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Abstract

Binning cells by plasmid copy number is a common practice for analyzing transient

transfection data. In many kinetic models of transfected cells, protein production rates

are assumed proportional to plasmid copy number. The validity of this assumption in

transiently transfected mammalian cells is not clear; models based on this assumption

appear unable to reproduce experimental flow cytometry data robustly. We hypothe-

size that protein saturation at high plasmid copy number is a reason previous models

break down and validate our hypothesis by comparing experimental data and a stochas-

tic chemical kinetics model. The model demonstrates that there are multiple distinct

physical mechanisms that can cause saturation. Based on these observations, we de-

velop a novel minimal bin-dependent ODE model that assumes different parameters for

protein production in cells with low versus high numbers of plasmids. Compared to a

traditional Hill-function-based model, the bin-dependent model requires only one addi-

tional parameter, but fits flow cytometry input-output data for individual modules up to
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twice as accurately. By composing together models of individually-fit modules, we use

the bin-dependent model to predict the behavior of six cascades and three feed-forward

circuits. The bin-dependent models are shown to provide more accurate predictions on

average than corresponding (composed) Hill-function-based models and predictions of

comparable accuracy to EQuIP, while still providing a minimal ODE-based model that

should be easy to integrate as a subcomponent within larger differential equation circuit

models. Our analysis also demonstrates that accounting for batch effects is important

in developing accurate composed models.
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In synthetic biology, there has been an increased use of transfection systems in mam-

malian cells in recent years. One reason for this increase is that transfection enables the

production of important biomedical-related proteins, which can only become biologically

active within mammalian cells.1–4 Transient transfection is a common method for the deliv-

ery of foreign genetic materials into mammalian cells.5–7 The transfected genetic materials

utilize the cells’ innate transcriptional and translational machineries to get expressed. Tran-

siently transfected genes are only expressed temporarily, and do not become integrated into

the host’s genome. Compared with stable transfection, transient transfection offers faster

expression of transfected genes, with higher expression levels. It also has lower cytotoxi-

city and induces no mutagenesis.3 ,8 ,9 It has been shown to be an effective technique for

speeding up the screening of novel synthetic designs.10 These properties have motivated the

investigation of transient transfection in mammalian synthetic biology.3 ,11

Modern synthetic biology is inseparable from the computational models that guide the

construction of synthetic networks.12 One challenge in building such models for mammalian

cells arises from the need for a more comprehensive understanding of the cellular mechanisms

underlying the transfection system.12 ,13 Another challenge is predicting the behavior of
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Figure 1: (a) Abstraction of a system comprised of a transfection marker and a module (in blue)
encoding a transcriptional regulatory switch. See Supplementary Figure 1(a) and Ref. 26 for more
detailed illustrations. The induced (input) gene I, activated by an inducer, regulates the expression
of O, the regulated (output) gene. Z, the transfection marker, is used to estimate plasmid copy
number. (b) Distribution of the transfection marker. The black bins are ignored because they
represent untransfected cells (data from Ref. 26 ). (c) Dose-response curves obtained from an
experiment (data from Ref. 26 ). Averaged measurements binned by the expression level of Z are
shown by color. Cells are separated into bins of width 0.1 on a log scale. Each curve corresponds
to a different bin. The 1st bin, represented by the curve at the bottom, contains cells with the
lowest plasmid counts. Each dot represents the average concentrations of the induced protein and
the regulated protein within a bin at a certain inducer level. Concentrations of the induced and the
regulated proteins have units of MEFL. Details about data generation and binning can be found in
Supporting Information Section 1.1.

genetic circuits based on the behavior of the building blocks of the circuits, also known as

modules.14–20 Chemical kinetic models have proven capable of describing circuit behavior in

prokaryotic cells, which replicate foreign plasmids,21 ,22 and in stably transfected eukaryotic

cells in which plasmids are genome-integrated.23 Plasmid copy number is assumed fixed

in both of these scenarios. For transiently transfected mammalian cells (TTMC), there

is a large variation in plasmid copy numbers across a population.24 ,25 Binning cells by

plasmid copy number is a common practice for analyzing flow cytometry data in this context

(Figure 1(b)).26–28 Subpopulations of cells with similar plasmid counts can then be studied

in groups (Figure 1(c)). Developing a modeling approach that is compatible with binning

is a prerequisite to building predictive models for complex circuits in TTMC. Davidsohn

et al. developed a traditional Hill-function-based model for TTMC,26 where the rate of

protein production is assumed proportional to the average plasmid copy number in each bin.

Unfortunately, as they demonstrated, this model does not fit their flow cytometry data well.
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In this work, we hypothesize that high plasmid copy number may cause saturation in

the levels of expressed proteins, leading to the breakdown of traditional Hill-function-based

models in this context. To validate our hypothesis, we study detailed two-stage gene expres-

sion models of a transient co-transfection system via the Gillespie algorithm,29 ,30 bin the

simulated data by plasmid counts, and calculate the average protein concentrations within

each bin. The agreement between the simulated results and the experimental data suggests

that when physical gene expression parameters lie within a particular range, saturation of

the rate of either transcription or translation can give rise to the observed saturated protein

concentrations in experiments. These results suggest that the precise mechanism leading to

the saturation of protein levels cannot be distinguished from just single-time flow cytometry

measurements. To facilitate predictive modeling of circuits, we next develop a bin-dependent

ordinary differential equation (ODE) model that splits flow cytometry data into two subsets

based on plasmid copy number. This coarse-grained model can more accurately account for

saturation in protein levels compared to standard Hill-function models, but avoids the need

to specify a precise biological mechanism giving rise to saturation. For each plasmid copy

number subset we fit separate kinetic parameters to the model, motivated by observations

from the detailed stochastic model simulations. The resulting bin-dependent model is shown

to outperform a traditional Hill-function-based model in reproducing input-output relation-

ships for individual modules, yet requires only one additional parameter. By composing

models fit to these individual modules, the bin-dependent model is also shown to predict

the behavior of circuits composed of multiple modules more accurately than Hill-function-

based models, while offering comparable accuracy to the EQuIP method of Ref. 26 . As the

bin-dependent model is itself described by standard chemical-kinetics type ODEs for chem-

ical concentrations, it can be easily integrated as a subcomponent within other differential

equation circuit models, and easily extended to include more biological details or features

for any given system. Note, in the remainder, species are denoted by Roman text, and

concentrations by italicized text.
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Results and Discussion

Experimental Data

The first step in building our circuit model is to examine experimental data. In this paper we

adopt a bottom-up approach to making circuits via the assembly of individual modules, where

a module is defined as a single transcriptional regulatory switch, consisting of a transcription

factor, the downstream regulated promoter and its gene. As an example of the types of

modules we will use, consider a module comprising a fluorescent-reporter system involving

three fluorescent genes: the induced (input) gene, the regulated (output) gene and the

transfection marker (Figure 1(a)). The expression levels of the fluorescent genes are measured

via flow cytometry, with the fluorescence intensities used as proxies for the concentrations of

the fluorescent proteins. The induced gene is regulated by a constitutive activator protein,

and an external inducer whose concentration can be controlled. The product of the induced

gene serves as a transcription factor for the regulated gene, controlling the latter’s expression

of a fluorescent reporter. The induced gene’s product is not fluorescent, but is measured by

co-expressing a fluorescent reporter gene of a different color from a promoter that has the

same sequence but is encoded on a different plasmid.31 The expression of the induced gene

can be modulated by changing the amount of the inducer. Expression of the induced gene

and the regulated gene at various inducer levels forms a dose-response curve (Figure 1(c)).

In TTMC, expression levels are largely determined by the numbers of plasmids transfected in

individual cells,25 ,26 which cannot be controlled and are highly variable across a population.

It is, therefore, necessary to estimate the plasmid copy numbers so that the effect of variation

in copy numbers on gene expression can be captured. This is often achieved by co-transfecting

another constitutively expressed fluorescent protein, which serves as the transfection marker

(Figure 1(a)). The induced gene, the regulated gene, and the transfection marker can be

encoded on either one plasmid or separate plasmids. The former ensures that there is a

one-to-one correspondence among the genes. In comparison, the latter is often preferred as
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separate plasmids can be absorbed by cells more readily due to smaller sizes, interference

among the transcriptional units is minimized, and the concentrations of individual proteins

can be adjusted more easily.32 ,33 In what follows, we assume the transfection marker has

been encoded on a separate plasmid for all models and experiments. We also assume the

induced gene serves as an inhibitor of the regulated gene.

