′

f ′′
=

1

f ′′(0)

which is the radius of the osculating circle at P .

For the function f(x) = (ex + e−x)/2 − 1 this yields r = 1.

11.5 The osculating ellipse

11
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We shall write the equation of the osculating ellipse for a symmetrical function at P (0, 0).
In its canonical form the equation of the ellipse is

b2(x− x0)
2 + a2(y − y0)

2 = a2b2.

Differentiating the equation repeatedly we obtain the set of four equations

b2(x− x0) + a2(y − b)y′ = 0, b2 + a2y′2 + a2(y − y0)y
′′ = 0

3y′y′′ + (y − y0)y
′′′ = 0, 3yy′′2 + 4y′y′′′ + (y − y0)y

′′′′ = 0.

For x = 0, y = 0, y′ = 0, y′′ > 0, y′′′ = 0, y′′′′ > 0 the
equations are reduced to

x0 = 0, y0 = b, b = 3y′′/y′′′′ and a =
√

3/y′′′′.

For the function f(x) = (ex + e−x)/2 − 1 the semi-axes are
a =

√
3, b = 3. See the figure to the right.

3

–2 2

y=(ex+e-x)/2-1

ellipse

circle

0

11.6 From Fixed-point to Newton to Halley to Higher Order Iterations

11.6.1 Fixed point iteration

Definition. Real number a is a fixed point of function f(x) if a = f(a).

The, utterly simple, fixed point iteration method recursively gets xn+1 from xn by xn+1 =
f(xn), starting with an initial guess x0. Under certain conditions xn → a, the fixed point of
f(x), as n → ∞.

The First Fixed Point Iteration Theorem: Let a be a fixed point of f(x). If |f ′(x)| < 1
on the open interval I = (a− δ, a+ δ), δ > 0, then the sequence {xn} generated by the fixed
point iteration xn+1 = f(xn) converges to a, for any initial guess x0 ∈ I.

Proof. Let x0 ∈ I. We write

x1 − a = f(x0) − a = f(x0) − f(a)

apply the mean-value theorem in the form f(x0) = f(a) + (a− x0)f
′(ξ), and have

x1 − a = (x0 − a)f ′(ξ) or |x1 − a| = |x0 − a| |f ′(ξ)|

where ξ ∈ I. By virtue of the fact that |f(ξ)| < 1 the next iterant x1 = f(x0) is nearer to a
then x0 and is therefore also in I. End of proof.

Example. Consider the linear function f(x) = k(x− a) + a, k �= 1. for which

x1 − a = k(x0 − a).

If k > 0, then x1 − a and x0 − a have the same sign, but if k < 0, then x1 − a and x0 − a
have opposite signs.

12
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See the figure below.

f(x1)

a ax1� x1�x0

�

�f(x1)�

f(x0)�

y=x

y=f(x)
y=f(x)f(x0)

x0

Moreover, as |k| becomes smaller, or as the linear function f(x) = k(x − a) + a tilts closer
to being horizontal, convergence becomes faster. See the figure below.

a

�

y=f(x)

a

y=f(x)

y=x y=x

In the general case, we expect the fixed point iteration x1 = f(x0) to be fast converging if
function f(x) is flat and nearly horizontal at x = a. Namely, if f ′(a) = f ′′(a) = · · · = 0,
which is the assertion of the next theorem.

The second, general, fixed point theorem: Let a be a fixed point of function f(x), a =
f(a). Suppose f(x) has a bounded derivative of order m + 1 in an open interval containing
fixed point a. If f ′(a) = f ′′(a) = . . . = f (m)(a) = 0, but f (m+1)(a) �= 0, then the sequence
xn produced by the recursion xn+1 = f(xn) is such that |a − xn+1| < c|a − xn|m, for some
constant c > 0, provided that x0 is taken close enough to a.

