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How might we model biochemical processes within cells?

Quantum Mechanics

Molecular Dynamics

Stochastic Reaction-Diffusion

Reaction-Diffusion PDEs Stochastic Chemical Kinetics

Mass Action ODEs

Portion of a protein, 
short time scales

Protein and/or piece of DNA 
ps-ns maybe 1ms

Up to ~104-105 proteins,
hours

> 105 proteins,
days?

Stochastic Chemical Kinetics

Arbitrary concentrations, 
days?Mass Action ODEs

Maximum Spatial and Time Scales

Reaction-Diffusion PDEs
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Outline of tutorial:

‣Why model stochasticity in the chemical reaction process 
and the explicit spatial movement of proteins and 
mRNAs?

‣What are the types of particle-based stochastic reaction-diffusion 
models that have been used to study biological systems at the scale of 
individual cells?

‣How can we numerically simulate these models?

•What are some of the tradeoffs in using particular simulation 
methods?

‣What are some biological systems to which these models have been 
applied?
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Why is stochasticity in biochemical reactions important?

! Present in many cellular processes.
Evolution.

! Arises from discreteness of chemical
species populations.

! For example, gene expression.
• Seen experimentally and theoretically.
• See Arkin, Collins, Elowitz...

! Can serve useful biological purpose. See,
for example, competence in Bacillus

subtilis.
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1. Diffusion

‣Occurs in cytosol and nucleus

‣Used by transcription factors to find 
DNA binding sites.

‣Often coupled with reaction, i.e. diffusion 
to membrane and scaffolding bound 
objects.

‣Rates from ~ .01 to 100µm2	
  per	
  sec

How do proteins and mRNAs move within cells?

Vargas et al. PNAS 2005
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objects.
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2. Active Transport!

‣Used primarily for cytosolic processes.

‣Rapid directed transport ~ .5µm	
  per	
  sec.

Vargas et al. PNAS 2005
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1. Diffusion

‣Occurs in cytosol and nucleus

‣Used by transcription factors to find 
DNA binding sites.

‣Often coupled with reaction, i.e. diffusion 
to membrane and scaffolding bound 
objects.

‣Rates from ~ .01 to 100µm2	
  per	
  sec

How do proteins and mRNAs move within cells?

2. Active Transport!

‣Used primarily for cytosolic processes.

‣Rapid directed transport ~ .5µm	
  per	
  sec.

Vargas et al. PNAS 2005

M. Gustafsson, HHMI Website.
We focus on diffusion today.
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Why model the explicit spatial movement of proteins and mRNAS?

Figure 2. Dendritic Diameter Controls PKA and P-MAPK Microdomains
(A) Schematic depiction of extended signaling network used in these simulations, starting from b-adrenergic receptor to MAPK. cAMP and all components down-

stream of cAMP are freely diffusible.

(B) Simulation of the isoproterenol-activated PKA (PKA*, left panel) and activated MAPK (P-MAPK, right panel) microdomains obtained.

670 Cell 133, 666–680, May 16, 2008 ª2008 Elsevier Inc.

‣Neves et al. (Cell 2008) have shown 
that cell size and shape can control the 
local dynamics of negative regulators, 
thereby modulating the size of 
microdomains of activated signaling 
molecules. 
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‣Neves et al. (Cell 2008) have shown 
that cell size and shape can control the 
local dynamics of negative regulators, 
thereby modulating the size of 
microdomains of activated signaling 
molecules. 

‣ If diffusion is sufficiently slow, the well-
mixed approximation may not be 
valid! (Elf et al. IEE Sys. Bio. 2004)

why the bi-stability of the total system is almost lost in this
case (Fig. 1a, insert from red line).

When D is 5 ! 10"9 cm2 s"1 there is no visible domain
separation, and yet the system jumps between its attractors
at a much faster rate than in the homogenous case with
infinitely fast diffusion (Fig. 1b, compare also black and
blue lines in Fig. 1a). Part of this increase in the
frequency of transitions between the attractors can be
ascribed to the reflecting boundaries. That is, close to the
boundaries local fluctuations in molecule numbers away
from their averages in the dominating phase are
less restrained than at positions distal to the boundaries.

This can be seen as patches in the opposite phase near the
corners in Fig. 1b.

To remove such boundary effects, so that the conditions
for domain separation in arbitrarily large systems can be
clarified, we have also simulated the behaviour of the system
in the same volume as in Fig. 1b, but with periodic, rather
than reflecting, boundary conditions. The system displays
domain separation for D ¼ 2 ! 10"9 cm2 s"1 but not for
D ¼ 4 ! 10"9 cm2 s"1 (see online supplementary Fig. 1). This
implies that the red curve in Fig. 1a for D¼ 2 ! 10"9 cm2 s"1

stays at the plateau also when L!1; whereas the
correlation times for the other curves go to infinity.

Fig. 1 Reduction of escape time and domain separation

a Correlation times of A molecules is plotted for different volumes and diffusion constants. Example of time evolution of the total number of free A and B
molecules are given for the points indicated by arrows
b Snap-shots of positions of A and B molecules some times after an initial condition with only B molecules. The volume is 6$ 6$ 6mm3 and
D ¼ 2 ! 10"9 cm2 s"1 and D ¼ 5 ! 10"9 cm2 s"1; respectively

Syst. Biol., Vol. 1, No. 2, December 2004232
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‣Neves et al. (Cell 2008) have shown 
that cell size and shape can control the 
local dynamics of negative regulators, 
thereby modulating the size of 
microdomains of activated signaling 
molecules. 

Cells are not spatially homogeneous test tubes!

