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Within the nuclei of eukaryotic cells, the density of chromatin is
nonuniform. We study the influence of this nonuniform density,
which we derive from microscopic images [Schermelleh L, et al.
(2008) Science 320:1332–1336], on the diffusion of proteins within
the nucleus, under the hypothesis that chromatin density is propor-
tional to an effective potential that tends to exclude the diffusing
protein from regions of high chromatin density. The constant of
proportionality, which we call the volume exclusivity of chromatin,
is a model parameter that we can tune to study the influence of
such volume exclusivity on the random time required for a diffus-
ing particle to find its target.We consider randomly chosen binding
sites located in regions of low (20th–30th percentile) chromatin
density, and we compute the median time to find such a binding
site by a protein that enters the nucleus at a randomly chosen
nuclear pore. As the volume exclusivity of chromatin increases
from zero, we find that themedian time needed to reach the target
binding site at first decreases to a minimum, and then increases
again as the volume exclusivity of chromatin increases further.
Random permutation of the voxel values of chromatin density
abolishes the minimum, thus demonstrating that the speedup seen
with increasing volume exclusivity at low to moderate volume
exclusivity is dependent upon the spatial structure of chromatin
within the nucleus.

first passage time ∣ gene regulation ∣ stochastic reaction-diffusion

How do regulatory proteins and transcription factors find spe-
cific DNA binding sites? In considering this question, it is

often remarked that the rate at which proteins find specific
DNA binding sites can “exceed the diffusion limit.” This state-
ment is normally interpreted to mean that the association rate
for a protein to find a specific binding site is faster than the pre-
dicted rate for the protein to reach the binding site by diffusion
(2). The question of whether proteins, in vivo, generally find bind-
ing sites faster than the diffusion limit is still an area of active
research. One potential difficulty in addressing this problem is
in understanding precisely what is meant by the term “diffusion
limited” binding rate. Here we adopt the viewpoint that a diffu-
sion limited rate refers only to the rate at which a protein under-
going pure diffusive motion in a spatially homogeneous environ-
ment finds a target binding site. This corresponds to the standard
Smoluchowski diffusion limited reaction model (3). In the pre-
sent paper, we consider the influence of a heterogeneous envir-
onment on the time to find a target by diffusion.

A number of mechanisms that could potentially decrease the
search time for a binding site, in comparison to the search time in
models involving only diffusion in an empty nucleus, have been
proposed and studied in experimental assays and mathematical
models. For example, in ref. 2 it was discussed how the inclusion
of electrostatic interactions between the protein and binding site
may make predicted association rates comparable to those mea-
sured experimentally. Several alternative mechanisms are based
on the knowledge that many regulatory proteins and transcription
factors have nonspecific DNA-binding interactions. For example,

in ref. 4 a model was developed in which proteins could undergo a
mixed search process involving periods of three-dimensional
diffusion, coupled to periods of one-dimensional diffusion (or
sliding) along DNA fibers during which the protein is nonspeci-
fically bound. This idea, and variants that take into account
effects such as hopping between DNA strands, has been studied
extensively in theoretical models (for example, see refs. 2 and
4–8). Experimental studies have also begun to investigate
whether sliding occurs in vivo, and its relative importance. In ref. 9
it was shown experimentally by single-molecule imaging studies
that sliding can occur in Escherichia coli cells. As most of the cur-
rent studies have been focused on prokaryotic cells, it remains to
be seen whether sliding along chromatin in eukaryotic cells can
noticeably reduce the time required for regulatory proteins to
locate specific binding sites. Several other proposed mechanisms
that could decrease the search time, such as direct “jumping”
between different regions of chromatin fibers, are discussed in
ref. 2. (More complete references for both theoretical models
and previous experimental work can also be found in ref. 2.)

Within the nucleus, proteins are moving through a complex
spatial domain comprised of chromatin fibers with spatially
varying compaction levels, nuclear bodies, and fibrous filaments
(such as the nuclear lamina). This spatially inhomogeneous
environment provides another possible influence on the process
by which proteins search for specific binding sites. In ref. 10 the
role of spatial differences in chromatin density, and of volume
exclusion by chromatin, on the motion of proteins within the
nucleus was investigated. Using a combination of experimental
and computational studies, including photo-activation experi-
ments, the authors concluded that chromatin dense regions, such
as heterochromatin, exhibited noticeable volume exclusion com-
pared with less dense regions (such as euchromatin). The authors’
photo-activation experiments gave similar fluorescence activation
curves in heterochromatin and euchromatin (when normalized to
the different steady-state fluorescence levels in each region). This
was interpreted to mean that heterochromatin is not substantially
more difficult for proteins to enter than euchromatin, but just had
a smaller amount of free space in which proteins could accumu-
late. In contrast, some molecules may have difficulty moving
into denser chromatin regions. For example, in the supplemental
movies of ref. 11 individual mRNAs that are observed to move
freely appear restricted within regions of low histone-GFP fluor-
escence.
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In this work we develop a mathematical model to investigate
the possible influence of volume exclusion by chromatin and also
of binding site location in relation to the chromatin, on the time
required for an individual protein to find a specific binding site.
The model resolves the entire nuclear volume, and represents
chromatin as a continuous field (based on the DAPI stain fluor-
escence imaging data of ref. 1). It is assumed that regions of
increased chromatin density, as determined by the DAPI stain
intensity, are more difficult to enter than regions of low density.
By varying a parameter that determines the overall strength of
volume exclusion in a global manner we study how the search
time changes when there is no volume exclusion (i.e., the nucleus
is spatially homogeneous), weak volume exclusion, and very
strong volume exclusion of chromatin dense regions. At the whole
nucleus scale it is not clear, a priori, what the influence of volume
exclusion will be. For example, it may be that volume exclusion
helps funnel proteins toward active binding sites by increasing
the difficulty for them to enter regions of heterochromatin
and/or by creating effectively one- or two-dimensional channels in
which diffusive search is much faster than in a three-dimensional
volume. In contrast, perhaps this same funneling effect could trap
proteins in channels of low chromatin density, causing the protein
to wander far from target binding sites. We find that for binding
sites located within regions of low DAPI stain intensity, moderate
volume exclusivity leads to the fastest search times (faster than in
the case of zero volume exclusivity, and also faster than in the
case of strong volume exclusivity). Moreover, we find that the
benefit of moderate volume exclusivity is abolished by a random
permutation of the voxel values of imaged chromatin density.
This shows that the benefit is somehow related to the spatial
structure of the chromatin (i.e., to the spatial correlations in chro-
matin density) because it is precisely these correlations that are
destroyed by the randomization procedure, which preserves the
overall chromatin density distribution intact. In contrast to the
case of a binding site in a region of low or moderate chromatin
density, binding sites within chromatin dense regions simply
become more inaccessible as the volume exclusivity is increased.

