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THE REACTION-DIFFUSION MASTER EQUATION AS AN
ASYMPTOTIC APPROXIMATION OF DIFFUSION TO A SMALL

TARGET∗

SAMUEL A. ISAACSON†

Abstract. The reaction-diffusion master equation (RDME) has recently been used as a model
for biological systems in which both noise in the chemical reaction process and diffusion in space of
the reacting molecules is important. In the RDME, space is partitioned by a mesh into a collection
of voxels. There is an unanswered question as to how solutions depend on the mesh spacing. To have
confidence in using the RDME to draw conclusions about biological systems, we would like to know
that it approximates a reasonable physical model for appropriately chosen mesh spacings. This issue
is investigated by studying the dependence on mesh spacing of solutions to the RDME in R

3 for
the bimolecular reaction A + B → ∅, with one molecule of species A and one molecule of species B
present initially. We prove that in the continuum limit the molecules never react and simply diffuse
relative to each other. Nevertheless, we show that the RDME with nonzero lattice spacing yields
an asymptotic approximation to a specific spatially continuous diffusion limited reaction (SCDLR)
model. We demonstrate that for realistic biological parameters it is possible to find mesh spacings
such that the relative error between asymptotic approximations to the solutions of the RDME and
the SCDLR models is less than one percent.
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1. Introduction. Noise in the chemical reaction process can play an important
role in the dynamics of biochemical systems. In the field of molecular cell biology, this
has been convincingly demonstrated both experimentally and through mathematical
modeling. The pioneering work of Arkin and McAdams [7] has been followed by
numerous studies showing that not only must biological cells compensate for noisy
biochemical gene/signaling networks [12, 31, 40, 37], but they may also take advantage
of the inherent stochasticity in the chemical reaction process [8, 44, 33].

Until recently, stochastic mathematical models of biochemical reactions within
biological cells were primarily nonspatial, treating the cell as a well-mixed volume, or
perhaps as several well-mixed compartments (i.e., cytosol, nucleus, endoplasmic retic-
ulum, etc.). Biological cells contain incredibly complex spatial environments, com-
prised of numerous organelles, irregular membrane structures, fibrous actin networks,
long directed microtubule bundles, and many other geometrically complex structures.
While few authors have modeled the effects of these structures on the dynamics of
chemical reactions within biological cells, several have recently begun to investigate
what effect the spatially distributed nature of the cell has on biochemical signaling
networks [42, 2, 38, 17, 47]. Deterministic reaction-diffusion PDE models are well
established for modeling biochemical systems in which reactant species are present in
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sufficiently high concentrations; however, there is not yet a standard model for sys-
tems in which noise in the chemical reaction process is thought to be important. Three
different, but related, mathematical models [6, 28, 15, 48] have recently been used for
representing stochastic reaction-diffusion systems in biological cells [2, 38, 17, 47].

In both the methods of [6] and [48], molecules are modeled as points undergoing
spatially continuous Brownian motion, with bimolecular chemical reactions occurring
instantly when the molecules pass within specified reaction-radii. We subsequently re-
fer to this model, proposed by Smoluchowski [43], as a spatially continuous diffusion
limited reaction (SCDLR). The approaches of [6] and [48] differ in their numerical
simulation algorithms, but both involve approximations that remain spatially contin-
uous while introducing time discretizations. In contrast to both these methods, the
reaction-diffusion master equation (RDME) model used in [15] and [28] discretizes
space, approximating the diffusion of molecules as a continuous-time random walk on
a lattice, with bimolecular reactions occurring with a fixed probability per unit time
for molecules within the same voxel (i.e., at the same lattice site). Exact realizations
of the RDME can be created using the Gillespie method [21]. The method of [28]
shows how to modify the diffusive jump rates of the standard RDME approach to
account for complex spatial geometries.

While several authors have recently used the RDME to study biological systems
(see, for example, [17] and [11]), there is still an unanswered question as to whether
this spatially discrete model approximates any underlying physical model for appro-
priately chosen mesh sizes. (Note that [11] uses an approximate simulation algorithm
instead of the exact Gillespie method approach mentioned above.) In particular, the
main justification for the use and accuracy of the RDME appears to be the physi-
cal separation-of-timescales argument given in section 1.1.2. This argument suggests
that the RDME is only physically valid for mesh sizes that are neither too large nor
too small, and gives no hint as to an underlying spatially continuous model that is
approximated by the RDME.

Our purpose herein is to investigate the dependence of the RDME on mesh spac-
ing. We begin by answering the question of what happens in the continuum limit
where the mesh spacing approaches zero. To this end, we prove in section 2.1 that
for two molecules that can undergo the bimolecular reaction A+B → ∅, as the mesh
spacing approaches zero the molecules never react and simply diffuse relative to each
other. This rigorous result appears to contradict the naive formal continuum limit,

(1.1) DΔ − kδ(x),

that one obtains for the generator of the dynamics (2.7). The apparent contradiction
arises from the subtlety of giving a rigorous mathematical definition to the opera-
tor (1.1). In the context of quantum mechanical scattering in R

3, an equivalent oper-
ator, with the reaction term called a pseudopotential, has been introduced formally
by Fermi [19] and elaborated on by Huang and Yang [24]. A rigorous mathematical
definition of (1.1) was first given by Berezin and Faddeev [10] and more recently by
Albeverio, Brzeźniak, and Da̧browski [3]. An important point in the work of [3] is
that a one-parameter family of self-adjoint operators, Δ + αδ(x), may be defined in
R

3 corresponding to an extension of the standard Laplacian from R
3 \ {(0, 0, 0)} to

R
3. The results of section 2.1 imply that the standard scaling of the bimolecular

reaction rate used in the RDME leads the solution of the RDME to converge to the
α = 0 operator, i.e., the Laplacian on R

3. To obtain an operator (1.1) corresponding
to the formal continuum limit that differs from the Laplacian, one would need to
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appropriately renormalize the bimolecular reaction rate and/or extend the reaction
operator to couple in neighboring voxels.

We next investigate what the RDME approximates for mesh spacings that are nei-
ther too large nor too small. The operator (1.1) arises in quantum mechanics to give
local potentials whose scattering approximates that of a hard sphere of a fixed radius.
Here, the dynamics (2.7) generated by a physically appropriate, mathematically rig-
orous definition of (1.1) provides an asymptotic approximation in the reaction-radius
to the solution of the SCDLR model. This motivates section 2.2, where we show
that when the mesh spacing is larger than an appropriately chosen reaction-radius,
defined by the relative diffusion constant and bimolecular reaction rate of the species,
the RDME is an asymptotic approximation in the reaction-radius to the SCDLR
model [43, 29]. We derive, for the special case of two molecules that can undergo the
bimolecular reaction A + B → ∅, asymptotic expansions in the reaction-radius of the
solutions to both the RDME and the SCDLR model in subsections 2.2.1 and 2.2.2,
respectively. In subsection 2.2.3 we prove that the zeroth- and first order terms in the
expansion of the RDME converge to the corresponding terms of the SCDLR model,
while the second order term diverges. Moreover, we examine the numerical error be-
tween the expansion of the RDME, truncated after the second order term, and the
asymptotic expansion of the SCDLR model, also truncated after the second order
term. It is shown that for biologically relevant values of the reaction-radius the rel-
ative error between the two truncated expansions can be reduced below one percent
with appropriately chosen mesh widths. This suggests that for biologically relevant
parameter regimes and well-chosen mesh spacings, the RDME might provide a useful
approximation to the SCDLR model.

The model problem studied in section 2 is chosen for ease of mathematical analy-
sis. We believe that our results should be extendable to the general RDME formulation
presented in section 1.1 for chemical systems with arbitrary zeroth-, first-, and second
order chemical reactions. Note that for a general chemical system the RDME is a,
possibly infinite, coupled system of ODEs. Formally, as we show in [26], the contin-
uum limit of the coupled system is equivalent to a, possibly infinite, coupled system of
PDEs with distributional coefficients. Similarly, a number of authors [39, 46] have ex-
ploited the equivalence of the RDME to a discrete version of the second quantization
Fock-space formulation of Doi [14] to study formal representations of the continuum
limit of the RDME.

1.1. Background on the RDME. We begin by formulating the RDME in
subsection 1.1.1. A recent review of stochastic reaction-diffusion models and numerical
methods, including the RDME, is provided in [16]. In subsection 1.1.2 we present a
standard physical argument for determining mesh sizes where the RDME should be a
“reasonable” physical model. Subsection 1.1.3 briefly reviews the relationship between
deterministic reaction-diffusion PDE models and the RDME.

1.1.1. Mathematical formulation. We consider the stochastic reaction and
diffusion of chemical species within a domain, Ω. Ω may denote a closed volume or
all of R

3. In the RDME model, Ω is divided by a mesh into a collection of voxels
labeled by vectors i in some index set I (i.e., i ∈ I). For example, if Ω = R

3, then
I = Z

3. It is assumed that the size of each voxel can be chosen such that within each
voxel, independently, the well-mixed formulation of stochastic chemical kinetics [34] is
physically valid. Determining for which mesh sizes this supposition is reasonable is one
of the main goals of this work, and is further discussed in sections 1.1.2 and 2. Given
this assumption, diffusive transitions of particles between voxels are then modeled as
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first order chemical reactions. Note that this is equivalent to modeling diffusion as a
continuous-time random walk on a lattice.

The state of the chemical system of interest is defined to be the number of each
chemical species within each voxel. Let M l

i(t) denote the random variable for the
number of particles of chemical species l in the ith voxel, l = 1, . . . , L. We define
M i(t) =

(
M1

i , . . . , ML
i

)
to be the state vector of the chemical species in the ith

voxel, and M(t) = {M i}i∈I to be the total state of the system (i.e., the number of
all species at all locations). The probability that M(t) has the value m at time t,
given the initial state, M(0) = m0, is denoted by

P (m, t) ≡ Prob{M(t) = m|M(0) = m0}.