Fluorescence readings from flow cytometers can be converted to standard units of Molecules

of Equivalent Fluorescein (MEFL) via TASBE Control.26 ,34 ,35 Standardized data are seg-

mented into bins by plasmid counts so that subpopulations of cells with similar plasmid

counts can be studied in groups (Figure 1(c)).26 ,27 ,36 Since flow cytometry measurements

are typically log-normal distributed or a mixture of two log-normal distributions,37 ,38 bin-

ning is performed on a log scale to ensure that each bin contains relatively equal numbers

of cells. The width of bins is selected depending on the resolution at which analysis is to be

conducted. An example of binning can be found in Supporting Information Section 1.1. In

this paper, we will focus on the average temporal behavior within each bin, with the goal

of developing ODE models that can be directly parameterized from binned flow cytometry

data.

Protein Concentration vs Plasmid Copy Number

Hill functions are commonly used to model transcriptional regulation in ODE models (Fig-

ure 1(a)). (See Supporting Information Section 3 for a mathematical definition of a Hill

function.) Davidsohn et al. developed a traditional Hill-function-based model to describe

the time evolution of the induced and the regulated proteins in TTMC (Figure 1(a))26 ,39

(see Supporting Information Section 3). A key assumption of their model is that the log

of the maximal production rate of the regulated protein is a linear function of the log of

the transfection marker. This assumption is supported by findings of several other studies

in different biological contexts.25 ,40 However, this assumption is only partially supported

by the experimental data in Ref. 26 , shown here in Figure 2. When the induced gene is
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minimally induced (0 nM of inducer), i.e., the regulated protein expressed without repressor,

the log of the regulated protein’s concentration grows proportionally to the log of the trans-

fection marker between 105.8 and 107 MEFL for TAL14 and TAL21 or between 105.8 and

107.3 MEFL for LmrA. When the induced gene is fully induced (2000 nM of inducer), the

log of the induced protein’s concentration also grows linearly in the log of the transfection

marker between 105.8 and 107 MEFL for TAL14 and TAL21 or between 105.8 and 107.3 MEFL

for LmrA. Figure 2 also suggests that when either the induced gene or the regulated gene

is maximally expressed, the concentrations of both the induced and the regulated proteins

saturate starting from 107.1 MEFL for TAL14 and TAL21 or 107.4 MEFL for LmrA.

Furthermore, Figure 2 and the data in Ref. 26 suggest that when the induced gene

is induced at 0nM, the log of the induced protein’s concentration is near-constant for low

plasmid copy numbers.26 When the induced gene is fully induced, i.e., the regulated protein

fully repressed, the log of the regulated protein’s concentration grows linearly across all bins.

We now develop a detailed stochastic model of the plasmid system, similar to the one

Davidsohn et al. constructed experimentally.26 This model will enable us to explore possible

mechanisms contributing to the observed saturation of protein concentrations at high plasmid

copy number, as well as the near constant protein concentrations at low plasmid copy number.

We do not attempt to fit this model to the single-time flow cytometry data directly as

it is too complex to fit accurately without the incorporation of additional experimental

measurements. Instead, our purpose here is to use the stochastic model to gain a qualitative

understanding of which biological hypotheses, and what ranges of physical gene expression

parameters, may contribute to the observed saturation effect. Our ultimate goal is to develop

a simple model that qualitatively describes our limited set of data, avoiding further time-

intensive experimental assays. Therefore, in the next subsection, we develop a more simplified

ODE model that can be parameterized from just the limited flow cytometry data, building

from the qualitative understanding of the two-plasmid system our stochastic model provides.

In our stochastic model, cells are co-transfected by a mixture of induced gene plasmids
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Figure 2: Maximal and minimal expressions of the induced gene I and the regulated gene O
for TAL14, TAL21, and LmrA. In the figures, the x-axis corresponds to the concentration of the
transfection marker, and the y-axis to the concentration of the input and the output proteins (here
concentrations are in units of MEFL). Shown in red is the induced gene I, and in blue the regulated
gene O. Each dot is the average protein concentration of cells from one bin. On the top row the
circuit is induced at 0nM; on the bottom row, 2000nM. On the top row, least squares regression
lines are fit to red dots from 107 to 107.9 MEFL (TAL14 and TAL21) or from 107.3 to 107.9 MEFL
(LmrA), and to blue dots from 105.8 to 107 MEFL (TAL14 and TAL21) or from 105.8 to 107.3

MEFL (LmrA). On the bottom row, least squares regression lines are fit to red dots from 105.8 to
107 MEFL (TAL14 and TAL21) or from 105.8 to 107.3 MEFL (LmrA), and to blue dots from 105.8

to 107.9 MEFL. The dots are calculated from the flow cytometry data of Ref. 26 .

and transfection marker plasmids. We focus on the dynamics of the transfection marker and

the induced gene, which are integrated on separate plasmids. The total initial number of

plasmids transfected in a given cell is assumed to follow a log-normal distribution.26 ,37 This

assumption is because the shape of the protein distribution is known to reflect the shape

of the underlying plasmid distribution,41 and the protein distribution is often observed to

be approximately log-normal.37 ,38 The conditional distribution of the number of each of the

two types of plasmids, given the total number of plasmids, is assumed to be binomial.26 This

is because the plasmids we consider are assumed to be well-mixed, of relatively small and

similar sizes, and hence indistinguishable for purposes of co-transfection.26 In the remainder,

we choose values for kinetic parameters such that they span the parameter distributions
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calculated from transcriptomics and proteomics data given in Ref. 42 . We select parametric

values for the initial plasmid distributions based on the polymerase chain reaction (PCR)

findings of Ref. 24 ,40 ,43 . The biochemical reactions in our model are shown below:

Dtm
K1! Dtm + Mtm Dinduced

K2! Dinduced + Minduced

Mtm
K3! Mtm + Ptm Minduced

K4! Minduced + Pinduced

Mtm
⇤1! ; Minduced

⇤2! ;

Ptm
⇤3! ; Pinduced

⇤4! ;,

where D, M, and P stand for plasmid, mRNA, and protein. Subscript “tm” stands for the

transfection marker, and “induced” for the induced gene that is co-transfected. ⇤i (i =

1 � 4) are first order degradation rate constants. Depending on the hypothesis underlying

each model, Ki (i = 1 � 4) are defined either as normal first-order rate constants, where

K1 = k1 · Dtm, and K2, K3, and K4 are defined similarly, or as Michaelis-Menten (MM)

equations, where a saturated K1 is defined as K1,max · Dtm
Dtm+KDtm

, and saturated K2, K3, and

K4 are defined similarly. K1,max represents the maximal value of K1, and KDtm the half

saturation constant. Further details of the models, including plasmid dilution mechanism

and length of the simulation, can be found in Supporting Information Section 2.1. Using

StochKit and GillesPy, for each fixed set of parameters we simulate this model using the

Gillespie method 400,000 times.29 ,30 ,44 ,45 This is comparable to the number of experimental

samples generated in Ref. 26 . After simulation, we divide the simulated data based on the

transfection marker into bins of width 0.2, which is comparable to values that are typically

chosen in flow cytometry experiments.26 ,27 ,36 We then calculate the geometric mean of the

induced protein’s concentrations for each bin.

To examine the mechanisms that contribute to the near-constant induced reporter con-

centrations at low plasmid copy number, and the saturating induced reporter concentrations

at high plasmid copy number, we systematically vary individual or pairs of parameters while
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Figure 3: Simulations of our stochastic model suggest that either increasing translation rates (a)
or decreasing transcriptional rates (b) can extend the near-constant induced gene levels at low copy
plasmid numbers. X-axis and y-axis stand for number of molecules of the transfection marker and
the induced protein in each bin. Best fit horizontal lines are drawn for reference. (a) Comparison
of models in which the translational rates decrease in order from 1000 to 1 molecule per mRNA per
hour. (b) Comparison of models in which the transcriptional rate of Dinduced increases from 0.002
to 1 molecule per plasmid per hour.

holding the remaining parameters constant. We begin by examining possible mechanisms

that lead to near-constant induced reporter concentrations at low plasmid numbers, creat-

ing two cohorts of models. In each cohort we assume that Ki are normal first-order rate

expressions, i.e., K1 = k1Dtm with K2, K3, and K4 defined similarly. The first cohort varies

only the translational rate constants k3 and k4, while the second cohort varies only the in-

duced gene’s transcriptional rate, k2. Simulations of the stochastic model demonstrate that

either increasing translation rates, or decreasing transcription rates, can lead to the observed

constant induced reporter levels at low plasmid copy numbers (Figure 3).

