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a b s t r a c t

Amechanism is presented which drives a fluid flow using two chemically reacting molecular species and
osmotic effects. For concreteness the mechanism is discussed in the context of a tube which at each end
has a capping membrane which is permeable to the fluid but impermeable to the two molecular species.
The chemical reactions occur at sites embedded in the capping membrane. Labeling the two chemical
species A and B, at one end the reactions split each molecule of species B into two molecules of species
A. On the other end two molecules of species A are fused together to form a single molecule of species
B. A mathematical model of the solute diffusion, fluid flow, and osmotic effects is presented and used to
describe the non-equilibrium steady-state flow rate generated. Theoretical and computational results are
given for how the flow rate depends on the relative diffusivities of the solute species and the geometry of
the system. An interesting feature of the pump is that for the same fixed chemical reactions at the tube
ends, fluid flows can be driven in either direction through the tube, with the direction depending on the
relative diffusivities of the solute species. The theoretical results are compared with three-dimensional
numerical simulations of the pump.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

In recently proposed technological devices and in many
biological systems, gradients in fluid pressure are generated by
osmotic effects to drive a flow [2–9]. Osmosis occurs when solute
molecules immersed in a fluid are confined within a region
delineated by a boundary less permeable to molecules of the
solute than the fluid. When the boundary in question is rigid, this
results in a pressure exerted on the confining boundary, which
exceeds that of the solvent pressure, with a dependence on the
concentration of the solute and the temperature of the system. This
additional pressure in the system is referred to as the ‘‘osmotic
pressure’’. For systems in which the confining boundary is flexible,
swelling can also occur as water flows into the confining region,
increasing its volume until the elastic stresses in the flexible walls
have built up enough to balance the osmotic pressure [10,8], which
meanwhile has been somewhat reduced by the dilution of the
confined solute.
Various microfluidic pumps and actuator devices have been

proposed which exploit osmosis either making use of swelling
structures or electrostatic effects [1,6,7,11]. In [6,7,11] osmotic
swelling is exploited to generate forces in a microactuator or to
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generate deformations in vessels containing a drug for delivery.
In [8,9] propulsion mechanisms are proposed which make use
of a concentration gradient in the environment which induces
unbalanced osmotic pressures on a small particle or lipid vesicle.
In [1] an electrostatic field drives a fluid flow through a flux of
ions which develops in a boundary layer of the charged wall of the
pump.
In cell biology, osmotic effects play an important role. Within

cells and organelles there are high concentrations of charged
proteins and counter-ions. The effects of osmotic pressure must be
actively mitigated by ion pumps or other means to avoid excessive
swellingwhich could burst the cell or organelle [12,13]. Regulation
of the volume of such structures can be used to drive an in-flux
or out-flux of fluid which may be important in many biological
processes in the cell [14,3]. Osmotic effects are also thought to play
an important role in tissues of epithelial cells in the kidney, liver,
and intestine in which a large volume of fluid is processed each
day. A number of pumping mechanisms have been proposed that
make direct use of osmotic effects [15,3,16,12,17,4,18,5].
In the systems mentioned above an osmotic pressure gradient

is set up either by active pumping of solute molecules from a large
external store into a confined region or by an external electrostatic
field. In the present work a pumping mechanism is discussed
which does not require an external store of solute molecules or
electrostatic effects. In the mechanism proposed here the solute
molecules are recycled in the process that sets up the osmotic
pressure gradient.

http://www.elsevier.com/locate/physd
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A variety of approaches have been taken to model osmotic
phenomena ranging from thermodynamic relations tomicroscopic
statistical mechanical descriptions [19–24,8,9]. The classical work
by van ’t Hoff gives an equilibrium thermodynamic law for
macroscopic osmotic pressure in terms of the overall temperature
of the system and the difference in concentration of the solute
which is confined by a semi-permeable membrane with that of
the solute in the outside bulk solvent [24]. Amicroscopic approach
can also be taken based on the mechanics of the solute–wall
interactions which does not necessarily require the system to be
in thermodynamic equilibrium [19,20].
In this paper we shall take a microscopic approach to the study

of how the osmotic pressure arises in the non-equilibrium setting
of active chemical reactions and fluid flows.We shall then perform
analysis to obtain a description of the osmotic pressure of the pump
by taking the limit in which the solute confining potentials at the
semi-permeable membranes only act in a very small boundary
layer of the capping ends of the pump, which corresponds to
what we term the ‘‘hard-walled limit’’ [19]. This description is
then used to carry out three-dimensional numerical simulations of
the microfluidic pumping mechanism using a variant of the finite
volume method of [25] and the immersed boundary method [26].
The paper is organized as follows. In Section 2, the pumping

mechanism is discussed. To demonstrate the mechanism, a
mathematical model of a pump with cylindrical geometry is
formulated in Section 3. To obtain an analytically tractable set of
equations, reductions are then made to the model in Section 4
and theoretical predictions for the steady-state pumping rate are
given. Numerical methods for the full system of equations for
the osmotic phenomena which accounts for general confining
potentials, the fluid flows, and chemical reactions are presented in
detail in Section 5. The specific numerical methods used for the full
three-dimensional model of the osmotic pump are then presented
and the results of simulations are discussed in comparison to the
theoretical predictions made from the reduced model.

2. The pumping mechanism

For concretenesswe shall discuss themechanism in the context
of a system which has two solute species A and B which are
assumed to be confined to the interior of a cylindrical tube. Two
planar cross-sections of the tube are spannedbymembraneswhich
are permeable to solvent but impermeable to the solute species A
and B. The curved cylindrical walls of the tube are impermeable to
solute and solvent alike. For the purpose of our analysis we shall
regard the entire cylindrical pump as being embedded in a longer
tube which is bent to reconnect with itself so that solvent fluid is
re-circulated. We shall assume that this is done in such a manner
that the curvature has a negligible effect on the solvent flow. More
general geometries and additional solute species could of course
be considered to obtain other variants of the proposed pumping
mechanism.
The chemistry of the system will occur only in the vicinity

of the membranes spanning the cross-section of the tube. Since
these membranes act like ‘‘caps’’ for the cylindrical region defined
between the cross-sections we shall refer to the semi-permeable
membranes as ‘‘capping membranes’’. The capping membrane at
one end of the tube contains reaction sites (embedded enzymes)
at which a solute molecule of species B is split into two solute
molecules of species A. At the other end of the tube is a capping
membrane with embedded reaction sites which combine two
molecules of species A to form a single molecule of species B.
We remark that even though one of the chemical reactions is the
reverse of the other, an energy source is needed to power the pump
in general. This is because the chemical reactions are localized and
not directly coupled, with one reaction occurring independently at
Diffusion of Solute A

Diffusion of Solute B

2A

B

2A

B

Fig. 2.1. Pump schematic. On the left end of the tube two molecules of species A
bind to form a single molecule of species B. When molecules of species B diffuse or
are transported by the fluid to the right end of the tube the molecule of species B is
split into two molecules of species A. Throughout the chemical reactions the total
number of elementary chemical units is conserved as either free speciesAmolecules
or as bound pairs which form a single molecule of species B.

one end of the tube, provided there are sufficient reactants, while
the other reaction occurs independently at the other end of the
tube.
Suppose for example that one of the chemical reactions, say

B→ A+ A, is strongly favored (for energetic and/or entropic rea-
sons) under the prevailing conditions throughout the pump, and
therefore requires only a catalyst to occur. Then no energy source
is needed at the capping membrane where this reaction occurs.
However, precisely because the B→ A+ A reaction is favored, we
cannot expect the reverse reaction A+A→ B to happen preferen-
tially at the other capping membrane. For the reaction A+ A→ B
to occur requires an energy source. In an experimental system the
chemistry might be realized by enzymes embedded in the mem-
branes of the capping ends which derive energy from an auxiliary
source such as hydrolysis of ATP molecules, see [27]. Another ap-
proach to obtain a similar effect as we shall discuss could be to uti-
lize for ions or small molecules a form of ‘‘facilitated diffusion’’ for
transport across the capping membranes which has different ki-
netics for the twomembranes [13]. For a schematic of the pumping
mechanism see Fig. 2.1.
At steady-state the system is expected to have an imbalance

in the number of solute molecules at the opposing ends of the
tube. Osmotic pressure differences at the ends of the tube are then
expected to drive a fluid flow through the tube from the end with
a greater number of solute molecules toward the end with fewer
molecules. However, predicting features of this steady-state on
intuitive grounds is made challenging given the coupling between
the chemical reactions, transport by the fluid, and diffusion. As we
shall discuss, the flowmaybemade tomove opposite to the natural
direction suggested by the chemical reactions by an appropriate
choice of the relative diffusivities of the solute species.