We now define a notation to represent changes of state due to diffusive transitions.
Let 1l

i be the state where the number of all chemical species at all locations is zero,
except for the lth chemical species at the ith location, which is one. (I.e., M(t) + 1l

i

would add one to chemical species l in the voxel labeled by i.) kl
ij shall denote the

diffusive jump rate for each individual molecule of the lth chemical species into voxel
i from voxel j, for i �= j. Since diffusion is treated as a first order reaction and
molecules are assumed to diffuse independently, the total probability per unit time at
time t for one molecule of species l to jump from voxel j to voxel i is kl

ijM
l
j(t). kl

ii

is chosen to be zero, so that a molecule must hop to a different voxel.
We assume there are K possible reactions, with the function ak

i (mi) giving the
probability per unit time of reaction k occurring in the ith voxel when M i(t) = mi.
For example, letting k label the unimolecular (first order) reaction Sl → Sl′ , then
ak

i (mi) = α ml
i, where α is the rate constant in units of number of occurrences of

the reaction per molecule of Sl per unit time. Letting k′ denote the index of the
bimolecular reaction Sl + Sl′ → Sl′′ , where l �= l′, then ak′

i (mi) = β ml
im

l′
i . Here β is

the rate constant in units of number of occurrences of the reaction per molecule of Sl

and per molecule of Sl′ , per unit time. State changes in M i(t) due to an occurrence
of the kth chemical reaction in the ith mesh voxel will be denoted by the vector
νk = (ν1

k, . . . , νL
k ) (i.e., M i(t) → M i(t) + νk). The corresponding state change in

M(t) due to an occurrence of the kth reaction in the ith voxel will be denoted by
νk 1i (i.e., M(t) → M(t)+νk 1i). (Here νk1i is simply used as a notation to indicate
that M(t) should change by νk in the ith voxel.)

With these definitions, the RDME for the time evolution of P (m, t) is then

dP (m, t)
dt

=
∑
i∈I

∑
j∈I

L∑
l=1

(
kl

ij

(
ml

j + 1
)
P (m + 1l

j − 1l
i, t) − kl

jim
l
iP (m, t)

)
(1.2)

+
∑
i∈I

K∑
k=1

(
ak

i (mi − νk)P (m − νk 1i, t) − ak
i (mi)P (m, t)

)
.

This is a coupled set of ODEs over all possible nonnegative integer values of the matrix
m. Notice the important point that the reaction probabilities per unit time, ak

i (mi),
may depend on spatial location. To the authors’ knowledge, this equation goes back
to the work of Gardiner [20].

Equation (1.2) is separated into two sums. The first term corresponds to diffusive
motion between voxels i and j of a given species, l. The second is just the components
of the chemical master equation [34], but applied at each individual voxel. In previous
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work we have shown that, as the mesh spacing approaches zero, to recover diffusion of
an individual molecule in a system with no chemical reactions or to recover diffusion
of the mean chemical concentration of each species in (1.2), the diffusive jump rates
should be chosen so as to determine a discretization of the Laplacian [28].

Let Dl denote the diffusion constant of chemical species l, specifically the macro-
scopic diffusion constant used in deterministic reaction-diffusion PDE models. (See
section 1.1.3 for the relationship between the RDME and deterministic PDE models.)
For a regular Cartesian mesh in R

d comprised of hypercubic voxels with width h, the
diffusive jump rates for species l would be given by

kl
ji =

{
Dl/h2, i a nondiagonal neighbor of j,

0, otherwise.

Denote by ek the unit vector along the kth coordinate axis of R
d. We define∑

±

to be the sum where every term is evaluated with any ± replaced by a +, and added
to each term with any ± replaced by a −. As an example,∑

±
γ± = γ+ + γ−.

For a Cartesian mesh in R
d the RDME (1.2) then simplifies to

dP (m, t)
dt

=
∑
i∈Zd

d∑
k=1

∑
±

L∑
l=1

Dl

h2

((
ml

i±ek
+ 1
)
P (m + 1l

i±ek
− 1l

i, t) − ml
iP (m, t)

)

+
∑
i∈Zd

K∑
k=1

(
ak

i (mi − νk)P (m − νk 1i, t) − ak
i (mi)P (m, t)

)
.(1.3)

1.1.2. Physical validity. To date, no rigorous derivation of the RDME from a
more microscopic physical model has been given. One systematic computational study
was reported in [9] showing good agreement between the RDME and Boltzmann-like
dynamics. The validity of the RDME model is often assumed based on the physical
argument presented below (see, for example, the supplement to [15]).

First order reactions are assumed to represent internal events, and as such are
presupposed to be independent of diffusion. We also assume that on relevant spatial
scales of interest, molecular interaction forces are weak, so that until two molecules are
sufficiently close they do not influence each other’s movement. Motion of molecules
is then taken to be purely diffusive. To ensure that the continuous-time random
walk approximation to diffusion inherent in the RDME is accurate, we must choose
the mesh spacing significantly smaller than characteristic length scales of interest.
Denoting this length scale by L, and the width of a (cubic) voxel by h, we then
require

(1.4) L � h.

The primary physical assumption in formulating the RDME is that a separation of
timescales exists such that on the spatial scale of voxels bimolecular reactions may
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be treated as well mixed. For example, consider the bimolecular reaction A + B → C
with rate constant K. It is assumed that within a given voxel the timescale, τKA , of
a well-mixed bimolecular reaction between one specific molecule of chemical species
A and any molecule of species B is much larger than the timescale, τD, for the A
molecule and an arbitrary B molecule to become well-mixed relative to each other
due to diffusion. (Here D = DA +DB denotes the relative diffusion constant between
the A and B molecules.) We specifically assume that

(1.5) τKA � τD,

where

τKA ≈ 1
K [B]

, τD ≈ h2

D
.

Letting nB denote the number of B molecules inside the voxel, then in three dimensions
[B] = nB/h3, so that (1.5) simplifies to

h � KnB

D
.

Combining this with (1.4), we have that

(1.6) L � h � KnB

D
.

It is therefore necessary to bound h from above and below to ensure accuracy of the
RDME.

1.1.3. Relation to deterministic reaction-diffusion PDEs. We now exam-
ine the relation between the RDME and standard deterministic reaction-diffusion
PDE models. Define Vi to be the volume of the ith voxel. We let Cl

i(t) = M l
i(t)/Vi

be the random variable for the chemical concentration of species l, in voxel i, and
define Ci(t) = (C1

i , . . . , CL
i ). Denote by ãk

i the concentration dependent form of ak
i .

ãk
i and ak

i are related by ãk
i (c) = ak

i (Vic)/Vi and, vice versa, ak
i (m) = ãk

i (m/Vi)Vi.
Letting E[Cl

i(t)] denote the average value of Cl
i(t), from (1.2) we then find

d E[Cl
i]

dt
=
∑
j∈I

(
Vj

Vi
kl

ij E[Cl
j ] − kl

ji E[Cl
i]
)

+
K∑

k=1

νl
kE[ãk

i (Ci)].

Note the important point that for nonlinear reactions, such as bimolecular reactions,

(1.7) E[ãk
i (Ci(t))] �= ãk

i (E[Ci(t)]) .

For chemical systems in which any nonlinear reactions are present, the equations for
the mean concentrations will then be coupled to an infinite set of ODEs for the higher
order moments.

We now consider the continuum limit that h → 0. Let x denote the centroid of
the voxel labeled by i, and assume that h is chosen to approach zero such that x
always remains the centroid of some voxel. We then define

Sl(x, t) = lim
h→0

E[Cl
i(t)]
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and S(x, t) = (S1(x, t), . . . , SL(x, t)). Denote by Dl the diffusion constant of the
lth chemical species, and define ãk(S(x, t), x) to be the continuum spatially varying
concentration dependent form of ak

i . Following the discussion in subsection 1.1.1, the
jump rates kl

ij are chosen to be a discretization of the Laplacian. The deterministic
reaction-diffusion PDE model can be thought of as the approximation that

∂Sl(x, t)
∂t

= DlΔSl +
K∑

k=1

νl
k ãk(S(x, t), x).

This equation implicitly assumes that in the formal continuum limit the equations for
the mean concentrations form a closed system. In general, however, this is true only
for chemical systems in which all reaction terms are linear due to (1.7). For systems
with nonlinear reaction terms, the equations for the mean concentrations would then
remain coupled to higher order moments in the formal continuum limit, giving an
infinite system of equations to solve in order to determine the means.

As discussed in the introduction, it has been shown more generally that the formal
continuum limit of the RDME itself may be interpreted as a Fock-space representation
of a quantum field theory [39].

2. A reduced model to study h dependence of RDME. We now inves-
tigate the behavior of RDME as the mesh spacing, h, becomes small in a simplified
model. The simplified model studied is that of two molecules, one of chemical species
A and one of chemical species B, that diffuse in R

3 and can be annihilated by undergo-
ing the chemical reaction A+B → ∅. In this system, the RDME can be reduced to a
form that is much easier to study analytically than (1.3). (Note that we subsequently
assume we are working in R

3 with a standard cubic Cartesian mesh of mesh width
h.) We show that in this special case the continuum limit is formally given by a PDE
with distributional coefficients.

The model problem can be derived from the RDME (1.3) as follows. We first
simplify to the reaction A + B → C with well-mixed bimolecular reaction rate k,
and only one molecule of A, one molecule of B, and no molecules of C initially. k is
assumed to have units of volume/time as is standard for deterministic ODE models.
We denote by A(t) = {Ai(t)}i∈Z3 the vector stochastic process for the number of
molecules of chemical species A at each location at time t. (We define B(t) and C(t)
similarly.) ai will denote a specific number of molecules of chemical species A at
location i, and

a = {ai | i ∈ Z
3},

a possible value of A(t). (We again define b and c similarly.) The notation a + 1i

will, as before, represent a with one added to ai. In terms of a, b, and c, the RDME
gives the time evolution of

P (a, b, c, t) = Prob{A(t) = a, B(t) = b, C(t) = c | A(0), B(0), C(0)} .

Let 0 denote the zero vector. We assume that A(0) = 1i0 , B(0) = 1i′0 , and C(0) = 0.
At time t, the state of the chemical system is then A(t) = 1i, B(t) = 1i′ , and C(t) = 0
prior to the reaction occurring, or A(t) = 0, B(t) = 0, and C(t) = 1i subsequent
to the reaction occurring. (Here i and i′ label arbitrary molecule positions.) Let δii′

denote the three-dimensional Kronecker delta function, zero if i �= i′ and one if i = i′.
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For this system, the RDME (1.3) simplifies to

dP

dt
(1i, 1i′ ,0) =

3∑
k=1

∑
±

[
DA

h2

(
P (1i±ek

, 1i′ ,0, t) − P (1i, 1i′ ,0, t)
)

+
DB

h2

(
P (1i, 1i′±ek

,0, t) − P (1i, 1i′ ,0, t)
)]

− k

h3
δii′P (1i, 1i′ ,0, t)

for states where a reaction has not yet occurred, and to

dP

dt
(0,0, 1i) =

3∑
k=1

∑
±

DC

h2

[
P (0,0, 1i±ek

, t) − P (0,0, 1i, t)
]
+

k

h3
P (1i, 1i,0, t)

for states where the reaction has occurred. Note the important point that the bi-
molecular reaction rate is given by k/h3, since k has units of volume/time.