We next investigate mechanisms that may cause protein concentrations to saturate at

high plasmid copy numbers. Though the physical mechanism has not been proven, several

experimental studies conclude that some steps of the transcription process may saturate in

cells expressing large amounts of mRNA.46 ,47 It has also been suggested that the cationic

liposomes used in transfection inhibit the process of transcription.48 Hence, it is possible

that a high concentration of liposomes (associated with high plasmid copy numbers) is also

a mechanism that induces saturation in transcription rates. Motivated by these possible

mechanisms, we modify our stochastic model to incorporate saturation of transcriptional
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Figure 4: Simulations of our stochastic model suggest that either either saturation of transcrip-
tional kinetics (a) or saturation of translation kinetics (b) can lead to regimes where the induced
gene reporter level saturates at high plasmid copy numbers. X-axis and y-axis stand for number of
molecules of the transfection marker and the induced protein in each bin. Least squares regression
lines are drawn for reference. (a) Comparison of models built under the hypothesis of transcriptional
saturation. The half saturation constant KDinduced increases in order from 102 to 106 molecules, and
KDtm is held fixed at 104 molecules. (b) Comparison of models built under the hypothesis of trans-
lational saturation. The transcriptional rate of the induced gene decreases in order from 10 to 10�3

molecule per plasmid per hour, and the transfection marker transcribes at a constant rate of 10�1

molecule per plasmid per hour.

kinetics. We now take the transcription rates, K1 and K2, to be given by saturating MM

approximations with MM constants, KDtm and KDinduced (see Supporting Information Section

2.1). Here smaller KD values correspond to saturation beginning at lower plasmid copy

numbers. By systematically varying both KD values (see Supporting Information Section 2.1)

we observe that transcriptional saturation may induce protein saturation when KDinduced ⌧

KDtm (see Figure 4(a)). That is, protein levels as a function of the amount of plasmid

may saturate if the transcriptional rate of the induced reporter saturates at a lower level of

plasmid than that at which the transcriptional rate of the transfection marker saturates.

Finally, we now investigate whether translational saturation can also induce saturation

in protein levels at high plasmid copy numbers. Tachibana et al. presented experimental

evidence which suggests that protein synthesis saturates when a large amount of mRNA

is present.24 Motivated by this study, we now consider a version of our stochastic model

where the transcriptional rates K1 = k1Dtm and K2 = k2Dinduced are non-saturating first

order reactions as in our first model, but the translation rates K3 and K4 are saturating
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MM approximations. Since the induced gene and the transfection marker are homologous

fluorescent genes, we use the same maximal translation rates and same MM constants in K3

and K4 (see Supporting Information Section 2.1). This final version of our model suggests

that under the hypothesis of translational saturation, protein reporter saturation can be

observed if k2 � k1, i.e. if the induced gene transcribes faster than the transfection marker’s

gene (see Figure 4(b)).

In summary, we have demonstrated two different physical mechanisms that may induce a

near-constant level of the induced gene reporter at low plasmid copy numbers (high transla-

tion rates or low transcription rates). We thank a reviewer for pointing out another possible

mechanism; that flow cytometry measurements at low plasmid copy numbers are suscepti-

ble to experimental noise such as auto-fluorescence, and instrumental limitations. In the

absence of experimental noise, but under our modeling assumptions, our stochastic models

demonstrate that even with linear production rates a near-constant level of the induced gene

reporter will be observed at low plasmid copy number. This arises as the normalized his-

tograms of the plasmid encoding the transfection marker within each of the leftmost bins had

relatively constant modes (see Supplementary Figure 7 and Supporting Information Section

2.3 for more details).

Our models also demonstrate two different physical mechanisms that may induce a sat-

urating level of induced gene reporter for high plasmid copy numbers (having the induced

gene transcription kinetics saturate at lower plasmid levels than needed for saturation of the

transfection marker gene transcription kinetics, or having translational saturation with the

induced gene transcribing faster than the transfection marker’s gene). Note that the results

we have derived do not depend on the precise choice of bin width (see Supplementary Figure

2 in Supporting Information). In Supporting Information Section 2.2 we show that these

results persist when considering an alternative model for the initial plasmid distributions

within cells. In Supporting Information Section 1.2 we explain why the observed saturation

region at high plasmid copy number within the flow cytometry data is unlikely to be due to
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experimental noise.

Our analysis poses a challenge to the characterization of circuit behavior in TTMC. The

stochastic models demonstrate there are multiple (physical) mechanisms that can explain

the observed saturation (constant levels) of the induced gene reporter at high (low) plasmid

copy numbers. Due to the complexity of these models it seems unlikely one could fit them,

or even select which is most appropriate, from just single-time-point flow cytometry data.

Bin-dependent ODE Model

Though mechanistic details cannot be disentangled from single-time flow cytometry measure-

ments, characterization of modules remains a critical problem to be addressed. This is needed

to enable the development of models that can predict the dynamics of circuits/pathways with

more components, and, which exhibit more complicated behaviors. To further this goal, we

now develop a simple, phenomenological ODE model that can accurately describe single-

time transient transfection flow cytometry data. While development of a more physically

detailed model would be ideal, as shown in the last subsection it would require additional

experimental data to be uniquely determined.

To account for the observed saturation in protein concentration, we propose replacing

the traditional Hill-function-based model (see Supporting Information Section 3) with a bin-

dependent model. The bin-dependent model divides flow cytometry data into two subsets

based on plasmid copy number, i.e., one with and one without saturation.

dIi

dt
= ↵i · �(t)� � · Ii �(t) =

✓
1

2

◆b t
T c

dOi

dt
=

8
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where Ii and Oi are the concentrations of the input and the output in the i-th bin, and i
0 is the

separating bin. The separating bin is chosen to be the bin at which average concentrations of

the co-transfected protein switch from linear growth to saturating growth. ↵i, the production

rate of the induced protein in the i-th bin, is assumed time-invariant because Ii is induced

by a constant concentration of inducer. We do not explicitly characterize the functional

form of how ↵i depends on the plasmid level as we simply fit a different value of ↵i for

each bin. �(t) captures that the population-average plasmid counts decrease due to cell

division over time.26 T is length of the cell cycle; �I and �O are dilution/degradation rates

of I and O. � is the maximal average production rate of the regulated protein for cells in

the 1st bin, i.e, cells that have minimal plasmid counts P1. Pi is the mid-point of the i-

th plasmid count bin. f and g capture the relationship between the concentrations of the

transfection marker and the maximal production rates of the output protein for low and

high copy numbers, respectively. The bin-dependent model only requires one additional

parameter than a standard Hill-function-based model (see Supporting Information Section

3).

We fit the traditional Hill-function-based model (see Supporting Information Section 3)

and the bin-dependent model (Equation (1)) to the TAL14, TAL21, and LmrA datasets

from Ref. 26 for validation (TAL14, TAL21, and LmrA are names of the repressors).26 Both

models are simulated for 46 hours since an average delay of 25 hours in plasmid expres-

sion is expected.26 Protein loss is assumed to arise purely from dilution, as both the input

and output proteins are very stable on the time scale of the experiments.26 We therefore

take �I = �O = �, and calculate them based on the length of the cell cycle, which spans

approximately 20 hours.26 Davidsohn et al. constructed the circuits using the rtTA and

GAL4/UAS system: the input (repressor) is activated by a constitutive rtTA protein and

doxycycline, and expression of the output (EYFP), which is inhibited by the input, is driven

by a constitutive Gal4 protein.26 A detailed representation of the circuit structure can be

found in Supplementary Figure 1. rtTA and Gal4, which are indispensable for protein acti-
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Figure 5: Comparison between experimental data and the traditional Hill-function-based TAL14,
TAL21, and LmrA models. Plasmid copy number is shown by color. Solid lines are experimental
data, and dashed lines are model fits. The experimental data in the plots are from Ref. 26 .

vation, are both constitutively expressed and are not considered as limiting factors for the

production of the input and the output. Omitting rtTA and Gal4 leads to an abstraction

of the circuit structure that can be studied by our models, as is shown in Figure 1(a). For

the bin-dependent model, the bin that separates flow cytometry data into subsets of fast

and slow protein production is chosen to be 107.1 MEFL for TAL14 and TAL21, and 107.4

MEFL for LmrA since in the dataset, saturation in protein production is observed to the

right of 107 MEFL and 107.3 MEFL, respectively (Figure 2). Model fitting is implemented

via minimizing the mean-squared errors (MSE) between the log of observed and predicted

concentrations of the regulated proteins (details of model fitting can be found in Support-

ing Information Section 4). We log-transform the concentrations to reduce the absolute

errors that are often associated with measurements of large protein concentrations on a lin-

ear scale.49 For our specific implementation, we use Matlab’s GlobalSearch algorithm to

locate the set of parameter values that produce the global minimum error.50 The optimal

parameter fits and the errors in the fit models are shown in Supplementary Tables 2 and

3 in Supporting Information Section 5, and the fit model values versus the experimental

values of the fluorescent reporters are shown in Figures 5 and 6. Our results suggest that

the bin-dependent model fits the data well for all plasmid copy numbers despite having only

one more parameter compared to the Hill-function-based model (Table 1).