3. A theoretical model of the pump

The geometry of themodel systemconsists of a long tubehaving
total length L∗ and radius R. The pump will be embedded in this
long tube and consist of a sub-segment of the tube of length Lwhich
is delimited by two semi-permeable membranes. We shall refer to
this region as the ‘‘tube’’ of the pump. References to the ‘‘ends of the
tube’’ will refer to the boundaries defined by the semi-permeable
membranes. Throughout, the pump should be regarded as being
embedded within a longer tube of length L∗ which reconnects
with itself to re-circulate the solvent fluid, which corresponds to
periodic boundary conditions on the tube of length L∗.
To take into account how osmotic effects arise in the

system, explicit solute–wall interactions are modeled through two
conservative forces having potentials VA and VB, which act on the
solute particles of species A and B respectively. To separate those
forces acting on the solute inside the tube and those forces acting
merely to confine solute particles to the tube, the geometry used in
the mathematical model will consist of a slightly larger cylindrical
tube having radius R+ ξ and extending in length from [−ε, L+ ε].
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For systems having purely confining forces this will be modeled by
potentials VA and VB which are non-constant only outside of the
tube of radius R and length L. The ξ and ε parameters then specify
thewidth of the boundary layers onwhich the confining forces act.
To ensure that conservative forces indeed confine the solute to the
extended tube, the potentials VA and VB are required to diverge
over the boundary layer. This can be expressed by the following
conditions which will be assumed throughout: VA(L + h, y, z) →
∞, VB(−h, y, z) → ∞, as h → ε, and VA(x, (R + r) cos(θ), (R +
r) sin(θ)) → ∞, VB(x, (R + r) cos(θ), (R + r) sin(θ)) → ∞ as
r → ξ , where x ∈ [−ε, L + ε], y2 + z2 < R2, and θ ∈ [0, 2π ].
We remark that these confining potentials play a crucial role in
the mechanism underlying the osmotic pressures of the system,
which arise from the persistent confining forces exerted on the
solute particles maintained in the boundary layer by diffusion. A
detailed discussion of this mechanism is given in [19].
In the model the reactive membranes will be cross-sections of

the tube located at x = 0 and x = L and will be freely permeable
to particles of the non-reactive solute species. We shall assume
that all participating solute molecules which encounter a reactive
cross-section are processed by the chemical reactions.
To model the diffusion, advective transport, and chemical

reactions of the solute particles under these assumptions the
following conservation equations are used for the concentrations
of the solute species:

∂cA(x, y, z, t)
∂t

= −∇ · jA(x, y, z, t)−
(
−jA(0

+, y, z, t) · e1
)
δ(x)

+
(
2jB(L

−, y, z, t) · e1
)
δ(x− L) (3.1)

∂cB(x, y, z, t)
∂t

= −∇ · jB(x, y, z, t)

+

(
−
1
2
jA(0

+, y, z, t) · e1
)
δ(x)

−
(
jB(L
−, y, z, t) · e1

)
δ(x− L) (3.2)

where cA(x, y, z, t) is the concentration of solute particles of
species A at location (x, y, z) at time t , and similarly for cB. The
notation e1 denotes the unit vector in the x-direction. The terms
jA, jB model the fluxes of the solute species associated with the
diffusion of particles, the conservative forces acting on particles,
and the advective transport of particles with the fluid flow:

jA(x, y, z, t) = −DA∇cA(x, y, z, t)

−
1
γA
∇VA(x, y, z)cA(x, y, z, t)

+u(x, y, z, t)cA(x, y, z, t) (3.3)
jB(x, y, z, t) = −DB∇cB(x, y, z, t)

−
1
γB
∇VB(x, y, z)cB(x, y, z, t)

+u(x, y, z, t)cB(x, y, z, t). (3.4)

The first term in each of the fluxes models the diffusion of
the solute by Fick’s law with diffusion coefficients DA and
DB [10,22]. The second term accounts for the conservative forces
corresponding to the potentials VA and VB which act respectively
on the solute particles of species A and B. The factors γA and γB
are the drag coefficients of the solute particles of species A and
B respectively [10,22]. The diffusion coefficients are related to the
drag coefficients by the Einstein relations DA = kBT/γA and DB =
kBT/γB, where T is the temperature in Kelvin and kB is Boltzmann’s
constant [10,22]. The transport of the solute by the fluid flow is
taken into account through the third term, where u(x, y, z, t) is
the fluid velocity at location (x, y, z) at time t . This velocity will
be derived ultimately from the osmotically induced fluid flow in a
self-consistent manner with the concentration fields of the solute.
The terms involving the Dirac δ-function [28] model the

exchanges between the solute species that arise from the chemical
reactions at the boundary (sources/sinks). For example, the term

−
(
−jA(0

+, y, z, t) · e1
)
δ(x) (3.5)

in Eq. (3.1) models a sink for the solute flux into the cross-section
corresponding to x = 0. The flux of solute coming from the right
into this cross-section is given by−jA(0+, y, z, t). The notation 0+
indicates that the value of the flux to be used is the one obtained by
considering the limit of−jA(x, y, z, t) taken from the right, x > 0,
x → 0. We remark there is no flux of A from the left of x = 0
because that region is inaccessible to A, all of which is converted to
B at x = 0.
In the cross-section corresponding to x = 0, the chemical

reactions bind to form pairs of solute particles of species A to form
solute particles of species B. The newly formed solute particles of
species B are accounted for in Eq. (3.2) by the term

−
1
2

(
jA(0

+, y, z, t) · e1
)
δ(x)

which acts as a source ejecting a concentration of B particles at the
rate− 12 jA(0

+, y, z, t). The factor of 12 arises from the stoichiometry
of the chemical reaction in which two solute particles of species A
form a single particle of species B.
A similar interpretation holds for the other terms involving

the δ-function. These terms model the chemical reactions which
split solute particles of species B, which occur in the cross-section
corresponding to x = L. The notation L− denotes that the leftward
limit x < L, x → L is to be taken in determining the value of the
flux. The region to the right of x = L is inaccessible to B.
From the assumption that all participating solute molecules

which encounter a reactive cross-section are processed by the
chemical reactions, there are two additional boundary conditions:

cA(0, y, z) = 0 (3.6)
cB(L, y, z) = 0. (3.7)

