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Abstract

This paper provides an analytic treatment of the effect of differential fitness of mutants and non-mutants on the
Luria-Delbruck distribution, which is used to describe the number of mutant cells obtained prior to selection during
a fluctuation test experiment. It also systematizes the treatment of the case when the cultures are seeded with
multiple cells. One surprising result is that differential fitness of mutants and non-mutants does not affect the mean
of the distribution (though, as expected, it decreases the variance). This treatment completes the analysis of the
influence of factors that affect the Luria- Delbruck distribution through mechanisms acting prior to plating. All the
results that have been obtained to date are collected in a table for easy reference.

Introduction

Ever since Cairns, Overbaugh and Miller (1988)
published the results of experiments that apparently
showed that a Lac- -+ Lac+ mutation in Escherichia
coli occurred more frequently in the presence of lactose
than in its absence, the possibility of such 'directed'
mutagenesis has been a subject of intense controversy
(see Foster, 1992, 1993; Sarkar, 1991, 1992; Lens-
ki & Mittler, 1993; Cairns, 1993; MacPhee, 1993).
The argument for the existence of directed mutations
is partly based on experimental deviations of bacteri-
al mutant distributions, as obtained from a fluctuation
test, from the Luria-Delbriick distribution, as calculat-
ed by Lea and Coulson (1949), which is expected to
hold if all mutations are random (non-directed). Critics
concede that these deviations occur but argue that they
can be accounted for by subsidiary factors (other than
directed mutations) such as a finite number of cell-
divisions in the fluctuation test-tubes (that is, during
clonal growth prior to selection through plating), mul-
tiple cells (seeds) from which the clones originated,
differential fitness of normal and mutant cells (during
clonal growth), phenotypic lag, and incomplete plat-
ing efficiency, none of which were taken into account
in the Lea-Coulson analysis (see references in Sarkar,
1991 and Lenski & Mittler, 1993). In general, it is

argued that each of these factors would decrease the
variance of the distribution, which is the type of devi-
ation routinely observed.

In order to judge the relevance of these factors, it is
necessary to compute the expected distribution of the
mutants in their presence. Stewart, Gordon and Levin
(1990) developed a framework for incorporating most
of these factors; the expected distribution can then be
numerically computed using their program (see also
Stewart, 1991). Ma. Sandri and Sarkar (1992) devised
a new algorithm that led to a six-fold increase in com-
putational efficiency of these calculations (and a fur-
ther ten-fold increase if massively parallel machines,
such as the CM-2 Connection Machine, are used). This
algorithm has been incorporated in the computer pro-
gram available from Stewart following the procedure
listed in Stewart, Gordon and Levin (1990) and Stew-
art (1991). This approach is obviously fruitful in the
comparison of experiment to theory. However, since it
is not fully analytic, it does not easily pemlit certain
kinds of theoretical analyses, such as the derivation of
the probability of observing jackpots (or a very large
number of mutants) on the plates.

Ma. Sandri and Sarkar (1992), therefore, presented
recursion relations for computing the probability dis-
tribution of the expected number of mutants assuming
the original Lea-Coulson model. Sarkar, Maand Sandri
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(1992) explicitly incorporated a finite number of cell
divisions into the model, and explicitly incorporated
the effect of seeding each test-tube with more than one
cell. Pakes (1993) extended some of these results. The
strategy followed to obtain all of these results is to
write down and analyze a set of differential equations
which describe the growth of a culture in a test-tube.
The growth of normal cells is treated deterministical-
ly while mutation and mutant cell growth are treated
stochastically. Next, the generating function for the
distribution is obtained from these differential equa-
tions. Essentially, this part of the treatment goes back

to Lea and Coulson's (1949) pioneering analysis. Now,
using the algorithm of Ma, Sandri and Sarkar (1992),
recursion relations are obtained to evaluate Pr, the
probability of finding r mutants when the contents of
the fluctuation test-tubes are plated. Finally, an asymp-
totic analysis of Pr (as r - 00) is carried out to find a
formula for the probability of finding jackpots of size

r.

that the mean does not necessarily provide the best esti-
mate for the mutation rate (see, e.g., Lea & Coulson,
1949, and Stewart, 1994).) All the results are collected
in Table I, which should be useful to experimentalists.