‣ If diffusion is sufficiently slow, the well-
mixed approximation may not be 
valid! (Elf et al. IEE Sys. Bio. 2004)
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What does the inside of a eukaryotic cell look like?
! This is an X-ray CT image of mouse olfactory epithelial cell.
! In this example a mouse cell is imaged inside a glass capillary.
! Pixel intensity is proportional to density of material in pixel.

4 / 51

Mouse Olfactory
Epithelial Cell

X-ray CT data courtesy, C. Larabell. 7
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What does a nucleus look like in these reconstructions?

5 / 51(Nucleus of Preceding Cell)
8
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5 / 51(Nucleus of Preceding Cell)
8

Sunday, August 19, 12



What does a nucleus look like in these reconstructions?

5 / 51(Nucleus of Preceding Cell)So cells have very complex internal structures! 8
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What might a stochastic reaction-diffusion simulation look like?

Protein (blue) searching for binding site (red) 
in nucleus of the last slide. (RDME simulation)
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20 to 30 − SIM

20 to 30 − 09 Xray

20 to 30 − 02 Xray

20 to 30 − 05−14−nuc1 Xray

20 to 30 − 05−14−nuc2 Xray

20 to 30 − 05−15 Xray

‣ Binding site is a 
randomly placed 
in regions of 
euchromatin 
(low chromatin 
density)

How does volume exclusion due to the varying density of chromatin 
influence the time needed for the protein to find the binding site?
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Outline of tutorial:

‣Why model stochasticity in the chemical reaction process and the 
explicit spatial movement of proteins and mRNAs?

‣What are the types of particle-based stochastic reaction-
diffusion models that have been used to study biological 
systems at the scale of individual cells?

‣How can we numerically simulate these models?

•What are some of the tradeoffs in using particular simulation 
methods?

‣What are some biological systems to which these models have been 
applied?
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What are the three stochastic reaction-diffusion models?
1. Smoluchowski diffusion limited reaction model:

• M. V. Smoluchowski, Z. Phys. Chem. (1917).
• Particles diffuse in continuous space, react / react with some

probability upon reaching a fixed separation (called the
reaction-radius).

• Particles can not move closer than the reaction-radius.
• Mathematically, reactions are modeled through a boundary

condition.

15 / 5112
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What are the three stochastic reaction-diffusion models?

2. Interaction function reaction model:
• See Doi, Stochastic Theory of Diffusion-Controlled Reaction, J.

Phys. A (1976).
• Doi attributes the model to Teramoto and Shigesada, Prog.

Theor. Phys. (1967).
• Particles diffuse in continuous space, react with fixed probability

per unit time when within a fixed reaction-radius.
• Mathematically, reactions are modeled with an interaction

function.
• Will subsequently call the Doi model.

16 / 5113
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What are the three stochastic reaction-diffusion models?
3. Reaction diffusion master equation (RDME):

• Goes back to the work of Gardiner, J. Stat. Phys. (1976).
• Space is discretized into a collection of voxels, and particles

undergo a continuous-time random walk between voxels.
• Particles assumed “well-mixed” within each voxel.
• Reactions occur with fixed probability per unit time between

reactants in the same voxel.

17 / 5114

Sunday, August 19, 12



What are the three stochastic reaction-diffusion models?
3. Reaction diffusion master equation (RDME):

• Goes back to the work of Gardiner, J. Stat. Phys. (1976).
• Space is discretized into a collection of voxels, and particles

undergo a continuous-time random walk between voxels.
• Particles assumed “well-mixed” within each voxel.
• Reactions occur with fixed probability per unit time between

reactants in the same voxel.

17 / 5114

Sunday, August 19, 12



What are the three stochastic reaction-diffusion models?
3. Reaction diffusion master equation (RDME):

• Goes back to the work of Gardiner, J. Stat. Phys. (1976).
• Space is discretized into a collection of voxels, and particles

undergo a continuous-time random walk between voxels.
• Particles assumed “well-mixed” within each voxel.
• Reactions occur with fixed probability per unit time between

reactants in the same voxel.

17 / 5114

Sunday, August 19, 12



What are the three stochastic reaction-diffusion models?
3. Reaction diffusion master equation (RDME):

• Goes back to the work of Gardiner, J. Stat. Phys. (1976).
• Space is discretized into a collection of voxels, and particles

undergo a continuous-time random walk between voxels.
• Particles assumed “well-mixed” within each voxel.
• Reactions occur with fixed probability per unit time between

reactants in the same voxel.

17 / 5114

Sunday, August 19, 12



What are the three stochastic reaction-diffusion models?
3. Reaction diffusion master equation (RDME):

• Goes back to the work of Gardiner, J. Stat. Phys. (1976).
• Space is discretized into a collection of voxels, and particles

undergo a continuous-time random walk between voxels.
• Particles assumed “well-mixed” within each voxel.
• Reactions occur with fixed probability per unit time between

reactants in the same voxel.

17 / 5114

Sunday, August 19, 12



What are the differences in the three models?
1. Smoluchowski diffusion limited reaction:

• State of the system is given by the number of each chemical
species, and the positions of each particle of each species.

• The probability densities of being in a given state satisfy a
coupled, possibly infinite, system of integro-partial differential
equations with reactive boundary conditions.

2. Doi interaction function model:
• State of the system is the same as the Smoluchowski model.
• The probability densities of being in a given state satisfy a

coupled, possibly infinite, system of integro-partial differential
equations with reactive interaction functions.

18 / 5115
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1. Smoluchowski diffusion limited reaction:

• State of the system is given by the number of each chemical
species, and the positions of each particle of each species.

• The probability densities of being in a given state satisfy a
coupled, possibly infinite, system of integro-partial differential
equations with reactive boundary conditions.

2. Doi interaction function model:
• State of the system is the same as the Smoluchowski model.
• The probability densities of being in a given state satisfy a

coupled, possibly infinite, system of integro-partial differential
equations with reactive interaction functions.