In the next section we begin by formulating our mathematical
model, based on mouse myoblast structured illumination micro-
scopy data from ref. 1. We then describe the numerical method
we used to simulate the random walk defined by our mathema-
tical model, followed by a discussion of the results we observe for
the behavior of the search time as a function of the overall
volume exclusivity and also as a function of the chromatin density
at the binding site location.

Mathematical Model
Our goal is to study the time needed for a diffusing regulatory
protein to find a specific binding site within the nucleus of a
eukaryotic cell. We assume that if there were no chromatin within
the nucleus the protein would undergo diffusive motion with a
fixed, constant diffusion coefficient. To model volume exclusion by
chromatinweuse a repulsivepotential.The strengthof thepotential
will be chosen to vary as a function of the density of chromatin at a
given location. Regions of higher chromatin density will be more
difficult to diffuse into than regions of low density. We stress that
this model incorporates only the influence of volume exclusion,
and not other effects such as trapping or DNA sliding.

Our mathematical model is diffusion in a potential, UðxÞ, with-
in a bounded domain, Ω ∈ R3, representing the nucleus. We
model the specific binding site the protein is searching for as a
small absorbing sphere of radius rb about the point xb ∈ Ω.
Let D be the diffusion constant of the protein (with units of
μm2∕s), kB Boltzmann’s constant, and T temperature (in Kelvin).
We denote by pðx;tjxbÞ the probability density that the molecule
has not yet bound to the binding site, and is located at x ∈ Ω at
time t, given that the binding site is at xb. The time evolution of
pðx;tjxbÞ is then given by the Fokker–Planck equation

∂p
∂t

ðx;tjxbÞ ¼ D∇ ·
!
∇pðx;tjxbÞ þ

1

kBT
pðx;tjxbÞ∇UðxÞ

"
[1]

for x ∈ Ω and jx − xbj > rb. Note, here the spatial derivatives are
with respect to the x coordinate. Although it appears here that we
are using a constant diffusion coefficient, see SI Text for a change
of variables that leads to an alternate interpretation of Eq. 1.

Let ∂Ω denote the nuclear membrane and ηðxÞ the outward
unit normal vector to the membrane at x ∈ ∂Ω. The associated
boundary conditions to [1] are then

pðx;tjxbÞ ¼ 0; jx − xbj ¼ rb; [2]

∇pðx;tjxbÞ · ηðxÞ ¼ 0; x ∈ ∂Ω: [3]

The first, Dirichlet, boundary condition models the binding reac-
tion, whereas the second, Neumann, boundary condition models
the assumed impermeability of the nuclear membrane to the reg-
ulatory protein.

As described in Materials and Methods, from the data of ref. 1,
we were able to reconstruct a triangulated surface representation
for the nuclear membrane (see Fig. 1B), and a discrete intensity
field for the DAPI stained DNA (see Fig. 1A). Let i ¼ ði1;i2;i3Þ
denote the multiindex labeling the ith voxel of the mesh. (Each
two-dimensional image is assumed to lie in a plane perpendicular
to the z axis, with each intensity value of a pixel corresponding
to the intensity value of a three-dimensional voxel centered in
z on the pixel plane.) Based on the data in ref. 1, the voxels were
assumed to have spatial dimensions of approximately .0397 by
.0397 by .125 μm. We subsequently label these dimensions by
h ¼ ðh1;h2;h3Þ. Denote by Ii the normalized DAPI stain intensity
in the ith voxel, given by [9]. As the imaging data is defined on the
mesh given by the collection of voxels, we work with a spatially
discrete reaction-diffusion master equation (RDME) model for
the motion of the protein (instead of the spatially continuous
Fokker–Plank equation [1]).