We remark that non-reactive solute species are permitted in the
model to freely permeate the cross-sections of the tube at x =
0 and x = L. For a schematic representation of the boundary
conditions see Figs. 3.1 and 2.1.
In the model the chemical reactions act either to bind together

two elementary chemical units to form a molecule of species
B or to separate the paired units to form two molecules of
species A. Thus the elementary units are recycled in the chemical
reactions and none are created or destroyed. The conservation of
the total number of units throughout the chemical reactions can
be expressed as:∫
(cA(x)+ 2cB(x)) dx = N0 (3.8)

where V denotes the region corresponding to the tube and N0
denotes the total number of elementary chemical units. The Eqs.
(3.1) and (3.2) together with the conditions (3.6)–(3.8) give a
theoretical model for the pump.
To obtain a tractable system of equations which can be solved

analytically we shall reduce the model to one spatial dimension
by averaging over the cross-sections of the tube (i.e., over y and
z) and thus obtaining a system of equations for the averaged
concentrations as functions of the single variable x. Let the average
concentration over a cross-section be denoted by:

CA(x) =
1
πR2

∫
y2+z2<R2

cA(x, y, z)dydz (3.9)

CB(x) =
1
πR2

∫
y2+z2<R2

cB(x, y, z)dydz. (3.10)
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Fig. 3.1. Schematic of the potential energy. The osmotic pump is embedded in a long tube of length L∗ which connects with itself to re-circulate the solvent fluid, this
corresponds to periodic boundary conditions on the domain [0, L∗]. In the embedding the interior of the pump extends from [0, L]. The potential energy for the confining
force is assumed to be non-zero only in a boundary layer of width ε at the capping ends of the tube. A notable feature of the potential is that it is zero at the location of the
reaction sites (denoted by boxes) which are modeled by appropriate source and sink terms in Eqs. (3.1) and (3.2). This prevents the confining forces from interfering with
the diffusion of solute to these sites. The potential is also assumed to diverge in the boundary layer to prevent solute from diffusing outside the extended tube. We further
remark that since all of solute A is converted to B at x = 0, solute A does not enter the region x < 0, so only the potential VB is needed there to confine solute B to the tube.
Similarly, all of solute B is converted to A at x = L, so only the potential VA is needed for x > L to confine the solute A.
We also define the average flux of concentration over a cross-
section by:

JA(x, t) =
1
πR2

∫
y2+z2<R2

jA(x, y, z) · e1dydz (3.11)

JB(x, t) =
1
πR2

∫
y2+z2<R2

jB(x, y, z) · e1dydz (3.12)

and the average fluid velocity by:

ū0(t) =
1
πR2

∫
y2+z2<R2

u(x, y, z, t) · e1dydz. (3.13)

In this notation, e1 denotes the unit vector in the axial direction
(x-direction) and R is the radius of the tube. We remark that from
the incompressibility of the fluid flow and the impermeability of
thewalls to the fluid, the flow is confined to the interior of the tube
and is volume conserving, therefore, the average fluid velocity over
a cross-section is independent of x.
To obtain a closed system of conservation equations for

the cross-sectional concentrations we shall make a number of
assumptions and approximations. For the confinement potential
for the curved cylindrical boundary of the tube we take the limit
of the confinement potential to a hard-wall potential, ξ →
0. In this limit the solute can be handled by no-flux boundary
conditions jA(x, y, z, t) · nR = jB(x, y, z, t) · nR = 0 when y2 +
z2 = R2, where nR is the outward normal in the radial direction.
Under this simplification the potentials VA and VB appearing in the
conservation equationswill be used tomodel only the confinement
forces of the solute at the planar boundaries of the tube where the
fluid can permeate. We shall also assume that the confinement
forces act only in the axial direction at the ends of the tube, and
require that VA(x, y, z) = VA(x) and VB(x, y, z) = VB(x).
To obtain an expression for JA, and similarly for JB, we shall ap-

proximate the cross-sectional average of the term
u(x, y, z)cA(x, y, z, t), appearing when (3.3) is substituted into
(3.11), by the term ū(t)CA(x, t). There are two different circum-
stances in which this would be an especially good approximation.
The first is when the tube is sufficiently narrow that cA(x, y, z, t) is
effectively independent of y or z. The second is when the interior of
the tube is a porousmedium inwhich case there is a plug flowwith
a flat velocity profile across a section of the tube so that u(x, y, z, t)
is effectively independent of y and z. In both cases, the vector value
uwould have a non-negligible component only in the e1 direction
since the fluid is incompressible and the tube is straight. A similar
set of approximations will also be made for JB.
With these considerations Eqs. (3.1)–(3.4) can be reduced to the

conservation equations:

∂CA(x, t)
∂t

= −
∂

∂x
JA(x, t)+ JA(x, t)δ(x)+ 2JB(x, t)δ(x− L) (3.14)
∂CB(x, t)
∂t

= −
∂

∂x
JB(x, t)−

1
2
JA(x, t)δ(x)− JB(x, t)δ(x− L) (3.15)

with

JA(x, t) = −DA
∂CA
∂x
(x, t)−

1
γA
V ′A(x)CA(x, t)+ ū0(t)CA(x, t) (3.16)

JB(x, t) = −DB
∂CB
∂x
(x, t)−

1
γB
V ′B(x)CA(x, t)+ ū0(t)CB(x, t) (3.17)

where DA = kBT/γA, DB = kBT/γB, and ū0(t) is the average
velocity. The cross-sectional average velocity of the flow ū0,
defined in (3.13), will be computed more explicitly in Section 3.1
by assuming a Poiseuille flow [29,30].
The absorbing boundary conditions (3.6), (3.7), and the

conservation condition (3.8) extend naturally to the reduced
equations, with CA(0) = 0, CB(L) = 0 and∫

V

(CA(x)+ 2CB(x)) dx =
N0
πR2

(3.18)

where, as before, N0 denotes the total number of elementary
chemical units. For a schematic of the one-dimensional model and
the confining potential, see Fig. 3.1.
At steady-state the equations for CA(x) and CB(x) can be

solved exactly. In Appendix A, we find the steady-state solution
with the general potentials VA(x) and VB(x). As mentioned above
these potentials are introduced to model explicitly the solute-
boundary interactions at the capping ends of the tube confining
the solute and will be used mainly to model effects giving rise
to osmosis. More details concerning this formulation and how
osmotic effects arisewill be given in Section 3.2 andAppendix B. An
explicit expression for the solute concentrations can be obtained in
terms of elementary functions by considering the limit in which
the confining potentials at the capping ends become hard-wall
potentials, ε → 0. In this limit the solute concentrations are given
by (see Appendix A):

CA(x)

=

N0
πR2

[
exp

(
γAū0x
kBT

)
− 1

]
[
kBT
γAū0

(
exp

(
γAū0L
kBT

)
− 1

)]
−

[
kBT
γBū0

(
1− exp

(
−
γBū0L
kBT

))]
(3.19)

CB(x)

=

N0
2πR2

[
1− exp

(
−
γBū0
kBT
(L− x)

)]
[
kBT
γAū0

(
exp

(
γAū0L
kBT

)
− 1

)]
−

[
kBT
γBū0

(
1− exp

(
−
γBū0L
kBT

))] .
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In the regime |ū0| � kBT/γAL, |ū0| � kBT/γBL where the
transport by the fluid flow is small relative to the diffusivity of the
solute molecules, a relatively simple expression can be obtained.
By Taylor expanding the exponential terms in (3.19) the steady-
state solutions can be approximated by:

CA(x) ≈
2N0
πR2L2

[
γA

γA + γB

]
x (3.20)

CB(x) ≈
N0

πR2L2

[
γB

γA + γB

]
(L− x). (3.21)