The basic fonnulae

The method used to obtain the formulae reported here is
identical to that used by Sarkar, Ma and Sandri (1992).
If Pr is the probability of finding r mutants in a clone
of size n, Jl. is the mutation rate per cell per generation,
and b is the relative fitness of a mutant cell (with fitness
being interpreted as growth rate) compared to that of a
normal cell (with fitness 1), and 0 < b < 00, then,

p,.+

(1)The main purpose of this note is to extend the
results of Sarkar, Ma and Sandri (1992) and fakes
(1993) to incorporate the effects of differential fit-
ness of mutants and non-mutants in the fluctuation
test-tubes. The effect of seeding each test-tube with
more than one cell, which is bound to happen in actual
experiments, is also explicitly analyzed. A somewhat
surprising result is that the mean of the distribution is
not affected by differential fitness of mutants and non-
mutants. Of all the factors listed in the first paragraph
which can result in deviations from the distribution
calculated by Lea and Coulson (1949), only the first
three act prior to plating. Therefore, the results reported
here complete the analytic treatment of this part of the
process. Armitage (1953) noted one other factor act-
ing during clonal growth that could potentially affect
the distribution: variation in mutation rates during the
growth process. However, without an explicit model
of such variation, it is impossible to incorporate this
factor into the generating functions. (A useful numeri-
cal treatment has been provided by Stewart, Gordon &
Levin, 1990.) Finally, fluctuation analysis is routinely
used to estimate mutation rates. This paper also looks
at - though without considering questions about the
'goodness' of estimation (see, e.g., Jones, Thomas &
Rogers, 1994, and Stewart, 1994) - the effect of these

three factors on the calculation of mutation rates. One
result is surprising: if the mutation rate estimation ulti-
mately relies only on the mean (and no other moment)
of the distribution, differential fitness of the mutant and
non-mutant cells makes no difference. (Note, however,

or

p.+~n (2)-p,.

In only slightly different notation (m = IJn), thisequa-
tion was known to Koch (1982). Note that these equa-
tions assume b :#' 0 (and b :#' 00). If g(n, 8) is the
generating function for the distribution (where s is the
usual 'dummy variable' used to define a generating
function, 0 .$ 8 .$ I), then g(n, 8) obeys the partial
differential equation:

).
(4)

To obtain the case considered by Sarkar, Ma and Sandri
(1992), set b = 1, that is, assume equal fitnesses.
The resulting equation was known to Bartlett (1978).
To obtain the generating function of Lea and Coulson
(1949), now set no/n = o. In this equation, since no

The solution of this equation, with no mutants at the
time of seeding and n mutants at the time of plating,
is:
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where a = "oint and m = jJnt. Note that g(8) has a
radius of convergence, r = 1/(1 - a). Let L(a, s) =
g(8) and /(s) = g(rs). Then

is the initial number of (normal) cells from which a
culture is grown, if the culture is a clone grown from a
single cell, no = 1.

Following the algorithm of Ma, Sandri and Sarkar
(1992), the distribution of mutants is now calculated
from equation (4):

Iff(s) = E~oqisi, then qk = (1- a)-kpk- Then,
using a Tauberian theorem (see Feller, 1970, p. 423),
as k -+ 00,

(1- lrk)-k
r(#nf)

k"n,-1
Ip.n :t.:;) ~-.

P. :~ ,iTbJ?i(k"7Ti~)i
i=O

Qi"

(1- at)l-i (1 -<rtt-i+1
where r(.) is the gamma function.