We further compare the Hill-function-based model and the bin-dependent model via cross-

validation. We conduct a 12-fold cross-validation by randomly dividing the flow cytometry
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Figure 6: Comparison between experimental data and the bin-dependent TAL14, TAL21, and
LmrA models. Plasmid copy number is shown by color. Solid lines are experimental data, and
dashed lines are model fits. The experimental data in the plots are from Ref. 26 .

data into 12 subsets of the same size, fitting the models separately on each combination

of 11 subsets, and then testing the models on the single subsets that were left out.51 The

fitting errors and the testing errors are then averaged over the 12 combinations of subsets.

Our results suggest that both the fitting errors and the testing errors of the bin-dependent

models are 1.5 - 2 times better than those of the Hill-function-based models (Tables 2 and

3). The bin-dependent model shows a less significant improvement for LmrA than for TAL14

and TAL21. A possible explanation is that for LmrA, the saturation effect is observed in six

bins to the right of 107.3 MEFL rather than in nine bins to the right of 107 MEFL. For each

repressor, we choose the model that produces the least testing error among 12 cross-validated

models to be the best model. We evaluate the best models for each plasmid copy number.

The results indicate that the bin-dependent models produce not only lower but also more

consistent errors across all bins (Figure 7). The errors of the Hill-function-based models

get large near 107 MEFL and 107.8 MEFL for all repressors. This signals that there are

patterns in the data that are not explained by the Hill-function-based models.52 The bin-

dependent model produces larger errors for LmrA than for TALER repressors because there

are slight indications of a near-constant region at low plasmid numbers for LmrA (Figure 2).

In summary, we find that the bin-dependent model consistently provides significantly better

fits to the experimental data than the Hill-function-based model.

Note, for high-plasmid-count subsets, our bin-dependent model assumes the log of the

maximal protein production rate is approximated as a linear function of the log of the
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Table 1: MSE of the models.

Goodness of fit
Repressor Hill-function-based bin-dependent
TAL14 0.013 0.004
TAL21 0.015 0.005
LmrA 0.020 0.009

Table 2: Averaged fitting errors of the models within the 12-fold cross-validation.

Fitting Errorsa
Repressor Hill-function-based bin-dependent
TAL14 0.013 0.006
TAL21 0.017 0.009
LmrA 0.018 0.013

a See Supporting Information Section 4 for the definition of fitting errors.

Figure 7: Testing errors of the best cross-validated models within each bin.

transfection marker. Although the relationship is arguably better fit by other functions, our

assumption leads to a model with a good fit across the entire dataset, while only requiring

one additional parameter.

Modular Composition

To validate the predictive power of the bin-dependent model, we develop models for the six

two-repressor cascades and three of the feed-forward circuits shown in Ref. 26 (for which we

were given the experimental data from Ref. 26 ). The exact structure of the cascades and

the feed-forward circuits can be found in Figures 3(A) and 5(A) of Ref. 26 or Supporting

Information Supplementary Figures 1(b) and 1(c), with Figures 8(a) and 10(a) providing

abstractions that highlight the key parts of the circuits. A two-repressor cascade can be
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Table 3: Averaged testing errors of the models within the 12-fold cross-validation.

Testing Errorsb
Repressor Hill-function-based bin-dependent
TAL14 0.014 0.007
TAL21 0.017 0.008
LmrA 0.019 0.013

b See Supporting Information Section 4 for the definition of testing errors.

decoupled into two modules, with the output of the first module acting as the input of the

second module (Figure 8(a)). Similarly, a feed-forward circuit can be decoupled into three

modules (Figure 10(a)). The bin-dependent models for cascades and feed-forward circuits

are constructed, and their agreement with experimental measurements are compared with

that of the Hill-function-based and the EQuIP models developed in Ref. 26 . Specifically,

we compare simulations of the circuit models to experimental data by measuring the differ-

ences between simulated and observed concentrations of EYFP 72 hours post transfection

(experimental data from Ref. 26 ). Full details of the experimental protocol can be found

in Ref. 26 . The equations and parameters for the bin-dependent models can be found in

Supporting Information Section 6 and Supporting Information Section 8. The bin-dependent

circuit models are developed by composing together the individual module models that were

individually fit in the previous section. We do not re-fit the equations for each model to data

for the complete two-module cascades or three-module feed-forward circuits. In this way we

can assess how well models fit to individual modules can predict circuit behavior when com-

posed together. To offer a comparable study to Ref. 26 , we use the parameters Davidsohn et

al. fit for the Hill-function-based models for cascades.26 Hill-function-based models for feed-

forward circuits were not studied in Ref. 26 . We therefore construct Hill-function models

of feed-forward circuits by composing the parameterized Hill-function models of individual

modules developed in the previous section.

Like most biological data, calibrated flow cytometry is subject to batch effects. Parame-

ters in the models of the modules need to be rescaled so that they are brought to the same

scale before the models are connected into a circuit. Rescaling is a two-step process, where
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systematic variation between modules is first removed to facilitate modular composition, and

then reincorporated in the model to enable a fair comparison between model predictions and

experimental data. The rescaling method we used can be found in Supporting Information

Section 6. Davidsohn et al. determined the scaling factors among batches directly from

experimental data by comparing the means and the tightness of the data of different batches

for all the modules and cascades (note this calculation does not rely on EQuIP).26 Values of

the scaling factors for each input protein I, output protein O, and transfection marker can be

found in Section 12 of the Supporting Information of Ref. 26 . We use these scaling factors

to rescale the parameters of the bin-dependent models since rescaling in our context is first-

order linear compensation,26 i.e. there is no difference between rescaling the parameters and

fitting the parameters to rescaled data. To understand the effect of cross-batch compensation

on model predictions, we also rescale the parameters of the Hill-function models provided

in Ref. 26 by the same scaling factors. Since scaling factors for both modules and cascades

are provided in Ref. 26 , we perform both steps of rescaling amid construction of cascade

models. The equations and parameters for the bin-dependent model and the rescaled Hill-

function-based models for the cascades can be found in Supporting Information Section 6.

For feed-forward circuits, we did not have experimental data with which to calculate scaling

factors, and so we only performed parameter rescaling at the modular level. The equations

and parameters for the feed-forward circuits can be found in Supporting Information Section

8.

The agreement between experimental measurements and model predictions for the six

cascades is illustrated in Figure 9 and the figures of Supporting Information Section 7. For

all six cascades, the bin-dependent model is able to capture the positive association between

the input and the output (Figure 9). It also captures the buffer-like behavior of the cascades,

i.e., the dynamic range of the output is narrower compared to that of the input due to low

cooperativity of the regulatory modules (Figure 9 and Supporting Information Section 7).53

To further investigate how well our composed circuit models fit the experimental data,
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a) b)

Figure 8: (a) Abstraction of the structure of the cascade. I1 inhibits I2/O1, which further inhibits
O2. The expression of I2/O1 and O2 is driven by a constitutive Gal4 protein and is omitted from
the plot. The overlapping component of the modules is shown in the blended color. (b) Comparison
of the mean-fold errors of the Hill-function-based models, with and without rescaling,26 the bin-
dependent models, and EQuIP26 for each cascade. The experimental data the models are validated
against are from Ref. 26 . Numbers on top of the dotted lines represent the average mean-fold errors
of six cascades.

Figure 9: Comparison between experimental data and predictions made by the bin-dependent
models for LmrA-TAL14 and LmrA-TAL21 cascades. Plasmid copy number is shown by color.
Solid lines are experimental data, and dashed lines are model fits. Experimental data in the plots
are from Ref. 26 .

we examined the average mean fold error, defined as the average over all six cascades of

the mean-fold errors over all induction levels of each individual cascade (see Supporting

Information Section 4 for details and formulas). The rescaled bin-dependent model is found

to outperform the Hill-function-based model presented in Ref. 26 , with an average mean-

fold error of 1.6 fold for the former vs 3.0 fold for the latter. The 1.6 fold average error of

the bin-dependent model also outperforms the average error of the Hill-function model with

rescaling, which was found to be 2.0 fold (Figure 8(b)). This indicates that inconsistent

scales due to batch effects contribute significantly to the magnitude and the inconsistency
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a) b)

Figure 10: (a) Abstraction of the structure of the feed-forward circuit. I1 inhibits I2/O1, which
further inhibits O2. I3 inhibits O3. The expression of I2/O1 and O2/O3 is driven by a constitutive
Gal4 protein and is omitted from the plot. The overlapping components of the modules are shown
in the blended colors. (b) Comparison of the mean-fold errors of the rescaled Hill-function-based
models, the bin-dependent models, and EQuIP26 for each feed-forward circuit. The experimental
data the models are validated against are from Ref. 26 . Numbers on top of the dotted lines represent
the average mean-fold errors of three feed-forward circuits.

of the errors. In addition, the rescaled bin-dependent model also produces smaller mean-

fold errors than the rescaled Hill-function model for all individual cascades (Figure 8(b)).

