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Abstract

Bell-type equalities are derived for the Leggett—Garg proposal for a SQUID experiment on the assumptions of
macroscopic realism (MR) and non-invasive measurability (NIM). Equalities of this sort have not previously been presented.
It is shown that there are 18 such equalities. These equalities put stronger constraints on the consequences of MR and NIM

than the corresponding inequalities.

1. Introduction

Leggett and Garg [1,2] (see also Refs. [3-5]) have
proposed the use of a superconducting quantum in-
terference device (SQUID) to test macroscopic real-
ism (MR), which they define formally (see below).
They derive Bell-type inequalities [17,18] in a form
analogous to that of Clauser, Horne, Shimony, and
Holt [6] from this hypothesis and a natural correlate
assumption, non-invasive measurability (NIM).
Quantum mechanics predicts a violation of these
inequalities through macroscopic quantum coher-
ence. They present a SQUID consisting of a super-
conducting ring, interrupted by a single Josephson
junction, and located in an extended magnetic field,
for which quantum mechanics predicts that a trapped
magnetic flux can tunnel between two states in a
way that violates these inequalities. An experimental
test of these inequalities is yet to be carried out.

Macroscopic realism seems to be central to our
everyday experience of mesoscopic and macroscopic

objects. Yet, quantum mechanics, allegedly our most
fundamental theory of matter, predicts its failure.
The most striking clash between macroscopic real-
ism and the predictions of quantum mechanics is
Schrodinger’s [7] cat, for which quantum mechanics
apparently makes the deeply unsatisfactory predic-
tion of being in a superposition of two states, alive
and dead. Leggett and Garg [1, p. 857] describe the
situation as follows: ‘‘Despite sixty years of school-
ing in quantum mechanics, most physicists have a
very non-quantum mechanical notion of reality at the
macroscopic level, which implicitly makes two as-
sumptions [(MR) and (NIM)].”” They characterize
these two assumptions formally and use them to
derive an inequality which is violated by quantum
mechanics.

Using methods similar to Leggett [5], we show
here that the Leggett—Garg assumptions are suffi-
cient to produce equalities similar in form to the
inequalities (Section 3). Since these equalities are
more easily violated than the corresponding inequali-
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ties, our results show that macroscopic realism puts
even stronger constraints on the behavior of SQUIDs
than those which they have presented. We provide a
method for obtaining all such equalities: there are
exactly 18. We also clarify the relationship of the
Leggett—Garg assumptions to alternative proposals
designed to demonstrate contradictions between
macroscopic realism and quantum mechanics (Sec-
tion 2).

2. Previous discussions

Leggett and Garg’s [1] characterizations of (MR)
and (NIM) are:

Macroscopic realism: ‘‘A macroscopic system
with two or more macroscopically distinct states
available to it will at all times be in one or the other
of those states’” [1, p. 857].

Non-invasive measurability: “‘It is possible, in
principle, to determine the state of the system with
arbitrarily small perturbation on its subsequent dy-
namics’’ [1, p. 857].

In their model, the external field induces screen-
ing currents in the ring, which produce their own
magnetic field which remains trapped in the ring.
When an appropriate external field is applied, a
symmetric double potential well arises for the trapped
flux. The two degenerate states, of being in these
two wells, correspond to a supercurrent /;, circulat-
ing either in a clockwise or a counterclockwise
direction (and having a magnitude of several mil-
liamperes). This is sufficient for the two states to be
macroscopically distinct (see Ref. [4, Section 6]).
Because of possible tunneling between these states,
quantum mechanics makes different predictions about
four observables, Q,, i=1,...,4, which report
whether or not the system is in one (or the other) of
these states at specified times, ¢,.

Leggett and Garg [1,2, p. 1621] argue that NIM is
a natural corollary of MR. Ballentine [8] has argued
that a violation of the Leggett—Garg inequalities by
quantum mechanics does not contradict MR but only
NIM. This argument is based on a straightforward
quantum mechanical calculation for a SQUID. How-
ever, Leggett and Garg [2] point out that this calcula-
tion refers to an experimental situation different from
theirs. Ballentine takes, contra Leggett and Garg,

each member of the analyzed ensemble of systems to
be measured at four of the successive times under
consideration. Leggett and Garg [1] on the other
hand, refer only counterfactually to measurements at
intermediate times, and only require measurements at
one initial and one final time. Thus, Ballentine’s
experiment is also harder to perform. His experiment
was designed to test whether quantum mechanics
violates NIM independently of violating MR whereas
the Leggett—Garg scheme only determines whether it
violates these two assumptions taken together.