3. RDME
• System state usually given by the number of each chemical

species in each voxel.
• Can equivalently be written in terms of total number of each

species and lattice position of each particle (see Isaacson J. Math.
Phys. A (2008)).

• The probabilities of being in a given state satisfy a coupled,
possibly infinite, system of ordinary differential equations.

18 / 51
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What are the state variables in the Smoluchowski / Doi
models?

! Consider A+ B → C.
! A(t) - the stochastic process for the total number of species A in

the system.
! a - value of A(t), i.e. A(t) = a.
! qal ∈ R3 - location of the l’th molecule of species A when

A(t) = a.
! qa = (qa1, . . . , q

a
a) ∈ R3a - position vector for all A molecules.

19 / 5116
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What is the associated probability density?

Let f (a,b,c)(qa, qb, qc, t) denote the probability density for there to be
a molecules of species A located at the positions in qa, b molecules of
species B located at qb, and c molecules of species C located at qc at
time t.

Indistinguishability implies that f (a,b,c)(qa, qb, qc, t) is symmetric
function in the components of each of qa, qb, and qc.

See Doi, J. Phys. A: Math. Gen. 1976, and Isaacson, J. Phys. A: Math. Theor.
2008.

20 / 5117
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What are the evolution equations for the Smoluchowski
model?

∂f (a,b,c)

∂t

(

qa, qb, qc, t
)

= (L+R) f (a,b,c)
(

qa, qb, qc, t
)

,

Here
(

Lf (a,b,c)
)

(

qa, qb, qc, t
)

=
(

DA∆a +DB∆b +DC∆c
)

f (a,b,c)
(

qa, qb, qc, t
)

,

where ∆a =
∑a

l=1

∑3
d=1 ∂

2
(qa

l
)d

denotes the Laplacian in qa, and

! Reaction operator, R, incorporates the incoming flux from the state
with (a+1, b+1, c− 1) molecules when an A+B → C reaction occurs.

! Dirichlet boundary condition is added to model outgoing reaction flux:

f (a,b,c)
(

qa, qb, qc
)

= 0,
∣

∣qa
l − qb

m

∣

∣ = rb,

for any l and m.

! For general chemical systems get, possibly infinite, coupled system of
partial integro-differential equations.

21 / 5118
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f (a,b,c)
(

qa, qb, qc
)

= 0,
∣

∣qa
l − qb

m

∣

∣ = rb,

for any l and m.

! For general chemical systems get, possibly infinite, coupled system of
partial integro-differential equations.
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What are the evolution equations for the Doi model?

! Let λ denote the probability per unit time the two molecules
react when their separation is less than rb.

! By qa ∪ q we mean the state vector qa with one particle added
at position q.

! Similarly, qc \ qcl will denote the state where the lth particle has
been removed from qc.
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What are the evolution equations for the Doi model?

! Let λ denote the probability per unit time the two molecules
react when their separation is less than rb.

! By qa ∪ q we mean the state vector qa with one particle added
at position q.

! Similarly, qc \ qcl will denote the state where the lth particle has
been removed from qc.

! We remove the reactive boundary condition, and modify the
reaction operator to get:

(Rf (a,b,c))
(

q
a, qb, qc, t

)

= −λ

a
∑

l=1

b
∑

l′=1

1[0,rb]

(
∣

∣q
a
l − q

b
l′

∣

∣

)

f (a,b,c)(qa, qb, qc, t)

+ λ

c
∑

l=1

∫

q∈BC
l

f (a+1,b+1,c−1)
(

q
a ∪ q, qb ∪ (2qc

l − q) , qc \ qc
l , t

)

dBc
l .
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What are the evolution equations for the RDME model?

Discretize R3 and let

! qal = hj, where j ∈ Z3, denote the center of the j’th voxel.

! f (a,b,c)
h (qa, qb, qc, t) denote discrete-space probability density.

Then

df (a,b,c)
h

dt

(

qa, qb, qc, t
)

= (Lh +Rh) f
(a,b,c)
h

(

qa, qb, qc, t
)

,

where Lh ≈ L is given by

Lhf
(a,b,c)
h

(

qa, qb, qc, t
)

=
(

DA∆a
h +DB∆b

h +DC∆c
h

)

f (a,b,c)
h

(

qa, qb, qc, t
)

.

Here ∆a
h denotes the discrete Laplacian acting on the qa coordinate.
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What are the evolution equations for the RDME model?
Rh ≈ R is given by
(

Rhf
(a,b,c)
h

)

(

qa, qb, qc, t
)

= k

[ c
∑

l=1

f (a+1,b+1,c−1)
h

(

qa∪qc
l , q

b∪qc
l , q

c\qc
l , t
)

−
a
∑

l=1

b
∑

m=1

δh
(

qa
l − qb

m

)

f (a,b,c)
h

(

qa, qb, qc, t
)

]

,

with

δh
(

qa
l − qb

m

)

=

{

1
h3 , qa

l = qb
m,

0, else.
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Rh ≈ R is given by
(

Rhf
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h

)

(

qa, qb, qc, t
)

= k

[ c
∑

l=1

f (a+1,b+1,c−1)
h

(

qa∪qc
l , q

b∪qc
l , q

c\qc
l , t
)

−
a
∑

l=1

b
∑

m=1

δh
(

qa
l − qb

m

)

f (a,b,c)
h

(

qa, qb, qc, t
)

]

,

with

δh
(

qa
l − qb

m

)

=

{

1
h3 , qa

l = qb
m,

0, else.

This is a non-standard form of the RDME, tracking molecule positions
instead of the number of molecules of each species in each voxel.

