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Why is stochasticity in biochemical reactions important?

! Present in many cellular processes.
Evolution.

! Arises from discreteness of chemical
species populations.

! For example, gene expression.
• Seen experimentally and theoretically.
• See Arkin, Collins, Elowitz...

! Can serve useful biological purpose. See,
for example, competence in Bacillus

subtilis.
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What does the inside of a eukaryotic cell look like?
! This is an X-ray CT image of mouse olfactory epithelial cell.
! In this example a mouse cell is imaged inside a glass capillary.
! Pixel intensity is proportional to density of material in pixel.
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What does a nucleus look like in these reconstructions?

5 / 51(Nucleus of Preceding Cell)
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How does subcellular structure influence the dynamics of
biochemical processes within cells?

! We are exploring this question by studying the effect of
three-dimensional subcellular structure on gene regulation and
expression.
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What is the influence of volume exclusion due to chromatin on

the time required for regulatory proteins to find DNA binding

sites?
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What effect does explicitly modeling the three-dimensional
spatial extent of chromatin have on gene regulation?

! Could chromatin help to funnel regulatory proteins towards
binding sites thereby decreasing the time to find specific binding
sites vs. models that do not incorporate the spatial chromatin
organization?

! Could molecules instead get trapped in the chromatin matrix and
meander far from binding sites?

! What differences arise when studying movement of nuclear
proteins with volume exclusion due to chromatin vs. treating the
nucleus as an empty volume?

! Do the observed dynamics in the 3D stochastic reaction-diffusion
model for eukaryotic gene expression and regulation of Isaacson
and Peskin (SISC 2006) change when chromatin and a realistic
nuclear membrane surface are incorporated?

9 / 43
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•How can we construct a mathematical model of the 
time to find a binding site using high-resolution DAPI 
fluorescence data?

•What happens if we study this question with more 
quantitative X-ray CT data?

•What properties of nuclear substructure might 
contribute to our observed results?

Outline:
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Mouse myoblast cell nucleus
(Structured Illumination Microscopy of Schermelleh et al. Science 2008)
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How to model volume exclusion due to chromatin?

! We assume that regions of higher DAPI fluorescence intensity are
more repulsive (harder to diffuse into).

! Volume exclusion due to chromatin is modeled as a repulsive
potential, φi, experienced by diffusing regulatory proteins.

! We have considered several functional relationships between the
potential φi and the DAPI fluorescence intensity, Ii.

! For the remainder of the talk we choose a linear relationship,

φi = φmaxIi,

Movie of the potential as we move through the cell along z axis.
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We subsequently call �
max

the volume exclusivity.
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How do we model the search process of a protein for a
DNA binding site?

For now, we consider a spatially-continuous model:

! We assume the protein diffuses in the repulsive potential, φ(x).

! Motion of the protein within the nucleus is then governed by a
Fokker-Planck partial differential equation.

! The binding site is modeled as a sphere of radius rbind about the
the point, xbind.

! Let D be the diffusion constant of the protein.

! Denote by ρ(x, t) the probability density the protein has not yet
found the binding site, and is located at x, at time t.

16 / 43
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How do we model the search process of a protein for a
DNA binding site? (2)

! Within the nucleus the Fokker-Planck equation describing the
protein’s motion is:

∂ρ

∂t
(x, t) = D∇ ·

[

∇ρ(x, t) +
1

kBT
ρ(x, t)∇φ(x, t)

]

! An absorbing boundary condition is used to model binding:

ρ(x, t) = 0, |x− xbind| = rbind

! At the nuclear membrane a no-flux boundary condition prevents
the protein from diffusing out of the nucleus:

−D
[

∇ρ(x, t)+
1

kBT
ρ(x, t)∇φ(x, t)

]

·η(x) = 0, ∀x ∈ membrane,

where η(x) denotes the normal to the nuclear membrane at x.
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1

kBT
ρ(x, t)∇φ(x, t)

]

·η(x) = 0, ∀x ∈ membrane,

where η(x) denotes the normal to the nuclear membrane at x.
! However, since the underlying imaging data and potential

are defined on a lattice, we use a discrete approximation to

this equation.
17 / 43
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What is the spatially discrete model?

! We use a discretization of the Fokker-Planck equation that has
the form of a reaction-diffusion master equation (RDME).

! To account for the nuclear membrane we use an extension of the
embedded boundary method of Isaacson et al., SISC (2006).

! Discretization takes into account the intersection of the nuclear
membrane with the natural mesh given by the imaging voxels.