Using the Cubes software program (12) we calculated the
intersection of the mesh of imaging voxels with the nuclear mem-
brane surface. (See Materials and Methods for details on the re-
sulting embedded boundary mesh.) Denote by xi the centroid and
by V i the volume of the portion of the ith voxel located within the
nucleus. We let Aij represent the area of the portion of the face
separating voxels i and j that is within the nucleus. Finally, we
define Pði;tjibÞ to be the probability that the regulatory protein
has not yet found its binding site and is within the ith voxel at
time t, given that the binding site, xb, is located within voxel
ib. To obtain an RDME for the time evolution of Pði;tjibÞ we com-
bine the finite volume discretization method of ref. 13 for obtain-
ing RDMEs with pure-diffusive motion, with a discretization
method similar to that of ref. 14 for discretizing Fokker–Plank
equations (see SI Text for details). The method described in
SI Text is used to discretize the spatial fluxes associated with
[1], and the resulting expressions are used in the method of ref. 13
to derive the transition rates within the RDME.

We assume that within the voxel, ib, a binding reaction may
occur with bimolecular reaction rate k (having units of μm3∕s).
In our actual numerical simulations we take k ¼ ∞ so that the
protein binds instantaneously upon reaching the voxel, ib. The
“binding times” we subsequently study then represent the time
for the protein to first find a small region (with the size of a
voxel). This would (approximately) correspond to choosing rb
in [2] to define a spherical binding site with the same volume
as a voxel. If we had instead assumed the binding site is substan-
tially smaller than the size of a voxel, we have previously shown
(15–17) that the choice k ¼ 4πDrb makes the solution to the
RDME an asymptotic approximation in rb of pðx;t∣xbÞ.
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The final discretized RDME model we obtain from [1] is then

dP
dt

ði;tjibÞ ¼
∑

j

½αi;jPðj;tjibÞ − αj;iPði;tjibÞ& −
k
V ib

δi;ibPðib;tjibÞ; [4]

where the jump rates, αi;j;, give the probability per unit time of
the protein hopping from the jth voxel to the ith voxel when
the protein is within the jth voxel. These hopping rates incorpo-
rate both diffusion and drift due to the potential, UðxÞ. Note that
the RDME [4] is a coupled system of ordinary differential equa-
tions (ODEs), with one ODE for each voxel location, i. αi;j will be
zero unless voxels i and j are direct neighbors in the dth direction
(d ¼ 1, 2, or 3 corresponding to the x, y, and z directions). The
jump rates for voxels that are neighbors along the dth coordinate,
as determined by our discretization procedure, are

αi;j ¼
2DAi;j

hdV j

1

expððUðxiÞ − UðxjÞÞ∕kBTÞ þ 1
: [5]

For voxels that are not cut by the nuclear membrane this expres-
sion reduces to

αi;j ¼
2D
h2d

1

expððUðxiÞ − UðxjÞÞ∕kBTÞ þ 1
: [6]

Note that when the potential at the neighbor, i, is substantially
larger than the potential at the current location, j, then the hop-
ping rate from j into i approaches zero. It is more difficult to hop
to voxels with higher potential values.

The volume exclusion potential, UðxÞ, was chosen based on the
intensity of the DAPI stain within the ith voxel. We assumed that
regions of higherDAPI stain intensity should correspond to regions
with a higher density of chromatin, and hence bemore difficult for a
regulatory protein to move into. Several functional relationships
between the intensity field and the volume exclusion potential were
tried, however, for the remainder we assume a linear scaling,

UðxiÞ ¼ ŪIi: [7]

Here the scaling constant, Ū, is considered a model parameter that
determines the maximum “repulsiveness” of the potential. We sub-
sequently refer to Ū as the “volume exclusivity” of the chromatin.
When Ū is zero the regulatory protein will simply diffuse within the
nucleus as if the nuclear volume were empty. In contrast, when Ū is

large it will be very difficult for the protein to move into regions of
high DAPI stain intensity.

Regulatory proteins begin their search process after entering
the nucleus through anuclear pore. Instead of restricting the initial
location of the protein to a specific pore or collection of pores,
in the model the initial position of the protein was chosen from
a uniform distribution among all the pore locations. The probabil-
ity the regulatory protein was initially in voxel i was therefore

Pði;0Þ ¼ number of nuclear pores in voxel i
total number of nuclear pores

: [8]

To study the effect of varying binding site position within dif-
ferent regions of the nucleus, we also allowed the binding site
location, ib, to be a random variable. The set of voxels in which
the binding site could be placed were determined by specifying an
allowable range of intensity values. For each simulation the voxel
representing the binding site was then chosen from a uniform dis-
tribution over all voxels having intensity values within the given
range. We specified two percentiles of the intensity value distri-
bution, shown in Fig. 1C, to determine an interval of allowable
intensities. When choosing lower percentiles, the binding site was
prevented from being placed in voxels of very high DAPI stain
intensity. This was used to model that such voxels may not contain
active binding sites (for example, because these voxels may con-
tain silenced heterochromatin). Similarly, using intervals that
only contained nonzero intensity values was used to model that
regions of zero, measured, DAPI stain intensity may not actually
contain DNA (and hence have no active binding sites).