3.1. Approximation of the fluid flow by Poiseuille flow

To model the effective transport of the solute molecules by the
fluid flow, we shall use the average velocity of the fluid over a
cross-section of the tube, as defined in (3.13). We shall make the
approximation that the fluid undergoes a Poiseuille flow inside the
tube [29,30].
Consider a cylindrical tube of radius R with a length L∗ that

occupies 0 < x < L∗ with y2 + z2 ≤ R2. We regard the tube
as periodic, i.e., we identify x = 0 with x = L∗. Let the part of
the tube given by 0 < x < L contain the osmotic pump. For
reasons related to how osmotic pressure arises from the solute
interactions with the confining boundaries, we expect that the
presence of the solute will result in an increased pressure inside
the region of the tube corresponding to the pump and that there
will be pressure differences across the capping membranes which
serve as boundaries between the inside and outside of the pump
(see Section 3.2). Let these be denoted

(1P)0 = P(0+)− P(0−) = P(0+)− P(L∗−) (3.22)
(1P)L = P(L−)− P(L+) (3.23)

where P(x+) and P(x−) denote a pressure at x obtained by a limit
from the right or left, respectively. In this case, the1P correspond
to pressures at the left and right capping ends of the tube of the
pump just inside or outside the capping membranes. Note the sign
convention that in both cases1P is the pressure inside the osmotic
pump minus the pressure outside. Thus, we expect both of the
1P to be positive since the presence of the solute is anticipated
to increase the pressure inside the pump relative to the region
outside. We remark that the pump corresponds to the segment
of the tube from [0, L] and is embedded in a larger tube from
[0, L∗]which reconnects with itself to re-circulate the solvent. The
periodicity of the larger tube gives that P(0−) = P(L∗−).
Now we assume Poiseuille flow in both segments of the tube.

Since the tube is rigid, and the two segments are in series and have
the same radius, this implies that the (linear) pressure gradient is
the same in the two segments. Thus

G = (P(0+)− P(L−))/L (3.24)

G = (P(L+)− P(L∗−))/(L∗ − L) (3.25)

where −G is the axial pressure gradient in either of the two
segments of the tube. Multiply the first of these equations by L, the
second by (L∗ − L), and add the results. Making use of the above
definitions of (1P)0 and (1P)L, we see that

GL∗ = (1P)0 − (1P)L. (3.26)

It follows that the effective driving pressure for flow through
the entire tube of length L∗ is the difference between the pressure
jumps at the capping membranes. In particular, the fluid velocity
in either segment of the tube is given by

u(x, y, z) =
(1P)0 − (1P)L

4µL∗
(
R2 − y2 − z2

)
e1 (3.27)
and the mean velocity in a cross-section of the tube in either
segment is

ū0 =
(1P)0 − (1P)L

8µL∗
R2. (3.28)

3.2. Pressure at the capping ends: A model of osmotic effects

At the ends of the tube of the pump the solvent fluid
molecules are allowed to freely permeate the capping membranes
while the solute particles interact with the membrane and are
restricted to remain in the interior of the pump. As a consequence
of these solute–membrane interactions and the solute–solvent
interactions, a fluid pressure arises from the confinement of
the solute particles, which is generally referred to as ‘‘osmotic
pressure’’ [19].
To obtain the pressures (1P)0 and (1P)L for the proposed

pumping mechanism, we must consider the non-equilibrium
setting. In Appendix B we discuss the non-equilibrium pressures
which arise when taking into account both the role of the chemical
reactions and fluid flow.We then consider the limit as the potential
becomes ‘‘hard-walled’’, in the sense that the solute interacts with
the confining walls only over a very small boundary layer. In this
case, it is found that for the non-equilibrium steady-state of the
pump the van ’t Hoff’s Law [24] holds in a local sense at the capping
ends of the tube. This gives for the pressures:

(1P)0 = kBTC(0+) (3.29)
(1P)L = kBTC(L−) (3.30)

where C(x) = CA(x) + CB(x) is the average concentration of
solute particles in a cross-section of the tube at axial coordinate
x. We remark that from the absorbing boundary conditions (3.6),
(3.7) at the capping ends, this can be simplified by using that the
concentrations reduce to C(L) = CA(L) and C(0) = CB(0).

4. Theoretical predictions for the steady-state pumping rate

To predict the steady-state pumping rate, the equations for the
solute concentration must be coupled to the fluid flow. This can
be done by assuming that the fluid is pumped as a Poiseuille flow
having pressures at the ends of the tube given by the local van
’t Hoff’s Law discussed in Sections 3.1 and 3.2. This gives for the
average velocity of the fluid over a cross-section of the tube:

ū0 = −
R2kBT
8µL∗

(CA(L)− CB(0)). (4.1)

By substituting the steady-state solutions (3.19) for the solute
concentrations into (4.1), the following nonlinear equation is
obtained:

ū0

= −
N0kBT
8πµL∗

[
exp

(
γAū0
kBT
L
)
− 1

]
−
1
2

[
1− exp

(
−
γBū0
kBT
L
)]

[
kBT
γAū0

(
exp

(
γAū0
kBT
L
)
− 1

)]
−

[
kBT
γBū0

(
1− exp

(
−
γBū0
kBT
L
))] .
(4.2)

While finding an analytic expression for the solution of the
nonlinear equation (4.2) is not possible the equations can
be readily solved using a numerical method such as Newton
iteration [31]. To obtain approximate analytic expressions for ū0,
we shall consider the asymptotic regime |ū0| � kBT/γAL, |ū0| �
kBT/γBL which allows for linearization of (4.2). The asymptotic
resultswill then be comparedwith numerical solutions of (4.2) and
numerical simulations of a three-dimensional model of the pump.
The parameters used throughout are given in Table C.2.
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In the regime where |ū0| � kBT/γAL, |ū0| � kBT/γBL, we can
solve for ū0 by Taylor expanding the exponential terms in (4.2) to
obtain:

ū0 ≈
N0kBT
8πµLL∗

[
γB − 2γA
γA + γB

]
. (4.3)

We remark that this can also be found by substituting the approx-
imate expressions (3.20) and (3.21) for the solute concentrations
into (4.1).
The steady-state volumetric pumping rate is then given by:

Q ≈ πR2ū0

≈
N0kBTR2

8µLL∗

[
γB − 2γA
γA + γB

]
. (4.4)

From these expressions a number of interesting features of the
pump are suggested. Letting λ = γA/γB in (4.4) the dependence of
the pumping rate on the drag coefficients can be expressed as:

Q ≈
N0kBTR2

8µLL∗

[
1− 2λ
1+ λ

]
. (4.5)

One feature of this regime is that the pumping rate depends on
the geometry of the pump through the ratio R2/LL∗ = (R/L)2(L/L∗)
which shows a dependence on the ‘‘shape’’ of the system but not
the size. The ‘‘shape’’ of the system characterizes the aspect ratio
of the tube of the pump and the fraction the pump comprises
of the tube of total length L∗. We remark that this conclusion
is for a fixed number of elementary solute units N0, however.
If N0 scales linearly with the volume of the tube, as one might
reasonably expect, then the pump flow Q (volume/time) will also
scale linearly with the volume of the tube, provided the ‘‘shape’’
of the system does not change, which is characterized by holding
R2/LL∗ constant.
A general feature of the pump predicted by this expression is

that the direction inwhich fluid is pumped is controlled by the ratio
λ of the drag coefficients. It follows from (4.5) that when λ > 1

2 ,
fluid flows at steady-state from the right capping end, where the
paired solutemolecules are split, to the left capping end, where the
solute molecules are joined into pairs. This is intuitively expected
given the stoichiometry of the chemistry and the equilibrium van
‘t Hoff’s Law for osmosis [24]. However, the theoretical results
predict that the direction of flow can be reversed by taking λ < 1