This simplified RDME is completely equivalent to a new representation described
by the probability distributions F (0,0,1)(i, t) and F (1,1,0)(i, i′, t). Here superscripts
denote the total number of each of species A, B, and C in the system, and indices give
the corresponding locations of these molecules. F (1,1,0)(i, i′, t) denotes the probability
that the species A and B particles have not yet reacted and are located in voxels i
and i′, respectively, at time t. F (0,0,1)(i, t) gives the probability that the particles
have reacted and that the C particle they created is located in voxel i at time t.

Assuming that the A particle starts in voxel i0 and the B particle in voxel i′0, the
equations of evolution of F (0,0,1)(i, t) and F (1,1,0)(i, i′, t) follow immediately from the
simplified RDME, and are given by

dF (1,1,0)

dt
(i, i′, t) =

([
DAΔA

h + DBΔB
h

]
F (1,1,0)

)
(i, i′, t) − k

h3
δii′F

(1,1,0)(i, i, t),

(2.1)

dF (0,0,1)

dt
(i, t) =

(
DCΔC

h F (0,0,1)
)

(i, t) +
k

h3
F (1,1,0)(i, i, t),(2.2)

with initial conditions F (1,1,0)(i, i′, 0) = δii0δi′i′0 and F (0,0,1)(i, 0) = 0. Here ΔA
h

denotes the standard second order discrete Laplacian acting on the coordinates of the
A particle, and ΔB

h denotes the discrete Laplacian acting on the coordinates of the
species B particle. For example,

(
ΔB

h F (1,1,0)
)

(i, i′, t) =
3∑

k=1

∑
±

1
h2

(
F (1,1,0)(i, i′ ± ek, t) − F (1,1,0)(i, i′, t)

)
.

ΔC
h is defined similarly. More general multiparticle RDMEs can also be converted

to related systems of coupled differential-difference equations. These equations corre-
spond to discrete versions of the spatially continuous “distribution function” stochas-
tic reaction-diffusion model proposed in [14]. Note that if the number of reacting
molecules is unbounded, the number of equations will be infinite. See [26] for a deriva-
tion of the corresponding system of equations governing the reaction A+B � C with
arbitrary amounts of each chemical species.
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Notice that (2.1) is independent of (2.2), and by itself can be thought of as
representing the reaction A + B → ∅. To study this chemical reaction we drop the C
dependence in F (1,1,0)(i, i′, t) and study F (1,1)(i, i′, t), which satisfies

(2.3)
dF (1,1)

dt
(i, i′, t) =

([
DAΔA

h + DBΔB
h

]
F (1,1)

)
(i, i′, t) − k

h3
δii′F

(1,1)(i, i, t),

with initial condition F (1,1)(i, i′, 0) = δii0δi′i′0 .
We now consider the separation vector, i − i′, for the two particles of species A

and B. Define the probability of the separation vector having the value j,

(2.4)

P (j, t) =
∑

i−i′=j

F (1,1)(i, i′, t)

=
∑
i∈Z3

F (1,1)(i, i − j, t).

It follows from (2.3), as shown in [25], that P (j, t) satisfies

(2.5)
dP

dt
(j, t) = (DΔhP ) (j, t) − k

h3
δj0P (0, t),

P (j, 0) = δjj0
,

where Δh is acting on the j index, D = DA + DB, and j0 = i0 − i′0. Note that this
equation is equivalent to an RDME model of the binding of a single diffusing particle
to a fixed binding site at the origin.

To study the limiting behavior of our system for small h we convert (2.5) from
units of probability to units of probability density. This change is necessary since
the underlying SCDLR model we compare with is described by the evolution of a
probability density. Let xj = hj denote the center of the Cartesian voxel labeled by
j ∈ Z

3. We denote the probability density for the separation vector to be xj at time
t by ph(xj , t) ≡ P (j, t)/h3. Equation (2.5) can now be converted to an equation for
ph(xj , t), giving

(2.6)

dph

dt
(xj , t) = D(Δhph)(xj , t) − k

h3
δj0 ph(0, t),

ph(xj , 0) =
1
h3

δjj0
, j0 �= 0,

where again j0 = i0 − i′0. Note the assumption, which we use for the remainder
of this paper, that initially the molecules are in different voxels, i.e., j0 �= 0. This
assumption is necessary to avoid a product of delta functions centered at the same
location in the SCDLR model used in section 2.2. Equation (2.6) is the final reduced
form of the reaction A + B → ∅ that we subsequently study.

In section 2.1 we consider the limit of this model as h → 0 and observe that
the molecules never react. In contrast, we show in section 2.2 that this simplified
model can be thought of as a good asymptotic approximation to a specific microscopic
continuous-space reaction-diffusion model, assuming that h is neither too small nor
too large. Specifically, we show that the simplified discrete model can be thought of
as an asymptotic approximation to an SCDLR model, where reactions are modeled as
occurring instantly when two diffusing particles approach within a specified reaction-
radius. The asymptotic approximation of (2.6) to the SCDLR model diverges like 1/h
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as h → 0, and therefore the master equation loses accuracy when h is sufficiently small.
Recall, however, that h cannot be taken arbitrarily large, as then neither diffusion nor
the reaction process would be approximated accurately! In section 2.2.3 we investigate
the error between the asymptotic approximations, truncated after the second order
terms, of the SCDLR model and the simplified RDME model. Both numerically
calculated error values and analytical convergence/divergence rates are presented. It
is shown that for this simplified model the physically derived bounds on h given in
section 1.1.2 may be reasonable restrictions on how h should be chosen so that the
truncated asymptotic expansion of the RDME provides an accurate approximation to
the truncated expansion of the SCDLR model.

2.1. Continuum limit as h → 0. Let δ(x) denote the Dirac delta function.
We might expect the solution to (2.6) to approach the solution to

(2.7)
∂p

∂t
(x, t) = DΔp(x, t) − kδ(x)p(0, t), x ∈ R

3,

p(x, 0) = δ(x − x0), x0 �= 0,

as h → 0. Ignoring, for now, the question of how to define a PDE with distributional
coefficients, we next show that, as h → 0, the molecules never react and simply diffuse
relative to each other. Thus, in the continuum limit, the molecules do not feel the
delta function reaction term at all.

To study the solution to (2.6) as h → 0 we will make use of the free space
Green’s function for the discrete-space continuous-time diffusion equation, Gh(xj , t).
Gh satisfies

(2.8)

dGh

dt
(xj , t) = D(ΔhGh)(xj , t),

Gh(xj , 0) =
1
h3

δj0

and has the Fourier representation

(2.9) Gh(xj , t) =
∫∫∫

[−1
2h , 1

2h ]3
e−4Dt

∑ 3
k=1 sin2(πhξk)/h2

e2πiξ·(xj) dξ.

Here ξ = (ξ1, ξ2, ξ3), and [−1/2h, 1/2h]3 denotes the cube centered at the origin with
sides of length 1/h. We will also need the Green’s function for the continuum free
space diffusion equation, G(x, t), given by

(2.10) G(x, t) =
1

(4πDt)3/2
e−|x|2/(4Dt).

Note that we prove in Theorem B.1 that, away from the origin, Gh converges to G
uniformly in time as h → 0.

Using Duhamel’s principle, the solution to (2.6) may be written as

(2.11) ph(xj , t) = Gh(xj − xj0
, t) − k

∫ t

0

Gh(xj , t − s)ph(0, s) ds.

Letting xj = 0, we find that the solution at the origin satisfies the Volterra integral
equation of the second kind,

(2.12) ph(0, t) = Gh(xj0
, t) − k

∫ t

0

Gh(0, t − s)ph(0, s) ds,
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where we have used that Gh(xj −xj0
, t) = Gh(xj0

−xj , t). In Appendix A we prove
that ph(xj , t) is positive for all j ∈ Z

3 and t > 0, and for each fixed xj is continuous
in t for all t ∈ R.

We will also find it useful to consider the binding time distribution, Fh(t), for the
particles. Denote by T the random variable for the binding time of the particles; then
Fh(t) = Prob{T < t} and is given by

(2.13)
Fh(t) ≡ k

∫ t

0

ph(0, s) ds

=
k

h3

∫ t

0

P (0, s) ds.

Note that Fh(t) may be defective, i.e., Fh(∞) < 1, since in three dimensions the
particle separation is not guaranteed to ever take the value 0 as t → ∞. Considering
the coupled system for both ph and Fh, total probability is now conserved, so that∑

j∈Z3

(
ph(xj , t)h3

)
+ Fh(t) = 1 ∀ t ≥ 0.

That Fh(t) is a rigorously defined (possibly defective) probability distribution, and
the validity of the preceding formula, are both proven in Appendix A.

For the remainder of this section we assume that x = xj = hj for some j ∈ Z
3

and remains fixed as h → 0. (That is, we choose j = j(h) → ∞ as h → 0 such that
x = hj remains fixed.) We likewise assume that x0 = xj0

= hj0 for some j0 ∈ Z
3

and is also held fixed as h → 0. With the preceding definitions, we now show that
reaction effects are lost as h → 0.

Theorem 2.1. Assume the initial particle separation x0 �= 0 and is held fixed
as h → 0. For all t ≥ 0, the probability that the particles have reacted by time t
approaches zero as h → 0; i.e.,

(2.14) lim
h→0

Fh(t) = 0.

In addition, assume that x �= 0 and is held fixed as h → 0. Then for all t > 0 the
solution to (2.11) converges to the solution to the free space diffusion equation, i.e.,

(2.15) lim
h→0

ph(x, t) = G (x − x0, t) ∀ t > 0.

As pointed out by a reviewer, since Fh(t) is a (possibly defective) probability
distribution, we in fact have uniform convergence of Fh(t) to zero on any interval,
[0, T ], with T < ∞.