Proof: We shall prove the theorem for the specific case of m = 2. Let f ′′(x) be bounded on
the interval I = (a− δ, a+ δ), δ > 0, and assume x to be in this interval. Taylor’s expansion
of f(x) around point a is

f(x) = f(a) + (x− a)f ′(a) +
1

2
(x− a)2f ′′(a) +

1

6
(x− a)3f ′′′(ξ), a < ξ < x

if x is to the right of a. The assumptions a = f(a), f ′(a) = 0, f ′′(a) = 0 reduce this equality
to f(x)−a = (1/6)(x−a)3f ′′′(ξ) or |f(x)−a| ≤ (M/6)|x−a|3, where M is an upper bound

13
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on |f ′′′(x)| in I. For x1 = f(x0) the inequality becomes

|x1 − a| ≤ c|x0 − a|3, c =
M

6

and if |x0 − a| < 1, then |x0 − a|3 is much smaller than one. For x0 sufficiently close to a,
x1 is closer to a then x0, and hence it is also in I, and so on. End of proof.

Exercises.

1. If the fixed-point iteration

x1 =
x2

0 + x0 + 2

x2
0 + x0 + 1

, x1 = f(x0)

converges, to what number does it converge? Show that x1 > 0 for any x0. Consider f ′(x)
and prove that it converges from any starting point. What is x1 if x0 is very large?

2. If the fixed-point iteration

x1 =
x0

1 +
√

1 + x2
0

, x1 = f(x0)

converges, to what number does it converge? Does the scheme converge from any starting
point? What is x1 if x0 is very large?

3. Study the convergence, or divergence, of

xn = ex0−0.5 − 0.5.

Start from x0 = 0.45, then from x0 = 0.55.

4. Find fixed points a of
f(x) = αx(1 − x).

For what α is |f ′(a)| < 1?

5. Study the behavior of the fixed point iterates of f(x) = αx(1 − x) for a = 3.45 and
a = 3.5699465. Start with x0 only slightly different than the fixed point.

6. Study the behavior of the iterates of x1 = 1−x0+x2
0. Start with x0 = 0.99 and x0 = 1.01.

7. Study the behavior of the iterates of x1 = 1/(2−x0). Start with x0 = 0.99 and x0 = 1.01.

8. Study the behavior of the iterates of x1 = 1/(2−x0)
2. Start with x0 = 0.99 and x0 = 1.01.

9. For what c does f(x) = x2 + c have a fixed point? Study the behavior of the iterates of
xn+1 = f(xn) for c = −1,−1.5 and c = −2. Start with x0 = 0 and carry at least 20 iterative
steps.

10. Apply the fixed point iteration xn+1 = f(xn) to the function f(x) = kx+ (1− k)a with
0 ≤ k < 1. Show that xn = kn(x0 − a) + a so that xn → a = f(a) as n → ∞.

Theorem: Let function y = f(x) be continuous and such that for any a ≤ x ≤ b also
a ≤ y ≤ b (concisely put f : [a, b] → [a, b].) Then f(x) has at least one fixed point c = f(c).

14
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Proof. By the assumptions f(a) ≥ a and f(b) ≤ b, hence according to the Intermediate
Value Theorem there exists a number c ∈ [a, b] such that c = f(c). End of proof.

The Banach fixed point theorem: Let I = [a, b] be a closed, finite or infinite, interval.
If function f(x) is such that:

1. for any x ∈ I also f(x) ∈ I

2. |f(x) − f(y)| ≤ q|x− y| with 0 ≤ q < 1

Then

1 function f(x) has a unique fixed point a = f(a)

2 for any x0 ∈ I the sequence x0, x1, x2, . . . generated by xn+1 = f(xn) converges to the fixed
point a.

Remark. Notice that f(x) is not assumed continuous in this theorem.

Proof. To prove uniqueness suppose a �= b are two fixed points of f(x) in I. The assumptions
on a and b imply that

|a− b| = |f(a) − f(b)| ≤ q|a− b| < |a− b|

which is a contradiction unless a = b.

We will prove the second part of the theorem by showing that:

1. The sequence {xn}n=∞
n=0 generated by xn+1 = f(xn) is a Chaucy sequence and hence

converging to some real a.

2. a ∈ I.

3. a = f(a)

We have that

|xn+1 − xn| = |f(xn) − f(xn−1)| ≤ q|xn − xn−1| ≤ · · · ≤ qn|x1 − x0|.