Therefore., (5)~
,~,ii

I.-. ..L
~:I'",~

'(1>where a = no/no The limiting procedures indicated
in the last paragraph give rise to the recursion rela-
tions for the other models. Table 1 summarizes these
manipulations. Only the case when the original Lea and
Coulson (1949) generating function, which is concep-
tually somewhat different, and has a radically different
asymptotic behavior of Pr as r -+ 00, will be explicit-
ly written down here. In that case (from Ma. Sandri &

Sarkar, 1992),

Pi - ~f

This argument is due to Fakes and the result was first
presented in Fakes (1993). For values of b other than
one, this can be generalized to:

Po :;: e-m

~~ m

~~~~ (9)

where m is the number of mutations that occurred dur-
ing the growth of the clone. (Formally, one can think
of m = p.n and obtain this equation as the appropriate
limit of equation (5). However, since this model effec-
tively assumes infinite population growth, one would
then have to assume that, after an infinite number of
cell divisions, the clone had grown from size I to size
n. This was the counterfactual assumption of the origi-
nal Lea-Coulson analysis that was removed by Bartlett
(1978) and Sarkar, Ma and Sandri (1992).).

The probability of obtaining a jackpot of size k
(k » I) is given by the asymptotic form of Pk as
k -+ 00. For the model considered by Sarkar, Ma and
Sandri (1992), that is. with equal fitnesses but allowing
for seeding with multiple cells and a finite number of
cell divisions, the generating function

There does not appear to be any obvious limiting pro-
croure which allows equation (9) to be obtained from
equation (8). Figure 1a plots PI: as obtained from equa-
tion (5) (with b = 1) and equation (7); Figure Ib plots
PI: from equation (5) and equation (8) with b = 0.9.
In both cases it is seen that convergence to the asymp-
totic form is quite slow. Therefore, experimentalists
would be well-advised to use equation (5) rather than
equations (7) or (8). Ma, Sandri and Sarkar (1992)
obtained fast convergence (at n 50) of PI: evaluated
by equation (6) to that obtained by using equation (9).
If n ~ no, therefore, equation (9) can be profitably
used.

Note that all these models are applicable only if
both the mutants and non-mutants have a finite growth
rate, that is, 0 < b < 00. If b = 00, g(n, s) = 0
whereas if b = 0, g( n, s) is infinite. In either case,
the formulae reported here - and in the next section -g(8) = (1 -. + a.)~(l-.)/.

/(8) = ~ih&(1-! )~L(o,.) ~ "
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cannot be used. The results diverge at these limits (in
a continuous manner).

Variances, means and mutation rates

The mean, M, and the variance, V, of any discrete
probability distribution can be obtained from its gen-
erating function using the relations M = g' (1) and
V = g"(I) + g'(I) - [g'(I)]2. Using equation (4), this

gives:

(10)~)
and

v = -pnln (;;) + 2y ((;;)6 (11)

~

teria. The general argument is that all reasonable fac-
tors influencing the original Lea and Coulson (1949)
distribution reduce the variance. Figure 2 shows the
dependence of V and In(V) on b for various values of
pn. If b < 1 (that is, the mutants are less fit in the
test-tube medium), the variance would be decreased.
The important observations are that, assuming a con-
stant mutation rate, p, the larger n is, the greater the
effect of the variance and, especially, the difference is
significant for b close to I. (In Fig. 28. for example,
V(I.O) - V(0.95) > V(0.95) - V(0.9) for each of
the curves.) Thus, the usual experiments with n > 106
will feel this effect most seriously. (If b > I, the
variance is increased. This is interesting as a theo-
retical point. but not relevant in experiments designed
to explore the possibility of directed mutations where
b ~ I). no > 1 acts to decrease the variance in either
case, verifying the common intuition about the effect
of this factor (Sarkar, Ma & Sandri, 1992).

Fluctuation analysis is one of the standard meth-
ods used to estimate mutation rates and critics of the
hypothesis of directed mutations (see, especially, Lens-
ki & Mittler, 1993) have contended that the factors list-
ed in the second paragraph of the first section invari-
ably lead to an over-estimation of mutation rates from a
fluctuation experiment. There are many different ways
in which the results of a fluctuation experiment can be
used to estimate mutation rates (see Stewart, 1994).
However, when the mean of the distribution is used
to form (at least) rough estimates as is sometimes still
done (though, as will again be emphasized below, the
