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Motivation

• Interested in modeling biochemical networks of interacting pro-

teins/genes within a single eukaryotic cell.

•There may not be a well–defined continuously varying concen-

tration since the number of molecules of a given biochemical

species is fundamentally integer valued.

•Hence if concentration levels are sufficiently low, system should

be modelled as a discrete state process. At this level noise ef-

fects can become noticeable:

– λ–phage

– transcription and translation

•The well–mixed assumption is not always appropriate, spatial

localization often is important, for example:

– Egg-polarity genes in Drosophila oocyte

– Ash1 MRNA localization in budding yeast

– Synapse–specificity of long–term facilitation in Aplysia

– Lipophillic hormone action through nuclear receptors

Reaction–Diffusion Master Equation

•Divide the comp. domain into a series of cells i = 1 . . . N

•Assume that within each cell we can independently apply the

spatially homogeneous form of stochastic chemical kinetics

•Assume that all transitions of particles between cells can be

modelled as first order reactions

• Let kl
ij denote the jump rate for the l’th chemical species from

cell j to cell i

• Let M l
i (t) denote the integer valued random variable for the

number of particles of species l in cell i, l = 1 . . .L

• Let Mi(t) =
(

M 1
i , . . . , M

L
i

)

denote the chemical state vector

in cell i

• Let M (t) be the N by L matrix with entries M l
i (t)

• Let ak
i (Mi(t)) denote the probability per unit time of reaction

k occurring at location i, assuming there are K total possible

reactions

• Let νk =
(

ν1
k, . . . , ν

L
k

)

be the change in Mi due to one occur-

rence of reaction k

•P (m, t) ≡ P (m) ≡ Prob{M (t) = m|M (0) = M0}

Then, the reaction–diffusion master equation is:

∂P (m)

∂t
=

N
∑

i=1

N
∑

j=1

L
∑

l=1

kl
ij

(

ml
j + 1

)

P (m + el
j − el

i) − kl
jim

l
iP (m)

+
N

∑

i=1

K
∑

k=1

ak
i (mi − νk)P (m− eiνk) − ak

i (mi)P (m).

But where do the jump rates kl
ij come from?

Ans: a valid master equation for the probability of a Brown-

ian particle being in a given region gives the jump rates for the

reaction–diffusion master equation.

Relation to Single Particle Brownian Motion

If there are no reactions, and only one particle, then the reaction–

diffusion master equation, in terms of the probability density, pi,

to be at location xi, reduces to

dpi

dt
=

N
∑

j=1

Vj

Vi

kij pj − kji pi. (1)

In the continuum limit, we expect this equation to become
∂p(x, t)

∂t
= ∆p(x, t).

Hence, one method to obtain the jump rates in the reaction–

diffusion master equation is by creating a discretization of the

Laplacian for single particle Brownian motion. Note that this

discretization must have the form dictated by (1).

Nuclear Pores and Boundary Conditions

We model two boundaries for a eukaryotic cell. The exterior

cell membrane is assumed to be impermeable, and so a no–flux

boundary condition is used. In contrast, the nuclear membrane

contains pores that allow molecules less than 9 nanometers in size

to freely diffuse through. A special transport mechanism allows

select molecules between 9 and 26 nanometers to pass through the

pores.

Nuclear membrane reconstruction showing nuclear

pore locations

Motion through the pores is modelled as either a fixed perme-

ability for crossing the nuclear membrane, or by a no–flux con-

dition for membrane impermeable molecules. Jump rates for the

reaction–diffusion master equation are then determined from a

discretization of

∂p

∂t
= D∆p, in nucleus/cytoplasm,

∂p

∂η
= 0, at the cell membrane,

−D
∂p

∂η
= −ρ [p]n , at the nuclear membrane

(2)

This equation describes the Brownian motion of a single particle

that may pass through the nuclear membrane.

Calculating the Numerical Jump Rates

Diffusive and trans–nuclear membrane jump rates are calcu-

lated from the discretization weights of a Cartesian grid embedded

boundary discretization of (2).

Cross section of spherical cell and nuclear

membranes embedded in Cartesian grid.

Denote by α ∈ {nuc, cyt, ext} the domain of a given spatial lo-

cation. The diffusive jump rate from the domain α component

of cell j to the domain α component of cell i is given by our

discretization to be

kα
ij =

DAα
ij

hV α
j

.

For cells uncut by a boundary, this reduces to

kα
ij =

D

h2
.