Also, since xn − x0 = (xn − xn−1) + (xn−1 − xn−2) + · · · + (x1 − x0), then

|xn − x0| ≤ |xn − xn−1| + |xn−1 − xn−2| + · · · + |x1 − x0|

or

|xn − x0| ≤ (qn−1 + qn + · · · + 1)|x1 − x0| =
1 − qn

1 − q
|x1 − x0|.

Similarily,

|xm − xn| ≤ qn
1 − qm−n

1 − q
|x1 − x0|, m > n

implying that indeed {xn}n=∞
n=0 is a Cauchy sequence which has a limit, say a.

Since x0 ∈ I, then also x1 = f(x0) ∈ I and so on for all xn. Hence a ∈ I.

To prove that a is a fixed point of f(x) assume it is not so, that |f(a)−a| = ε > 0. Since
xn → a, natural number N exists such that |xn − a| ≤ ε/2 for all n ≥ N . But

|f(a) − a| = |(f(a) − xN+1) + (xN+1 − a)| ≤ |f(a) − xN+1| + |a− xN+1|
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= |f(a) − f(xN )| + |a− xN+1|
≤ q|a− xN | + |a− xN+1| < ε

which is a contradiction, and a is a fixed point of f(x). End of proof.

Theorem: Let a be the fixed point of f(x) under the assumptions of the previous theorem.
Then for any natural n

|xn − a| ≤ qn

1 − q
|x1 − x0|

or equivalently

|xn+1 − a| ≤ q

1 − q
|xn+1 − xn|

and
|xn+1 − a| ≤ q|xn − a|.

Proof. From the properties of f(x) and the way xn+1 is obtained from xn we have that

|xn − a| = |f(xn−1 − f(a)| ≤ q|xn−1 − a|
≤ q2|xn−2 − a| ≤ · · · ≤ qn|x0 − a|.

But
|x0 − a| = |x0 − x1 + x1 − a| ≤ |x0 − x1| + |x1 − a|

≤ |x1 − x0| + q|x0 − a|
and

|x0 − a| ≤ 1

1 − q
|x0 − x1|.

End of proof.

We briefly consider the appliction of the fixed point iteration to the solution of the linear
system of equations Ax = f . We write x = x + α(Ax− f), α �= 0 which is equivalent to the
original system. How to fix α so that x1 = x0 + α(Ax0 − f) converges, and at a brisk pace,
is not a simple matter, but an example will do for now. Take α = 1/2, start with the initial
vector x0 = (0, 0) and carry out several iteratios towrd the solution of the linear system of
two equations in two unknowns[

2 −1
−1 2

] [
x1

x2

]
=

[
4
−5

]
, Ax = f, x =

[
1
−2

]
.

11.6.2 The Newton-Raphson iteration

Finding the root a of the nonlinear equation f(x) = 0. is equivalent to locating the fixed-
point of x = x + g(x)f(x), g(a) �= 0. We write F (x) = x + gf and seek g(x) so that
F ′(a) = 0 to secure, in view of the previous theorem, a quadratic convergence for xn+1 =
xn + F (xn). Differentiating F (x) by the product rule we have F ′(x) = 1 + g′f + gf ′, and
F ′(a) = 1 + g′f(a) + gf ′(a) = 1 + gf ′(a) since f(a) = 0. Conceding that we do not know

16



Chapter 11

fixed point a we settle for a = xn to have g(xn) = −1/f ′(xn), or in short g = −1/f ′n. With
this g the fixed-point iteration becomes

xn+1 = xn − fn
f ′n

which is the Newton-Raphson method, presently shown to quadratically converge to a simple
root of f(x) = 0. To prove the quadratic convergence of the NR method we derive it from
the fixed point iteration by taking F (x) = x+ g(x)f(x), g(x) = A/f ′(x) for constant A, and
fix it from F ′(a) = 0 as A = −1 independently of a. For a geometrical interpretation of the
NR method see the figure below.

a x1 x0

f(x0)

tangent

x0-x1

f(x0)�
x0-x1

=f'(x0)

f(x)

To observe the quadratic convergence of the NR method we select f(x) = x2 − 1 for which
x1 = x0−(x2

0−1)/(2x0), or x1−1 = x0−1−(x2
0−1)/(2x0) resulting in x1−1 = (1/2x0)(x0−1)2

or x1 − 1 = (1/2)(x0 − 1)2 if x0 = 1, nearly.