Theorem (Isaacson J. Phys. A: Math. Theor. 2008)
The solution to the standard RDME, Ph (a, b, c, t), satisfies

Ph (a, b, c, t) =

(

∏

i∈Z3

1

ai! bi! ci!

)

f (a,b,c)
h

(

qa, qb, qc, t
)

h3(a+b+c).
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How is the linear RDME system related to nonlinear
reaction-diffusion PDE systems?
Let Ai(t) denote the stochastic process for the concentration of
species A within voxel i. Define Bi(t) and Ci(t) similarly.

Using the RDME we can show

dE [Ai]

dt
=

DA

h2

∑

±

3
∑

d=1

(E[Ai±ed
]− E [Ai])− kE [AiBi] .
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Note, the boxed term is the standard discrete Laplacian.
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How is the linear RDME system related to nonlinear
reaction-diffusion PDE systems?
Let Ai(t) denote the stochastic process for the concentration of
species A within voxel i. Define Bi(t) and Ci(t) similarly.

Using the RDME we can show

dE [Ai]

dt
=

DA

h2

∑

±

3
∑

d=1

(E[Ai±ed
]− E [Ai]) − kE [AiBi] .

Note, the boxed term is the standard discrete Laplacian.

Since generally
Cov(Ai,Bi) "= 0,

we have that
E [AiBi] "= E [Ai]E [Bi] .

25 / 51
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How to obtain a reaction-diffusion PDE system?
! If E [AiBi] = E [Ai]E [Bi] the mean concentrations satisfy a

closed system of ODEs.
• We might expect such a result to hold in an appropriate

thermodynamic limit (with h fixed).
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thermodynamic limit (with h fixed).
! Fix x = hi as h → 0.
! Let Ā(x, t) = limh→0 E [Ai(t)].
! Then, in the continuum limit that h → 0 we obtain the standard
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How to obtain a reaction-diffusion PDE system?
! If E [AiBi] = E [Ai]E [Bi] the mean concentrations satisfy a

closed system of ODEs.
• We might expect such a result to hold in an appropriate

thermodynamic limit (with h fixed).
! Fix x = hi as h → 0.
! Let Ā(x, t) = limh→0 E [Ai(t)].
! Then, in the continuum limit that h → 0 we obtain the standard

nonlinear reaction-diffusion PDE system for species A, B, and C:

∂Ā

∂t
(x, t) = DA∆Ā(x, t)− kĀ(x, t)B̄(x, t),

∂B̄

∂t
(x, t) = DB∆B̄(x, t)− kĀ(x, t)B̄(x, t),

∂C̄

∂t
(x, t) = DC∆C̄(x, t) + kĀ(x, t)B̄(x, t).

So the reaction-diffusion PDEs can be interpreted as a coarse-grained
approximation to the RDME.

26 / 51
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Outline of tutorial:

‣Why model stochasticity in the chemical reaction process and the 
explicit spatial movement of proteins and mRNAs?

‣What are the types of particle-based stochastic reaction-diffusion 
models that have been used to study biological systems at the scale of 
individual cells?

‣How can we numerically simulate these models?

•What are some of the tradeoffs in using particular simulation 
methods?

‣What are some biological systems to which these models have been 
applied?

24
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What are the most common numerical solution methods for these 
models?

Smoluchowski model (Doi too, but not as well-developed at this time):

‣ Brownian Dynamics

• Many different approaches, common ones include those implemented in the 
software programs Smoldyn, MCell, and ChemCell.

• All are timestep-based, and split reaction and diffusion into separate events.

• We will focus on the Smoldyn approach by Andrews et al. (Phys. Biol. 2004)

• Recently extended to the Doi model by Erban et al. (Phys. Biol 2009)

‣ First Passage Kinetic Monte Carlo Method (FPKMC)

• Generates exact realizations of the stochastic process described by the 
Smoluchowski Model.

• Introduced by Opplestrup et al. (PRL 2006), extended in Oppelstrup et al. 
(PRE 2009), Donev et al. (JCP 2010), and Takahashi et al. (PNAS 2010).

• Publicly available eGFRD simulator.

Sunday, August 19, 12



25

What are the most common numerical solution methods for these 
models?

Smoluchowski model (Doi too, but not as well-developed at this time):

‣ Brownian Dynamics

• Many different approaches, common ones include those implemented in the 
software programs Smoldyn, MCell, and ChemCell.

• All are timestep-based, and split reaction and diffusion into separate events.

• We will focus on the Smoldyn approach by Andrews et al. (Phys. Biol. 2004)

• Recently extended to the Doi model by Erban et al. (Phys. Biol 2009)

‣ First Passage Kinetic Monte Carlo Method (FPKMC)

• Generates exact realizations of the stochastic process described by the 
Smoluchowski Model.

• Introduced by Opplestrup et al. (PRL 2006), extended in Oppelstrup et al. 
(PRE 2009), Donev et al. (JCP 2010), and Takahashi et al. (PNAS 2010).

• Publicly available eGFRD simulator.
RDME:

‣ Gillespie Method

• Generates exact realizations of the stochastic process described by the RDME.

• Has been implemented in URDME, STEPS, MesoRD, and SmartCell.
Sunday, August 19, 12
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What is the Brownian Dynamics Method?
‣Brownian Dynamics is a timestep, Δt, based method for simulating the 

Smoluchowski and Doi models. 
‣We focus on its implementation in Smoldyn for the pure absorption 

Smoluchowski model, but note there are a number of other formulations (as 
used in MCell, or for simulating the Doi model).
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What is the Brownian Dynamics Method?
‣Brownian Dynamics is a timestep, Δt, based method for simulating the 

Smoluchowski and Doi models. 
‣We focus on its implementation in Smoldyn for the pure absorption 

Smoluchowski model, but note there are a number of other formulations (as 
used in MCell, or for simulating the Doi model).