In Ref. 54 , we examined a different rescaled Hill-function model, based on composing the

Hill-function models we parameterized for individual modules in the preceding subsection.

For this rescaled Hill-function model we observed an average mean fold error of 1.8.54 As we

fit the Hill-function model using a different optimization routine than used in Ref. 26 , this

illustrates that the parameter estimation procedure can also influence the relative accuracy

of different models. Finally, we note that the accuracy of the bin-dependent model varies

relative to EQuIP, achieving a smaller mean-fold error for some cascades and larger error

others (see Figure 8(b)). The average over all six cascades is the same as EQuIP (1.6), which

is considered high accuracy based on results reported in the literature.26 ,27 ,34 ,55 ,56

Besides cascades, the bin-dependent model also facilitates relatively accurate predictions

for feed-forward circuits. The agreement between experimental measurements and model

predictions for the three feed-forward circuits is illustrated in the figures of Supporting

Information Section 9. The average error over all three feed-forward circuits is the same as

EQuIP (2.0) and is much lower than the rescaled Hill-function-based model (4.0) (Figure
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10(b)). The bin-dependent model captures the qualitative behavior of the circuit – the

output is weakly affected by a change in the input at low inducer levels due to two opposing

regulations: I1 �| a O1 a O2 and I3 a O3, and negatively associated with the input at high

inducer levels as inhibition becomes the dominant force. The relatively large error for the

TAL21-LmrA circuit is likely to be batch-specific, as measurements of the output are below

104 MEFL at low plasmid copy number (see Supplementary Figure 10). Note, such low levels

of MEFL are not observed in any of the other circuit datasets.

Despite the relatively high accuracy of the bin-dependent model, we note that the sim-

plicity of its representation of the gene expression process may in some contexts sacrifice

accuracy. Figure 9 shows an under-prediction for two out of six cascades, the cause for

which may be attributed to the non-negligible amount of time over which transcription and

translation take place. The time lag between expression of I2/O1 and O2 may be better

captured by delay differential equations (DDE).

Conclusions

We have developed a bin-dependent ODE model that describes regulatory mechanisms via

the use of standard Hill function type terms, while offering comparable accuracy to the

EQuIP model of Ref. 26 . Parameterized, bin-dependent models of individual modules should

be relatively straightforward to integrate as subcomponents within larger existing ODE and

DDE models of circuits. Moreover, it should also be relatively straightforward to modify

a parameterized bin-dependent model to incorporate additional, previously-characterized

regulatory components (i.e. for studying promoters co-regulated by multiple transcription

factors). In this way we expect that bin-dependent models for individual modules should

be able to be composed with a variety of existing, well-characterized differential equation

models that describe components of synthetic and systems biology networks.

Another benefit to the bin-dependent-model-based approach is that it is fairly robust to
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sampling noise in experimental data. The input-output datasets, which the ODE models are

fit to, comprise the geometric means of measured protein concentrations within each bin.

These data points may not be well separated, and hence appear noisy, when using sparse

flow cytometry datasets. The model fitting step helps overcome this sampling noise by using

deterministic ODEs based on widely-used biochemical relationships (such as Hill-functions).

The bin-dependent model presented here establishes a framework for characterizing fun-

damental synthetic constructs and predicting circuit behaviors quantitatively in TTMC. As

we demonstrated with the stochastic model, there are different mechanisms that may con-

tribute to saturation in protein production, a common phenomenon in TTMC. The value of

the bin-dependent model lies in both its easy integrability with other differential equation

models, and in its ability to describe the saturation effect in flow cytometry data accurately

without specifying precise mechanistic details for how saturation occurs. The method pre-

sented here should be applicable to similar flow cytometry datasets, allowing the possibility

to construct a well-characterized library of in silico models for regulatory switches. The

quantitative parameters of such regulatory switches could then be used in constructing new

predictive models for the behaviors of more complicated circuits. Our work represents one

more step towards building a systematic workflow that can guide circuit design in TTMC.
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a)

b)

c)

Supplementary Figure 1: Detailed representations of (a) an inducible switch network, (b) a cascade,
and (c) a feed-forward circuit controlled by doxycycline based on Figures 2(A), 3(A), and 5(A) of David-
sohn et al. (2015). The transcriptional repressors can be TAL14, TAL21, or LmrA. Expressions of the
repressors (TAL14, TAL21, or LmrA) and EYFP are driven by constitutive rtTA and Gal4 proteins, re-
spectively. rtTA and Gal4, which are required for protein activation, are both constitutively expressed
and are not considered as limiting factors for the production of the repressors and EYFP.

1 Experimental Details

1.1 Summary of Experimental Details from Davidsohn et al. (2015)

A transcriptional regulatory switch is constructed by connecting each of the three repressors
with promoter pUAS-Rep, which controls the expression of a fluorescent gene, EYFP (Sup-
plementary Figure 1(a)). The strength of repression is modulated by inducing the switch
at twelve dosages of doxycycline (Dox), and is indicated by the reporter gene EBFP2. An-
other fluorescent gene, mKate, is a constitutively expressed gene that serves as a transfection
marker. All three fluorescent proteins are highly stable, and loss of protein concentration is
assumed to be due to dilution (Davidsohn et al. (2015)). A cascade (Supplementary Figure
1(b)) is constructed via the connection of two switches, where the output protein of the first
switch acts as the input of the second switch. The plasmids encoding the second repressor
of each cascade are transfected at one third the concentration of the plasmids encoding the
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first repressor (Davidsohn et al. (2015)).
Concentrations of all fluorescent proteins are measured for every single cell by a flow cy-

tometer 72 hours post transfection (Davidsohn et al. (2015)). These data are then standard-
ized into MEFL units and segmented by concentrations of the mKate protein into bins of
width 0.1 on a log scale. Because bi-modality observed in the concentrations of the mKate
protein is believed to be caused by whether individual cells get transfected, only cells with
concentrations of mKate centering around the larger mode, ranging from 105.8 to 107.9 (unit:
MEFL), are used for modeling as in Davidsohn et al. (2015). For data that lie in this range,
geometric means of concentrations of the EBFP2 protein and the EYFP protein are calculated
within each bin. As plasmids are only expressed after entering the nucleus during mitosis, a
delay in plasmid expression is expected (Davidsohn et al. (2015)). The cells are asynchronous:
active expression is observed in a fraction of cells 15 hours post transfection, but an average
initial delay is estimated to be 25 hours for the entire population (Davidsohn et al. (2015)).

In our models for mean concentrations, we are focused on predicting the average behav-
ior across the cell population and hence ignore this variability. More sophisticated stochastic
models could be developed to explicitly account for the variability in the initiation of expres-
sion if needed. Length of the cell cycle is measured to be approximately 20 hours (Davidsohn
et al. (2015)). All values mentioned above can be confirmed in Davidsohn et al. (2015).

More details of the experiment, including cell culturing, transfection, flow cytometry, and
cloning, can also be found in Davidsohn et al. (2015).

1.2 Possibility of Experimental Noise as the Cause of Saturation

We note that the special regions at low and high plasmid numbers (Figure 2) could be spec-
ulated to arise from the limited detection range of the flow cytometer. Data in Davidsohn
et al. (2015) suggest that the upper detection limit is at least 109.2 MEFL (Supplementary Fig-
ure 24(a) of Davidsohn et al. (2015)). The possibility of a detection limit can then be ruled
out at high plasmid numbers for two reasons. First, the induced and the regulated proteins
saturate near 108 and 107 MEFL, respectively (Figure 2). Near 108 and 107 MEFL, the ge-
ometric standard deviations of (MEFL) concentrations of the induced protein and the reg-
ulated protein are between 2 and 2.5. Protein concentrations within each bin are approx-
imately lognormal distributed (Beal (2017)), which means 95% of the cells are within two
geometric standard deviations from the geometric means, which is less than 109.2 MEFL. In
other words, there are fewer than 2.5% of the cells whose fluorescence intensity exceeds 109.2

MEFL. Hence, the upper limit of the detection range at 109.2 does not have substantial ef-
fects on the reported values of our data. Second, saturations due to instrument range often
cause protein histograms to have an abrupt cut-off shape, i.e., measurements exceeding the
upper detection limit would all gather near a single value (see Supplementary Figure 16(b),
Supplementary Figure17(b), and Supplementary Figure18(b) of Davidsohn et al. (2015)). At
low plasmid numbers, autofluorescence is a major obstacle limiting the detection sensitivity
(Brahme (2014)). Despite autofluorescence corrections, data towards the lower end may be
susceptible to experimental noise. Our stochastic models provide an alternative approach to
studying these systems with low numbers of molecules. The simulations suggest the possibil-
ity of near-constant average protein levels in minimally transfected cells when flow cytometry
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Supplementary Figure 2: Simulations of a transcriptional saturation model. X-axis stands for the mid
point of each bin, and y-axis number of molecules of the induced protein in each bin. Bin width is
chosen to be 0.1, 0.2, and 0.5. Notice, the saturating effect and the general curve are independent of
bin size.

measurement noise is removed.