Exercises.

1. Show that the Newton-Raphson method converges to the (repeating) root of f(x) = x2 =
0 only linearly.

2. Fix constant A so as to make the modified Newton-Raphson method xn+1 = xn −
Af(xn)/f ′(xn) converge quadratically to the zero root of the cubic f(x) = a2x

2 + a3x
3.

3. Study the convergence of the Newton-Raphson method in locating the root of f(x) = x1/3.

It may happen that even if root a of f(x) = 0 is unknown still f ′(a) is known via
a differential equation for f . Consider using the NR method for computing the natural
logarithm. Here f(x) = ex − α, the root of which is a = lnα, and f ′(a) = α. Using
xn+1 = xn − fn/f

′
n we have xn+1 = xn − (exn − α)/exn , while using xn+1 = xn − fn/f

′(a)
we have xn+1 = xn − (exn − α)/α.

11.6.3 The Halley iteration

We write x = F (x), F (x) = x + g(x)f(x) so that the fixed point a of F is a root
of f, f(a) = 0, if g(a) �= 0, and we prepare to consider the fixed point iterative method
xn+1 = F (xn). We differentiate F (x) twice to have

F ′(x) = 1 + gf ′ + g′f and F ′′(x) = gf ′′ + 2g′f ′ + g′′f

17
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and if F ′(a) = F ′′(a) = 0, then the sequence generated by the recursion xn+1 = F (xn) is,
under propitious circumstances, cubically converging to fixed point a. But we do not know
a. The correct NR method is obtained from the fixed point iteration method under the
assumption that g(xn) is a constant, or g′ = g′(xn) = 0. Here we assume g′′(xn) = 0. Not
knowing fixed point a we replace the conditions F ′(a) = 0 and F ′′(a) = 0 by F ′(xn) = 0 and
F ′′(xn) = 0. By this mitigating conditions g and g′ are obtained from the linear system

[
f ′ f
f ′′ 2f ′

] [
g
g′

]
=

[−1
0

]
and g =

det
[−1 f

0 2f ′

]
det

[
f ′ f
f ′′ 2f ′

] =
−2f ′

2f ′2 − ff ′′

where f , g and their derivatives are all evaluated at xn. Now

xn+1 = xn − 2f ′n
2f ′2n − fnf ′′n

fn

which is Halley’s method.

To observe the cubic convergence Halley’s method we take f(x) = x2 − 1, for which
f ′ = 2x and f ′′ = 2, and we readily ascertain that here xn+1 − 1 = (1/(1 + 3x2

n))(xn − 1)3,
or xn+1 − 1 = (1/4)(xn − 1)3 if xn = 1, nearly.

To prove the cubic convergence of Halley’s method write it as xn+1 = F (xn) for F (x) =
x + g(x)f(x) and g(x) = −2f/(2f ′2 − ff ′′). We verify that g(a) = −1/f ′(a) and g′(a) =
f ′′(a)/(2f ′2(a)) for a such that f(a) = 0. It follows that F ′(a) = F ′′(a) = 0, and we conclude
that convergence is indeed cubic for f(x) satisfying the hypotheses of the general fixed point
iteration theorem.

11.6.4 Still higher order iterative methods

A, hopefully quartic, iterative method is created by letting F ′(xn) = 0, F ′′(xn) = 0 and
F ′′′(xn) = 0. Differentiating F (x) = x + gf thrice to have