mean is not a reliable estimator for mutation rates), the
fact that the mean, M, is independent of b has an unex-
pected consequence: since equation (10) has no depen-
dence on b, differential fitness of mutants and non-
mutants will have no effect on mutation rates estimated

,

The usual fonnula given for V (with b = 1) leaves
out the factor of 2 in the second term of the equa-
tion (11) (see, e.g., Lea & Coulson, 1949). The origi-
nal Lea and Coulson (1949) generating function gives
rise to infinite moments, as is well-known (Bailey,
1964; Bartlett, 1978). Fakes (1993) has shown that the
truncated moments have the asymptotic behavior of
m In( n) for the first moment and (m/ k )nk for the k-th
moment, with k > 1 (verifying the numerical work
of Ma. Sandri & Sarkar, 1992). For the other cases,
the appropriate fonnulae for the mean and the variance
can be obtained from equations (10) and (11) using
the appropriate limits as indicated in the last section.
Explicit fonnulae are presented in Table 1.

The variance of the distribution of bacterial mutants
has been routinely used as an indicator in the contro-
versy over the existence of directed mutations in bac-
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Fig. 2. Variances. Here n = 101, no = 1; In Figure (28), !be curves, from left 10 right, have IJn = 1.0, 0.1, 0.01, 0.001; in Agure (2b), !be

IinesfromloplobottomhavelJR = 1.0,0.1,0.01,0.001.

from the mean. However, if the test-tubes are ~ed
with multiple cells, then equation (10) shows that the
mutation rate calculated by (M / n In( n » would be an
under-estimate of the actual mutation rate.

Discussion

All results for b l' 1 are new. Figure 2 shows that for
0.9 < b < 1.0, the influence of b in decreasing the vari-
ance can be non-negligible for most experimental con-
texts. The result that the mean, M. is independent of b
is surprising. This result is formally due to the cancel-
lation of b in equation (10), which gives the formula for
the mean. Intuitively, it can be understood as follows.
Compare the situations when b = 1 (both mutants and

non-mutants grow at the same rate) and when b < I
(the mutants grow more slowly than the non-mutants).
In the Se(:Ond case, the Pi for small i (but i > 0) are
higher than those of the first (because there will be few-
er mutants), while the Pi for high i are lower. (The pl~
where the switch takes pl~ depends on b.) Howev~,
since M = 0 . 1'0+ 1 . Pt + 2 . P2 + . . . k . Pi + . . "

the Pi for small i are multiplied by smaller numbers
than the Pi for high i. What equation (10) shows is that
the two effects cancel ~h other out. (Alternatively,
observe that the mean of the number of mutants should
depend only on the mutation rate, Jl and the time of
clonal growth, measured by n. Thus, b and n should
not enter the formula independently. What equation
(10) shows is that the b enters both the numerator and
the denominator, and then gets cancelled.) In any case,
this result has one important consequence: the esti-
mation of mutation rates using the observed mean of
the distribution is not affected by differential fitness.

A contrary position is advocated by Lenski and Mit-
tler (1993) who argue, though present no calculation to
show, that all such factors lead to a bias in the estimated
mutation rate.

The observation that the mean, M, of the distri-
bution does not depend on b should not, however, be
interpreted as an endorsement of the M to estimate
mutation rates. As has been known since the pioneer-
ing paper of Lea and Coulson (1949) (for a recent
treatment see Stewart. 1994), the high variance of the
distribution makes the mean an unreliable estimator
though it continues to be used for rough estimates (see
Foster, 1993). Simulations reported by Stewart (1994)
show that the maximum-likelihood procedure is the
best known procedure for estimating mutation rates at

present.
The inoculation of test-tubes with more than one

cell (of presumably identical genotype), which is
inevitable in most experimental circumstances, turns
out to increase the mean but decrease the variance
of the distribution. Therefore, the theoretical analysis
reported here confirms the recent experimental results
obtained by Dijkmans, Kreps and Mergeay (1994).

As noted before. the results obtained here complete
what can be ex~ from this kind of mathemati-
cal analysis of cell growth prior to plating. Whether
equally transparent analytic results can be obtained to
incorporate post-plating f~tors - phenotypic lag, plat-
ing efficiency less than I, etc. - remains a subject for

further work.
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