Numerical Implementation
One method to study the time required for a regulatory protein to
find a specific binding site would be to solve numerically the
system of ODEs given by the RDME [4]. By allowing ib to be
a random variable, the term δi;ib causes [4] to contain a random
coefficient. We would therefore need to solve numerically [4] for
many choices of ib sampled from within the range of allowable
intensity values. An alternative approach is to simulate instead
the stochastic process described by the RDME [4]. This process
models the regulatory protein as undergoing a continuous time
random walk between voxels, with hopping rates between voxels
given by αi;j. When located in the voxel with the binding site, ib,
the protein may also bind with probability per unit time, k∕V ib .
As we took k ¼ ∞ for the simulations of the next section, this

A B C
Fig. 1. (A) DAPI intensity field reconstructed from data in ref. 1. Note, the volume rendering of the field is partially transparent to allow the viewer to see
through it. This effect causes the field to appear sparser than it is in actuality. Movie S2 shows a rotating view of the volume rendering. Axis units are in μm.
(B) Surface triangulation of the nuclear membrane. Reconstructed from the fluorescent nuclear pore imaging data of ref. 1 as described in Materials and
Methods. Movie S1 shows a rotating view of the surface mesh. Axis units are in μm. The surface triangulation contains approximately 5,000 vertices. Of these,
approximately 2,000 are the sites of nuclear pores, the other approximately 3,000 are the result of the triangulation process. The pores are too small to resolve
as holes, in the scale of the figure, but the locations of the pores are indicated by small red spheres. (C) Histogram of the probability distribution of intensity
values within voxels. Each bar height gives the probability that intensity values fall between the intensity values at the bar’s edges. Note the edges are se-
parated by 0.025 intensity units for each bar. The left y-axis corresponds to the bar heights. A graph of the cumulative distribution function (cdf) for the
normalized DAPI fluorescence intensity within voxels is overlaid on the histogram. Let I denote a value of the normalized fluorescence intensity and ~I
the random variable for the intensity within an arbitrary voxel. The cdf is the Prob½~I < I&. Circles denote every tenth percentile. In our study, binding sites
are selected based on these percentiles, as explained in the text. The right y-axis gives the values of the cdf.
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corresponded to ending the simulation once the protein hops
into the voxel, ib. Realizations of the stochastic process described
by the RDME can be created through the use of the Gillespie
method (18) [also known as kinetic Monte Carlo (19)]. With the
exception of floating point error in arithmetic operations and the
error induced through the use of pseudorandom number genera-
tors, the Gillespie method is exact in simulating this stochastic
process.

Using the Gillespie method, our numerical simulation algo-
rithm can be summarized as follows

1. Precalculate the jump rates αi;j.
2. Sample the binding site location, ib, from a uniform distribu-

tion among the voxels within the specified intensity range.
3. Sample the initial position for the protein from Pði;0Þ.
4. Use the Gillespie method to simulate the motion of the pro-

tein until the time, T, it binds (i.e., first hops into voxel ib).
5. Repeat from step 2 until the desired number of simulations

have been run.

For certain parameter choices, in a small fraction of simula-
tions, always less than 10−4, we observed that the protein could
take such a long time to find the binding site that for practical
purposes the binding site was never found. We believe that this
behavior arose for one or more of the following reasons: (i) pure
chance, as it is always possible in a stochastic simulation for any-
thing to happen (or in this case fail to happen); (ii) the binding
site being chosen in a voxel that is cut off by voxels of high
potential from the nuclear pore where the search is chosen to
begin; and/or (iii) the trapping of the diffusing protein within
regions of high potential that it may happen to enter and have
difficulty in exiting. These individual simulations would take sev-
eral orders of magnitude longer computing time than those in
which the protein bound on physically relevant timescales. To
avoid computational slow downs, we stopped any simulation
where the protein had not bound by a prespecified time, t ¼ Tmax.
We generally chose Tmax to be 107 seconds. In those parameter
regimes where a small subfraction of simulations were stopped
before binding, our observed values for T represented censored
data. Because estimation of the sample median and its standard
error is unaffected when the number of censored samples is small,
we use themedian binding time rather than themean as an overall
measure of the time required to find a binding site. Ninety-five
percent confidence intervals of the median were estimated using
the PB2 estimator for the variance of the samplemedian (20). Sur-
vival distribution functions for the probability the binding time
random variable, T, is greater than t, Prob½T > t&, were estimated
using MATLAB’s ecdf routine. Associated 95% confidence
intervals were estimated with the same routine.

Results
We now study how the random variable, T, for the time at which
the protein first binds to the binding site varies as a function of
the maximal potential strength and binding site location. The
bimolecular reaction-rate, k, is chosen to be infinite, so that the
binding reaction occurs instantaneously upon the protein enter-
ing the voxel containing the binding site. This assumption effec-
tively chooses the binding site to be the size of one voxel. Note
the model does not account for the kinetics of binding once near
the site, or for secondary effects (such as whether the binding site
is in an open, binding accessible state (21, 22).

An example illustrating the effect of volume exclusion for a
specific initial protein position and binding site location when
D ¼ 10 μm2∕s is shown in Fig. 2. The specific pore shown in red
in Fig. 2A and binding site shown in purple, were used as the
initial and binding site positions for all simulations. The contin-
uous time random walk of the protein within the potential [7] was
then simulated as described in the previous section. An individual
simulation completed when the protein first reached the voxel

representing the binding site (and the time, T, at which this
occurred was recorded), or was terminated if the the binding
time exceeded a maximum time, Tmax ¼ 107. Fig. 2A shows a
typical trajectory of one protein undergoing the search process
(Movie S3 shows the motion of a protein within the volume
exclusion potential field).