In the Leggett—Garg analysis, as pointed out by
Tesche [9], the only requirement on the measurement
system 1is that it must be capable of determining the
probability that the system occupies particular states
at two moments f, and f; without affecting the
dynamics of the system during the interim. Tesche
[9] outlines such a scheme, where two hysteretic
dc-SQUID switches and two dissipative dc-SQUID
magnetometers are the analogs of the polarizers and
particle detectors, respectively, of the standard two-
photon experimental tests of Bell’s inequalities [10].

Home [11] claimed to derive a contradiction be-
tween quantum mechanics by assuming only a
macrorealism condition. However, as Clifton [12]
has pointed out, Home’s condition implies a contra-
diction with quantum mechanics only for subensem-
bles deliberately selected out from a larger ensemble
while his calculations apply only to the full ensem-
ble. Thus Home’s attempt to isolate MR as the
source of contradictions with quantum mechanics
fails.

Finally, Foster and Elby [13] have also criticized
the Leggett—Garg assumptions as being stronger than
necessary. Let Q; be the observable corresponding
to the SQUID state at time t;, and ¢; be the value
(+1 or —1) taken by Q, at r,. Foster and Elby give
two alternative assumptions to MR and NIM, namely:

Weak realism (WR): ““A SQUID measurement-
result probability for the outcome ¢g; depends only
on the macrostate of the SQUID"’ [13, p. 778].

They call this condition ‘‘SQUID completeness,’”’
in analogy to Jarrett [14]. However, they take this
assumption to mean (in our notation rather than
theirs) that, e.g.,

Plg:= %1124, Q] =P[g,= £114,], (1)
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where P[ ] indicate probabilities and A; represents
the macrostate of the SQUID at time 7,, which is a
form analogous to Jarrett’s ‘‘locality’’ rather than his
‘‘completeness’’ condition. (We will not consider
the extraneous issue of the analogy between the
various realism and locality conditions any further in
this paper.)

Generalized non-invasive measurability (GNIM):
‘“The subsequent evolution of a SQUID’s macrostate
is affected arbitrarily weakly by a sufficiently careful
measurement of Q,”’ [13, p. 777].

Foster and Elby express this condition by expres-
sions of the following form,

P[Ad AL Q] = P[AIALL (2)

where i > j> k refer to different times. (Elby and
Foster [15] present an alternative version of this
assumption for the special case of null experiments.)
Their assumptions are weaker than their Leggett—
Garg counterparts by one condition, which we call:

Macroscopic distinguishability (MD): the states of
the macroscopic system are distinct, i.e., P[g, = x]
€ {0, 1}, where x= +1 for all times, ¢,.

Thus, WRAMD e MR and GNIM A MD «
NIM. Therefore MR = WR, NIM = GNIM, and
WR A GNIM A MD < MR A NIM.

Foster and Elby find a contradiction between
quantum mechanics and

P[Q2=+1|Q1]zP[‘12=+1]- (3)

which follows from the conjunction of their assump-
tions. They claim, therefore, that they have derived a
contradiction with quantum mechanics withour as-
suming MR, and need only to assume WR which is
not violated by quantum mechanics. Therefore con-
tradictions with quantum mechanics for SQUID sys-
tems apparently arise because of assumptions such as
NIM and GNIM. Moreover, they use Ballentine’s [8]
experimental scheme rather than that of Leggett and
Garg [1]. This is open to the objection made by
Leggett and Garg [2], as noted above. Elby and
Foster [15] also apply their analysis to Tesche’s [9]
experimental scheme. However, they implicitly as-
sume MD when they assume that the states measured
are distinguished in the experiment. Therefore, if the
logical relationships sketched in the last paragraph

are correct, there is no significant difference between
the Leggett—Garg and Foster—Elby assumptions.
(Note, moreover, the equalities we present below are
in no way formally similar to the Foster—Elby equal-
ity (Eq. (3)).)

3. Equalities

We will, therefore, restrict our attention to Leggett
and Garg’s [1] original assumptions. (This has the
advantage of being directly connected with Tesche’s
[9] proposed experiment.) It is then possible to derive
an equality of a form similar to the Leggett—Garg
inequalities. This is seen as follows. Consider all
possible pairs of values g, ¢; (i, j=1, 2,3, 4) for
the dichotomic observables Q; corresponding to
which of two possible states the system is in at
different times. (This style of argument goes back to
Wigner [16].) These are shown in Table 1. In Table
1, Q,, Q,. Q5. Q, are four (dichotomic) observables
which can be in the states ““+’° and ‘*—’’. The
value of any Q,, represented by g¢,, is equal to +1 if
Q, isin **+’’; otherwise it is equal to *“—1"". The
sixteen rows represent all the possible sets of values
that can be measured, given Leggett and Garg’s
assumptions. The value of the l.h.s. of Leggett and
Garg’s inequality [1, p. 858]

<Q|Q2> + <Q2Q3>l+ |<Q3Q4> - <Q|Q4>I <2
(4)

will be a weighted average over these sixteen cases.
(The inequality arises because these weights must lie
between 0 and 1.)