During one time step:
‣Molecules diffuse by 

sampling from a Gaussian.
‣ In the absence of 

boundaries this exactly 
samples the Brownian 
Motion of each molecule 
over one timestep.

X(t+�t) = X(t) +
p
2D�t⇠

x

Y (t+�t) = Y (t) +
p
2D�t⇠

y

The ξ’s are sampled from a normal distribution with mean zero and unit variance.
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What is the Brownian Dynamics Method?
‣Brownian Dynamics is a timestep, Δt, based method for simulating the 

Smoluchowski and Doi models. 
‣We focus on its implementation in Smoldyn for the pure absorption 

Smoluchowski model, but note there are a number of other formulations (as 
used in MCell, or for simulating the Doi model).

 rb

After the diffusion step:
‣Any two reactants within a 

reaction radius are allowed 
to react.
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What have we left out?
‣ First order reactions like A→B.

• Represent internal processes; in Smoldyn the probability the first order 
reaction occurred during a timestep is calculated and sampled after the 
diffusive timestep but before bimolecular reactions are executed. 

• In MCell each molecule gets a “clock”, an exponentially distributed random 
time, for when the reaction will occur.

‣Unbinding reactions like AB→A+B.

• In Smoldyn an unphysical reaction-radius is introduced.

• In MCell the positions of each molecule are sampled based on how they 
would move during the next timestep.
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What have we left out?
‣ First order reactions like A→B.

• Represent internal processes; in Smoldyn the probability the first order 
reaction occurred during a timestep is calculated and sampled after the 
diffusive timestep but before bimolecular reactions are executed. 

• In MCell each molecule gets a “clock”, an exponentially distributed random 
time, for when the reaction will occur.

‣Unbinding reactions like AB→A+B.

• In Smoldyn an unphysical reaction-radius is introduced.

• In MCell the positions of each molecule are sampled based on how they 
would move during the next timestep.

‣How to handle complex geometries?

• For piecewise linear / planar surfaces 
numerical methods for SDEs can be 
used.

• For example, Neumann BC are 
implemented by reflection if a molecule 
ends a timestep outside the domain.

Andrews et al. (Phys. Biol. 2004)
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What are some of the advantages/disadvantages of this approach?
Advantages:
‣Method is much simpler to implement than the FPKMC, and probably simpler 

than RDME approaches.

‣Timestep is decoupled from density of molecules. (Coupling indirect only.)

‣ Several well-designed publicly available simulators that can handle general 
chemical systems in complex geometries (such as Smoldyn and MCell).

‣Can be extended with standard SDE techniques to include spatially varying 
drift and diffusion.

‣Method should be convergent to underlying Smoluchowski model.
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What are some of the advantages/disadvantages of this approach?
Advantages:
‣Method is much simpler to implement than the FPKMC, and probably simpler 

than RDME approaches.

‣Timestep is decoupled from density of molecules. (Coupling indirect only.)

‣ Several well-designed publicly available simulators that can handle general 
chemical systems in complex geometries (such as Smoldyn and MCell).

‣Can be extended with standard SDE techniques to include spatially varying 
drift and diffusion.

‣Method should be convergent to underlying Smoluchowski model.

Disadvantages:

‣No rigorous proofs of convergence or order of accuracy.

‣Only              or            accuracy in handling typical boundary conditions.  

‣Requires extra parameters vs. RDME approach (reaction radius, unbinding 
radius, partial absorption rates).

‣To accurately resolve bimolecular reactions may need to take very small 
timesteps.

O(
p
�t) O(�t)
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How does the FPKMC method for the Smoluchowski model work?
‣ Each particle is covered by an individual protective domain.

• Circles are the most common choice, but rectangles are advantageous in 
complex geometries.

• Two particles that may react, and are sufficiently close, are covered by a 
pair protective domain.
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How does the FPKMC method for the Smoluchowski model work?
‣ Each particle is covered by an individual protective domain.

• Circles are the most common choice, but rectangles are advantageous in 
complex geometries.

• Two particles that may react, and are sufficiently close, are covered by a 
pair protective domain.

‣ Each protective domain is chosen as large as possible.

• It is desirable that the size of each domain be about the same.
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How does the FPKMC method for the Smoluchowski model work?
‣ For each molecule we sample a next event time.

• For single molecules this corresponds to when they leave the circle.

• For pairs of reactants this will be when one of them leaves the circle, or 
they react -- whichever time comes first.

⌧1

⌧2

⌧3

⌧4
⌧5

⌧6

⌧7

⌧8

⌧
next

= min
i

⌧i
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How does the FPKMC method for the Smoluchowski model work?
‣ For each molecule we sample a next event time.

• For single molecules this corresponds to when they leave the circle.

• For pairs of reactants this will be when one of them leaves the circle, or 
they react -- whichever time comes first.

⌧1

⌧2

⌧3

⌧4
⌧5

⌧6

⌧7

⌧8

⌧
next

= min
i

⌧i

‣The smallest next event 
time is chosen, and that 
event is executed.

• If the event corresponds 
to a molecule leaving a 
protective domain we 
also sample an exit 
location.

• For a bimolecular 
reaction we simply 
execute the reaction and 
introduce the new 
product molecule.
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How does the FPKMC method for the Smoluchowski model work?
‣ For each molecule we sample a next event time.

• For single molecules this corresponds to when they leave the circle.

• For pairs of reactants this will be when one of them leaves the circle, or 
they react -- whichever time comes first.

‣The updated molecule’s 
protective domain is then 
recalculated and a next exit 
time calculated.

• To keep the domains 
roughly the same size it 
may be necessary to 
update some of its 
immediate neighbors 
too.

