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Abstract

Two results concerning photon pairs, one previously reported and one new, are summa-
rized. It was previously shown that if the two photons are prepared in a quantum state
formed from |A) and |A’) for photon 1 and |B) and |B’) for photon 2, then both one- and
two-particle interferometry can be studied. If »; is the visibility of one-photon interference
fringes (¢ = 1,2) and v,2 is the visibility of two-photon fringes (a concept which we explicitly
define), then

v? + v, < 1.

The second result concerns the distinguishability of the paths of photon 2, using the known
2-photon state. A proposed measure F for path distinguishability is based upon finding
an optimum strategy for betting on the outcome of a path measurement. Mandel has also
proposed a measure of distinguishability Pp, defined in terms of the density operator p of
photon 2. We show that E is greater than or equal to Pp and that v, = (1 — E?)1/2,

PACS number(s): 03.65.Bz, 07.60.Ly

1 Introduction.

The idea of an entangled quantum state of a composite system — i.e., a state not factorizable
into a product of one-particle states — was discovered by Schrdédinger in 1926, and has been
intensively studied as a result of analyses by Einstein-Podolsky-Rosen and Bell. A very convenient
method for preparing entangled photon pairs by parametric down-conversion in laser-pumped
nonlinear crystals was discovered by Burnham and Weinberg in 1970. Their discovery permitted
the development of two-photon interferometry by Mandel and his school, Alley and Shih, Franson,
Rarity and Tapster, Chiao and his school, and others.?

For subsequent discussion, it will be useful to refer to a schematic two-photon apparatus (Fig.

1), in which a pair of photons emerges from a source S, one of which propagates in beams A and/or
A’, and the other in beams B and/or B’, where the locution “and/or” is a brief way of referring to



With no loss of generality we can assume that

(x1lx1) 2 (xalx2) , (20)

which can be achieved, if necessary, by interchanging the labels B and B’ of the two paths of
photon 2. Then we can write

Ix2) = Alxa) + Ix3) (21a)
where ()
X11X2
= ) 215
{x1]x1) (215)
A <1, (21¢)
and
(xalx3) =0. (21d)
If we define
Ni={xilxi), =13, (22a)
then the |¥;), defined by
_y_ dxa) .
IX:) - m ) t= lv3 ) (22b)
are orthonormal. Furthermore,
MO+ +Na=1. (23)

Any basis |#,), |#2) in the space of allowable states of photon 1 can be expressed as

|61) = ulx1) + vixz) , (24a)
[#2) = v"Ix1) — &7IX2) (24b)

where
W + v =1 (240)

This basis defines the observable O of Eq.(16). It will also be useful to write
B =|B)(B| - |B)(B, (25)

an observable in the allowable space of states of photon 2; clearly B is observed to have values +1
and —1 according as photon 2 is detected in path B or B’

If O is the observable chosen to be measured, then there are four pure strategies for bets on
the path of photon 2:

(1) If O = +1, predict B = +1; if O = —1, predict B = —1.

(2) If O = +1, predict B = —1; if O = —1, predict B = +1.

(3) Predict B = +1 regardless of the value of O.

(4) Predict B = —1 regardless of the value of O.

528




In addition to these pure strategies there are mixed strategies, consisting of following (1), (2),
(3), (4) with arbitrary probabilities summing to unity. But since the game is not being plaved
against a rational opponent the average ga.m in a mixed strategy cannot exceed the maximum of
the average gain Eo of the pure strategies,® i = 1,2,3,4. These are calculated as follows:

ES'=P(O=1andB=1)+P(O=~1and B=—1)
-P(O=1landB=-1)- P(O=—1and B=1)

=(811)| B)|* + 1{8142)| B'}|* — [{©161)| B'}|* — 1(B]$2)| B)|*

= S(|uf* = [v|*) = Tip|lv| cos(8s + 8. - 6,.) (26)
where
S=N(1—=[A*)+ 7Ny, (27a)
T = 4NN} (27b)
A= |Me®r, p=lples, v= |yl (27c])
EX = —ED, (28)

EY) = P(B=+1) = P(B = ~1) = {x1lx1) — (xzlx2)
=M= |A*) =Ny =5-2N;; (29)

E§' =P(B=—-1)-PB =+1)= -E5" . (30)
Note that ES and EQ’ are independent of O. Then
Eo = maz{|S(ul* = |v[*) = Tillv| cos(8s +6, = 8,)] , |5 - 2MNa]}. (31)

In view of Eqs.(17) and (31) one finds the measure E of path distinguishability by investigating
Fo as p and v are varied, subject to Eq.(24c). We first note that for any |©) there is an O such

that
1ES 2 |ES)Y, (32)

so that the second option in Eq.(31) can be neglected when we maximize over all possible ©. To
prove these statements it suffices in Eqgs.(24a,b), to let'p = 1 and v = 0, determining an O’ such
that Eqs.(26), (27), (28) yerd

|ES)) = [N (1 =A%) + N, (33)
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and