Theorem 2.1 implies that, in the continuum limit, the particles never react and
simply diffuse relative to each other. Figure 2.1 shows solution curves as h is varied,
for ph(0, t) in Figure 2.1(a) and for ph(x, t) in Figure 2.1(b). A stronger result than
the theorem is illustrated in Figure 2.2, where the numerical convergence of ph(0, t)
to zero and ph(x, t) to G(x − x0, t) are illustrated as functions of h. We were unable
to calculate ph(0, t) for sufficiently small mesh widths, h, to resolve the asymptotic
convergence rate of ph(0, t) to zero, but the figure shows the decrease in ph(0, t) as h
is decreased. An apparent second order convergence rate of ph(x, t) to G(x−x0, t) is
also seen, though this convergence rate may not be the correct asymptotic rate (since
to calculate ph(x, t) we make use of ph(0, t) through (2.11)). Details of the numerical
methods used to find ph(0, t) and ph(x, t) may be found in Appendix C.
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Fig. 2.1. (a) ph(0, t) versus t on [0, .04]. Each curve on the figure corresponds to ph(0, t) for
a different value of h. The topmost curve corresponds to h = 2−5, the next largest to 2−6, and
so on through the bottom curve, corresponding to h = 2−11. (b) ph(x, t) versus t on [0, .04] at
x = (0, 1/8, 1/8). Again curves are plotted for h = 2−5, 2−6, . . . , 2−11; however, they are visually
indistinguishable. In both figures, x0 = (1/8, 1/8, 1/8), D = 1, and k = 4πDa, where a = .001.

To prove Theorem 2.1 we need the following two lemmas and Theorem B.1, which
proves that away from the origin Gh converges to G uniformly in t as h → 0.

Lemma 2.2. Assume x �= 0 and that x is fixed as h varies. Then for all ε > 0
there exists an h0 > 0 such that, for all h ≤ h0,

Gh(x, t) ≤ G(x, t) + ε.
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Fig. 2.2. Convergence of ph(0, t) to zero and ph(x, t) to G(x − x0, t) as h → 0. e0(h) =
maxt∈[0,.04] ph(0, t), and eG(h) = maxt∈[0,.04] |ph(x, t) − G(x − x0, t)|. Note that the slope of the
best fit line to eG(h) = 2.0035. Values of x, x0, D, and k are the same as in Figure 2.1.

Moreover, for h ≤ h0,

sup
t≥0

Gh(x, t) ≤ C,

where C is a constant depending only on x (independent of h and t).
Proof. In Theorem B.1 we prove that Gh(x, t) → G(x, t) uniformly in t. Hence

for all ε > 0 we can find an h0 > 0 such that, for all h ≤ h0,

Gh(x, t) ≤ G(x, t) + ε.

G(x, t) is maximized for t = |x|2 /6D, so that

sup
t≥0

Gh(x, t) ≤
(

3
2π

) 3
2 1
|x|3 e−3/2 + ε.

We will subsequently make use of the Laplace transform, defined for a function
f(t) as

f̃(s) =
∫ ∞

0

f(t)e−st dt.

The second lemma we need is the following.
Lemma 2.3. Denote by G̃h(x, s) the Laplace transform of Gh(x, t) with respect

to t. We again assume that x �= 0 and that x is fixed as h → 0. Then

(2.16) lim
h→0

G̃h(x, s) = G̃(x, s) ∀s > 0

and

(2.17) lim
h→0

G̃h(0, s) = ∞ ∀s > 0.
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Proof. By Theorem B.1, for each fixed s > 0, Gh(x, t)e−st converges uniformly
in t to G(x, t)e−st as h → 0. We may thus conclude that

lim
h→0

∫ ∞

0

Gh(x, t)e−st dt =
∫ ∞

0

G(x, t)e−st dt.

By definition, this implies that G̃h(x, s) → G̃(x, s) for all s > 0 as h → 0.
For the second limit, we have that, for all t > 0, Gh(0, t) → G(0, t) = 1/(4πDt)3/2

as h → 0 by Theorem B.1. Therefore, by Fatou’s lemma,

lim inf
h→0

∫ ∞

0

Gh(0, t)e−st dt ≥
∫ ∞

0

lim inf
h→0

Gh(0, t)e−st dt

=
∫ ∞

0

1
(4πDt)3/2

e−st dt

= ∞.

With these lemmas, we may now prove the main theorem of this section.
Proof of Theorem 2.1. Taking the Laplace transform of (2.12), we find

p̃h(0, s) =
G̃h(x0, s)

1 + kG̃h(0, s)
.

Lemma 2.3 then implies

lim
h→0

p̃h(0, s) = 0 ∀s > 0.

By (2.13), k ph(0, t) is the binding time density corresponding to the binding time
distribution, Fh(t). Since kp̃h(0, s) → 0 as h → 0, the continuity theorem [18, section
XIII.2, Theorem 2a] implies that

lim
h→0

Fh(t) = 0.

Equation (2.11) implies

|ph(x, t) − Gh(x − x0, t)| ≤ k

∫ t

0

Gh(x, t − s)ph(0, s) ds.

For all h sufficiently small, Lemma 2.2 implies

|ph(x, t) − Gh(x − x0, t)| ≤ k

(
sup

t
G(x, t) + ε

)∫ t

0

ph(0, s) ds

=
(

sup
t

G(x, t) + ε

)
Fh(t).

Fh(t) goes to zero and Gh(x − x0, t) → G(x − x0, t) as h → 0 by Theorem B.1, so
that we may conclude ph(x, t) → G(x − x0, t) as h → 0.

2.2. RDME as an asymptotic approximation of diffusion to a small
target. While reaction effects are lost as h → 0, we will now show that for h small,
but not “too” small, the simplified model given by (2.5) provides an approximation
to an SCDLR model. We consider a system consisting of two diffusing molecules, one
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of species A and one of species B. The reaction A + B → ∅ is modeled by having the
two molecules be annihilated instantly when they reach a certain physical separation
length, called the reaction-radius and denoted by a. We define f (1,1)(qA, qB, t) to
represent the probability density for both molecules to exist, the A molecule to be at
qA, and the B molecule to be at qB at time t. The model is then
(2.18)

∂f (1,1)

∂t
(qA, qB, t) =

([
DAΔA + DBΔB

]
f (1,1)

)
(qA, qB, t),

∣∣qA − qB
∣∣ > a,

f (1,1)(qA, qB, t) = 0,
∣∣qA − qB

∣∣ = a,

lim
|qA|→∞

f (1,1)(qA, qB, t) = 0,

lim
|qB|→∞

f (1,1)(qA, qB, t) = 0,

f (1,1)(qA, qB, 0) = δ(qA − qA
0 )δ(qB − qB

0 ), qA
0 �= qB

0 .

For simplicity, we again convert to the system for the separation vector, x = qA−qB,
between the A and B particles. Let p(x, t) represent the probability density that the
particles have the separation vector x at time t. p(x, t) then satisfies

(2.19)

∂p

∂t
(x, t) = DΔp(x, t), |x| > a,

p(x, t) = 0, |x| = a,

lim
|x|→∞

p(x, t) = 0,

p(x, 0) = δ(x − x0), x0 �= 0,

where D = DA + DB and x0 = qA
0 − qB

0 . We subsequently refer to (2.19) as the
SCDLR model.

Recall the definition of ph(xj , t), the probability density for the particle separation
from the master equation to be xj at time t; see (2.6) (where xj = hj, j ∈ Z

3). We
expect that ph(xj , t) ≈ p(xj , t) for h small but not “too small.”

Our main assumption is that h � a, motivated by the simplification of the
heuristic physical assumption, (1.6), in the case of one particle of chemical species
A and one particle of chemical species B,

h � k

D
.

We relate the reaction-radius, a, to k/D through the definition

a =
k

4πD
.

This definition agrees with the well-known form of the bimolecular reaction rate con-
stant for a strongly diffusion limited reaction (see, for example, [29] for a review of
the relevant theory and [43] for the original work). Our key assumption is that k/D
is a small parameter, relative to spatial scales of interest, that determines the size of
the reaction-radius in (2.19).

Replacing k with 4πDa, (2.6) becomes

(2.20)

dph

dt
(xj , t) = D(Δhph)(xj , t) − 4πDa

h3
δj0 ph(0, t),

ph(xj , 0) =
1
h3

δjj0
,
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where again j0 = i0− i′0. It is this equation we compare to the SCDLR model, (2.19).
As we showed in section 2.1, the solutions to (2.20) converge pointwise to the

solutions of the free-space diffusion equation as h → 0. To investigate the regime where
h is small but h � a, we introduce asymptotic expansions in a of the solutions to (2.19)
and (2.20) for a small. Our motivation in comparing the asymptotic expansions of
the exact solution to (2.19) and the RDME (2.20) derives in part from the asymptotic
nature of the solution to the formal continuum limit of (2.20). As mentioned in
subsection 2.1, we might expect the solution of the discrete model to approach the
solution to

(2.21)
∂p

∂t
(x, t) = DΔp(x, t) − 4πDaδ(x)p(0, t), x ∈ R

3,

p(x, 0) = δ(x − x0), x0 �= 0,

as h → 0. It is true in the distributional sense that the reaction operator

−4πDa
δj0

h3
→ −4πDaδ(x)

as h → 0; however, as we saw in section 2.1, in the continuum limit all reaction
effects are lost from the discrete equation (2.20). As described in the introduction,
the reaction term in (2.21) may be rigorously treated by defining the entire operator
in (2.21) as a member of a one-parameter family of self-adjoint extensions to R

3 of
the Laplacian on R

3 \ 0; see [3, 4, 5]. We denote this family of extensions by the
operator Δ+αδ(x), where α denotes the arbitrary parameter. The solution to (2.21)
with the rigorously defined operator DΔ− 4πDaδ(x) [5, Introduction] is the same as
the solution to the following pseudopotential model [19, 24]:

(2.22)
∂ρ

∂t
(x, t) = DΔρ(x, t) − 4πDaδ(x)

∂

∂r
(rρ(x, t)) , x ∈ R

3,

ρ(x, 0) = δ(x − x0), x0 �= 0,

where r = |x|. These delta function and pseudopotential operators were introduced
in quantum mechanics to give local potentials whose scattering approximates that of
a hard sphere of radius a. The solution to (2.22) is an asymptotic approximation in a
of the solution to the SCDLR model (2.19), accurate through terms of order a2. (See,
for example, [27] and compare with the results of subsection 2.2.2.) This suggests
that the RDME (2.20) provides an approximation to (2.21) and (2.22), and therefore
to the SCDLR model (2.19), even though, as shown in subsection 2.1, it converges to
the diffusion equation (i.e., the α = 0 case) as the mesh spacing approaches zero.

In section 2.2.1 we derive, through second order, the asymptotic expansion in a of
the discrete RDME model (2.20), while in section 2.2.2 we calculate the corresponding
expansion of the SCDLR model (2.19). The error between terms of the same order in
each of the two expansions is examined in section 2.2.3. In addition, we also examine
the relative error between the expansions, truncated after the second order terms, of
the solutions to (2.19) and (2.20).