2 Two-stage Stochastic Gene Expression Models

2.1 Model Details

Details regarding the two-stage stochastic gene expression models can be found in this sec-
tion.

The induced gene and the transfection marker are encoded on separate plasmids. Gene
expression is modeled as a two-stage process consisting of transcription and translation.
Length of the simulation is 50 hours. Cell division takes place every 20 hours, and plasmids
are binomially partitioned in daughter cells upon cell division. The initial cell cycle position
for a cell is sampled randomly from the uniform distribution unif(0,20). The reaction rates
can be expressed as follows:

K1 = k1 ·Dtm, K2 = k2 ·Dinduced,

K3 = k3 ·Mtm, K4 = k4 ·Minduced,

§1 =∏1 ·Mtm, §2 =∏2 ·Minduced,

§3 =∏3 ·Ptm, §4 =∏4 ·Pinduced,
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Parameter Values
Figure # k1 k2 k3 k4 ∏1 ∏2 ∏3 ∏4

Figure 3(a) and
Supplementary Figure 3

0.1 0.1 1000 1000 0.01 0.01 0.01 0.01
0.1 0.1 100 100 0.01 0.01 0.01 0.01
0.1 0.1 10 10 0.01 0.01 0.01 0.01
0.1 0.1 1 1 0.01 0.01 0.01 0.01

Figure 3(b) and
Supplementary Figure 4

0.1 0.002 100 100 0.01 0.01 0.01 0.01
0.1 0.01 100 100 0.01 0.01 0.01 0.01
0.1 0.1 100 100 0.01 0.01 0.01 0.01
0.1 1 100 100 0.01 0.01 0.01 0.01

Figure 4(a) and
Supplementary Figure 5

NA NA 100 100 0.01 0.01 0.01 0.01
NA NA 100 100 0.01 0.01 0.01 0.01
NA NA 100 100 0.01 0.01 0.01 0.01

Figure 4(b) and
Supplementary Figure 6

0.1 10 NA NA 0.01 0.01 0.01 0.01
0.1 0.1 NA NA 0.01 0.01 0.01 0.01
0.1 0.001 NA NA 0.01 0.01 0.01 0.01

Supplementary Table 1: Parameter values for the two-stage models. k1 and k2 have the units of # of
molecules per plasmid per hour. k3 and k4 have the units of # of molecules per mRNA per hour. ∏1,
∏2, ∏3, and ∏4 have the units of reciprocal hours. In models corresponding to Figure 4(a) of the main
text and Supplementary Figure 5, k1 and k2 are not constant since transcriptional rates are subject to
saturation. In models corresponding to Figure 4(b) of the main text and Supplementary Figure 6, k3
and k4 are not constant since translational rates are subject to saturation. NA stands for not applicable.

where ∏ j ( j = 1°4) and k j ( j = 1°4) are intrinsic rates. Under the hypothesis of transcrip-
tional saturation,

K1 = 1000 · Dtm

Dtm +KDtm

,

K2 = 1000 · Dinduced

Dinduced +KD induced

,

where KDtm = 104, and KD induced = 102,104, or 106. Under the hypothesis of translational satu-
ration,

K3 = 1000000 · Mtm

Mtm +10000
,

K4 = 1000000 · Minduced

Minduced +10000
.

Values of the parameters in each model are shown in Supplementary Table 1.
For the models detailedly described in the main text, the initial total number of plasmids

in a given cell is assumed to follow a log-normal distribution: N [log(100), log(10)] (David-
sohn et al. (2015)). The initial copy numbers of each species of plasmid, Dtm and Dinduced
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Supplementary Figure 3: Comparison of models in which the translational rates decrease in order
from 1000 to 1 molecule per mRNA per hour.

given the total number of plasmids P are assumed to follow binomial distributions: B(P,0.5)
(Davidsohn et al. (2015)).

2.2 Exploring Other Plasmid Distributions

In Davidsohn et al. (2015), co-transfected plasmids were pre-mixed before forming com-
plexes with lipofectamine, and according to Schwake et al. (2010), numbers of co-transfected
plasmids in individual cells should be highly correlated. In co-transfection experiments, the
correlation between co-transfected plasmids can be adjusted by changing the co-transfection
protocol (Schwake et al. (2010)). Besides the models described in the main text, we construct,
simulate, and analyze additional cohorts of detailed two-stage models, assuming that num-
bers of co-transfected plasmids follow a bivariate log-normal distribution, and correlations
between co-transfected plasmids can be varied. The initial plasmid copy numbers in a cell,
Dtm and Dinduced, are integer roundups of two continuous variables sampled from a bivariate
lognormal distribution,

N
∑µ

log(100)
log(100)

∂
,
µ

[log(10)]2 Ω · [log(10)]2

Ω · [log(10)]2 [log(10)]2

∂∏

.

Ω represents the correlation between Dinduced and Dtm, and is set to values of 0.25, 0.5, and
0.75 to represent low, medium, and high correlation in different models. Length of the sim-
ulation, assumptions about cell division and asynchronicity, and definitions of the reaction
rates are kept the same. Values of the rest of the parameters in each model can be found in
Supplementary Table 1. Results of the simulation can be found in Supplementary Figures
3, 4, 5, and 6. Irrespective of the underlying plasmid distributions, we reach the same con-
clusions on biological hypotheses and parameter regions that can explain our experimental
observations qualitatively. Another interesting point worth noticing is that as is shown by
Supplementary Figures 5 and 6, the saturation behavior is only observed when Ω is set to
0.75, indicating the possible role of co-transfection efficiency as a contributing factor.

2.3 Reasons for a Near-Constant Level of the Induced Gene Reporter
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Supplementary Figure 4: Comparison of models in which the transcriptional rate of the induced gene
increases from 0.002 to 1 molecule per plasmid per hour.

Supplementary Figure 5: Comparison of models built under the hypothesis of transcriptional satura-
tion. The half saturation constant KDinduced increases in order from 102 to 106 molecules, and KDtm is
held fixed at 104 molecules.

Supplementary Figure 6: Comparison of models built under the hypothesis of translational satura-
tion. The transcriptional rate of the induced gene decreases in order from 10 to 10°3 molecule per
plasmid per hour, and the transfection marker transcribes at a constant rate of 10°1 molecule per
plasmid per hour.

As is shown in Supplementary Figure 3 (with parameters k3 = 1000hr°1, k4 = 1000hr°1, and
Ω = 0.75), the level of the induced gene reporter stays near a constant value at low plasmid
copy numbers. Here no saturation kinetics were included within the model, i.e. the transcrip-
tion and translation rates were simple linear functions (Supplementary Table 1). We find that
at low copy numbers for the plasmid encoding the transfection marker, each of the leftmost
bins in Supplementary Figure 7 had relatively constant modes.
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Supplementary Figure 7: Normalized histograms of the plasmid encoding the transfection marker
within selected bins. The x-axis gives the amount of molecules of the plasmid encoding the transfec-
tion marker in units of MEFL, and the y-axis the normalized frequency that amount is observed. Bins
between 100.8 and 101.0 MEFL, 101.4 and 101.6 MEFL, 102.2 and 102.4 MEFL, 103.0 and 103.2 MEFL, 106.2

and 106.4 MEFL, and 107.0 and 107.2 MEFL are shown. At low plasmid copy number (low bins), we
observe that the distributions of plasmids have almost constant modes; at high copy number (high
bins), the modes get shifted to the right as bin index increases.