Eg!| = 1M1 = IN) - M| (34)
Since N; and N; are non-negative, and (1 - [A|?) is non-negative by Eq.(21c), we obtain
|ES = |ES) (35)

the rhs being the same as IE'(O3 )| for all O. FE is therefore obtained by maximizing the first option
of Eq.(31) for allowable x and v, and the result is

1
E= 5(4:3‘2 + T3/, (36)
By Eqgs. (27a), (27b), and (23) E can be rewritten as

E = (1—4NZAP)V2. (37)

We can now make a comparison with Mandel’s* measure of path distinguishability Pp. Mandel
notes that in a two-dimensional Hilbert space, any density operator p can be expressed uniquely
in the form

p=Pip pip+ Pp pp , (38)

where pp is diagonal in the |B), |B’) basis, i.e.
pp = cuBY(Bl + ca2{ B')(B'] (39)
(after adaptation to our notation),
tr p;p=trpp=1, (40)

and
Pip >0, Pp>0. (41)

Since pp is a diagonal density operator in the specified basis, one can prepare an ensemble with
a definite proportion ¢;; in the state |B) and a definite proportion c;2 in the state |B’) such that
this ensemble is represented by pp. It is this consideration that leads Mandel to identify Pp as
the degree of path distinguishability when p is given. Mandel also shows that

|p12]
Pp=1—-—F—, 49
L (Pluf"zz)”2 ( )

where p;; is the ij'* matrix element of p in the |B), |B’) basis.
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Now let us consider the |©) of Eq.(18), which we can rewrite as
10) = M 1%)IB) + X N 2)|B') + N[5 BY) . (43)

By the standard procedure for writing the density matrix of particle 2 of a two-particle system,®

we obtain (with the help of Eq.(23)),
P =Ny,

p12 = NMA, pyy = N X” . (44)
P2 =MNMAP+Ny=1-N; .

Hence, Eq.(37) can be rewritten as
E = (1 —4{pps|")*/?, (43)

which can be shown as follows to be greater than or equal to Pp of Eq.(42).
Proof : First note that if z and y are real numbers in the interval [0, 1] which sum to unity.
then

1
< Z
YT (46)
fromr which it follows that :
(p11) 3 (p22)/? < 5 - (47)
Furthermore, since, by Eq.{23)
M PP S M=M= N3) S M(1- N,
we have )
lpr2l = MA] < 5. (48)
From Eqs.(47) and (48) we obtain
2 |12
1—4fpr2|* 2 1 = 2]pyg| 21 — ——— | (49)

(P11P22)1/2

where the lhs of this inequality is £? and the rhs is P3. Since both £ and Pp are non-negative,

it follows that
E>Pp. (50)

We note that when E is unity, so is Pp: that is, perfect distinguishability (in our sense) on
the basis of the two-photon state |©) implies perfect distinguishability (in Mandel’s sense) on the
basis of the density operator. There is an intuitive reason for this agreement: E = 1 implies that
there is perfect correlation between the behavior of photon 1 and the entrance of photon 2 into
|B) or |B’), but perfect correlation requires the orthogonality of Ix1) and |x2) in Eq.(18). This
orthogonality, in turn, guarantees that the density operator of photon 2 is diagonal in the iB),|B")
basis.
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If we look at the other extreme, however, we find that Pp = 0 does not imply that E = 0.
Again there is an intuitive reason. When Pp = 0, then p is a pure case, derived from a quantum
state of the form

|¥) = c|B) + | B}, (51)
so that
pu = [cf?,
pr1z = cc”y pn =cc, (52)
prz = ||?,
Then _ ol
22
E - PD - -—4|P12[2 + _""""‘(pupn)ln ,
= —4|c*|dP +1, (53)

and this vanishes if and only if |¢|* = |¢'|* = 1. But when the amplitudes of [B) and |B') in the
pure state [1) are equal, there is no strategy for betting on the path that will yield a net gain on
the average. On the other hand, when |¢[* and |¢/|* are unequal, the strategy of betting on the
path associated with the larger coefficient will yield a net gain on the average. The advantage
of our E over Pp is the ability of the former to take advantage of inequalities in the amplitudes
associated with the two paths.

Mandel also relates path distinguishability to the visibility v of the interference pattern, where
v2 = 2|p1z| - (34)

He obtains the inequality
v <Pp=1-Fp, (55)

with equality holding only when pj; = p2;. We obtain from the expressions for £ and v; in
Egs.(45) and (54) the equation

vy = (1 — E}V?, (56)

which holds for any preparation of an ensemble of photons in states |B) and |B‘) derived from
a two-photon state of the form |@). Hence, for the preparation of photon 2 that we have been
studying, the visibility v; is 2 natural measure of path indistinguishibility.
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