! Movie of a fly-through of the cell showing cut planes
perpendicular to the y-axis. Both the Cartesian mesh and the
nuclear membrane are shown.

18 / 43
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How do we discretize the Fokker-Planck equation?
Consider the one-dimensional Fokker-Planck equation

∂ρ

∂t
(x, t) +

∂F

∂x
(x, t) = 0,

where the flux, F (x, t), is given by

F (x, t) = −D

(

∂ρ

∂x
(x, t) +

ρ(x, t)

kBT

∂φ

∂x
(x)

)

.
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.

Let

! pi(t) ≈ ρ(ih, t), the probability density the regulatory protein is
at location ih at time t.

! Fi(t) ≈ F (ih, t) and φi ≈ φ(ih).

We look for a discretization of the form

dpi
dt

(t) +
1

h

(

Fi+1/2 − Fi−1/2

)

= 0.
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How do we discretize the Fokker-Planck equation? (2)

We also assume that

Fi+1/2 = α(φi+1 − φi) pi − β(φi+1 − φi) pi+1.

where α and β are functions to be determined. Notice

Fi+1/2 = [α(φi+1 − φi)− β(φi+1 − φi)]

(

pi+1 + pi
2

)

− [α(φi+1 − φi) + β(φi+1 − φi)]

(

pi+1 − pi
2

)

.

We choose the second term to approximate the diffusive component
of the flux, so that the standard three-point discrete Laplacian is
recovered:

α(φi+1 − φi) + β(φi+1 − φi) =
2D

h
.

21 / 43
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How we can use detailed balance to determine α and β?

Following Wang et al. (JTB 2003), in thermodynamic equilibrium we
expect the probability density the molecule is at position x to be
proportional to the Boltzmann distribution.

ρeq(x) ∝ e−φ(x)/kBT .

We therefore require that

peqi+1 = peqi e(φi−φi+1)/kBT ,

where peqi = limt→∞ pi(t). Moreover, at thermodynamic equilibrium
detailed balance requires that

Fi+1/2 = 0.

Combining these last two equations we obtain a second equation for α
and β.

22 / 43
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What are the discretization weights?

We now have two equations for α and β. Solving them gives

α (φi+1 − φi) =
2D

h

1

e(φi+1−φi)/kBT + 1
,

β (φi+1 − φi) =
2D

h

1

e(φi−φi+1)/kBT + 1
.

! These two functions then determine the flux, Fi+1/2.

! The overall discretization is second order in space.
! To discretize the three-dimensional Fokker-Planck equation in

complex geometries
! We extend the one-dimensional discretization to three-dimensions.
! We use the expressions for the three-dimensional flux from this

discretization in the Cartesian grid embedded boundary method of
Isaacson et al. (SISC 2006).
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What is the 3D spatially discrete master equation model?

! p(i, t) = the probability the regulatory protein is in voxel i at
time t. (i = (i1, i2, i3)).

! D = the diffusion constant of the protein.

! β = the bimolecular reaction rate constant, units µm3/s.

! i0 the voxel containing the binding site.
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! p(i, t) = the probability the regulatory protein is in voxel i at
time t. (i = (i1, i2, i3)).

! D = the diffusion constant of the protein.

! β = the bimolecular reaction rate constant, units µm3/s.

! i0 the voxel containing the binding site.

Then

dp

dt
(i, t) = D

∑

j

[ki,jp(j, t)− kj,ip(i, t)]−
β

Vi0

δi,i0p(i0, t),

where






ki,j =
2DAi,j

hdVj

1
exp((φi−φj)/kBT)+1

, i a neighbor of j,

0, else.
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How to solve the system of differential-difference
equations?

! We could solve the system of ODEs numerically.
! For the voxel mesh determined by the image planes we get a

480x480x37 system of ODEs.
! This approach will be impractical when we have more than a few

diffusing proteins.
! Also, if the binding site location is itself a random variable, then

these equations contain a random coefficient.
! Instead, we create realizations of the stochastic process described

by the ODEs, that of a molecule undergoing a continuous time
random walk on the voxel lattice in the potential, φi.

! We can exactly simulate this process by the Gillespie method.
! In the simulations, the protein hops from voxel i to j with

probability per unit time kj,i.
! When entering a voxel, i0, containing a binding site, the protein

can bind with probability per unit time β/Vi0 .

25 / 43
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What does a typical protein search process for a DNA binding site look like?
In our stochastic reaction-diffusion model we find:
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How does volume exclusion influence the time needed to
find a specific binding site?

Initial Position

Binding Site

9 / 51
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How does volume exclusion influence the time needed to
find a specific binding site?