The jump rate across the nuclear membrane in cell i, from domain

α′ to domain α is

kαα′

i =
ABn

i ρ

V α′

i

.

Consequences of Discretization

• method is conservative

• detailed balance is preserved

Overall Simulation Method

1. Initialization:

(a) Given the membrane locations, calculate the area of all pieces

of Cartesian cell faces intersected by a membrane, and the

volume of all pieces of Cartesian cells split by a membrane.

(b) Calculate the jump rates for all species, within all Cartesian

cells containing some part of the cytoplasm or nucleus.

(c) For each piece of a Cartesian cell, calculate the rates of all

chemical reactions that can occur there. For reactions with

volume dependent rates, use the volume of the piece of the

Cartesian cell within which the reaction is occurring to change

the rate constants to units of reciprocal time.

2. Time Evolution:

(a) Simulate individual realizations of the stochastic process de-

scribed by the reaction–diffusion master equation using the

Gillespie Method. Diffusive and transmembrane solute mo-

tion are represented as first order reactions, using the jump

rates calculated in step (1b). Within each component of a

cell, the rates from step (1c) are used to simulate chemical

reactions.

3. Output:

(a) To estimate moments or distributions, use statistics from

many simulations.

Transcription, Translation, Transport Model

Steps in eukaryotic gene expression

Nucleus

Ran−GTP

Cytosol

Ran−GDP

Protein

with NLS

Nuclear Import Receptor

Ran−GTP

with NES

Protein 

Ran−GDP

Nuclear Export Receptor

RanGTP import/export cycle

Transcription Model

• We follow one gene and its products

• Gene is assumed to be localized to center of nucleus

• Not an accurate eukaryotic transcriptional model, but reason-

able first approximation for prokaryotic transcription

DNA + RNAP → DNA0 at gene location

DNAl−1 + ni → DNAl, l = 1, . . . , M − 1 at gene location

DNAM−1 + nM → mRNAi + RNAP + DNA at gene location

mRNA Export Model

•mRNA freely diffuses within nucleus, only exits through

RanGTP export system

• Non–standard pathway for mRNA export, but is used, ex:

– incompletely spliced HIV structural protein mRNAs

• Here NR is nuclear receptor, Rt is RanGTP , and Rb is

RanBP 1

•mRNA–NR–Rt is the only membrane permeable state

• Transport proteins modelled as fixed background concentration

mRNAi + NR–Rti → mRNA–NR–Rti within nucleus

mRNA–NR–Rti + Rbi ⇄ mRNA–NR–Rt–Rbi within cytoplasm

mRNA–NR–Rt–Rbi → mRNAi + NRi + RanGDPi within cytoplasm

Translation and mRNA Decay Model

• Within the cytoplasm mRNA can be degraded, translated, and

freely diffuse

• Assume fixed background concentration of ribosomes, uni-

formly distributed throughout cytoplasm

• P is the protein product

mRNAi + Ribosomei → mRNA0
i within cytoplasm

mRNAl−1
i + ai → mRNAl

i, l = 1, . . . , N − 1 within cytoplasm

mRNAN−1
i + aN → Pi + mRNAi within cytoplasm

mRNAi → ∅ within cytoplasm

Nuclear Import Model

• Protein can freely diffuse within cytoplasm and nucleus, but

must be actively transported to cross nuclear membrane

• Protein can be degraded anywhere within cell

• Only P –NR may pass through the nuclear membrane

Pi → ∅ everywhere

Pi + NRi → P –NRi within cytoplasm

P –NRi + Rti → Pi + NR–Rti within nucleus

Gene Regulation Model

• Protein product of gene can feedback and inhibit transcription

DNA + Pi ⇄ DNArep at gene regulatory site

2D Model Results

The nuclear and cell membranes are approximated as concentric

circles.

In the following figures, a blue star denotes the unbound DNA,

and a blue “x” that the DNA is repressed. During transcriptional

states the DNA is not displayed. Red stars denote mRNA, and

red “x’s” mRNA bound to nuclear receptor and RanGTP. mR-

NAs coupled to nuclear receptors, RanGTP, and RanBP1 are not

present in the images shown. During translation mRNAs are not

displayed. Green stars denote proteins, and a green “x” represents

protein bound to nuclear receptor. Time is in seconds.
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Evolution of one realization of the model over several

minutes showing accumulation of nuclear protein.
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Evolution of one realization of the model over a half

hour showing oscillation in nuclear protein level.
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Total number of nuclear proteins in one realization

over 30,000 seconds.
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