2.2.1. Perturbation theory for the RDME. In order to examine the inter-
mediate situation that h is small but h � a, we now look at the asymptotics of the
solution to (2.20) for a small. We begin by calculating the perturbation expansion of
ph(x, t) for a small. Throughout this section we assume that x = xj = hj for some
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j ∈ Z
3, and x0 = xj0

= hj0 for some j0 ∈ Z
3. We also assume that x �= 0 and

x0 �= 0. Using Duhamel’s principle, the solution to (2.20) satisfies

(2.23) ph(x, t) = Gh(x − x0, t) − 4πDa

∫ t

0

Gh(x, t − s)ph(0, s) ds.

We find an asymptotic expansion of ph in a of the form

ph(x, t) = p
(0)
h (x, t) + a p

(1)
h (x, t) + a2p

(2)
h (x, t) + · · · ,

using a Neumann or Born expansion. This expansion is easily obtained by repeatedly
replacing ph(0, s) in (2.23) with the right-hand side of (2.23) evaluated at x = 0.
Note that this technique leaves an explicit remainder, with which we could perhaps
estimate the error between the asymptotic expansion and ph(x, t). For our purposes
it suffices to just calculate the first three terms of the expansion. We find

ph(x, t) = Gh(x − x0, t) − 4πDa

∫ t

0

Gh(x, t − s)Gh(x0, s) ds

+ (4πDa)2
∫ t

0

Gh(x, t − s)
∫ s

0

Gh(0, s − s′)ph(0, s′) ds′ ds

= Gh(x − x0, t) − 4πDa

∫ t

0

Gh(x, t − s)Gh(x0, s) ds

+ (4πDa)2
∫ t

0

Gh(x, t − s)
∫ s

0

Gh(0, s − s′)Gh(x0, s
′) ds′ ds

+ a3Ra(x, t),

where a3Ra(x, t) denotes the remainder when the expansion is stopped at second
order. The expansion of (2.20) is then as given in the following.

Theorem 2.4.

p
(0)
h (x, t) = Gh(x − x0, t),(2.24)

p
(1)
h (x, t) = −4πD

∫ t

0

Gh(x, t − s)Gh(x0, s) ds,(2.25)

p
(2)
h (x, t) = (4πD)2

∫ t

0

Gh(x, t − s)
∫ s

0

Gh(0, s − s′)Gh(x0, s
′) ds′ ds.(2.26)

The formal continuum limit of (2.25) is

(2.27) −4πD

∫ t

0

G(x, t − s)G(x0, s) ds.

Denote this expression by u(t). To find an explicit functional form of u(t) we make
use of the Laplace transform. Let f̃(s) denote the Laplace transform of a function
f(t). Taking the transform of (2.27) in t, we find

ũ(s) =
−1

4πD |x| |x0|e
−(|x|+|x0|)

√
s/D

= −|x| + |x0|
|x| |x0| G̃

(
(|x| + |x0|)x̂, s

)
,
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where x̂ = x/ |x| is a unit vector in the direction x. Note that G(|x| x̂, t) is a radially
symmetric function in x and therefore independent of x̂. Taking the inverse Laplace
transform of ũ(s), we find

(2.28) −4πD

∫ t

0

G(x, t − s)G(x0, s) ds = −|x| + |x0|
|x| |x0| G

(
(|x| + |x0|)x̂, t

)
.

2.2.2. Perturbation theory for SCDLR model. There are a number of dif-
ferent techniques that give the asymptotic expansion of solutions to (2.19) as a → 0.
We give the exact solution of (2.19) in Theorem 2.5 below and show that it can be
directly expanded in a in Theorem 2.6. Alternatively, the first three terms of the ex-
pansion can be derived through the use of the pseudopotential approximation (2.22)
to the Dirichlet boundary condition in (2.19). The solution to the new diffusion equa-
tion with pseudopotential is then itself an asymptotic approximation to the solution
of (2.19), accurate through second order in a. This can be seen by comparing the ex-
pansion of the exact solution in Theorem 2.6 to the expansion of the pseudopotential
solution; see [27].

To derive the exact solution to (2.19), we find it useful to work in spherical
coordinates and make the change of variables x → (r, θ, φ), r ∈ [a,∞), θ ∈ [0, π), and
φ ∈ [0, 2π). Similarly, we will let p(r, θ, φ, t) = p(x, t) and x0 → (r0, θ0, φ0).

The exact solution to (2.19) can be found using the Weber transform [23, Chapter
“Integral transform”]. Denote by jl(r) and ηl(r) the lth spherical Bessel functions of
the first and second kind, respectively, and let

ql(s, u) = jl(s)ηl(u) − ηl(s)jl(u).

The forward Weber transform of a function f(r), on the interval [a,∞), is defined to
be

F (λ, a) =

√
2
π

∫ ∞

a

ql(λr, λa)f(r)r2 dr.

The inverse Weber transform of F (λ, a) is then given by

f(r) =

√
2
π

∫ ∞

0

ql(λr, λa)
j2
l (λa) + η2

l (λa)
F (λ, a)λ2 dλ.

Using the Weber transform and an expansion in Legendre polynomials, Pl(cos(γ)),
with cos(γ) = cos(θ) cos(θ0) + sin(θ) sin(θ0) cos(φ − φ0), we find the next result.

Theorem 2.5. The solution to the free-space diffusion equation with a zero
Dirichlet boundary condition on a sphere of radius a, (2.19), is given by
(2.29)

p(r, θ, φ, t) =
∞∑
l=0

2l + 1
2π2

[∫ ∞

0

ql(λr, λa)
j2
l (λa) + η2

l (λa)
ql(λr0, λa)e−λ2Dtλ2 dλ

]
Pl(cos(γ)).

We again let x̂ = x/ |x|, so that x̂ is a unit vector in the same direction as x.
The first three terms in the expansion of p(x, t) are then given by the following.

Theorem 2.6. The solution (2.29) to the problem of diffusing to an absorbing
sphere (2.19) has the asymptotic expansion for small a,

(2.30) p(x, t) ∼ p(0)(x, t) + ap(1)(x, t) + a2p(2)(x, t) + · · · ,
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where

p(0)(x, t) = G(x − x0, t),(2.31)

p(1)(x, t) = −|x| + |x0|
|x| |x0| G

(
(|x| + |x0|)x̂, t

)
,(2.32)

p(2)(x, t) =
2Dt − (|x| + |x0|)2

2Dt |x| |x0| G
(
(|x| + |x0|)x̂, t

)
.(2.33)

Proof. Notice in (2.29) that all a dependence is in the bracketed term. Denoting
this term by Rl(r, r0, t), we can calculate an asymptotic expansion of Rl for small
a. This expansion is a straightforward application of the well-known expansions of
jl(λa) [1, equation 10.1.2] and ηl(λa) [1, equation 10.1.3] for small a. We find, through
second order in a, that

Rl(r, r0, t) ∼ R
(0)
l (r, r0, t) + aR

(1)
l (r, r0, t) + a2R

(2)
l (r, r0, t) + · · · ,

where

R
(0)
l (r, r0, t) =

∫ ∞

0

jl(λr)jl(λr0)e−λ2Dtλ2 dλ,

R
(1)
l (r, r0, t) =

{
0, l > 0,∫∞
0

(j0(λr)η0(λr0) + η0(λr)j0(λr0)) e−λ2Dtλ3 dλ, l = 0,

R
(2)
l (r, r0, t) =

{
0, l > 0,∫∞
0

(η0(λr)η0(λr0) − j0(λr)j0(λr0)) e−λ2Dtλ4 dλ, l = 0.

Using this expansion, we may derive an expansion for p(r, θ, φ, t). We will need several
identities involving the spherical Bessel functions. Foremost is the following:

G(x, t) =
∫

R3
e−4π2|ξ|2Dte2πiξ·x dξ

=
1

2π2

∫ ∞

0

j0(λ |x|)e−λ2Dtλ2 dλ.(2.34)

Here the first integral is the well-known Fourier representation of G(x, t). Switching ξ
to spherical coordinates in the Fourier integral and performing the angular integrations
gives (2.34).

Recall that j0(r) = sin(r)/r, η0(r) = − cos(r)/r, and P0(cos(γ)) = 1. Substi-
tuting these expressions into R

(1)
0 (r, r0, t) and R

(2)
0 (r, r0, t), evaluating the subsequent

integrals, and using (2.34), we obtain (2.32) and (2.33). Using [1, equation 10.1.45]
and (2.34), we obtain (2.31).

2.2.3. Error between asymptotic expansions of the SCDLR model and
RDME for small h. We now examine the error between corresponding terms of the
asymptotic expansions from sections 2.2.1 and 2.2.2. Our main results are as follows.

Theorem 2.7. Assume that x = hj �= 0, x0 = hj0 �= 0, and both are fixed as
h → 0. Then for all t > 0 and h sufficiently small,

lim
h→0

p
(0)
h (x, t) = p(0)(x, t), with

∣∣∣p(0)
h (x, t) − p(0)(x, t)

∣∣∣ = O

(
h2

t5/2

)
,(2.35)

lim
h→0

p
(1)
h (x, t) = p(1)(x, t), with

∣∣∣p(1)
h (x, t) − p(1)(x, t)

∣∣∣ = O
(
t h2−ε

)
,(2.36)
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where ε may be chosen arbitrarily small. For all fixed t > 0,

(2.37) p
(2)
h (x, t) ≥ C

h
, for h sufficiently small,

where C is strictly positive and constant in h but may depend on t or D.
This theorem demonstrates that the RDME is a convergent asymptotic approxi-

mation to the SCDLR model only through first order in the perturbation expansion.
For h sufficiently small, the second order term will diverge like 1/h as h → 0. The
master equation model will then give a good approximation to the SCDLR model only
when h is small enough that the first two terms in the asymptotic expansion (2.30)
are well approximated, while a is sufficiently small and h sufficiently large that the
divergence of higher order terms is small.

Note that the divergence of the second order term follows from the behavior as
h → 0 of the time integral of the continuous-time discrete-space Green’s function
evaluated at the origin. The proof of the theorem demonstrates that∫ t

0

Gh(0, s) ds =
fh(t)

h
,

where, for t fixed, fh(t) is bounded from below as h → 0. The nth term in the
expansion of ph(x, t) will involve n − 2 integrals of Gh(0, t), so that we expect it to
diverge like 1/hn−2. For example, the n = 4 term is given by

p
(3)
h (x, t) =

∫ t

0

Gh(x, t − s)
∫ s

0

Gh(0, s − s′)
∫ s′

0

Gh(0, s′, s′′)Gh(x0, s
′′) ds′′ ds′ ds,

which we would expect to diverge like 1/h2. Since the coefficient of the nth term in
the expansion is an−1, we expect the nth term to behave like an−1/hn−2. For n large
this suggests that the heuristic assumption that h � k/4πD = a from sections 1.1.2
is a reasonable rule of thumb for choosing the mesh size.