For a diffusion constant of 10 µm2/s, and the initial and binding site
positions of the previous slide:

t (seconds)
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See Isaacson, McQueen, and Peskin, PNAS (2011).
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Can we estimate the binding time distribution?
The preceding distributions appear to be well-approximated by an
exponential distribution, i.e.

Prob [T > t] ≈ 1− e−Dλt.

We can estimate λ using the numerically calculated medians from our
Monte Carlo simulations. For an exponential distribution

Tmed =
ln(2)

Dλ
.

We have investigated several other ways to estimate the observed
binding rate, Dλ:

! Smoluchowski diffusion limited reaction rate arguments.

! Eigenvalues of the transition rate matrix for the master equation.

! Perturbation theory.
30 / 43
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Can we estimate the binding time distribution?(2)
Denote by V the volume of the nucleus.

1. Standard diffusion limited reaction-rate theory

λ ≈
4πrb
V

.

2. A lattice diffusion limited reaction-rate theory gives

1

λ
≈

16

(2π)3
V

hxhyhz

∫∫∫ π/2

0

dθdφdψ
(

sin(θ)
hx

)2
+

(

sin(φ)
hy

)2
+
(

sin(ψ)
hz

)2 .

3. Denote by p(t) the vector with components pi(t) = p(i, t). Then

dp

dt
(t) = Lp(t),

where L denotes the transition matrix. We can estimate the
binding rate by the smallest eigenvalue of L.

31 / 43
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Can we estimate the binding time distribution?(3)

For example, when φmax = 0 we find the following estimates for the
rate Dλ:

Monte Carlo DLR Latt. DLR Trans. Mat. Eval.

.005038 ± .000039 .0094 to .0326 .00524 .0050

We have more recently derived estimates for the smallest eigenvalue
of L through perturbation theory arguments.

32 / 43
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How could we do better?

• This data only shows the densest regions of DNA/chromatin.

• To get a better feel for the amount of nuclear DNA we are 
collaborating with the Larabell Lab to use their X-ray CT imaging data.

• The new X-ray data gives linear absorption coefficients within each 
voxel that are proportional to the amount of organic material in that 
voxel.
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Volume Rendering of Nuclear LACs from 02-11 
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Volume Rendering of Nuclear LACs from 02-11 
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Normalized Histogram of Normalized Nuclear LACs.
Markers denote every tenth percentile.

data02-11 data05-14

data05-15 data09-03
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How do we model the search for a binding site using this new 
data?

• Still model volume exclusion as a repulsive potential felt by the 
diffusing protein.

• The potential of each voxel is proportional to the normalized 
measured LAC of that voxel.

•Again, when the volume exclusivity is zero the protein simply 
diffuses (the chromatin is not felt by the protein).

•As this parameter is increased the maximum strength of the 
potential increases, and it becomes substantially more difficult for 
the protein to enter regions with large LACs.

•We will subsequently use SIM to refer to the structured 
illumination data and X-ray for the new X-ray CT data.
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Example simulation with new X-ray CT imaging data:
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Example simulation with new X-ray CT imaging data:
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How does binding site position influence the time needed to 
find a specific binding site?

• Assume the protein initiates its search from a specific pore.

‣ For the SIM data, in each simulation we sample the protein’s initial 
position from a uniform distribution of all possible pore locations.

‣ For the X-ray CT data, we sample the position randomly from voxels 
that are on the boundary of the nucleus.

•We restrict the binding site position to subregions of the nucleus 
with specified intensity/LAC levels. 

‣Regions of very high intensity/LAC may correspond to heterochromatin.

‣Regions of low intensity/LAC to euchromatin.
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20 to 30 − SIM

20 to 30 − 09 Xray

20 to 30 − 02 Xray

20 to 30 − 05−14−nuc1 Xray

20 to 30 − 05−14−nuc2 Xray

20 to 30 − 05−15 Xray

• Binding site is a 
randomly chosen 
voxel in the 20th 
to 30th 
percentile of 
intensity values 
for each 
simulation.

• Initial position is 
chosen randomly 
from all pores for 
the SIM data, and 
randomly from 
all voxels on the 
nuclear 
membrane in the 
Xray data.

Median Binding Times when Binding Sites are Placed in the 
20th to 30th percentile of intensity values.
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Speedup in fastest median binding time vs. no volume exclusion case.
(For binding sites in the 20th to 30th percentile of nuclear voxel intensities.)