⌧1

⌧2

⌧3

⌧4
⌧5

⌧6

⌧7

⌧8

⌧
next

= min
i
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How do we calculate the exit time for a single protected molecule?

How do we calculate the exit time for a single protected
molecule?

Let

I
x0 denote the initial position of the molecule.

I D denote the di↵usion constant of the molecule.

I U denote the protective domain (circle or rectangle).

I @U denote the boundary of U .

I p(x, t) denote the probability density the molecule is at x 2 U at
time t.

Then
@p

@t
(x, t) = D�p, x 2 U

with the initial condition that p(x, 0) = �(x� x0) and the Dirichlet
boundary condition that p(x, t) = 0 for x 2 @U .

3 / 3
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How do we calculate the exit time for a single protected
molecule?
Let

I
x0 denote the initial position of the molecule.

I D denote the di↵usion constant of the molecule.

I U denote the protective domain (circle or rectangle).

I @U denote the boundary of U .

I p(x, t) denote the probability density the molecule is at x 2 U at
time t.

Then
@p

@t
(x, t) = D�p, x 2 U

with the initial condition that p(x, 0) = �(x� x0) and the Dirichlet
boundary condition that p(x, t) = 0 for x 2 @U .

By choosing U to be a simple domain (circle/rectangle) we can
analytically solve for p(x, t).

3 / 3
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How do we calculate the exit time for a single protected molecule?

The first exit time can be sampled from the probability distribution:

Prob [T
exit

< t] = G(t) = 1�
Z

U
p(x, t) dx
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How do we calculate the exit time for a single protected molecule?

The first exit time can be sampled from the probability distribution:

Prob [T
exit

< t] = G(t) = 1�
Z

U
p(x, t) dx

There are several methods for sampling the event time. For example, in the 
inverse transform method we solve:

t = G�1(r)

where r is a uniformly distributed random number in [0,1]
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How do we calculate the exit time for a single protected molecule?

The first exit time can be sampled from the probability distribution:

Prob [T
exit

< t] = G(t) = 1�
Z

U
p(x, t) dx

There are several methods for sampling the event time. For example, in the 
inverse transform method we solve:

t = G�1(r)

where r is a uniformly distributed random number in [0,1]

The exit position, x, is given by sampling the exit position density at the sampled 
exit time, t:

⇢(x, t) =
�Dr⇢(x, t) · ⌘(x)R

@U �Dr⇢(y, t) · ⌘(y) dS(y)
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How do we calculate the exit time for a single protected molecule?

The first exit time can be sampled from the probability distribution:

Prob [T
exit

< t] = G(t) = 1�
Z

U
p(x, t) dx

There are several methods for sampling the event time. For example, in the 
inverse transform method we solve:

t = G�1(r)

where r is a uniformly distributed random number in [0,1]

To rebalance protective regions it may be necessary to update the position of 
several neighboring particles. For these we sample the no-passage density:

n(x, t) =
p(x, t)

1�G(t)

The exit position, x, is given by sampling the exit position density at the sampled 
exit time, t:

⇢(x, t) =
�Dr⇢(x, t) · ⌘(x)R

@U �Dr⇢(y, t) · ⌘(y) dS(y)
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How do we calculate the event time for a pair of molecules?
How do we calculate the exit time for pair protected
molecules?
Consider a pair that can undergo the reaction A+ B ! ?. Let

I
x and y denote the positions of the A and B molecules.

I DA and DB denote their di↵usion constants.

I U denote the protective domain (circle or rectangle).

I @U denote the boundary of U .

I p(x,y, t) denote the probability density the molecules are at
x 2 U and y 2 U respectively at time t.

Then
@p

@t
(x,y, t) = DA�

x

p+DB�
y

p, x 2 U,y 2 U

with the initial condition that p(x,y, 0) = �(x� x0)�(y � y0) and
the Dirichlet boundary conditions

p(x,y, t) = 0, x 2 U, or y 2 U, or |x� y| = rb.

4 / 4
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How do we calculate the exit time for pair protected
molecules?
Consider a pair that can undergo the reaction A+ B ! ?. Let

I
x and y denote the positions of the A and B molecules.

I DA and DB denote their di↵usion constants.

I U denote the protective domain (circle or rectangle).

I @U denote the boundary of U .

I p(x,y, t) denote the probability density the molecules are at
x 2 U and y 2 U respectively at time t.

Then
@p

@t
(x,y, t) = DA�

x

p+DB�
y

p, x 2 U,y 2 U

with the initial condition that p(x,y, 0) = �(x� x0)�(y � y0) and
the Dirichlet boundary conditions

p(x,y, t) = 0, x 2 @U, or y 2 @U, or |x� y| = rb.

4 / 5

Sunday, August 19, 12



34

How do we calculate the event time for a pair of molecules?

‣ Generally such two-body problems can not be solved analytically.

‣ However, by changing coordinates it is possible to solve for p(x,y,t) analytically. 

• We switch to separation, w, and center of mass, v, coordinates:

• We work with the domain {(x,y) | rb<|w|<R, |v|<ρ}

• The PDE for p(x,y,t) can now be converted to an equation in w and v.

• The new equation for p(x,y,t) can be factored into two independent equations 
in the w and v coordinates.

• These can be separately sampled to calculate a possible reaction time in the w 
coordinate, and possible protective domain exit times from both the w and v 
coordinates.

• Using the minimal exit time a reaction is executed, or an exit position is 
sampled.

• See Donev et al. (JCP 2010) or Takahashi et al. (PNAS 2010) for more details.

w = x� y

v =
DA

x+DB
y

DA +DB
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What have we left out?
‣ First order reactions like A→B.

• Represent internal processes -- each molecule gets a “clock”, an 
exponentially distributed random time, for when the reaction will occur.

‣How to choose the protective regions and when to rebalance them?