Figure 2.3 shows the pointwise error in each of the first three terms of the asymp-
totic expansion as functions of h, for fixed t, x, and x0. Note that for each term the
observed numerical convergence (divergence for the second order term) rate agrees
with that in Theorem 2.7. Let

Rh(x, t, h, a) = p
(0)
h (x, t) + ap

(1)
h (x, t) + a2p

(2)
h (x, t)

and

R(x, t, h, a) = p(0)(x, t) + ap(1)(x, t) + a2p(2)(x, t).

Figures 2.4 and 2.5 plot the percent relative error between Rh and R,

(2.38) EREL(x, t, h, a) = 100
Rh(x, t, h, a) − R(x, t, h, a)

R(x, t, h, a)
,

which also represents the percent relative error between the perturbation expansions
of ph(x, t) and p(x, t), the solution to the SCDLR model, truncated after the third
term. Notice that for larger values of h the relative error decreases as h decreases,
but that as h becomes smaller, the 1/h divergence of the second order term begins to
dominate and cause EREL to diverge. Both Figures 2.3 and 2.4 are shown for relatively
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h

e(0)(h), 2.001
e(1)(h), 1.995
e(2)(h), -.997

10−4 10−3 10−2 10−1 10010−10

10−5

100

105

Fig. 2.3. Absolute error in asymptotic expansion terms. e(i)(h) = |p(i)
h (x, t)− p(i)(x, t)|, where

t = .5, x = x0 = (1/8, 1/8, 1/8), and D = 1. Numbers in the inset within the figure denote the slope
of the best fit line through each curve.

h

a = 1e-2
a = 1e-3
a = 5e-4
a = 1e-4

10−4 10−3 10−2 10−1 100
10−2

100

102

104

106

Fig. 2.4. Percent relative error in perturbation expansions through second order. Each curve
plots EREL(x, t, h, a) versus h for different values of the reaction radius, a. For all curves t = .5,
x = x0 = (1/8, 1/8, 1/8), and D = 1.

large t values. Figure 2.5 shows the behavior of EREL at a shorter time, when both
ph(x, t) and p(x, t) have relaxed less. The details of the numerical methods used in
calculating the terms of the asymptotic expansions are explained in Appendix C.

For a ≤ 10−3 the overall relative error can be reduced below one percent. In phys-
ical units, appropriate for considering chemical systems at the scale of a eukaryotic
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h

a = 1e-2

a = 1e-3

a = 5e-4

a = 1e-4

10−4 10−3 10−2 10−1 10010−2
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100

101

102

103

104

Fig. 2.5. Percent relative error in perturbation expansions through second order. Each curve
plots EREL(x, t, h, a) versus h for different values of the reaction radius, a. For all curves t =
.038147, x = x0 = (1/8, 1/8, 1/8), and D = 1.

cell, D would have units of square micrometers per second, t units of seconds, and
x, x0, and a units of micrometers. This suggests that for physical reaction-radii of
one nanometer or less the RDME may be a good approximation to a diffusion limited
reaction. While physical reaction-radii have not been experimentally determined for
most biological reactions, it has been found experimentally that the LexA DNA bind-
ing protein has a physical binding potential of width ∼ 5 Å [30]. We caution, however,
that these results are valid only for the truncated perturbation expansions and do not
necessarily hold for the error between the exact solutions ph(x, t) and p(x, t). More-
over, for realistic biophysical systems, one would frequently be interested in volumes
where more than one of each substrate is present, a case we have not examined herein.

Proof of Theorem 2.7. The validity of (2.35) has already been established in
Theorem B.1. Lemma 2.2 and Corollary B.2 imply that for all h and ε sufficiently
small, and all t ≥ 0,

sup
t∈[0,∞)

|Gh(x, t − s)Gh(x0, s) − G(x, t − s)G(x0, s)| ≤ Ch2−ε,

with C independent of t, s, and h. Recalling (2.28), (2.32), and (2.25), we find∣∣∣p(1)
h (x, t) − p(1)(x, t)

∣∣∣ ≤ C t h2−ε,

which proves (2.36). We now consider the divergence of p
(2)
h (x, t). The nonnegativity

of Gh(x, t) for all x and t ≥ 0 implies that for all t > 3δ > 0,

p
(2)
h (x, t) ≥ (4πD)2

∫ t−δ

2δ

Gh(x, t − s)
∫ s

s−δ

Gh(0, s − s′)Gh(x0, s
′) ds′ ds.

We subsequently denote by C a generic positive constant independent of h but depen-
dent on t. Note that G(x, t) is positive for all x and all t > 0. Uniform convergence
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in time of Gh(x, t) to G(x, t) (Theorem B.1) implies that ε and h may be taken
sufficiently small so that

inf
s∈(2δ,t−δ)

Gh(x, t − s) ≥ inf
s∈(2δ,t−δ)

G(x, t − s) − ε

≥ C > 0,

and similarly

inf
s′∈(δ,t−δ)

Gh(x0, s
′) ≥ C > 0.

We then find that, for all h sufficiently small,

p
(2)
h (x, t) ≥ C

∫ t−δ

2δ

∫ s

s−δ

Gh(0, s − s′) ds′ ds

≥ C

∫ δ

0

Gh(0, s) ds.(2.39)

Gh(0, s) has the Fourier representation

Gh(0, s) =
1
h3

∫∫∫
[−1

2 ... 12 ]
3
e−4Ds

∑ 3
k=1 sin2(πyk)/h2

dy.

As the integrand in the above integral is nonnegative, we may apply Fubini’s theorem
to switch the order of integration in (2.39). We find

p
(2)
h (x, t) ≥ C

h

∫∫∫
[−1

2 ... 12 ]
3

1∑3
k=1 sin2(πyk)

(
1 − e−4Dδ

∑ 3
k=1 sin2(πyk)/h2

)
dy.

Switching to spherical coordinates in the integral, we have that

p
(2)
h (x, t) ≥ C

h

∫ 1/2

0

(
1 − e−16Dδr2/h2

)
dr

=
C

h

(
1
2
−
√

π

t

h

8
erf
(

2
√

t

h

))
.(2.40)

Here we have used that πy ≥ sin(πy) ≥ 2y on [0, 1/2]. The last term in parenthesis
in (2.40) approaches zero as h → 0, and therefore

p
(2)
h (x, t) ≥ C

h

for h sufficiently small, with C strictly positive.

3. Conclusions. We have shown that as the mesh spacing approaches zero in
the RDME model, particles undergoing a bimolecular reaction never react but simply
diffuse. In contrast, the relative errors of the truncated asymptotic expansions shown
in Figures 2.4 and 2.5 suggest that for physically reasonable parameters values the
mesh spacing in the RDME may be chosen to give a good approximation of an SCDLR
model. Notice in Figure 2.5 that the mesh spacing for the minimal relative error is
generally more than a factor of ten larger than the reaction-radius. This suggests
that choosing the mesh spacing to satisfy the physically derived lower bound, (1.6),
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may be a good rule of thumb. Note, however, that good agreement between the
truncated asymptotic expansions does not necessarily guarantee good agreement of
the actual solutions of the two models. We hope to report on the error between the
solutions to the RDME and the SCDLR models, for biologically relevant parameter
values, in future work. Toward that end, we would like to examine this error in a more
biologically relevant (bounded) domain. (The restriction to R

3 in the current work
was made to simplify the mathematical analysis, and may increase the error between
the two models due to effects at infinity.)

The results of section 2.2.3 suggest a means by which to improve the accu-
racy of the RDME as an approximation to a diffusion limited reaction: modify-
ing/renormalizing the bimolecular reaction rate, k/h3, so that the second order term
in the asymptotic expansion of the solution to the RDME converges to the corre-
sponding term in the asymptotic expansion of the SCDLR model. Note that this may
require changing the discrete bimolecular reaction operator to couple neighboring vox-
els, and would presumably correspond to modifying it to converge to a pseudopotential
reaction operator like that in (2.22).

Finally, we would like to point out that it should be an easy modification to
extend the results of this work to R

d for all d ≥ 2. In particular, it appears that
the second order term in the asymptotic expansion of the RDME diverges like log(h)
in two dimensions, and 1/hd−2 in d dimensions with d > 2. In one dimension the
solution of the continuum model, (2.21), is well defined, and we expect the solution
to the RDME to converge to it.

Appendix A. Properties of the solution, ph(xj, t), to (2.6). In this ap-
pendix we prove several properties of the solution, ph(xj , t), to (2.6). In particular,
we show that ph(xj , t) is positive for t > 0, continuous, and that the binding time
distribution, Fh(t), is a rigorous (possibly defective) probability distribution.

We begin by defining some basic notation that we will use in discussing the action
of the solution operator to (2.6) on lattice functions. Denote by Z

3h the set of points
{xi = hi | i ∈ Z3}. The notation a or a(·) will subsequently be used to denote a
lattice function, with the notation a(xi) indicating the value of that function at the
lattice point xi. We define l1(Z3h) to represent the space of lattice functions a such
that the norm

‖a‖1 =
∑
i∈Z3

|a (xi)|h3 < ∞,

and similarly, l2(Z3h) is the set of lattice functions a such that the norm

‖a‖2 =

(∑
i∈Z3

|a (xi)|2 h3

) 1
2

< ∞.

Letting a and b be elements of l2(Z3h), we denote the l2(Z3h) inner product by

〈a, b〉 =
∑
i∈Z3

a (xi) b (xi)h3.

Define

δh (xi, xj) =
1
h3

δij ,
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with δh(·, xj) denoting the lattice function that is zero everywhere except at xj , where
it has the value 1/h3. We let L represent the operator on the right-hand side of (2.6),
with action on a lattice function a defined by

La = DΔha − k 〈δh(·,0), a〉 δh (·,0) .