Nuclei
Volume Exclusivity of 
minimum binding time 

(KbT)

Percent speedup vs. 
no volume exclusion

SIM data

Xray 09

Xray 02

Xray 05-14

Xray 05-14 Nucleus 2

Xray 05-15

40 32.69

10 31.09

10 33.93

10 25.22

10 23.83

10 28.61
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What do the binding time distributions look like in this case?
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How does binding site position influence the time needed
to find a specific binding site?

For a diffusion constant of 10 µm2/s.

Binding site sampled from
voxels with intensities between
the 20th and 30th percentiles

of intensity values.

Binding site sampled from
voxels with intensities between
the 20th and 30th percentiles

of intensity values.
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SIM survival time distributions, 20 to 30 case

Here

• P[T<t] = probability binding time, T, is less than t. 

• Also, note that each legend gives the volume exclusivity for a given 
curve.
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What happens when the binding site is localized to regions 
of higher density?

(Legend gives percentile range where binding site was randomly placed.)

0 5 10 15 20 25 30 35 4030

40

50

60

70

80

90

100

110

120

130

 volume exclusivity  

 m
ed

ia
n 

bi
nd

in
g 

tim
e 

(s
ec

on
ds

)  

 

 

10 to 20 − 09 Xray

20 to 30 − 09 Xray

70 to 80 − 09 Xray

This is similar to what we see for the SIM data.

Friday, July 13, 12



What “fractal dimension” of euchromatin gives the most 
consistent binding times to our potential model?

• Based on a threshold LAC, we remove voxels above this LAC from 
the free space in the nucleus. (i.e. the protein is not allowed to 
diffuse into them).

‣ We then calculate the box-counting / fractal dimension of the 
remaining voxels (i.e. the “free space” / euchromatin). 

• We set the volume exclusivity to zero so that in the “free space” 
the protein simply diffuses (i.e. no longer feels the varying density 
of chromatin).

• Binding sites are still chosen randomly from the subset of free 
space voxels that are also within the 20th to 30th percentile of 
intensity values from all nuclear voxels.

• We compare the minimum time to find the binding site over all 
volume exclusivities vs. the time for a subset of nuclear voxels.
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What is the box counting dimension / fractal dimension?

•We want to understand / measure how an object fills space.

• For example, consider the Hilbert Curve, a space-filling curve:

The limiting curve 
is one-

dimensional,  but 
touches every 

point in the box. 
It fills space like a 

2D object.

(From Wikipedia)
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What is the box counting dimension / fractal dimension?

From Wikipedia

• The box counting dimension gives a measure of how an object fills the

underlying space.

• It is given by covering the object with N boxes of size h

• We then count how many, M(h), of the boxes contain a piece of the object.

• It is assumed that as h ! 0, M(h) ⇠ h�d
, for some box counting dimen-

sion, d.

d = lim

h!0

log(M(h))

log(1/h)
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What is the Predicted Fractal Dimension of “Free Space” vs 
Threshold LAC Value

(slope equals the finest level box counting / fractal dimension)
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Distribution of
 Nuclear LACs

Fractal 
Dimension vs 

Threshold LAC

data05-14 data05-15 data09-03

For all four nuclei we see that the effective box counting dimension of 
the voxels at or before the first “peak” in the histogram is between 

two and three.
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What does the remaining free space look like?

Here we threshold near the first peak of the LAC distribution (i.e. the 
euchromatin peak)

Free space:
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What does the remaining free space look like?

Here we threshold near the first peak of the LAC distribution (i.e. the 
euchromatin peak)

Free space:
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How are the threshold level, dimension of free space, and 
predicted binding time related?

Thresholded Cell / 
Level

Percent of intensity 
values at or before the 

threshold value.

Finest Level Box 
Counting Dimension 
(i.e. estimated fractal 

dimension)

Percent difference of 
median times with 
thresholding from 

minimum median time 
without thresholding.

Cell 09, Level 24

Cell 09, Level 27

Cell 09, Level 30

Cell 02, Level 27

Cell 02, Level 30

27.21 2.49 -6.45

37.02 2.64 -21.17

45.22 2.74 -22.14

28.93 2.43 2.40

37.32 2.60 -13.12
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Summary

• Volume exclusion due to chromatin may help speed-up the time 
required for regulatory proteins to find specific DNA binding sites. 
‣ For regions of low chromatin density (low fluorescence), weak 

to moderate volume exclusivity gives the fastest times. 
‣ For regions of sufficiently high density, very little or no speed-

up is seen in comparison to a model without volume exclusion. 
• Fastest binding times in potential model are similar to those 

where we threshold near the euchromatin peak.
‣ At this threshold level, the “free space” in the nucleus has a 

box counting dimension of ~2.4-2.5
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