Fig. 2C shows the median time to find the binding site as
the magnitude of the volume exclusivity of the chromatin is
increased. The graph illustrates that the median binding time de-
creases as the volume exclusivity is increased, until a minimum
binding time is reached. As the volume exclusivity is further in-
creased the median binding time then increases. The same effect
is visible in the survival time curves, Prob½T > t&, shown in Fig. 2B.
Note these curves appear well-approximated by an exponential
process (as the curves are linear when the y-axis uses a logarith-
mic scale). For Ū ¼ 0 the rate constant of the exponential is
approximately :005 s−1. Using that the volume of the nucleus
is 528 μm3, the binding process can be approximated by a
well-mixed reaction with an association rate of 2.63 μm3 s−1.
Given the dependence of this rate on diffusion constant, binding
site size, nuclear geometry, and many other factors, this predic-
tion compares favorably with other experimentally determined in
vivo association rates. For example, in ref. 23 the binding of glu-
cocorticoid receptor to a tandem array of mouse mammary
tumor virus promoter sites within mouse adenocarcinoma cells
was studied by fluorescence recovery after photobleaching
(FRAP). The authors’ analysis of the FRAP measurements pre-
dicts a lower bound on the association rate to a single binding
site within the array of approximately :1 μm3 s−1. An effective
diffusion constant for glucocorticoid receptor of 1.2 μm2 s−1
was also predicted from the experimental data. If we assume
the association rate is diffusion limited, and hence proportional
to the diffusion constant (3), then rescaling the association rate
for a diffusion constant of 10 μm2 s−1 gives a lower bound for
the association rate of :83 μm3 s−1.

Fig. 3 shows the statistics of the binding time as a function
of both the binding site position and the volume exclusivity, Ū.
For each simulation one nuclear pore was chosen randomly from
a uniform distribution among all pores, and the protein was
initially placed in the voxel containing that pore. Likewise, for
each individual simulation the binding site position was chosen
from a uniform distribution over all voxels in a given intensity
range. For example, “20 to 30” specified that the voxel represent-
ing the binding site should be sampled from those voxels with
intensity values between the twentieth and thirtieth percentiles
of the intensity value distribution (shown in Fig. 1C). The labels
“40 to 50” and “70 to 80” were defined similarly. For each inten-
sity range the binding site was localized within, and each value of
Ū, 128,000 simulations were run.

Fig. 3A shows several survival time distributions, Prob½T > t&,
as Ū is varied from zero to 80 kBT. For these simulations, the
binding site position was sampled from those voxels with DAPI
stain intensities within the twentieth to thirtieth percentile of
intensity values. As the volume exclusivity is increased from zero
the binding time distribution initially shifts down and to the left
(so that the binding site is found more quickly). Note, however, as
the volume exclusivity is further increased the distributions ulti-
mately shift back upward and to the right (so that the binding site
is found more slowly). In contrast to Fig. 2B, where both the bind-
ing site and initial position were fixed, the survival time curves no
longer appear well-approximated by an exponential distribution.
This difference arises because the binding site position is no long-
er fixed as in Fig. 2B, but is instead chosen from a probability
distribution. The survival time distributions shown in Fig. 3A
are now averages of the survival time distribution for each fixed
binding site over all possible binding sites (namely those within
voxels in the 20th to 30th percentiles of intensity values).
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Fig. 3 B and C show the median binding time as a function of
the volume exclusivity. Different curves correspond to different
choices of the intensity range the binding site position was
sampled from. Fig. 3C is the same graph as Fig. 3B, but with the
y-axis rescaled to better show the curves that decrease in value.
When the binding site is restricted to the twentieth to thirtieth
or fortieth to fiftieth percentiles of intensity values, the protein
initially finds the binding site more quickly as the volume exclu-
sivity is increased. That is, the presence of volume exclusion by
chromatin helps decrease the time needed for the protein to find
the binding site (vs. when there is no volume exclusivity; i.e.
Ū ¼ 0 kBT). As Ū is further increased the median binding time
ultimately begins to increase. For binding sites within regions of
sufficiently low to moderate, but nonzero, DAPI stain intensities
we therefore find a minimum binding time for a nonzero value of
the volume exclusivity. This indicates that volume exclusion by
chromatin may help to speed up the search process of regulatory
proteins for active binding sites.

In contrast, when the binding site is restricted to regions of
sufficiently high fluorescence intensity, the 70 to 80 curve, this
effect is lost. As Ū is increased the time to find the binding site
dramatically increases. This result arises because the regions in
which the binding sites are now located become substantially

more difficult to enter as the chromatin is made more volume
excluding.

We next examined whether the spatial structure of the chro-
matin density was important in the observed decrease in median
binding time as a function of the volume exclusivity. To test this
question we randomly permuted the fluorescence intensity values
among the voxels within the nucleus. This procedure preserved
the distribution of intensity values, shown in Fig. 1C, while elim-
inating the underlying spatial structure of the intensity field. The
field was “shuffled” once, and the statistics of the binding time
within this new field, and the potential fields associated with
it, were then studied. The 20 to 30 (S) curves in Fig. 3 B and C
show the effect of the shuffling procedure on the binding time.
For these simulations the binding site position was sampled from
voxels with intensity values in the new intensity field between the
twentieth to thirtieth percentile of all values. Note that within
statistical error the binding time simply increases as the volume
exclusivity is increased. That is, the previously observed decrease
in binding time as a function of volume exclusivity depends on the
spatial structure and correlations within the intensity field (and
not just on the distribution of intensity values).