The boundedness of the operators Δh and 〈δh(·,0), ·〉 δh (·,0) on l1(Z3h) and
l2(Z3h) imply that L is also a bounded operator on both these spaces. The group

eLt, t ∈ R,

is therefore a bounded operator in both spaces, analytic (in the operator norm sense)
for all t ∈ R. Denote by ph(t) the lattice function on Z

3h with values given by the
solution, ph(xj , t), to (2.6). ph(t) may be written as

ph(t) = eLtδh(·, xj0
),

with

(A.1) ph (xj , t) =
(
eLtδh(·, xj0

)
)
(xj) =

〈
eLtδh(·, xj0

), δh(·, xj)
〉
.

The norm analyticity of exp(Lt) for all t ∈ R then implies that, for each fixed xj ,
ph(xj , t) is continuous in t (since the inner product (A.1) will vary continuously in t).
Analyticity of ph(xj , t) in t will follow in a similar manner.

The action of the operator exp (−k 〈δh(·,0), ·〉 δh(·,0) t) may be explicitly calcu-
lated for any lattice function a in l1(Z3h) or l2(Z3h). From the Taylor series definition
of the operator we have

e−k〈δh(·,0),·〉δh(·,0) ta =
∞∑

n=0

(−kt)n

n!
( 〈δh(·,0), ·〉 δh(·,0)

)n
a

= a + a0

( ∞∑
n=1

(−kt)n

n! h3n

)
δh(·,0)h3

= a − a0 δh(·,0)h3 + a0 e−kt/h3
δh(·,0)h3,

which implies that exp (−k 〈δh(·,0), ·〉 δh(·,0) t) maps nonnegative lattice functions,
with the exception of the zero function, to positive lattice functions for all t > 0.
The evolution operator for the discrete-space continuous-time diffusion equation,
exp DΔht, will also map nonnegative, nonzero lattice functions to positive lattice
functions for t > 0. The Lie–Trotter product formula for self-adjoint bounded opera-
tors implies that

eLt = lim
n→∞

(
eDΔht/ne−k〈δh(·,0),·〉δh(·,0) t/n

)n

,

where the limit is taken in the l2(Z3h) induced operator norm. Using this relation
in (A.1), we may then conclude that ph(xj , t) is positive for positive times.

Denote by Gh(· − xj0
, t) the lattice function with values Gh(xi − xj0

, t) (and
likewise by Gh(·, t) the lattice function with values Gh(xi, t)). Starting with (2.11),
using the positivity of ph(xj , t) and Gh(xj , t) for t > 0, and then taking the l1(Z3h)
norm, we find

‖ph(t)‖1 < ‖Gh(· − xj0
, t)‖1 = 1 ∀t > 0.



102 SAMUEL A. ISAACSON

(Here we have used that ‖Gh(·, t)‖1 = 1.)
We conclude by showing that the probability distribution needed for the molecules

to have reacted,

Fh(t) = k

∫ t

0

ph(0, s) ds,

is a rigorously defined (possibly defective) probability distribution (in the sense of
the definition of [18]). It is immediately apparent from the preceding properties of
ph(xj , t) that Fh(t) is nonnegative, continuous for t > 0, right-continuous at t = 0,
and monotone nondecreasing. By definition, Fh(0) = 0. The only remaining condition
to show is that Fh(∞) ≤ 1, i.e., that Fh(t) is a (possibly defective) distribution.
Rearranging (2.11), we have that

ph(xj , t) + k

∫ t

0

Gh(xj , t − s) ph(0, s) ds = Gh(xj − xj0
, t).

Notice that each term above is positive for t > 0. Multiplying by h3 and taking the
sum over all j ∈ Z

3 on each side, we find

‖ph(t)‖1 + k

∫ t

0

‖Gh(·, t − s)‖1 ph(0, s) ds = ‖Gh(· − xj0
, t)‖1.

Here we have used Fubini’s theorem to exchange the sum and integral in the second
term on the left-hand side. As ‖Gh(·, t)‖1 = 1, we conclude that

‖ph(t)‖1 + Fh(t) = 1,

so that Fh(t) = 1 − ‖ph(t)‖1 < 1. We therefore conclude that Fh(∞) ≤ 1 so that
Fh(t) is a (possibly defective) probability distribution.

Appendix B. Convergence of the Green’s function for the discrete-
space continuous-time diffusion equation. We prove the following convergence
theorem.

Theorem B.1. Let xj = hj remain fixed as h → 0. Then for all xj , all t ≥ δ > 0
with δ fixed, and h > 0 sufficiently small,

(B.1) |Gh(xj , t) − G(xj , t)| ≤ C
h2

δ5/2
.

Here C is independent of t, h, and xj .
In addition, for xj fixed as h → 0 and xj �= 0, Gh(xj , t) → G(xj , t) uniformly

in all t ≥ 0 as h → 0.
Proof. We begin by proving (B.1). Gh has the representation

Gh(xj , t) =
∫∫∫

[−1
2h ... 1

2h ]3
e−4Dt

∑3
k=1

sin2(πhξk)
h2 e2πi(xj ,ξ) dξ.

Similarly,

G(xj , t) =
∫∫∫

R3
e−4Dtπ2|ξ|2e2πi(xj ,ξ) dξ.
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We find
(B.2)

|Gh(xj , t) − G(xj , t)| ≤
∫∫∫

[−1
2h ... 1

2h ]3

∣∣∣∣e−4Dt
∑ 3

k=1
sin2(πhξk)

h2 − e−4Dtπ2|ξ|2
∣∣∣∣ dξ

+
∫∫∫

R3−[−1
2h ... 1

2h ]3
e−4Dtπ2|ξ|2 dξ.

Denote these last two integrals by I and II, respectively. The second integral may
be bounded by expanding the domain of integration to the exterior of the sphere of
radius 1/2h. Switching to polar coordinates, this gives

II ≤ 4π

∫ ∞

1
2h

r2e−4Dtπ2r2
dr

=
1

4πDth
e−π2Dt/h2

+
1

8(πDt)3/2
erfc

(
π
√

Dt

h

)
.

Using that (see [1, equation 7.1.13])

(B.3) erfc(r) ≤ e−r2
, r ≥ 0,

we find

(B.4) II ≤ 1
h(4πDt)3/2

(
2
√

πDt + h
)

e−π2Dt/h2 ∀t > 0.

For h sufficiently small this error bound will satisfy (B.1).
To bound I, we begin by Taylor expanding the first term of the integrand in I

about the point πhξ. Note that πhξ ∈ [−π/2, π/2]3 even as h changes. Let y = πhξ,
and define

f(y) = 4Dt

3∑
k=1

sin2(yk)π2ξ2
k

y2
k

.

e−f(y) has the two-term Taylor expansion with remainder

e−f(y) = e−4Dtπ2|ξ|2 +
1
2

(
y, D2e−f(ȳ)y

)
, ȳ ∈

[
−1

2
,
1
2

]3
.

Here D2 denotes the matrix of second derivatives of f(y), and the first derivative
term disappears since the gradient of f(y) is zero at y = 0. The second derivative
term is given by

(
D2e−f(y)

)
i,j

= −
(

∂2f

∂yi∂yj
(y) − ∂f

∂yi
(y)

∂f

∂yj
(y)
)

e−f(y),

where

∂f

∂yi
(y) = −4Dtπ2ξ2

i

(
2 sin2(yi)

y3
i

− sin(2yi)
y2

i

)
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and

∂2f

∂yi∂yj
(y) =

{
0, i �= j,

4Dtπ2ξ2
i

(
2y2

i cos(2yi) − 4yi sin(2yi) + 6 sin2(yi)
)
/y4

i .

Since |ȳi| ≤ 1/2, we may uniformly bound in y the remainders for the one-term Taylor
expansions of the derivatives of f(ȳ). We find

D2e−f(ȳ) ≤ e−f(ȳ)A(ξ, t),

where

Ai,j(ξ, t) =

{
O(t2ξ2

i ξ2
j ), i �= j,

O(t2ξ4
i + tξ2

i ), i = j.

Letting ‖ · ‖2 denote the matrix norm induced by the Euclidean vector norm, this
estimate gives the bound(

y, D2e−f(ȳ)y
)
≤ e−f(ȳ)‖A(ξ, t)‖2 |y|2

≤ Ce−f(ȳ)‖A(ξ, t)‖F |ξ|2 h2,(B.5)

where ‖·‖F denotes the matrix Frobenius norm. Letting Mn(ξ) be a three-dimensional
monomial of degree n, we have

‖A(ξ, t)‖F =
(
O(t4M8(ξ)) + O(t2M4(ξ))

) 1
2

≤ O(t2 |ξ|4) + O(t |ξ|2),(B.6)

for specific monomials M8(ξ) and M4(ξ). (This follows since M2n(ξ) ≤ C |ξ|2n for all
n.) Moreover, since

sin2(x) ≥ 4
π2

x2 ∀x ∈
[
−π

2
,
π

2

]
,

we have that

(B.7) e−f(ȳ) ≤ e−16Dt|ξ|2 .

Combining the two preceding estimates, (B.6) and (B.7), with (B.5), we find(
y, D2e−f(ȳ)y

)
≤
(
O(t2 |ξ|6) + O(t |ξ|4)

)
e−16Dt|ξ|2h2.

This estimate implies that

I ≤ h2

∫∫∫
[−1
2h ... 1

2h ]3

(
O(t2 |ξ|6) + O(t |ξ|4)

)
e−16Dt|ξ|2 dξ(B.8)

≤ h2

∫ ∞

0

(
O(t2r8) + O(t r6)

)
e−16Dtr2

dr,

= O

(
h2

t5/2

)
.



THE RDME AS AN ASYMPTOTIC APPROXIMATION 105

For t ≥ δ the desired bound in (B.1) follows.
We now prove the second assertion of the theorem, that for xj �= 0 and fixed as

h → 0, Gh(xj , t) → G(xj , t) as h → 0 uniformly in all t ≥ 0. To prove the assertion,
we find it necessary to treat separately very short and all other times. Let ah = h−1−μ

with μ ∈ (0, 1), so that ahh2 → 0 and ahh → ∞ as h → 0. The condition ahh → ∞
as h → 0 will turn out to be necessary to prove uniform convergence for short times.
We wish to show that

lim
h→0

sup
t∈[0,∞)

|Gh(xj , t) − G(xj , t)| = 0.

This is equivalent to proving that for any ε > 0 and all h sufficiently small

(B.9) sup
t∈[0,ahh2)

|Gh(xj , t) − G(xj , t)| < ε

and

(B.10) sup
t∈[ahh2,∞)

|Gh(xj , t) − G(xj , t)| < ε.