However, in each of these cases |gq,q, +
4293 +1¢:9, — q,49, ! is identical, namely 2. This
means that any average of them, weighted or not,
must also equal 2. Thus the Leggett—Garg assump-
tions are sufficient to prove not only the inequality
(4) but also the following equality,

<|41‘12+Csz13|>+<I‘I3q4_‘11‘h|>=2’ (53)

or, alternatively:

(Q,0,+ 0,09 + (0,0, - 0,0.)") = 4.
(5b)
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(Following Leggett’s [5, p. 241] method of demon-
stration by exhaustion, the Lh.s. of Eq. (5b) can
similarly be written as a linear combination, in this
case with coefficients + 1, of correlation functions,
now four-time correlation functions rather than
Leggett’s two-time correlation functions, for the Q,
(for example, K, = {Q,0,0,0,) whereas Leggett
has K,;=(Q,0,7). These functions determine the
physical interpretation of Eq. (5b).)

A simple combinatoric argument will now be
used to show that there are exactly 18 equalities of
this form (5). This argument will now be presented
in the form of three propositions and their proofs.
These proofs will concern Eq. (5a). The same argu-
ment, in each case, can give Eq. (5b).

Proposition 1. There are 90 distinct formulae of type
9.9y + 9941 + <l q.9,— g,94 - (6)

Proof. There are exactly 6 distinct products q,g,.
Thus in the first term of (6) there are () =15
different possible arrangements. For each such ar-
rangement, two of the remaining four products can
occur in the second term of (6). This can occur
(3) = 6 different ways. Thus the total number of
distinct formulae of type (6) is 15 X 6 = 90.

Proposition 2. (a) There are 18 formulae of type (6)
with exactly two occurrences of each index. (These
will be called the ‘‘standard form’’.) (b) There are
72 formulae of type (6) in which some index occurs
three times.

Proof of Proposition 2(a). If an index number occurs
twice in the first term of (6), i.e. that term is of the
form ¢,q,+ q.q,, then the second term must con-
tain q,q, and g,q, (order being irrelevant) in order
for each index to occur exactly twice. There are
twelve ways to obtain the form gq,q,+ 4,9, as
follows. The index b can take any of the four
possible index numbers. For each choice of b, the
numbers a and ¢ must be distinct, and since there
are only 3 possible values they can take, this can
occur 6 ways. Thus there are exactly 4 X3 =12
ways to obtain the form ¢q,q, + g,9,, each of which
uniquely determines a formula of type (6).
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If the first term does not have the form above
(one index number repeated), then all 4 indices must
be distinct since a product of ¢;’s can occur at most
once in a formula of type (6). That is, the first term
is of the type g,q, + ¢.q,. Clearly for any choice of
a and b there is exactly one choice for ¢ and 4
(since g,9; = q,4,). Of the 6 choices for a and b, 3
are redundant because they occur as ¢ and d for
some other choice, hence there are 3 distinct cases of
this form. Now, for each possibility for the first
term, there are 2 possible arrangements in the second
term: index a occurs with either ¢ or d in which
case b occurs with the other. Thus we have a total of
3 X2 =6 distinct formulae of the type (6) having
this form. Since the two other cases are exhaustive,
there are exactly 18 formulae of type (6) in which
each index occurs exactly twice.

Proof of Proposition 2(b). First consider the case
where two of the three products having a common
index number occur in the first term of (6). This can
occur (3) =3 ways for a fixed index number. For
each such possibility any of the other three products
can occur with the third product of common index.
So for a fixed index we have 3 X 3 = 9 possibilities.
Now, since there are four index numbers there are 36
such possibilities. The other case is when two of the
three products having a common index number occur
in the second term. By the same reasoning we get
another 36 possibilities giving a total of 72 formulae
of type (6) having an index number that occurs 3
times.

Proposition 3. (a) All 18 standard form formulae
give rise to a Bell-type equality. (b) The 72 formulae
of type (6) that are not in standard form cannot give
rise to these equalities.

Proof of Proposition 3(a). Using Table 1, we handle
the six cases in which the first term of (6) has the
form {|g,q, + q.9,|> by exhaustion. The reasoning
for these six cases is as follows: | A|+|B| =2 =
(I Al+1Bl) =2 (since when all values are equal
their average is just that value). Therefore, (| A|) +
(IB|)=2. From Table 1, we obtain |gq,q,+
419,1 + 14,95 — 9,4, = 2 from which it follows by

our reasoning above that | g,q, + q;q,1> + (14,4,
—q,q4 1> = 2. Similarly, from Table 1 and the above
reasoning we find that

<|CI1‘12+Q3Q4|>+<|‘1144“Q2q3|>=2:
1q193+ 9,9, + {1919, — 439,17 =2,
gg3+q,9,1) +(lgyq,— 9,95 1) =2,
(19,9, + 4,91 + {1919, — 39, 1) =2,
g1+ q2q: 10 +{q19: — 929, 1) = 2.