• This is still an open problem, current methods use heuristics to decide 
what to do.

‣How to handle partial absorption reactive boundary conditions?

• See Takashi et al. (PNAS 2010)

‣How to extend to include drift or non-uniform diffusivities?

• See A. Mauro’s poster on Thursday night!
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• See Takashi et al. (PNAS 2010)

‣How to extend to include drift or non-uniform diffusivities?

• See A. Mauro’s poster on Thursday night!

4. A Numerical Test

We have performed a numerical test on a simple polygonal domain. In Fig. 2, we
represent the density of the exit position for each side. Five rectangles were used,
each one being as big as possible and having at least (there is a right angle in the
polygon) one side equal to one side of the polygon.

As any point of the polygon may be contained in more than one rectangle, we have
to decide which one to use. We have thus tested our algorithm for different methods

(a) using the rectangle with the biggest area;
(b) using a rectangle having a side intersecting the boundary which is the closest to

the current position;
(c) using the rectangle having a side which is the closest to the current position;
(d) using the rectangle whose boundary is at a maximal distance from the current

position;
(e) choosing the rectangle randomly;
(f ) using the rectangle whose side on the boundary is the largest.

Here are only a few criteria, but other may be used, or obtained by any
combination of the previous ones.

We give in Table 1 the average number of steps together with the variance for the
different ways of choosing the rectangles. As for the histograms of Fig. 2, 10;000
particles are used. The first two lines refer to the case where the starting point is the
one marked by the cross !, while the last two lines refer to the case where the
starting point is marked by the dot " in Fig. 2.

Fig. 2 Histograms of density of the exit position conditioned by the exit side of the polygon (10,000
particles were used). The percentage represents the proportion of particles hitting this side. The
dashed lines represent the boundary of the rectangles. The starting point is marked by the cross !

Methodol Comput Appl Probab (2006) 8: 135–151 145

Springer

‣How to handle complex geometries?

• For piecewise linear / planar surfaces 
can use boundary conforming squares / 
cubes as the protective domains. This 
allows exact enforcement of Dirichlet, 
Neumann, or Robin boundary 
conditions.

Deaconu et al. Meth. Comp. App. Prob. 2006
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What are some of the advantages/disadvantages of this approach?
Advantages:
‣Method can generate exact realizations of stochastic process described by 

Smoluchowski model, even with more general partial absorption Robin BC.

‣Method can be made to generate exact samples for standard BC in piecewise 
linear/planar geometries of arbitrary complexity.

‣ In dilute systems allows for large time jumps from reactive event to reactive 
event.  Avoids simulating many diffusion events (unlike RDME / BD methods).
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Advantages:
‣Method can generate exact realizations of stochastic process described by 

Smoluchowski model, even with more general partial absorption Robin BC.

‣Method can be made to generate exact samples for standard BC in piecewise 
linear/planar geometries of arbitrary complexity.

‣ In dilute systems allows for large time jumps from reactive event to reactive 
event.  Avoids simulating many diffusion events (unlike RDME / BD methods).

Disadvantages:
‣Difficult to program.

‣Requires extra parameters vs. RDME approach (reaction radius, partial 
absorption rates).

‣Open problem to determine how to update protective domains and keep 
their size balanced.

• Generally the effective “timestep” is given by the smallest domain size.

• Very skewed domain sizes will lead to inefficient updating and unnecessarily 
small timesteps.

‣ (I think) method can not be extended to exactly handle spatially varying drift 
and diffusion constants. 
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How can we simulate the stochastic process described by the 
RDME?

Ai = 1 Bi = 2

h

i = (i1, i2)

Bi+(1,�1) = 1

Ai+(1,�1) = 1

Ci+(1,�2) = 1

‣ In the RDME we keep track of the number of molecules of each chemical 
species in each lattice voxel.

‣ For a simple Cartesian mesh each molecule hops from a given lattice voxel to 
a neighbor with probability per unit time D/h2
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How can we simulate the stochastic process described by the 
RDME?
‣ In the RDME we keep track of the number of molecules of each chemical 

species in each lattice voxel.

‣ For a simple Cartesian mesh each molecule hops from a given lattice voxel to 
a neighbor with probability per unit time D/h2

‣ Each of these hops is a 
simple first order 
reaction.

h

i = (i1, i2)

DA

h2

DA

h2

DA

h2 DA

h2
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How can we simulate the stochastic process described by the 
RDME?
‣ In the RDME we keep track of the number of molecules of each chemical 

species in each lattice voxel.

‣ For a simple Cartesian mesh each molecule hops from a given lattice voxel to 
a neighbor with probability per unit time D/h2

‣ Each of these hops is a 
simple first order 
reaction.

‣We can group species in 
the same lattice voxel 
together into one 
effective reaction.

‣ i.e. Ai→Ai+(1,0), with 

propensity 2DA/h2

h

i = (i1, i2)

2DA

h2

2DA

h2

2DA

h2
2DA

h2
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How can we simulate the stochastic process described by the 
RDME?
In this way we can represent all diffusive motions as first order reactions.

For a given system we then have a collection of possible “reactions”:

A+B→C reaction

C→A+B reaction

diffusive “reactions” for A

Ai + Bi ! Ci

Ci ! Ai + Bi

Ai ! Ai+(1,0)

Ai ! Ai+(0,1)

Ai ! Ai+(�1,0)

Ai ! Ai+(0,�1)

. . .
Since this is now just a standard chemical system we can simulate this 
stochastic process exactly using the Gillespie method (as described in the 
previous talk)!
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What have we left out?
‣ Extensions include AMR methods, advection, drift due to potentials, and GPU 

optimized versions.