2 .
In this case molecules of species B have a drag coefficient more
than double that of molecules of species A and fluid flows from
the capping end where the solute molecules are joined into pairs
toward the endwhere the pairs of solutemolecules are split.When
γB =

1
2γA no net flow is predicted to be driven by the pump. For

a comparison of the asymptotic expression (4.5) and the pumping
rate obtained from numerical solution of (4.2), see Fig. 4.1.
Obtaining flow from left to right may seem counter-intuitive,

since the splitting reaction would seem to have the effect of
increasing the number of molecules at the right capping end.
However, a further consideration must be taken into account and
this dramatically affects the flow direction. From (3.20) and (3.21)
we see that the greater drag coefficient of species B has the effect
of solute persisting longer in the form of molecules of species B
as opposed to molecules of species A. As a consequence, there is a
relative build up of species Bmoleculeswhich interact with the left
boundary of the tube causing through osmotic effects a left to right
fluid flow in the tube. One way species B molecules can become
more plentiful at the left end relative to species A at the right end
at steady-state, is for molecules of species A to diffuse sufficiently
fast against the flow to repopulate the species B molecules being
relatively slowly transported by the flow to be split. The analysis
shows that λ < 1

2 is sufficient for this to occur.
Fig. 4.1. Pumping rate vs λ. A comparison between the theoretical predictions
obtained by solution of (4.2) (solid curve), asymptotic expression (4.4) (upper
dotted curve), and numerical simulations of the three-dimensionalmodel described
in Section 5 (data points). This shows that the one-dimensional theory does a good
job of quantitatively predicting the flow rates obtained in the three-dimensional
model. To vary λ the parameter γA was adjusted while γB was held fixed at the
value given in Table C.2. Note that the negative pumping rate is given in the plots.

We remark that if we assume that both species of solute
molecules A and B are spherical and have the same mass per
unit volume, then, since each molecule of B is comprised of two
molecules of A, we have

2mA = mB ⇒ 21/3rA = rB ⇒ 21/3γA = γB (4.6)

wheremA,mB are themasses and rA, rB are the radii of the individual
solutemoleculesA and B, respectively, andwherewehave used the
Stokes drag formula, which tells us that the drag coefficient γ of a
sphere is proportional to its radius r . It follows that

λ =
γA

γB
= 2−1/3 > 1/2. (4.7)

In this special case, expression (4.5) reduces to

Q ≈
N0kBTR2

16µLL∗

(
1− 22/3

1+ 2−1/3

)
(4.8)

and the flow goes in the ‘‘normal’’ direction, i.e., from the end of
the tube where the dimer B is split toward the end where B is
reassembled independent of how the other parameters are chosen.
As a result, in order to reverse the flow, as discussed above, we
need to increase sufficiently the drag coefficient of B relative to
that of A, e.g., by choosing a solute B that adopts an extended
floppy conformationwhenwhole, butwhose halvesA adopt amore
spherical conformation after B has been split.
When using (4.5) to predict behaviors of the pump it is

important to keep in mind that conclusions drawn from that
expression are only strictly valid for parameters in the asymptotic
regime |ū0| � kBT/γAL, |ū0| � kBT/γBL. To further explore the
behavior of the pump, numerical solutionswere computed for (4.2)
over a range of γA and γB values, see Fig. 4.3.
A qualitative feature of the pump suggested by (4.5) is that

as the drag coefficients of the solute molecules are taken large,
the pumping rate remains bounded. The numerical solutions also
support this conclusion, see Fig. 4.3. The structure of the level
curves in Fig. 4.3 indicate that the pumping rate converges to zero
in the limit of large drag coefficients when the ratio λ is held fixed.
For a fixed drag coefficient such as γA the level curves indicate
that there is an optimal choice for the other drag coefficient γB
which maximizes the pumping rate. The numerical results also
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Fig. 4.2. Pumping rate vs L. The theoretical prediction for the steady-state pumping
rate obtained by numerical solution of (4.2) (solid curve) and the asymptotic
expression (4.8) (dashed curve) is compared to the results obtained by simulating
the three-dimensionalmodel of the pump described in Section 5 (data points). Note
that the negative pumping rate is given in the plots.
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Fig. 4.3. Pumping rate vs γA and γB . The theoretical predictions for the pumping
rate obtained by numerical solution of (4.2) as both γA and γB are varied. The colors
indicate the magnitude and direction of the pumping rate as indicated in the color
bar to the right, where a positive rate indicates pumping from right to left. The gray
lines denote level curves of the pumping rate. The dark line indicates the level curve
corresponding to a pumping rate of zero. This line separates the two directions in
which the fluid is driven by the pumpwith the region below this line corresponding
to pumping from right to left and the region above corresponding to pumping from
left to right.

show that as the drag coefficients are taken small the pumping
rate dramatically increases. This behavior is somewhat expected
on intuitive grounds as the smaller drag coefficient increases the
diffusive rate of turnover in the chemical reactions.

5. Numerical methods for the three-dimensional pumpmodel

In the one-dimensional model a number of approximations
were made to obtain an analytically tractable set of equations. In
order to investigate further the behaviors of the pump indicated
by the one-dimensional analysis, we shall numerically simulate
the full three-dimensional model incorporating both the solute
concentration fields and the steady-state dynamics of the fluid.
The simulations are performed using an extension of the immersed
boundary method which handles the solute concentration fields
through a finite volume method. Details of the numerical method
are discussed in the following two sections. For a comparison
Fig. 5.1. Steady-state fluid flow for the three-dimensional pump model. Tracer
particles are distributed across a cross-section of the tube and are swept along
with the flow as immersed boundary method control points are plotted (blue). The
control points which model the tube boundary impermeable to both the fluid and
solute molecules are plotted (green). The fluid flow appears to be approximately
Poiseuille.(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

between the predictions of the one-dimensional model and the
results of the three-dimensional simulations, see Figs. 4.1 and 4.2.

5.1. The immersed boundary method for the fluid

The natural scale for the pumps we shall consider is at most
a few hundred microns in length. For concreteness, we shall
restrict ourselves to modeling pumps immersed in water at room
temperature. For such systems, the Reynolds number is quite small
allowing for the fluid flow to be described to a good approximation
by the incompressible Stokes equations:

ρ
∂u(x, t)
∂t

= µ1u(x, t)−∇p+ f(x, t) (5.1)

∇ · u = 0 (5.2)

where u is the velocity of the fluid, ρ is the density of the fluid, µ
is the dynamic viscosity of the fluid, p is the pressure, and f is a
forcing term.
In the immersed boundary method [26] the forcing term

f is introduced to model structures interacting with the fluid.
In practice, the structures are discretized and represented by
a collection of elementary control points. The dynamics of
the collection of control points and the manner in which
corresponding forces are handled is given by:

f(x, t) =
N∑
j=1

F(j)δa(x− X(j)(t)) (5.3)

dX(j)(t)
dt

=

∫
Ω

δa(x− X(j)(t))u(x, t)dx (5.4)

where X(j) is the position of the jth particle, F(j) is the force acting
on the jth particle, and δa is a weight function which integrates to
one and is non-zero only on a region centered at the origin and
having diameter equal to a.
In the immersed boundary method the structures are treated

essentially as part of the fluid. Forces that act on a particle are
transmitted directly to the fluid through theweight function δa(X).
The particles move at a velocity determined by averaging with the
weight function δa the fluid velocity locally in a neighborhood of
the particle. For a further discussion see [26] (See Fig. 5.1).
To obtain numerical methods for the immersed boundary

equations, the system is discretized in space on a uniform periodic
mesh using the standard central difference approximation for the
Laplacian and discretized in time using the Forward-Eulermethod:

ρ

(
un+1m − unm

1t

)
= µ

3∑
q=1

unm−eq − 2u
n
m + unm+eq

1x2
+ ℘⊥fnm (5.5)
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Fig. 5.2. Schematic of the three-dimensional pump model. The immersed
boundary method control points used to model the cylindrical boundary which is
impermeable to both the fluid and solute molecules are plotted (green). The cubic
cells of the finite volume method are shown in the interior of the tube (gray). The
cells participating in the chemical reactions for the splitting reaction are on the right
end of the tube (yellow) and the cells for the binding reaction are on the left end of
the tube (yellow).(For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

where unm denotes the velocity value at the grid point with index
m = (m1,m2,m3) at the time step with index n corresponding
to the time tn = n1t . For N grid points in each direction we
have 1x = L/N . The term eq denotes the standard basis vector
which has a value of 1 in the qth component and 0 in all other
components. The term fnm denotes the force at themth grid point
for the nth time step.
In (5.5) the incompressibility constraint (5.2) is handled by

the operator ℘⊥ determined by the projection method [32]. The
projection operator is derived from the ‘‘principle of virtual work’’
for the discrete divergence constraint:

3∑
q=1

unm+eq − unm−eq
1x

= 0. (5.6)

The projection operator can be expressed as:

℘⊥um =
∑
k
℘⊥k ûkei2πk·m/N (5.7)

where ûk denotes the Discrete Fourier Transform (DFT) of the
velocity field um, and

℘⊥k =

(
I−

ĝkĝ
T
k

|ĝk|
2

)
(5.8)

where I is the identity matrix and

ĝ(q)k = sin(2πk
(q)/N)/1x. (5.9)

In this notation the parenthesized superscript q denotes the vector
component. The projector operator ℘⊥k and the terms ĝk can be
derived by taking the DFT of the incompressibility condition (5.6),
which becomes ĝk · ûk = 0.
The equations of the fluid–structure coupling become:

fnm =
N∑
j=1

F[j]δa(xm − Xn,[j])

Xn+1,[j] − Xn,[j]

1t
=

∑
m
δa(xm − Xn,[j])unm1x

3.

Tomodel the impermeable boundary of the pumpa collection of
control points is distributed over the curved surface of the cylinder.
Each control point is then targeted to a point on the cylinder with
the linear restoring force:

F[j] = −K
(
X[j] − X[j]0

)
where the X[j]0 denotes the specific target points on the surface of
the cylinder indexed by j. By choosing a sufficiently large stiffness
K and density of control points the curved boundary of the cylinder
is to a good approximation impermeable to fluid. See Fig. 5.2 for a
schematic of the pump model.
While other methods can be used to solve for Stokes flow in

a cylindrical tube the implementation of the immersed boundary
method has the potential of being amenable to simulations
involving complicated geometries and/or elastic boundaries. To
model such a boundary a mesh of control points could again be
arranged over the surface of the cylinder, but instead of targeting
control points to specific locations in space they could be linked to
each other by linear springs with non-zero rest lengths or indeed
by nonlinear springs. In principle, more general geometries and
models could be studied with these methods, such as the role of
fluid flow in the osmotic swelling of semi-permeable immersed
structures.

5.2. The finite volume method for the solute concentration field

In this section we discuss the evolution of the concentration
fields of the solute. A finite volume method is developed for
Eqs. (3.1)–(3.4) in which the three-dimensional spatial domain
is subdivided into N3 cubic cells. To model the evolution of
the concentration field, fluxes are determined for the exchange
of solute between the cells. In the model the role of the
conservative forces, diffusion, and advective transport of the solute
concentration by the fluid are taken into account.
We shall use the following finite volume discretization:

cAn+1,m − c
A
n,m

=
(
1− ζ A,Bm

) (∑
q∈Υm

λAq,mc
A
n,q1t −

∑
q∈Υm

λAm,qc
A
n,m1t

)

+ 2ζ B,Am

(∑
q∈Υm

λBq,mc
B
n,q1t −

∑
q∈Υm

λBm,qc
B
n,m1t

)
(5.10)

cBn+1,m − c
B
n,m

=
1
2
ζ A,Bm

(∑
q∈Υm

λAq,mc
A
n,q1t −

∑
q∈Υm

λAm,qc
A
n,m1t

)

+
(
1− ζ B,Am

) (∑
q∈Υm

λBq,mc
B
n,q1t −

∑
q∈Υm

λBm,qc
B
n,m1t

)
(5.11)

where1t denotes the time step, cAn,m denotes the concentration of
solute species A at time n in the cell with index m, with a similar
interpretation for species B, and Υm is the set of indices for the
neighbors of cell m in the Cartesian directions. The factor λAm,q is
the rate that concentration of species A leaves cell m and enters
cell q, with a similar interpretation for species B (see Fig. 5.3). The
factors ζ A,Bm and ζ B,Am model the chemical reactions and are defined
by:

ζ A,Bm =

{
1, ifm1 = m01
0, otherwise (5.12)

and

ζ B,Am =

{
1, ifm1 = mL1
0, otherwise (5.13)

where m = (m1,m2,m3), m01 is the index corresponding to the
cross-section of the tube at x = 0 near the left end of the tube,
and mL1 is the index corresponding the cross-section at x = L. To
account for the situation in which the chemical reactions process
all available reactants in the cell, absorbing boundary conditions
are imposed with cA

n,(m01,m2,m3)
= 0 and cB

n,(mL1,m2,m3)
= 0.



1176 P.J. Atzberger et al. / Physica D 238 (2009) 1168–1179
Fig. 5.3. Finite volume method. Depicted are the mesh cells of the finite volume
method used to account for the concentrations of the chemical species. The λ terms
correspond to the fluxes of concentration which occurs through each of the cell
faces. The ζ terms correspond to exchanges which occur between the mesh cells
involved in the splitting and binding reactions.

In Eqs. (3.1)–(3.4) the solute concentration is subject to
diffusion, drift by conservative forces, and transport by the fluid.
For the concentration of species A this is taken into account using
the following rates of exchange between the cells:

λAm,q =
DA
1x2

αAm,q

(exp(αAm,q)− 1)
+ ũnm,q

1
1x

(5.14)

where1x denotes the grid spacing between the center of adjacent
cells, DA denotes the diffusion coefficient of the solute, and

αAm,q =
V Aq − V

A
m

kBT
(5.15)

and

ũnm,q = max
{
unm,q · em,q, 0

}
. (5.16)

The fluid velocity unm,q is obtained from the fluid velocity field of
Eq. (5.5) by an interpolation to the cell faces:

unm,q =
1
2

(
unm + unq

)
. (5.17)

The first term in the rate equation (5.14) follows the derivation
in [25] and has desirable propertieswith respect to the equilibrium
distribution of the solute, which is discussed below. The second
term in (5.14) is added to account for the advection of the solute by
the fluid. The factor ũm,q is the positive component of the velocity
in the direction em,q given by the vector from the center of the cell
with index m to the center of the cell with index q. This ensures
that the exchange rates are always positive and that in the absence
of force or diffusion a cell receives concentration only from cells
located ‘‘upwind’’ with respect to the velocity field. A similar set of
rates using the potential VB is used for the solute concentration of
species B.
It can be readily checked that the scheme (5.10)–(5.16) is

conservative. Further, it can be shown in the absence of the
chemical reactions, when ζ A,Bm = 0 = ζ

B,A
m for allm, and transport

by the fluid, when um = 0, that detailed balance, in which there is
no net exchange of solute between cells, holds for the distribution:

cAm =
1
Z
exp

(
−V Am
kBT

)
(5.18)

where

Z =
∑
m
exp

(
−V Am
kBT

)
1x3. (5.19)

This concentration corresponds to the thermodynamic equilibrium
associated with non-interacting particles subject to a conservative
force with potential VA(x) restricted to lattice sites xm. Thus the
steady-state of the numerical method without chemical reactions
and transport by the fluid corresponds exactly to an equilibrium
distribution. A similar result holds for the species B equations.
To couple the fluid equations to the solute concentration fields

the following force density is introduced in (5.5):

fnsol,m = −∇VA(xm)c
A
n,m −∇VB(xm)c

B
n,m (5.20)

which transmits the force acting on the solute molecules within a
given cell directly to the fluid.