F ′ = 1 + gf ′ + g′f, F ′′ = gf ′′ + 2g′f ′ + g′′f, F ′′′ = gf ′′′ + 3g′f ′′ + 3g′′f ′ + g′′′f

we set g′′′ = g′′′(xn) = 0 and obtain from F ′ = F ′′ = F ′′′ = 0 the linear system of three
equations in three unknowns  f ′ f 0

f ′′ 2f ′ f
f ′′′ 3f ′′ 3f ′


 g
g′

g′′

 =

−1
0
0


for g, g′, g′′. This system is solved as

g =

det

−1 f 0
0 2f ′ f
0 3f ′′ 3f ′


det

 f ′ f 0
f ′′ 2f ′ f
f ′′′ 3f ′′ 3f ′


= − 6f ′2 − 3ff ′′

6f ′3 − 6ff ′f ′′ + f2f ′′′
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and our proposed, hopefully quartic, iterative method, becomes

xn+1 = xn − 6f ′2n − 3fnf
′′
n

6f ′3n − 6fnf ′nf ′′n + f2
nf

′′′
n
fn

implicit in a formula of Householder [3]. To observe the order of convergence of this method
we select the function f(x) = x2 − 1 for which f ′(x) = 2x, f ′′(x) = 2, f ′′′(x) = 0, and
determine that xn+1 − 1 = (1/(4x3

n + 4xn))(xn − 1)4, or xn+1 − 1 = (1/8)(xn − 1)4, nearly,
if xn = 1, nearly.

To prove the quartic convergence of this method we write it as xn+1 = F (xn) for F (x) =
x + g(x)f(x) and g(x) = (−6f ′2 + 3ff ′′)/(6f ′3 − 6ff ′f ′′ + f2f ′′′), where f is short for
f(x). We verify (using Mathematica) that g(a) = −1/f ′, g′(a) = f ′′/(2f ′2) and g′′(a) =
−f ′′2/(2f ′3)+ f ′′′/(3f ′2) where f ′, f ′′, f ′′′ are short for f ′(a), f ′′(a)′, f ′′′(a). It readily results
that F ′(a) = F ′′(a) = F ′′′(a) = 0, proving that convergence is indeed quartic for f(x)
satisfying the hypotheses of the general fixed point iteration theorem.

11.6.5 Direct derivation of high order iterative methods from the general fixed
point iteration theorem

For f(x) = x2 − α = 0, a =
√
α the NR method is xn+1 = xn − 1/(2xn)fn, fn = f(xn).

For α = 2 it becomes the ubiquitous recursion xn+1 = xn/2 + 2/xn, and xn+1 −
√

2 =
(1/2xn)(xn −

√
2)2 or xn+1 −

√
2 = (

√
2/4)(xn −

√
2)2, nearly, if xn is close to

√
2, implying

that convergence is quadratic, and from above. We suggest to reform the NR method, writing
it as xn+1 = xn − xn(x2

n − 2)/(2x2
n) and set x2

n = 2 so as to have xn+1 = (xn/4)(6 − x2
n).

Division by xn is thereby replaced by a multiplication. Some algebra leads to xn+1 −
√

2 =
−(1/4)(xn + 2

√
2)(xn −

√
2)2 or xn+1 −

√
2 = (−3

√
2/4)(xn −

√
2)2, nearly, if xn is close to√

2, implying that convergence is quadratic, and from below. Yet we notice that the factor
−3

√
2/4 is three times bigger in magnitude then the corresponding factor in the unaltered

NR method.

It occurs to us now that since the two methods converge from opposite directions their
average weighted at the ratio of 3/4 to 1/4 should do better. Taking

xn+1 =
3

4

x2
n + 2

2xn
+

1

4
xn(6 − x2

n)

we obtain

xn+1 = − 1

16xn
(x4

n − 12x2
n − 12)

or

xn+1 −
√

2 = −xn + 3
√

2

16xn
(xn −

√
2)3

demonstrating that the we have constructed in this way a cubic method. If xn =
√

2, nearly,
then xn+1 −

√
2 = −(1/4)(xn −

√
2)3, nearly, implying that the error of this cubic method

alternates in sign.

To directly obtain a quartic method for f(x) = x2 − α = 0, a =
√
α from the general

fixed point iteration theorem we propose to write f(x) = 0 as x = x + g(x)f(x), or shortly
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x = F (x), for g = x−1(A + Bx2 + Cx4), and fix constants A,B,C so that F ′(a) = F ′′(a) =
F ′′′(a) = 0. The special choice of weight function g is designed to assure the explicit
dependence of A,B,C on α but not on a. In fact,

A = − 5

16
, B = − 1

4α
, and C =

B

4α
= − 1

16α2
.