We begin by proving (B.10). Equation (B.2) bounds the error for fixed t by two
terms, I and II, with II satisfying equation (B.4). Let 0 < R < 1/(2h). I satisfies

I ≤
∫∫∫

|ξ|<R

∣∣∣∣e−4Dt
∑3

k=1
sin2(πhξk)

h2 − e−4Dtπ2|ξ|2
∣∣∣∣ dξ

+
∫∫∫

[−1
2h ... 1

2h ]3−{|ξ|<R}

∣∣∣∣e−4Dt
∑ 3

k=1
sin2(πhξk)

h2 − e−4Dtπ2|ξ|2
∣∣∣∣ dξ.

We subsequently label the two terms on the right-hand side by Ia and Ib, respectively.
In what follows, C will denote an arbitrary constant, independent of h and t. The
argument giving (B.8) holds for Ia and shows that

Ia ≤ Ch2

∫∫∫
|ξ|<R

(
t2 |ξ|6 + t |ξ|4

)
e−16Dt|ξ|2 dξ

≤ Ch2R3

∫∫∫
|ξ|<R

(
t2 |ξ|3 + t |ξ|

)
e−16Dt|ξ|2 dξ

= C
h2R3

t
∀t > 0.(B.11)

Using (B.7), we have that

Ib ≤ C

∫ ∞

R

r2e−16Dtr2
dr

=
C

t3/2

[
8R

√
te−16DtR2

+
√

π erfc
(
4R

√
Dt
)]

,

which by (B.3) implies

(B.12) Ib ≤ C

t3/2

[
8R

√
t +

√
π
]
e−16DtR2 ∀t > 0.

To summarize, we have shown that

|Gh(xj , t) − G(xj , t)| ≤ Ia + Ib + II,
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where

(B.13)

Ia ≤ C
h2R3

t
,

Ib ≤ C

t3/2

[
8R

√
t +

√
π
]
e−16DtR2

,

II ≤ 1
h(8πDt)3/2

(
2
√

πDt + h
)

e−π2Dt/h2
.

We now show that this error can be made uniformly small in t for t ≥ ahh2. Substi-
tuting this inequality into (B.13), we find

(B.14)

Ia ≤ C
R3

ah
,

Ib ≤ C

(ahh2)3/2

[
8R

√
ahh +

√
π
]
e−16Dahh2R2

,

II ≤ 1
(8πDahh2)3/2

(
2
√

πDah + 1
)

e−π2Dah .

Clearly II will be arbitrarily small for all h sufficiently small, so it remains to show
that R and ah can be chosen such that Ia and Ib approach zero as h → 0. This will
hold if

(B.15)
lim
h→0

R3

ah
= 0,

lim
h→0

ahh2R2 = ∞,

with 0 < R < 1/(2h), ahh → ∞ as h → 0, and ahh2 → 0 as h → 0. As mentioned
earlier, we let ah = h−1−μ with μ ∈ (0, 1). In addition, let R = h−α/2 with α ∈
(0, 1). Note that this choice of α allows 0 < R < 1/(2h) for h small, as required.
Equation (B.15) then holds if

(B.16)
1 + μ − 3α > 0,

2α + μ − 1 > 0.

These equations have an infinite number of valid solutions which also satisfy the
other necessary conditions on R and ah. For example, α = 1/4 and μ = 3/4. We
have therefore shown that (B.10) holds.

We now prove that (B.9) holds. We denote the first nonzero component of xj by
x. Note that Gh(xj , t) may be written in terms of the solution to the one-dimensional
continuous-time discrete-space diffusion equation, gh(xjk

, t), as

Gh(xj , t) =
3∏

k=1

gh(xjk
, t).

Nonnegativity of gh(xjk
, t) and the conservation relation

∞∑
n=−∞

gh(nh, t)h = 1
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imply

Gh(xj , t) ≤ 1
h2

gh(x, t).

Without loss of generality, we now assume that x > 0. Then for any positive number,
λ,

1
h2

gh(x, t) ≤ 1
h2

∞∑
n=−∞

eλn−λx/hgh(nh, t).

We define

M(λ, t) =
∞∑

n=−∞
eλngh(nh, t).

Note that gh(nh, t)h is the probability distribution for a continuous-time random walk
in R

1 with nearest-neighbor transition rate D/h2 and lattice spacing h. Likewise,
M(λ, t)h is the moment generating function associated with gh(nh, t)h. Differen-
tiating M(λ, t) and using that gh(nh, t) satisfies the continuous-time discrete-space
diffusion equation, we find

dM

dt
(λ, t) =

2D

h2
(cosh(λ) − 1)M(λ, t).

As gh(nh, 0) = δn0/h, we have M(λ, 0) = 1/h. This implies

M(λ, t) =
1
h

e(cosh(λ)−1)(2Dt/h2)

≤ 1
h

e(cosh(λ)−1)(2Dah),

so that

1
h2

gh(x, t) ≤ 1
h3

e−λx/he(cosh(λ)−1)(2Dah).

Since λ is arbitrary, we now assume that λ is small. We may then expand the cosh(λ)
term so that

1
h2

gh(x, t) ≤ 1
h3

e−λx/heDahλ2
eO(λ4ah).

Choosing λ = x/2Dahh, which will be small for h sufficiently small, we find

1
h2

gh(x, t) ≤ 1
h3

e−x2/2Dahh2
eO(1/a3

hh4).

Since ah = h−1−μ, μ ∈ (0, 1), we see that the last exponential will approach 1 as h → 0
if μ > 1/3. Recall that μ must also satisfy the two inequalities given in (B.16). The
choice of μ = 3/4 given earlier satisfies all required inequalities. We have therefore
shown that for all h sufficiently small,

Gh(xj , t) ≤ C

h3
e−x2/4Dahh2 ∀t ∈ [0, ahh2).
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This bound, coupled with the continuity in time of G(xj , t) for xj �= 0, then proves (B.9)
and completes the proof of uniform convergence in time.

Corollary B.2. Let xj = jh be fixed as h → 0, and let xj �= 0. Then for all h
sufficiently small and any ε > 0 sufficiently small,

(B.17) sup
t∈[0,∞)

|Gh(xj , t) − G(xj , t)| ≤ Ch2−ε,

where C is independent of t and h.
Proof. We note that the choices μ = 1 − ε/4 and α = ε/4 satisfy all required

inequalities in Theorem B.1. Moreover, all the necessary error terms will converge
to zero exponentially as h → 0 with the exception of the error bound on Ia given in
(B.14). With the chosen μ and α this term satisfies

Ia ≤ Ch2−ε,

proving the corollary.

Appendix C. Numerical methods for evaluating ph(x, t) and p
(i)
h (x, t).

All reported simulations were performed using MATLAB. The numerical calculations
in both subsections 2.1 and 2.2.3 rely on evaluation of Gh(x, t), the Green’s function
for the discrete-space continuous-time diffusion equation, given by (2.8). To rapidly,
and accurately, evaluate this function we rewrite it as

Gh(x, t) =
3∏

k=1

gh(xk, t),

where

gh(xk, t) = 2
∫ 1/2h

0

e−4Dt sin(πhξk)/h2
cos(2πxkξk) dξk.

For the numerical calculations in subsection 2.2.3 we evaluated gh(xk, t) using
MATLAB’s built-in adaptive Gauss–Lobato quadrature routine, quadl. This rou-
tine was found to be too slow for the repeated evaluations required in the calculations
of subsection 2.1. There we instead numerically evaluated gh(xk, t) using the trape-
zoidal rule, after applying the double exponential transformation for a finite interval
described in [35]. For similar absolute error tolerances this method was substantially
faster than quadl.

In subsection 2.1, ph(0, t) was found using a Gregory method [13] to solve the
Volterra equation of the second kind, (2.12). We found it necessary to use a sixth
order method to resolve ph(0, t) accurately with a computationally tractable number
of time-points. For comparison, the fourth order Gregory method described in [13]
would have required more time-points than available memory on our computer system
to achieve the desired absolute error tolerance.

The sixth order Gregory method we used is based on discretizing time, tn = nΔt,
and calculating an approximate solution, un(0) ≈ ph(0, tn). The discrete equations
satisfied by un(0) are

(C.1) un(0) = Gh(x0, tn) − kΔt

n∑
n′=0

Gh(0, tn − tn′)un′(0)ωn′ ,
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Table C.1

Gregory method weights, ωn′ , for n′ = 0, . . . , n.

n′ 0, n 1, n − 1 2, n − 2 3, n − 3 4, n − 4 4 < n′ < n − 4

ωn′ 95
288

317
240

23
30

793
720

157
160

1

where the weights of the Gregory rule are given by Table C.1. To start this method
we require values for u0(0), u1(0), . . . , u8(0). u0(0) is given by the initial condition

u0(0) = Gh(x0, 0) = 0.

The other values were obtained by using a sixth order explicit Runge–Kutta method.
(See [13] for details of using explicit Runge–Kutta methods to solve Volterra integral
equations of the second kind, and [32] for the specific method we used.)

If one naively solves (C.1) by advancing from one time to the next, using u0(0),
. . . , un−1(0) to calculate un(0), the total work in solving for N time points will be
O(N2). The discrete convolution structure of (C.1) can be exploited by the FFT-based
method of [22] to reduce the total work to O(N log2(N)). In practice we required this
optimization to solve (C.1) in a reasonable amount of time. An important technical
point that we found was that both MATLAB’s built-in discrete convolution routine,
conv, and the MATLAB Signaling Toolbox FFT-based method, fftfilt, performed
poorly for sufficiently large vectors. Our final code used the convfft routine [41],
which performed significantly faster for large vectors.

We found this solution method computationally effective for h as small as 2−11.
Below this mesh size we encountered stability problems with the Gregory discretiza-
tion. Moreover, to obtain the same absolute error tolerances used for coarser mesh
sizes, the simulations required more time-points than could be stored in the four gi-
gabytes of system memory on our workstation. We also tried several [36, 45] existing
spectral methods for numerically solving Volterra integral equations of the second
kind, but found that in practice they were unable to obtain accuracies comparable to
those of the Gregory method described above in solving (2.12).

Once un(0) was calculated, we solved for un(x) ≈ ph(x, tn) by discretizing (2.11)
to give

un(x) = Gh(x − x0, t) − kΔt

n∑
n′=0

Gh(x, tn − tn′)un′(0)ωn′ ,

where ωn′ is again defined by Table C.1.
Finally, for the figures in subsection 2.2.3 each value of p

(1)
h (x, t) was calculated

using the composite Simpson’s rule. p
(2)
h (x, t) was calculated by reusing the composite

Simpson’s rule on the calculated values of p
(1)
h (x, t).
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