3 Hill-function-based Models

A Hill function is commonly expressed as:

H(I ) =

8
>>>>><

>>>>>:

(1°∞) · 1

1+
° I

d

¢h
+∞, if I is an inhibitor

(1°∞) ·
° I

d

¢h

1+
° I

d

¢h
+∞, if I is an activator,

where I is the concentration of the inhibitor/activator. H(I ) accounts for the fraction of the
promoter that is active. ∞ is the minimum fraction of the promoter that is active: if I is an
inhibitor, ∞ is the fraction active given infinite abundance of I; if I is an activator, ∞ is the
fraction active in absence of I. h is the Hill coefficient, and d is the dissociation constant.
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The Hill-function-based model we use, originally used in Davidsohn et al. (2015), is:

d Ii

d t
=Æi ·¡(t )°∏I · Ii

dOi

d t
=Ø ·¡(t ) ·

µ
Pi

P1

∂ f

·H(Ii )°∏O ·Oi

¡(t ) =
µ

1
2

∂b t
T c

H(Ii ) = (1°∞) · 1

1+
≥

Ii
d

¥h
+∞,

where f captures the linear relationship between the maximum production rate of the output
protein and the concentration of the transfection marker on the log scale. The rest of the
notations follow Equation (1) in the main text.

4 Fitting ODE Models

Assume the regulatory switch is induced at m dosages, and cells are segmented into n bins by
their plasmid copy numbers. Let Oi u denote the averaged measurements of concentrations
of the regulated protein in the i -th bin at dose level u at the final time point t§, and Ôi u the
counterpart numerically simulated by the model. We fit log

°
Ôi u

¢
to log(Oi u) by iteratively

searching for the set of parameters that minimize the mean-squared error (Carpenter (1960)):

Pm
u=1

Pn
i=1

£
log(Oi u)° log

°
Ôi u

¢§2

mn °# of params

via the GlobalSearch solver in Matlab. GlobalSearch uses a scatter-search mechanism to
generate start points, initiates a local solver from these start points, and reevaluates the start
points during the minimization process. We implement GlobalSearch using the local solver
fmincon, and for fmincon, we use the ‘sqp’ algorithm. To fit the traditional Hill-function-
based models, we set boundaries of log10(d), log10(Ø), log10( f ), log10(h), and log10(∞) to be
[2,8], [°2,6], [°1,1], [°4,4], and [°5,0], respectively. To fit the bin-dependent models, we
keep the above settings and set the boundary of log10(g ) to be [°3,1]. The rest of the search
algorithm parameters are set to their default values. The optimized fits are listed in Support-
ing Information Section 5.

In cross-validation, the fitting errors are defined as (Carpenter (1960)):

Pm
u=1

Pn
i=1

£
log(Oi u)° log

°
Ôi u

¢§2

mn °# of params
.

The testing errors are defined as (Carpenter (1960)):

Pm
u=1

Pn
i=1

£
log(Oi u)° log

°
Ôi u

¢§2

mn
.
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In the “Modular Composition" subsection of the main text, the mean-fold error we adopt
for evaluating model performance on each cascade and feed-forward circuit is defined as:

Pm
u=1

Pn
i=1

ØØlog(Oi u)° log
°
Ôi u

¢ØØ

mn
.

5 Optimal Parameter Fits of ODE Models

Optimized fits
Model Ø (Unit: MEFL/hr) f d (Unit: MEFL) h ∞ Error
TAL14 5.52£104 1.47 1.04£105 0.73 1.50£10°3 0.013
TAL21 6.96£104 1.28 2.13£105 0.68 1.91£10°5 0.015
LmrA 1.51£104 1.72 2.34£106 0.92 5.85£10°4 0.020

Supplementary Table 2: Optimal parameters and mean-squared errors for the traditional Hill-
function-based model fit to the experimental data. All parameter values are rounded to two digits
after the decimal point. The experimental data are from Davidsohn et al. (2015).

Optimized fits
Model Ø (Unit: MEFL/hr) f d (Unit: MEFL) h Error
TAL14 4.87£104 1.74 5.39£104 0.68 0.004
TAL21 4.68£104 1.58 2.90£105 0.72 0.005
LmrA 1.66£104 1.91 3.73£105 0.59 0.009

∞ g
TAL14 2.83£10°4 1.10
TAL21 1.10£10°3 0.83
LmrA 2.36£10°5 1.09

Supplementary Table 3: Optimal parameters and mean-squared errors for the bin-dependent model
fit to the experimental data. All parameter values are rounded to two digits after the decimal point.
The experimental data are from Davidsohn et al. (2015).
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6 Models for Cascades

Upon modular connection, parameters that are fit to input-output curves of individual mod-
ules need to be corrected for batch effects. As is shown in Supporting Information Section
12 of Davidsohn et al. (2015), the rescaling factors for the input protein I, the output protein
O, and the transfection marker are TAL14: 0.29, 0.93, 0.89; TAL21: 0.20, 1, 1.12; LmrA: 1, 0.41,
1 (Davidsohn et al. (2015)). For example, for output protein O, TAL14 has a scaling factor of
0.93, and TAL21, a factor of 1. This means to compare the output protein between TAL14 and
TAL21, data for TAL14 need to be multiplied by 0.93 so that the two are brought to the same
scale. The scaling factors are used to rescale the parameters in the bin-dependent models
before the models are connected into a chain. d is rescaled with the input, Ø rescaled with
the output, and Pi rescaled with the transfection marker. Mathematically speaking, if cI , cO ,
and cP are the scaling factors of the input, the output, and the transfection marker, then the
rescaled bin-dependent model is formulated as follows:

d I 0i
d t

=Æ0
i ·¡(t )°∏ · I 0i ,

dO0
i

d t
=

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Ø0 ·¡(t ) ·
√

P 0
i

P 0
1

! f

·

0

B@
1°∞

1+
≥

I 0i
d 0

¥h
+∞

1

CA°∏ ·O0
i , if P 0

i < P 0
i 0

Ø0 ·¡(t ) ·
√

P 0
i 0

P 0
1

! f

·
√

P 0
i

P 0
i 0

!g

· 1°∞

1+
≥

I 0i
d 0

¥h

+Ø0 ·¡(t ) ·
√

P 0
i

P 0
1

! f

·∞°∏ ·O0
i ,

if P 0
i ∏ P 0

i 0

¡(t ) =
µ

1
2

∂b t
T c

,

where the prime variables represent the variables without batch effects:

I 0i = Ii · cI Ø0 =Ø · cO · cP P 0
i = Pi · cP Æ0

i =Æi · cI

O0
i =Oi · cO · cP d 0 = d · cI P 0

i 0 = Pi 0 · cP .

As is shown in Supporting Information Section 12 of Davidsohn et al. (2015), scaling factors
of the transfection marker for the cascades, c̃P are {1.51,1.07,0.68,0.78,0.71,0.79} for TAL14-
TAL21, TAL14-LmrA, TAL21-TAL14, TAL21-LmrA, LmrA-TAL14, and LmrA-TAL21, respectively.
For all these cascades, c̃I = 1, and c̃O = 1. Since the prime variables involve no batch effects,
to convert to a cascade, we must divide all the prime variables by the corresponding cascade
scaling factors (c̃I , c̃O , c̃P ). In addition, to offer a comparable study to Davidsohn et al. (2015),
we follow similar implementation details as are shown in Davidsohn et al. (2015) by multi-
plying the dissociation constant of the the second repressor by three (see the fourth to last
paragraph of the Supporting Information Section 5 of Davidsohn et al. (2015)). This is be-
cause the plasmids for the second repressor are transfected at one-third the concentration of
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the first repressor (Davidsohn et al. (2015)). This suggests that production of the second re-
pressor should scale like one-third the activation level of the first repressor during the initial
transient, when much of the repressor is produced for the system (Davidsohn et al. (2015)).
The final bin-dependent model for cascades is expressed as:

d I 00i
d t

=Æ00
i ·¡(t )°∏ · I 00i

dO00
1i

d t
=

8
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where

I 00i =
I 0i
c̃I

Æ00
i =

Æ0
i

c̃I
,

and for the k-th module (k = 1,2) and the j -th cascade ( j = 1°6),

Ø00
k =

Ø0
k

c̃P j · c̃O
P 00

ki =
P 0

ki

c̃P j
d 00

k =
d 0

k

c̃I

O00
ki =

O0
ki

c̃P j · c̃O
P 00

ki 0 =
P 0

ki 0

c̃P j
.

The double prime variables represent variables that account for the batch effects of the
cascades. Values of the parameters used in the final bin-dependent models for six cascades
are shown in Supplementary Table 4.
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The same method of rescaling can be applied to the Hill-function-based model presented
in Davidsohn et al. (2015). The rescaled Hill-function model for cascades is expressed as:

d I 00i
d t

=Æ00
i ·¡(t )°∏ · I 00i
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where

I 00i =
I 0i
c̃I

Æ00
i =

Æ0
i

c̃I
,

and for the k-th module (k = 1,2) and the j -th cascade ( j = 1°6),

Ø00
k =

Ø0
k

c̃P j · c̃O
P 00

ki =
P 0

ki

c̃P j

d 00
k =

d 0
k

c̃I
O00

ki =
O0

ki

c̃P j · c̃O
.