The remaining 12 cases are all of the form

(19,9, + 9,9 1> + <1 9,9, — 9.9, (7

In order to establish the equality (5a) it is sufficient
to show [q,q, + 4,91 + 14,9, = q.q,1 =2, as we
have seen above. Notice, however, that if g, =g,
then 4,9, = 4,9.= 14,9, + 9,9.| =2 and q,q, =
4.9, 19,9,—q.9,1 =0. On the other hand, if
9= —4q. then 4,9, = ~4,9.= 14,9, + 4,9, =0
and ¢,9,= —4.9,~ 19,9,—4.9,1 =2. Thus in
either case |q,9, +q,9.1+ 19,9, — 9.9, =2,
from which it follows that {|q,q, + q,q.1) +
(19,94 = 9,941 = 2.

Proof of Proposition 3(b). In all of these cases one
index number occurs three times. We consider first
the cases in which two of the three products with the
common index number are in the first term of (6). It
suffices to show that | ¢,9, + 9,9, +lg,9,— X | #
k, for any constant k and X €{q,q.. 9,9, 9.9.}
since this precludes an equality of the form |gq,q,
+q4,q9.1 +19,9,—X|) =k from being found from
Table 1. In the situation g, # q, = 4. = q4, | 4,9, +
9.9.1+1q,9,— X | =4, since q,9,=q,9. and
4,9, = —X. The last equality comes about as fol-
lows. Since g, =¢q.=qy, 9,9.= 4,94 = 4.94, S0 X
has the same value in all cases. But ¢, = —g,, so
q,9,= —q,9,= —X. In the situation g, =g, =q.
=qy, clearly | 9,9, + 9.9 + 9,4, — X | = 2 since
the first term is 2 and the second term is 0.

For cases in which two of the three products with
the common index number are in the second term of
(6), ie. [ q,9,+ X | +149,9, — 9,9 |, taking g, # g,
=gq,=q, gives a result of 0, and taking g, =g, =
q.=q, gives 2; so once again there is no strict
equality. Since a, b, ¢, d are arbitrary in the above
discussion all 72 cases are covered.
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This completes the proof that there are exactly 18
equalities of the form (5a), (5b).

4. Discussion

There are two significant differences between the
results (5a), (5b) and previous Bell-type results: (i) it
is an equality rather than an inequality, and (ii) the
Lh.s. involves the average of absolute values (or
squares) rather than the absolute value of averages.
Regarding the former, strict equalities of this form
are harder to satisfy than the corresponding inequali-
ties (Eq. (4)). Therefore, Eqgs. (5a), (5b) should be
easier to test experimentally. Regarding the latter,
questions might arise as to whether the results (5a),
(5b) can be tested experimentally. Tests of ordinary
Bell-type expressions measure the statistics arising
from joint measurements of observables Q,Q; and
calculating linear combinations of the results. The
experimental procedures involved in testing (5a),
(5b) are not qualitatively different from this; the only
difference is, rather than measuring the statistics of
joint measurements the experimenter measures the
statistics of pairs of ‘‘joint measurements’’, as this is
what is involved in evaluating the Lh.s. of (5a), (5b).
These equalities provide a stringent direct test of
NIM and MR, quite independent of what quantum
mechanics would predict in this situation.

It might be also asked why it is that one cannot
derive an equality in the case of the ordinary Bell-test
situation, such as that of Aspect et al. [10], in the
same manner. To do so would seem to require an
assumption similar to our MD or Leggett's MR
which guarantees the value definiteness used in our
proofs. Bell-type locality conditions do not provide
such value definiteness, and to assume such a condi-
tion would be tantamount to an assumption of ‘*mi-
croscopic realism,”’ for which there is no physical
support.

Finally, Leggett and Garg [1,2] have argued that
NIM is a natural corollary of MR. If this is accepted,
and taken to mean that MR = NIM, then the failure
of MR A NIM, which the failure of our equalities
would show, requires that, at the very least, MR

fails. (This follows from the fact that MR = NIM
and ~(MR A NIM) is consistent with NIM but not
with MR.) Thus, in this sense, MR but not NIM is
directly implicated as the problematic assumption by
our analysis, in contrast to the analyses of Ballentine
[8], Foster and Elby [13], and Elby and Foster {15].
Of course, this conclusion was implicit in the work
of Leggett and Garg [1,2] — we are only noting it
explicitly.
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