The reduction in binding time as the volume exclusivity initially
increases from zero, as shown in Figs. 2C and 3 B and C, is the

A B C
Fig. 3. Statistics of the binding time as a function of the maximum value of the potential, Ū, and binding site position. For each curve D ¼ 10 μm2∕s. In all
graphs, 20 to 30 denotes that for each simulation the binding site location was sampled from a uniform distribution among voxels with intensity values in the
twentieth to thirtieth percentile of all intensity values. The labels 40 to 50 and 70 to 80 correspond to the fortieth to fiftieth percentiles and seventieth to
eightieth percentiles respectively. An (S) at the end of a label, such as 20 to 30 (S), denotes that the intensity values were randomly shuffled among the voxels.
That is, the values of Ii were randomly rearranged between the voxels within the nucleus. The volume exclusion potential was then generated from this new
intensity field, and both were then used in simulations where the protein binding site was restricted to voxels within the twentieth to thirtieth percentiles of
intensity values. In all graphs, for each value of Ū 128,000 simulations were run. (A) Survival time distribution, Prob½T > t&, for the binding time random variable,
T, when using the 20 to 30 binding site distribution. The dashed lines above and below each curve indicate 95% confidence intervals. (B) The median binding
times vs. Ū. (C) The same graph, but with the y-axis rescaled to better show the curves that initially decrease to a minimum. Error bars corresponding to 95
percent confidence intervals are shown in (B) and (C), however, they are smaller than the marker size. Each graph shows that when the binding site is localized
to regions of low, but nonzero intensity, the binding time initially decreases to a minimum and then increases as the volume exclusivity, Ū, is increased. Note
when the DAPI stain intensity values are shuffled in space, or the binding site is moved to regions of higher intensity values, this effect is lost.

A

B

C

Fig. 2. Binding time statistics for a specific fixed initial position
and specific fixed binding site when D ¼ 10 μm2∕s. (A) A typical
path of the protein’s random walk. The red sphere is drawn cen-
tered about the centroid of the voxel containing the pore from
which the protein began its search. Similarly, the purple sphere is
drawn centered about the centroid of the voxel that represented
the binding site. The size of the spheres is purely for illustrative
purposes. Note the path is a piecewise linear curve connecting
the centroids of the voxels in which the protein was located ap-
proximately every one hundredth of a second. Between any two
points of the path the protein actually underwent many hops be-
tween voxels. For this simulation the maximum of the potential
was chosen to be 40 kBT. Movie S3 shows the motion of a protein
during the search process. (B) For the binding site position and
initial position shown in (A) the probability the protein has
not bound at time t as Ū is varied. Note that each line corresponds
to statistics determined from 128,000 simulations. The dashed
lines above and below each solid line correspond to 95% confi-
dence intervals. Note that the y-axis is a logarithmic scale, show-
ing that the survival probability is approximately exponential in
time. (C) Median binding time with 95% confidence intervals as
Ū is varied. For each data point 128,000 simulations were run. As
the volume exclusivity is increased from zero (no volume exclu-
sion), a minimum median binding time is reached. Beyond about
Ū ¼ 40 kBT the median binding time increases.

Isaacson et al. PNAS Early Edition ∣ 5 of 6

A
PP

LI
ED

M
AT

HE
M
AT

IC
S

SY
ST

EM
S
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018821108/-/DCSupplemental/pnas.1018821108_SI.pdf?targetid=SM3


principal result of this paper. The abolition of this effect by shuf-
fling the voxel intensity values (see curves labeled “S” in Fig. 3 B
and C) shows that this reduction in binding time is not merely a
consequence of a reduction in the total volume that needs to be
searched, but in fact depends on the spatial structure of chroma-
tin, and indeed on some aspect of the spatial structure on a scale
that can be resolved with the voxel size used here. Although our
results do not reveal specifically what feature of the spatial struc-
ture of chromatin is responsible for this effect, we may speculate
that the chromatin geometry partitions the three-dimensional
intranuclear space into something like a network of one-dimen-
sional channels. This would be significant because of the disparity
between the time to find a target by diffusion in the one-dimen-
sional case in comparison to the substantially greater amount
of time that is required in higher dimensions (see SI Text). We
emphasize, however, the speculative nature of this interpretation
of our computational results.

Conclusions
We developed a mathematical model to study how the time
required for a protein to find a specific binding site varies as a
function of volume exclusion by chromatin and binding site loca-
tion. The model suggests that binding sites located within regions
of small, but nonzero, DAPI stain intensity are found most
quickly when chromatin has some, but not too much, volume
exclusivity. Randomly shuffling the DAPI stain intensity values
among the voxels within the nucleus caused this behavior to dis-
appear. This suggests the macroscopic distribution of chromatin
density within the nucleus may be arranged to help funnel pro-
teins toward binding sites within regions of euchromatin (where
we expect the chromatin density to be lower). In contrast, binding
sites located within regions of high DAPI stain intensity are found
most quickly when no volume exclusion is modeled. Because such
regions are more likely to contain silenced heterochromatin, it
may be less important to optimize chromatin distribution to make
them accessible to binding proteins.