Values of the parameters used in the rescaled Hill-function-based models for six cascades
are shown in Supplementary Table 5.
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Parameters
Cascade Ø00

1 (MEFL/hr) f1 d 00
1 (MEFL) h1 ∞1

LmrA-TAL14 9.78£103 1.91 3.73£105 0.59 2.36£10°5

LmrA-TAL21 8.67£103 1.91 3.73£105 0.59 2.36£10°5

TAL14-LmrA 4.70£104 1.74 1.58£104 0.68 2.83£10°4

TAL14-TAL21 3.34£104 1.74 1.58£104 0.68 2.83£10°4

TAL21-LmrA 5.34£104 1.58 5.77£104 0.72 1.10£10°3

TAL21-TAL14 6.20£104 1.58 5.77£104 0.72 1.10£10°3

g1 Ø00
2 (MEFL/hr) f2 d 00

2 (MEFL) h2

LmrA-TAL14 1.09 7.24£104 1.74 1.58£104 0.68
LmrA-TAL21 1.09 5.28£104 1.58 5.77£104 0.72
TAL14-LmrA 1.10 6.35£103 1.91 3.73£105 0.59
TAL14-TAL21 1.10 2.75£104 1.58 5.77£104 0.72
TAL21-LmrA 0.83 8.76£103 1.91 3.73£105 0.59
TAL21-TAL14 0.83 7.54£104 1.74 1.58£104 0.68

∞2 g2 ∏ (hr°1) P 00
1i 0 (MEFL) P 00

2i 0 (MEFL)
LmrA-TAL14 2.83£10°4 1.10 3.41£10°2 107.55 107.31

LmrA-TAL21 1.10£10°3 0.83 3.41£10°2 107.51 107.15

TAL14-LmrA 2.36£10°5 1.09 3.41£10°2 107.12 107.37

TAL14-TAL21 1.10£10°3 0.83 3.41£10°2 106.97 106.87

TAL21-LmrA 2.36£10°5 1.09 3.41£10°2 107.16 107.51

TAL21-TAL14 2.83£10°4 1.10 3.41£10°2 107.22 107.32

Supplementary Table 4: Values of the rescaled parameters used in the final bin-dependent models for
the six cascades.
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Parameters
Cascade Ø00

1 (MEFL/hr) f1 d 00
1 (MEFL) h1 ∞1

LmrA-TAL14 5.20£103 1.91 3.39£106 1.00 5.90£10°3

LmrA-TAL21 4.61£103 1.91 3.39£106 1.00 5.90£10°3

TAL14-LmrA 5.64£104 1.45 3.29£104 0.98 9.30£10°3

TAL14-TAL21 4.01£104 1.45 3.29£104 0.98 9.30£10°3

TAL21-LmrA 1.10£105 1.74 1.09£104 0.66 9.33£10°8

TAL21-TAL14 1.28£105 1.74 1.09£104 0.66 9.33£10°8

Ø00
2 (MEFL/hr) f2 d 00

2 (MEFL) h2 ∞2

LmrA-TAL14 8.69£104 1.45 3.29£104 0.98 9.30£10°3

LmrA-TAL21 1.09£105 1.74 1.09£104 0.66 9.33£10°8

TAL14-LmrA 3.38£103 1.91 3.39£106 1.00 5.90£10°3

TAL14-TAL21 5.69£104 1.74 1.09£104 0.66 9.33£10°8

TAL21-LmrA 4.66£103 1.91 3.39£106 1.00 5.90£10°3

TAL21-TAL14 9.04£104 1.45 3.29£104 0.98 9.30£10°3

∏ (hr°1)
LmrA-TAL14 3.41£10°2

LmrA-TAL21 3.41£10°2

TAL14-LmrA 3.41£10°2

TAL14-TAL21 3.41£10°2

TAL21-LmrA 3.41£10°2

TAL21-TAL14 3.41£10°2

Supplementary Table 5: Values of the rescaled parameters used in the rescaled Hill-function models
for the six cascades.
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7 Cascade Predictions

Supplementary Figure 8: Comparison between experimental data and predictions made by the bin-
dependent model for six cascades. Plasmid copy number is shown by color. Solid lines are exper-
imental data, and dashed lines are model predictions. The experimental data are from Davidsohn
et al. (2015).
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Supplementary Figure 9: Comparison between experimental data and predictions made by the
rescaled Hill-function-based model for six cascades. Plasmid copy number is shown by color. Solid
lines are experimental data, and dashed lines are model predictions. The experimental data are from
Davidsohn et al. (2015).
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8 Models for Feed-forward Circuits

Similar to cascades, the bin-dependent model for feed-forward circuits can be constructed
and is expressed as:
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where the prime variables represent the variables without batch effects. The first equation in-
volving I 0i describes the dynamics of I1 as well as I3, which directly inhibits O2 (Figure 10(a)).
Note that due to uncontrollable experimental variations, the distributions of the transfec-
tion marker differ substantially between feed-forward circuits and rest of the circuits stud-
ied in this paper (see Supporting Information Section 6 of Davidsohn et al. (2015)). The
fluorescence-intensity distributions of the transfection marker reach the upper ends near
107.4 MEFL for LmrA-TAL14 and TAL21-LmrA feed-forward circuits, and near 108.0 MEFL for
TAL21-TAL14 feed-forward circuit, while the upper ends lie near 108.5 for modules as well
as cascades. To reconcile the differences, we divide P 0

1i 0 and P 0
2i 0 in the feed-forward circuit

models by the fold differences between the upper ends of fluorescence-intensity distribu-
tions of the transfection marker for modules and feed-forward circuits. Values of parameters
used in the actual models, including P 0

1i 0 and P 0
2i 0 , can be found in Supplementary Table 6.
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The rescaled Hill-function model for feed-forward circuits is expressed as:
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.
Values of parameters used in the actual Hill-function models can be found in Supplemen-

tary Table 7.
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Parameters
Circuit Ø0

1 (MEFL/hr) f1 d 0
1 (MEFL) h1 ∞1

LmrA-TAL14 6.86£103 1.91 3.73£105 0.59 2.36£10°5

TAL21-LmrA 4.68£104 1.58 5.77£104 0.72 1.10£10°3

TAL21-TAL14 4.68£104 1.58 5.77£104 0.72 1.10£10°3

g1 Ø0
2 (MEFL/hr) f2 d 0

2 (MEFL) h2

LmrA-TAL14 1.09 4.53£104 1.74 1.58£104 0.68
TAL21-LmrA 0.83 6.86£103 1.91 3.73£105 0.59
TAL21-TAL14 0.83 4.53£104 1.74 1.58£104 0.68

∞2 g2 ∏ (hr°1) P 0
1i 0 (MEFL) P 0

2i 0 (MEFL)
LmrA-TAL14 2.83£10°4 1.10 3.41£10°2 106.25 105.95

TAL21-LmrA 2.36£10°5 1.09 3.41£10°2 105.95 106.25

TAL21-TAL14 2.83£10°4 1.10 3.41£10°2 106.55 106.55

Supplementary Table 6: Values of the rescaled parameters used in the bin-dependent models for the
three feed-forward circuits.

Parameters
Circuit Ø0

1 (MEFL/hr) f1 d 0
1 (MEFL) h1 ∞1

LmrA-TAL14 6.24£103 1.72 2.34£106 0.92 5.85£10°4

TAL21-LmrA 6.96£104 1.28 4.25£104 0.68 1.91£10°5

TAL21-TAL14 6.96£104 1.28 4.25£104 0.68 1.91£10°5

Ø0
2 (MEFL/hr) f2 d 0

2 (MEFL) h2 ∞2

LmrA-TAL14 5.14£104 1.47 3.04£104 0.73 1.50£10°3

TAL21-LmrA 6.24£103 1.72 2.34£106 0.92 5.85£10°4

TAL21-TAL14 5.14£104 1.47 3.04£104 0.73 1.50£10°3

∏ (hr°1)
LmrA-TAL14 3.41£10°2

TAL21-LmrA 3.41£10°2

TAL21-TAL14 3.41£10°2

Supplementary Table 7: Values of the rescaled parameters used in the rescaled Hill-function models
for the three feed-forward circuits.

20



9 Feed-forward Circuit Predictions

Supplementary Figure 10: Comparison between experimental data and predictions made by the bin-
dependent model for three feed-forward circuits. Plasmid copy number is shown by color. Solid lines
are experimental data, and dashed lines are model predictions. The experimental data are from David-
sohn et al. (2015).
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Supplementary Figure 11: Comparison between experimental data and predictions made by the
rescaled Hill-function-based model for three feed-forward circuits. Plasmid copy number is shown
by color. Solid lines are experimental data, and dashed lines are model predictions. The experimental
data are from Davidsohn et al. (2015).
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