For the choice

g(x) =
1

x

A + Bx2

1 + Cx2

we find

A = −1

4
, B = − 3

4α
, and C =

1

α
.

To numerically compare the NR method to the quartic methods we select α = 2 and
x0 = 1. For this values the NR method converges in five steps, but the quartic in three.
Of course, the computational efficiency of the different methods must also be taken into
consideration, but it is not for now.

For
g(x) = x−1(A + Bx2 + Cx4 + Dx6)

we obtain

A = − 35

128
, B = − 47

128α
, C =

23

128α2
and D = − 5

128α3
.

For

g(x) =
1

x

A + Bx2 + Cx4

1 + Dx2 + Ex4

we obtain

a = −1

6
, B = − 5

3α
, C = − 5

6α2
, D =

10

3α
and E =

1

α2
.

Convergence with these last two methods is in two steps.

For computing the root of f(x) = ex−α we propose the weight function g(x) = A+Bex+
Ce2x and fix the constants A, B and C so that F ′(a) = F ′′(a) = F ′′′(a) = 0. The success
of this choice of g(x) hinges on the fact that A, B and C depend on α but are independent
of the root a of f(x) = 0, here a = lnα. Repeatedly differentiating F (x) = x + g(x)f(x) we
have F ′ = 1 + g′f + gf ′, F ′′ = g′′f + 2g′f ′ + gf ′′, and F ′′′ = g′′′f + 3g′′f ′ + 3g′f ′′ + gf ′′,
from which we obtain by means of some simple algebra

A = − 11

6α
, B =

7

6α2
, C = − 1

3α3

and forthwith the quartic method

xn+1 = xn + (− 11

6α
+

7

6α2
en − 1

3α3
e2
n)(en − α), en = exn

that requires the computation of ex in each iterative cycle only once.
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For the rational

xn+1 = xn +
A + Ben
1 + Cen

(en − α), en = exn

we have

A = − 5

2α
, B = − 1

2α2
, C =

2

α
.

To find the root of f(x) = lnx− α we propose

xn+1 = xn + xn(A + B lnxn + C ln2 xn)(lnxn − α)

but decide to take C = 0 and find A = −1−α/2, B = 1/2. Halley’s method applied to this
function yields the recursion

xn+1 = xn − 2xn
2 − α + ln

(ln − α), ln = lnxn.

Correspondingly, we propose

xn+1 = xn + xn
A + Bln
1 + Cln

(ln − α), ln = lnxn

and find

A =
6 + α

−6 + 2α
, B =

1

6 − 2α
, C =

1

3 − α
.

To numerically compare the two methods we choose α = 0.5, so that a =
√
e, and take

as starting value x0 = 1. Once more, Halley’s method converged in three steps and our
rational method converged in two steps.

Once a good program is available for the evaluation of sinx and cosx, 0 < x < π/2, the
inverse trigonometric function arcsinx can be obtained as the solution of sinx− α = 0. For
a cubic iterative solution method we propose to take g(x) = A + B cosx, and we ascertain
that F (a) = F ′′(a) = 0 if A = (3α2 − 2)/(2β3) and B = −α/(2β3), where β =

√
1 − α2.

To have a quartic method we suggest g(x) = (A + B cosx)/(1 + C cosx) and ascertain that
F (a) = F ′′(a) = F ′′′(a) = 0 if

A =
β

1 + 2α2
− 2

β
, B =

1

1 + 2α2
, C =

−2β

1 + 2α2
+

1

β
, where β =

√
1 − α2.

Halley’s method is here

xn+1 = xn − 2cn
c2n − αsn

(sn − α) where cn = cosxn, and sn = sinxn.

We numerically compare the two methods by choosing α = 0.5, so that a = arcsin(0.5) =
π/6, and taking as starting value x0 = 1. Using high precision computation to suppress the
ill effect of arithmetical round-off, we have Halley’s method converge in four steps, and our
rational method in only two.
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