Materials and Methods
As input, our model makes use of the structured illumination microscopy data
of ref. 1, specifically supplementary movie 1 of ref. 1. From the movie, we were
able to reconstructanuclearmembranesurfaceandan intensity field for theDAPI
stained DNA fluorescence within an individual mouse C2C12 cell nucleus. The
movie was split into a collection of images, each corresponding to a slice plane
perpendicular to the z-axis of the cell nucleus. Two typesof fluorescent datawere
present ineachframe:green“dots” fromfluorescently labelednuclearpores,and
a magenta field representing DAPI stained DNA (chromatin).

Nuclear Membrane Reconstruction. The MATLAB Imaging Toolbox was used to
segment and then find the centroid of each nuclear pore. This generated a
noisy point cloud representing the locations of the nuclear pores within the
cell. Because (functional) nuclear pores are localized to the nuclear mem-
brane, and are generally well distributed over the surface of the membrane
and present in large numbers (order of thousands), the point cloud gave a
good approximation to the membrane’s location. After removing extreme
outliers, most likely fluorescent components of the nuclear pore that were
present in other locations within the cell, the implementation of the eigen-
crust algorithm of ref. 24 distributed in ref. 25 was used to generate a water-
tight triangulated surface from the point cloud. The resulting surface was
cleaned and postprocessed in MeshLab (26). Fig. 1B and Movie S1 show
the final triangulated nuclear membrane surface. The mesh is comprised
of approximately 5,000 nodes and 9,700 triangles.

DAPI DNA Intensity Field. Let i ¼ ði1;i2;i3Þ label the three-dimensional voxel
corresponding to pixel ði1;i2Þ in the i3th image frame. The pixel plane is
assumed to be centered within the voxel, perpendicular to the z axis. A
three-dimensional DNA fluorescence intensity field, Ii, was created from
the DAPI stain intensity values for each pixel. The intensity field was normal-
ized to have values in ½0;1& by setting

Ii←
Ii

max
i

Ii
: [9]

Fig. 1A and Movie S2 show a volume rendering of the resulting discrete DNA
fluorescence intensity field, Ii. Note, the rendering is semitransparent to allow
theviewer to seewithin the field. This causes the field toappear tobe“clumpier”
than it actually is, see the original imaging data, supplemental movie 1 of ref. 1.

Embedded Boundary Cartesian Mesh Derived From Imaging Data. The three-
dimensional voxels centered about the pixels of the image slices define a nat-
ural Cartesian mesh. The discretization procedure of the Mathematical Model
section requires the calculation of the portion of each voxel that is within the
nucleus. Using the Cubes (12) software program the intersection of the recon-
structed nuclear membrane surface with this Cartesian mesh was calculated.
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SI Materials and Methods
1 Equivalent Variable Diffusion Constant Model to [1]. Let pðx;tÞ ¼
ρðx;tÞ expð−UðxÞ∕kBTÞ. With this choice [1] becomes

e−UðxÞ∕kBT ∂ρ
∂t

¼ ∇ · ðDe−UðxÞ∕kBT∇ρÞ:

We may interpret this equation as describing the diffusion of a
particle with variable diffusion constant, D expð−UðxÞ∕kBTÞ, in
the presence of a “diffusive capacity,” expð−UðxÞ∕kBTÞ. Here
ρðx;tÞ represents the probability per unit available volume, with
the diffusion capacity representing the available volume fraction
(i.e., the available volume per unit volume).

2 Numerical Discretization of the Fokker–Plank Equation. In this sec-
tion we show how to derive the discretization of the Fokker–
Planck [1] in theMathematical Model section of the main text with
coefficients given by [5].

We begin by considering the one-dimensional version of [1]
that we rewrite as

∂p
∂t

ðx;tÞ þ ∂F
∂x

ðx;tÞ ¼ 0; [S1]

where the flux, Fðx;tÞ is given by

Fðx;tÞ ¼ −D
!
∂p
∂x

ðx;tÞ þ pðx;tÞ
kBT

∂U
∂x

ðxÞ
"
: [S2]

Our discretization procedure is similar to that of (1), though as we
shall show we obtain different discretization coefficients. Let
piðtÞ ≈ pðih;tÞ for h a specified mesh width, and define Ui and
Fi similarly. At nonboundary points we assume a discretization
of the form

dpi
dt

ðtÞ þ 1

h
ðFiþ1∕2 − Fi−1∕2Þ ¼ 0; [S3]

where

Fiþ1∕2 ¼ αðUiþ1 − UiÞpi − βðUiþ1 − UiÞpiþ1: [S4]

Here αð·Þ and βð·Þ are functions to be determined. We may
rewrite this expression as

Fiþ1∕2 ¼ ½αðUiþ1 − UiÞ − βðUiþ1 − UiÞ&
!
pi þ piþ1

2

"

þ ½αðUiþ1 − UiÞ þ βðUiþ1 − UiÞ&
!
pi − piþ1

2

"
: [S5]

For the diffusive portion of the Fokker–Plank [S1] we would
like to recover the standard second-order discretization of the
Laplacian on R,

∂2p
∂x2

ðih;tÞ ≈ 1

h2
ðpiþ1 þ pi−1 − 2piÞ: [S6]

We therefore impose that

αðUiþ1 − UiÞ þ βðUiþ1 − UiÞ ¼
2D
h

: [S7]

With this choice, the second term in [S5] then reduces to the stan-
dard discretization of the diffusive flux, giving rise to the discrete
Laplacian [S6] in [S3]. It remains to choose α and β so that the
first term in [S5] represents a discretization of the flux arising
from drift induced by the potential UðxÞ.

