A Stochastic Reaction-Diffusion Active Transport Method for Studying the Control of Gene Expression in Eukaryotic Cells.

Samuel A. Isaacson¹, Charles S. Peskin²

¹ - University of Utah, Department of Mathematics, isaacson@math.utah.edu, ² - Courant Institute of Mathematical Sciences, peskin@cims.nyu.edu

Background
- Want to understand how the complicated spatial geometry of eukaryotic cells influences gene regulatory networks.
- Also interested in stochastic effects that arise in such networks due to small concentrations of regulatory proteins, mRNAs, and DNA binding sites.
- Have developed a stochastic reaction-diffusion active transport model for use in studying spatially distributed chemical systems where molecular noise from the chemical reaction process is important.

Master Equation Model
- Divide comp. domain into mesh cells indexed by \(i = 1 \ldots N \).
- Model diffusion and active transport as jumping of particles between mesh cells, with exponentially distributed rates.

The master equation model is

\[
\frac{dP(m)}{dt} = \sum_{m'} \left(k_{i,m'} P(m) - k_{m',i} P(m') \right) + \sum_{m'} \left(\alpha^i_{m',0} + \alpha^i_{0,m'} P(m) \right).
\]

Here \(m_i \) gives the number of the \(i \)th chemical species in mesh cell \(i \).

- The first term corresponds diffusion.
- The second term to active transport.
- The third to chemical reactions.
- The chemical reaction propensities \(\alpha^i_{m',0} \) are specified; however, the diffusive and active transport jump rates, \(k_{i,m'} \) and \(\alpha^i_{m',0} \) are not.

Boundary Conditions
- We model the nuclear membrane and cell membrane as boundaries.
- Assume no chemicals can leave cell, so have no-flux BC at cell membrane.
- Model nuclear pores as an effective nuclear membrane permeability.
- Permeability is zero for most proteins/mRNAs, as they generally require a chemical transport process to pass through the membrane.

Spatial Jump Rates
- Diffusive, trans-nuclear membrane, and active transport jump rates can be calculated from the discretization weights of a Cartesian grid embedded boundary discretization.

Denote by \(\alpha \in \{ \text{nuc}, \text{cyt} \} \) the domain of a given mesh variable. The diffusive jump rate from the domain \(\alpha \) component of cell \(j \) to the domain \(\alpha' \) component of cell \(i \) is given by our discretization to be

\[
k_{\alpha ij} = \frac{DA_{ij}}{hV_{\alpha}^j}.
\]

The trans-nuclear membrane jump rate is

\[
k_{\alpha ij} = \frac{AB_{ij}}{V_{\alpha}^i}.
\]

The active transport jump rate is derived to be

\[
k_{\alpha ij}^e = \left\{ \begin{array}{ll}
\frac{A^e_{ij}v_{\alpha}}{V_{\alpha}^i} \left| \langle v_{\alpha} \rangle_{k=0} \right|, & \text{if } \pm \langle v_{\alpha} \rangle_{k=0} \geq 0 \\
0, & \text{else}
\end{array} \right.
\]

Gene Expression Model

Transcription

- \(DNA + RNAP \rightarrow DNA\cdot RNAP \)
- \(DNA\cdot RNAP + n_{\alpha} \rightarrow DNA\cdot RNAP + n_{\alpha} \)
- \(RNA\cdot RNAP \rightarrow DNA\cdot RNAP + n_{\alpha} \)
- \(DNA\cdot RNAP + n_{\alpha} \rightarrow DNA\cdot RNAP + n_{\alpha} \)
- \(DNA\cdot RNAP + n_{\alpha} \rightarrow DNA\cdot RNAP + n_{\alpha} \)

mRNA Translation and Decay

- \(mRNA + Ribosome \rightarrow mRNA\cdot Ribosome \)
- \(mRNA\cdot Ribosome \rightarrow mRNA\cdot Ribosome \)
- \(mRNA\cdot Ribosome \rightarrow mRNA\cdot Ribosome \)
- \(mRNA\cdot Ribosome \rightarrow mRNA\cdot Ribosome \)

mRNA Export

- \(mRNA \rightarrow mRNA\cdot Ribosome \)
- \(mRNA\cdot Ribosome \rightarrow mRNA\cdot Ribosome \)
- \(mRNA\cdot Ribosome \rightarrow mRNA\cdot Ribosome \)

Protein Import and Gene Regulation

- \(RNAP \rightarrow RNAP \cdot DNA \)
- \(RNAP \cdot DNA \rightarrow RNAP \cdot DNA \)
- \(RNAP \cdot DNA \rightarrow RNAP \cdot DNA \)
- \(RNAP \cdot DNA \rightarrow RNAP \cdot DNA \)

3D Model Results

References

3D simulation movies available at: http://www.math.nyu.edu/~isaacsas

Cross section of spherical cell and nuclear membranes embedded in Cartesian grid.

Nuclear membrane reconstruction showing nuclear pore locations.

Cartesian grid.

References

3D simulation movies available at: http://www.math.nyu.edu/~isaacsas