5.3. Conditions imposed for the pump with hard-wall confining
potential

In the hard-walled confining potential limit, where the length
scale of the solute–wall interactions becomes very small ε → 0,
the explicit force acting on the solute can be replacedwith zero flux
boundary conditions. In the finite volumemethod this corresponds
to setting λm,q = 0 for all cells with index q lying outside of the
tube, see Fig. 5.2. In this limit the osmotic effects in the model
are taken into account using the local van ’t Hoff law derived
in Appendix B. In particular, for the cells adjacent to the planar
boundaries of the tube the force acting on the fluid arising from
the solute–wall interactions is then given by:

fnsol,m = cn,mkBT1x
2nm/1x3 (5.21)

where cn,m = cAn,m + c
B
n,m and nm is the inward normal of the

boundary.
For a schematic of the three-dimensional pump model see

Fig. 5.2. In Figs. 4.1 and 4.2 numerical simulations of the three-
dimensional pump model are compared with the theoretical
predictions.

6. Conclusions

A basic mechanism has been shown by which chemical
reactions can be used to generate osmotic pressure gradients
which drive fluid flows. A specific pumping mechanism was
discussed in which two solute species diffuse and undergo basic
chemical reactions at opposite ends of a tube, where one reaction
splits solute molecules while the other fuses together solute
molecules. In contrast to other osmotically driven systems, the
mechanism presented here does not rely on an external store of
solute molecules. Instead, the process which sets up the osmotic
pressure gradient recycles the solute molecules through the two
reversible chemical reactions.
To study the non-equilibrium steady-state behavior of the

pumping mechanism, theoretical models were formulated which
self-consistently take into account the diffusion of the solute
species, advective transport by the fluid flow, chemical reactions,
and interactions with the confining walls. The analytic results
and numerical simulations demonstrate that the osmotic pump
is capable of driving a fluid flow in either direction through the
tube by an appropriate choice of the relative diffusivities of the
solutemolecules, while retaining the same chemical kinetics at the
capping membranes.
Many variants of the proposed pumping mechanism can be

considered. One possible variant would be to utilize at the
membrane boundaries additional chemical reactions in which
more intermediate products and reactants are involved. For
instance, this could be utilized to control the response of the pump
to external signaling molecules which turn the pump on or off or
change the preferred direction of fluid flow. Such reactions could
also potentially be designed to provide a feedback mechanism
which depends on the rate of fluid flow, or introduces additional
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time scales into the physical system allowing for oscillatory
behaviors in which the pump turns on or off or reverses direction
periodically. In the biological context such chemical kineticswould
be expected to play an important role in regulating the behavior
of osmotic pumps. For example, in a hypothetical mechanism of
cell motility involving such osmotic pumps embedded in the cell
membrane, such an oscillatory behavior could play a constructive
role by coordinating the propulsion generated by multiple pumps
and such an ability to turn pumps on or off locally could be used in
cell motility to control speed and direction.
Other variants of the proposed pumping mechanism could also

be considered in which the geometry of the confining region
is varied to have different shapes which are static or change
dynamically in response to the osmotic pressures, fluid flow,
and solute concentrations. It is expected that such systems could
be designed to exhibit a rich variety of features making use
of the geometry dependent feedback the fluid flow has on the
diffusivity of solute molecules and osmotic pressures generated.
The analytic and numerical techniques introduced in this work
offer one approach to investigate such osmotically driven systems.
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Appendix A. General solution of the steady-state solute con-
centrations

The equations for the solute concentrations will now be solved
in the steady-state when the solute molecules are subject to a
flow ū0 and conservative forces −∇VA, −∇VB, for species A and
B respectively.
For computational convenience we remark that equations

(3.14) and (3.15) can be expressed in a form involving the
divergence (in one dimension ∂/∂x) of purely flux-like terms:

∂CA(x, t)
∂t

= −
∂

∂x
J̃A(x, t) (A.1)

∂CB(x, t)
∂t

= −
∂

∂x
J̃B(x, t) (A.2)

with

J̃A(x, t)

= JA(x, t)− JA(0+, t) (χ(x)− 1)− 2JB(L−, t)χ(x− L) (A.3)

J̃B(x, t)

= JB(x, t)+
1
2
JA(0+, t) (χ(x)− 1)+ JB(L−, t)χ(x− L) (A.4)

where JA and JB are defined in (3.16) and (3.17). In this notation
χ(x) denotes the Heaviside function defined by:

χ(x) =
{
0, if x < 0
1, if x ≥ 0. (A.5)

The steady-state of Eqs. (3.14)–(3.17) requires that the fluxes be
constant:

J̃A(x) = J0A (A.6)

J̃B(x) = J0B (A.7)
where J0A and J
0
B are arbitrary constants to be determined. We

remark that the constants J0A and J
0
B can be interpreted as

the steady-state fluxes of each of the solute species A and B,
respectively. From this, (A.3), (A.4), and the definition of the fluxes
given in (3.16) and (3.17) it follows by the method of integrating
factors that:
JA(0+) = J0A (A.8)

JB(L−) = J0B . (A.9)
From (3.16) and (A.6) it then follows that:

∂

∂x

(
exp

(
VA(x)− γAū0x

kBT

)
CA(x)

)
= −

1
DA

[
J0A + J

0
A (χ(x)− 1)

+ 2J0Bχ(x− L)
]
exp

(
VA(x)− γAū0x

kBT

)
(A.10)

where the Einstein relations DA = kBT/γA, DB = kBT/γB have been
used [10,22]. This can be integrated to obtain:

CA(x) = qA(x, x0A)CA(x
0
A)+ αA(x)J

0
A + βA(x)J

0
B (A.11)

where

qA(x, x0A) = exp
(
−
VA(x)− γAū0x− VA(x0A)+ γAū0x

0
A

kBT

)
(A.12)

αA(x) = −
1
DA

∫ x

x0A

χ(y)qA(x, y)dy (A.13)

βA(x) = −
2
DA

∫ x

x0A

χ(y− L)qA(x, y)dy. (A.14)

A similar calculation can be performed to obtain:

CB(x) = qB(x, x0B)CB(x
0
B)+ αB(x)J

0
A + βB(x)J

0
B (A.15)

where

qB(x, x0B) = exp
(
−
VB(x)− γBū0x− VB(x0B)+ γBū0x

0
B

kBT

)
(A.16)

αB(x) = −
1
2DB

∫ x

x0B

(1− χ(y)) qB(x, y)dy (A.17)

βB(x) = −
1
DB

∫ x

x0B

(1− χ(y− L)) qB(x, y)dy. (A.18)

The general solution has four unknown constants
J0A , J

0
B , CA(x

0
A), CB(x

0
B). To determine these constants the conditions

(3.6)–(3.8) will be used. This, however, only gives three conditions
for four unknowns. To obtain a fourth condition we shall assume
that the confining potentials VA and VB grow at a sufficient rate so
that CA(x) → 0 as x → ∞ and CB(x) → 0 as x → −∞. As a
consequence, we have that JA(x)→ 0 as x→∞ and JB(x)→ 0 as
x→−∞. From (A.6)–(A.9) this gives a fourth condition:

J0A = −2J
0
B . (A.19)

This condition can be motivated physically by considering the
total flux of mass, including bothmolecules of species A and B, that
passes through a cross-section of the tube, say at the midpoint.
Since the solute molecules are confined to the tube and recycled
by the chemical reactions the total flux of mass across any interior
cross-section at steady-state must be zero, which requires J̃A +
2J̃B = 0.
The four conditions can be expressed as a linear system of

equations as given in Box I.
Further simplifications can be made by a judicious choice of x0A

and x0B. Setting x
0
A = 0 and x

0
B = L we obtain CA(x

0
A) = 0 = CB(x

0
B).

This allows for Box I to be readily solved in terms of the matrix
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Λ


CA(x0A)
J0A
CB(x0B)
J0B

 =

0
0
0
N0
πR2


where

Λ =


qA(0, x0A) αA(0) 0 βA(0)
0 αB(L) qB(L, x0B) βB(L)
0 1 0 2∫
∞

−∞

qA(y, x0A)dy
∫
∞

−∞

αA(y)+ 2αB(y)dy 2
∫
∞

−∞

qB(y, x0B)dy
∫
∞

−∞

βA(y)+ 2βB(y)dy


Box I.
entries. The steady-state solution can then be expressed as:

CA(x) =
N0
2πR2 (βA(x)− 2αA(x))∫

∞

−∞

1
2βA(y)+ βB(y)− αA(y)− 2αB(y)dy

(A.20)

CB(x) =
N0
2πR2 (βB(x)− 2αB(x))∫

∞

−∞

1
2βA(y)+ βB(y)− αA(y)− 2αB(y)dy

(A.21)

where

αA(x) = −
1
DA

∫ x

0
χ(y)qA(x, y)dy (A.22)

βA(x) = −
2
DA

∫ x

0
χ(y− L)qA(x, y)dy (A.23)

αB(x) =
1
2DB

∫ L

x
(1− χ(y)) qB(x, y)dy (A.24)

βB(x) =
1
DB

∫ L

x
(1− χ(y− L)) qB(x, y)dy. (A.25)

In the limit of a potential which becomes hard-walled, in the
sense that the energy diverges over successively smaller boundary
layers ε → 0, see Fig. 3.1, the above expressions can be further
simplified. In the hard-wall limit of VA, we have βA(x)→ 0 for all
x. Similarly for VB, we have αB(x)→ 0 for all x. We further remark
that αA(x) = 0 for x ≤ 0 and βB(x) = 0 for x ≥ L. By using the
Einstein relationsDA = kBT/γA,DB = kBT/γB and further assuming
that VA(x) = 0 = VB(x) for x ∈ [0, L] we obtain the solutions for
the hard-walled limit given by (3.19).

Appendix B. Justification of the local van ’t Hoff’s law for the
non-equilibrium steady-state

We now compute the average ‘‘osmotic pressure’’ generated
at the capping membranes of the pump in the limit of a hard-
walled potential. For general confining potentials VA(x), VB(x), the
average concentration of solute molecules (without distinguishing
between species A and species B) over a cross-section of the tube
is given by:

C(x) = CA(x)+ CB(x)

=

N0
2πR2 (βA(x)+ βB(x)− 2αA(x)− 2αB(x))∫
∞

−∞

1
2βA(y)+ βB(y)− αA(y)− 2αB(y)dy

. (B.1)

We shall consider potentials VA(x) and VB(x) that only act to
confine the solute within the tube through forces in the boundary
layers [−ε, 0] and [L, L+ ε], see Fig. 3.1. So that the solute cannot
pass through the boundary the potentials will also be assumed to
diverge with V (L+ h)→∞, V (−h)→∞ as h→ ε. We refer to
the limit ε → 0 which corresponds to the length scale over which
the solute andmembrane interaction goes to zero as the ‘‘hard-wall
limit’’.
From these assumptions, we have in the boundary layer x ∈

[−ε, 0]:
αA(x) = 0 (B.2)
βA(x) = 0 (B.3)

βB(x)− 2αB(x) =
1
DB

∫ 0

x
qB(x, y)dy

=
1
DB

∫ 0

x
exp

(
−
VB(x)− γBū0x

kBT

)
qB(0, y)dy

= exp
(
−
VB(x)− γBū0x

kBT

)
(βB(0)− 2αB(0)) (B.4)

where the last equation follows from (A.16). This shows that for
x ∈ [−ε, 0]we have

C(x) = exp
(
−
VB(x)− γBū0x

kBT

)
C(0). (B.5)

By a similar argument it can be shown that for x ∈ [L, L+ ε]

C(x) = exp
(
−
VA(x)− γAū0(x− L)

kBT

)
C(L). (B.6)

The general body force exerted on the fluid arising from forces
acting on the solute in the boundary layers is given by
f(x) = −∇VA(x)CA(x)−∇VB(x)CB(x). (B.7)
An effective pressure at the capping ends can be defined by

p(0) =
∫ 0

−ε

f(y) · e1dy(1) (B.8)

p(L) = −
∫ L+ε

L
f(y) · e1dy(1) (B.9)

where e1 denotes the unit vector in the x-direction and y(1) = y·e1.
Now in the hard-wall limit of the potentials ε → 0 we have the

following

p(0) =
∫ 0

−ε

f(y) · e1dy(1)

=

∫ 0

−ε

−V ′B(y
(1))CB(y)dy(1)

=

∫ 0

−ε

−V ′B(y
(1)) exp

(
−
VB(y(1))− γBū0y(1)

kBT

)
C(0)dy(1)

= C(0)kBT (1+ O(ε)) (B.10)
where we have made use of the fluid velocity ū0 remaining
uniformly bounded in ε, the fact that |y(1)| < ε, and the stated
assumptions on the confining potentials. In this notation g(x) =
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Table C.1
Description of the parameters.

Parameter Description

kB Boltzmann’s constant
T Temperature
µ Fluid dynamic viscosity
ρ Fluid density
N0 Total number of elementary chemical units
C0 Total concentration of elementary chemical units
L Length of the tube of the pump
L∗ Total length of the tube in which the pump is embedded
R Radius of the tube of the pump
γA Drag coefficient of a molecule of species A
γB Drag coefficient of a molecule of species B

Table C.2
Parameter values (unless otherwise specified).

Parameter Description

T 300 K
µ 6.0221× 105 amu/(nm ns)
ρ 602.2142 amu/nm3
N0 1000
L 2000 nm
L∗ 3000 nm
R 400 nm
γA 1.1351× 107 amu/ns
γB 1.1351× 107 amu/ns

O(ε) denotes the usual order condition that the |g(x)| ≤ Cε where
C is a constant [33]. Similarly we have

p(L) = C(L)kBT (1+ O(ε)). (B.11)

Now one could similarly compute the body force and effective
pressure for a similar boundary layer just outside the tube at
the capping membranes. In the hard-wall limit this would give a
difference in the effective pressures across the capping membrane
which is proportional to the concentration difference. In particular,

[p(0)] = kBT [C(0)] (B.12)
[p(L)] = −kBT [C(L)]. (B.13)

The notation [g(x)] = limh→0 g(x + h) − g(x − h) denotes the
jump discontinuity in the function g at x. This shows that at steady-
state the pressure difference across each capping end of the tube
satisfies an analogue of van ’t Hoff’s Law with respect to the local
concentrations of the solute molecules.

Appendix C. Tables

See Tables C.1 and C.2.
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