Let peqi ¼ limt→∞piðtÞ denote the steady state value of piðtÞ,
and peqðxÞ the steady state value of pðx;tÞ. We assume that the
steady state probability the molecule is in voxel i is peqi h. As in
ref. 1, at thermodynamic equilibrium we expect the probability
density the molecule is at position x to be proportional to the
Boltzmann distribution

peqðxÞ ∝ e−UðxÞ∕kBT:

We therefore require that

peqiþ1 ¼ peqi eðUi−Uiþ1Þ∕kBT:

Moreover, at thermodynamic equilibrium detailed balance re-
quires that the probability flux between neighboring voxels should
balance, that is

Fiþ1∕2 ¼ 0.

Combining the last two equations we find that

αðUiþ1 − UiÞeðUiþ1−UiÞ∕kBT ¼ βðUiþ1 − UiÞ: [S8]

Solving Eqs. [S7] and [S8] for the functions α and β, we obtain
that

αðUiþ1 − UiÞ ¼
2D
h

1

eðUiþ1−UiÞ∕kBT þ 1
;

βðUiþ1 − UiÞ ¼
2D
h

1

eðUi−Uiþ1Þ∕kBT þ 1
:

By Taylor Series expanding the truncation error associated with
the discretization it can be seen that these expressions give a sec-
ond-order discretization in h. (Here we have ignored the issue of
discretizing boundary conditions.) The coefficients of pi, piþ1, and
pi−1 in [S3] determined by α and β then give the jump rates [6] for
voxels that are uncut by the nuclear membrane.

In three-dimensions, for voxels that are cut by the nuclear
membrane we follow the approach of ref. 2. The three-dimen-
sional equivalents of the flux [S4] are used in the finite-volume
embedded boundary method derived in ref. 2 to give the jump
rates [5].

3 Average Time to Locate a Target in One, Two, and Three Dimensions.
Consider the problem of finding a point, circular, or spherical
target in one, two, or three dimensions. Assume that binding
occurs immediately upon reaching the target’s boundary and
that, for simplicity, the domain in which the search takes place
is a concentric point, circle, or sphere to the target. If the target
has radius rb and the outer boundary has radius ro, the prob-
ability density for the diffusing particle to be at position x at
time t satisfies [1] with UðxÞ ¼ 0 and xb ¼ 0 (in the domain,
Ω ¼ fx∣ rb < jxj < rog⊥). In addition, the boundary conditions
remain [2] and [3]. If we assume the initial position of the particle
is uniformly distributed on the sphere (or circle or point), jxj ¼ r,
the solution to [1] is radially symmetric.

Denote by TdðrÞ the average exit time for the particle to locate
and bind to the target in d dimensions, given that the initial posi-
tion of the particle is jxj ¼ r. Then (see ref. 3),

1

rd−1
d
dr

!
rd−1

dTd

dr

"
¼ −

1

D
;
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with the boundary conditions that

TdðrbÞ ¼ 0;
dTd

dr
ðroÞ ¼ 0.

Solving these equations, we find that

TdðrÞ ¼
r2b − r2

2dD
þ rdo
dD

ðf dðrÞ − f dðrbÞÞ;

where

f dðrÞ ¼

8
<

:

r; d ¼ 1;
lnðrÞ; d ¼ 2;
−1
r ; d ¼ 3.

By examining derivatives, it can be seen that T1ðrÞ < T2ðrÞ <
T3ðrÞ for rb < r ≤ ro. Moreover, if we assume that the particle
begins its search at r ¼ ro, and that the target radius is substan-
tially smaller than the domain radius (ro ≫ rb), we see that

TdðroÞ ∼

8
>><

>>:

r2o
2D ; d ¼ 1;
r2o lnðroÞ

2D ; d ¼ 2;
r3o

3rbD
; d ¼ 3;

as ro → ∞. These scalings demonstrate that in a large domain it
will take significantly longer to find the (small) target as the
dimension is increased (particularly in three-dimensions).
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Movie S1. Shows the triangulated nuclear membrane surface reconstructed from the nuclear pore fluorescence data of ref. 1. Spatial units are in micro-
meters.

1 Schermelleh L, et al. (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structure illumination microscopy. Science 320:1332–1336.

Movie S1 (MOV)
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Movie S2. Shows a rotating volume rendering of the normalized DNA fluorescence intensity field, Ii. Note, the rendering is attenuated to allow the viewer to
see within the cell. As such, the field appears “clumpier” than it actually is. Spatial units are in micrometers.

Movie S2 (MOV)

Movie S3. Shows a typical trajectory of the protein searching for the binding site. Spatial units are in micrometers, and time is in seconds. The diffusion
constant of the protein was chosen to be 1 μm2∕s. Due to the large number of spatial jumps between voxels, the position of the protein is only shown every
.01 s after an initial jump of 1729.14 s. Note, the yellow sphere corresponds to the position of the binding site, whereas the brown sphere corresponds to the
diffusing protein. The size of the spheres was chosen solely for visualization purposes, and the volume rendering of the potential field was attenuated so that
the viewer could see into the volume. Ū ¼ 10kBT in the simulation.

Movie S3 (MOV)
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