‣Recently several groups have investigated multiscale couplings to 
deterministic or tau-leaping methods (Erban group and Lötstedt group)

‣How to handle complex geometries?
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optimized versions.
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Isaacson et al. 
(SISC 2006)

Hellander et al. (SISC 2009)
(a) (b)

Fig. 6: (a) A snapshot of a purely microscopic simulation. The size of molecules is larger in the figure
than in the actual simulation for illustrative purposes. (b) The partial adsorption of C molecules to
the nuclear membrane (green) at the microscopic level is resolved by letting C be a microscopic degree
of freedom in a layer of tetrahedral elements around the nucleus (red). In the remaining part of the
domain (blue), the system is updated in time by the mesoscopic model.

If species A corresponds to an importin protein, it will be present in higher copy numbers
than the other species in the model. All A molecules are therefore simulated mesoscopically
as well as all other molecules outside a sphere with radius 1.3 · 10�6m, the blue domain in
Figure 6b. All molecules (except for A molecules) are simulated on the microscale close to and
on the membrane, the red and green domains in Figure 6b. We are using the more expensive
microscopic simulation only near and on the nuclear membrane, where it is most needed for the
accuracy.

The reaction rates in Table 1 are µ = 0.03 s�1, k1 = 2.5336 · 10�20 m3s�1, k2 = 0.02 s�1,
ka = 10�6 ms�1, kd = 0.02 s�1, kp = 10�11 m2s�1, k�p = 0.04 s�1 and kr = 0.1 s�1. The
di⇥usion constant D for all molecules in space is 10�12 m2s�1 and on the membrane Ds is
10�14 m2s�1. The reaction radius � for all molecules is 10�9 m and the splitting time step
�⇥ is 0.5. In Figure 7, the average number of molecules during a simulation of the full system
system is plotted. Initially, there are 1000 A molecules in the cytoplasm, while B and C are
present in low copy numbers.

In this example the mesoscopic di⇥usion of the A molecules is dominating the execution
time, and the time spent on the microscale simulations is negligible. Hence, the cost of the
hybrid simulation is close to that of a purely mesoscopic simulation, but with higher accuracy
for reactions near and on the membrane. The cost of the microscale simulation and the overhead
introduced by the coupling routines in Section 4 depends on the problem and the parameters.
In the above examples, the overhead ranges between 0 and 30 per cent of the total execution
time. The microscale simulation could be dominant if a major part of the molecules are bound
to a membrane as the interaction between molecules on a surface is expensive to simulate.

22

‣Can also derive spatial 
transport rates using finite 
element methods on more 
general meshes.

‣Can use Cartesian grid embedded 
boundary methods to derived modified 
spatial transport rates in cut mesh voxels.
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What are some of the advantages/disadvantages of this approach?
Advantages:
‣ Simulation method generates exact samples of the underlying stochastic 

process.

‣Method is much simpler to implement than FPKMC, perhaps a bit more 
difficult than BD (mainly due to optimizing Gillespie method).

‣Many extensions based on leveraging well-developed PDE discretization 
techniques. See previous slide.

‣ Several well-designed publicly available simulators that can handle general 
chemical systems in complex geometries (such as STEPS and URDME).

‣Requires less parameters than the other methods. (Only needs well-mixed 
reaction rates.)
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What are some of the advantages/disadvantages of this approach?
Advantages:
‣ Simulation method generates exact samples of the underlying stochastic 

process.

‣Method is much simpler to implement than FPKMC, perhaps a bit more 
difficult than BD (mainly due to optimizing Gillespie method).

‣Many extensions based on leveraging well-developed PDE discretization 
techniques. See previous slide.

‣ Several well-designed publicly available simulators that can handle general 
chemical systems in complex geometries (such as STEPS and URDME).

‣Requires less parameters than the other methods. (Only needs well-mixed 
reaction rates.)

Disadvantages:
‣Can be proven that bimolecular reactions are lost in the continuum limit that 

the lattice spacing is taken to zero (Isaacson (SIAP 2009))

• However, method is valid for lattice spacings that are neither too large or 
small. This can be tricky to satisfy...

‣As formulated, spend large portion of computational work simulating hops of 
molecules between lattice sites. 
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Outline of tutorial:

‣Why model stochasticity in the chemical reaction process and the 
explicit spatial movement of proteins and mRNAs?

‣What are the types of particle-based stochastic reaction-diffusion 
models that have been used to study biological systems at the scale of 
individual cells?

‣How can we numerically simulate these models?

•What are some of the tradeoffs in using particular simulation 
methods?

‣What are some biological systems to which these models 
have been applied?

41
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What is the current state of the art?
MCell simulation of action-potential initiation of synaptic release; post-synaptic 
dynamics; and spine depolarization by back-propagating action potential.

Courtesy 
Thomas Bartol
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Who is responsible for the preceding simulation?

Movie Credits:

‣Kristen Harris - the ssTEM reconstruction.

‣Justin Kinney and Chandra Bajaj - the artifact-free, simulation-quality 3D 
surface mesh generation.

‣Suhita Nadkarni, Terry Sejnowski, and Thomas Bartol - the presynaptic 
terminal model.

‣Mary Kennedy, Melani Stefan, Shirley Pepke, Dan Keller, Terry Sejnowski, and 
Thomas Bartol - the postsynaptic spine model.  

‣Thomas Bartol - Merged MCell models of pre and post together into one 
unified model, ran the simulations, and did the visualization of the model in 
CellBlender.
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• Collaborators: 
‣ Carolyn Larabell (UCSF/LBL), X-ray CT data.
‣ David McQueen and Charles Peskin, Courant Institute, NYU, 

modeling and data analysis.

• Ravi Iyengar and SBCNY for support and helpful discussions.

• Thomas Bartol for sharing the MCell simulation movie.

• NSF and NIH for support.

Thank you for coming and inviting me!
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