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An extremum principle was postulated by Horne, Finkelstein, Shull, Zeilinger, and
Bernstein in order to derive the physically allowable parameters for sinusoidal
standing waves governing a neutron in a crystal which is immersed in a strong
external magnetic field: `̀ the expectation value of the total potential á V ñ is an
extremum .’’ We show that this extremum principle can be obtained from the varia-
tional principle used by SchroÈ dinger to derive his nonrelativistic wave equation.
We rederive the solutions found by the above-mentioned authors as well as some
additional solutions .

1. DEDICATION

Dan Greenberger is passionately devoted to research in the foundations of
physics and, at the same time, is fascinated with the explanation of concrete
physical phenomena. It is appropriate, consequently, to dedicate to him a
note showing that a variational formulation of the SchroÈ dinger equation
provides a direct justification of a practical rule for analyzing a neutron dif-
fraction experiment. Dan exhibits another duality, which no scientific paper
could adequately illustrate: he has both a strong critical intellect and a
wonderfully warm and generous character ± ± two features seldom exhibited
in the same person.
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2. A NEUTRON DIFFRACTION EXPERIMENT

Since the strong interaction of a thermal neutron with a nucleus in a
crystal is four orders of magnitude larger than the typical spin-orbit inter-
action with the radial electric field of a nucleus or a complete atom, it is
surprising to learn that the effect of the latter is greatly enhanced when the
neutrons fulfill Bragg’s condition in entering a crystal and the crystal is
immersed in a strong external magnetic field. This enhancement is a
resonance effect that has been analyzed by Horne et al. (1 ) and exhibited
experimentally by Finkelstein.( 2)

In the experimental arrangement (Fig. 1) analyzed by Horne et al., (1 )

the plane z = 0 is the entrance plane of a perfect crystal, the crystal occupy-
ing the region z > 0. The set of crystal planes responsible for the Bragg
scattering of interest lie perpendicular to the xy-plane, parallel to the
z-direction, with spacing d. The neutrons propagate in the xz-plane and
enter the crystal at the Bragg angle b for the designated set of scattering
planes,

b = sin 2 1 (p/kd ) ( 1)

Fig. 1. The plane x = 0 is the entrance surface of a perfect crys-
tal. The crystal planes of interest are perpendicular both to the
plane of the figure and to the x-axis and have spacing d. The
magnetic field B is along the z-axis. The `̀up’’ spin state U is out
of the plane of the figure, and the `̀down’’ spin state D is into the
plane.
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Here k is the neutron’s wave number, and the angle b is measured from the
z-axis in the xz-plane. A basis for the spin states is U (up along the y-axis)
and D (down along the y-axis). The external magnetic field of strength B
is imposed in the z-direction. There are three effective contributions to the
potential experienced by the neutron: First,

V N = V 0 + 2V 1 cos(Gx) , G = 2p/d ( 2)

This formula is derived by keeping the two lowest-order terms associated
with the designated set of planes in the Fourier series expansion in recipro-
cal lattice vectors of the periodic array. The array consists of delta-function
spikes located (by an idealization) at each nucleus of the crystal. Second,

V SO = ±2 V 2 sin(Gx) , + for spin state U, 2 for spin state D (3)

which is due to the interaction of the neutron’s magnetic moment l with
the v 3 E magnetic field. Third,

V ext = ± V 3 , + ( 2 ) for spin up (down) along B ( 4)

where V 3 = lB.
The strategy of Horne et al. ( 1) is to use general physical considerations

concerning Bragg diffraction to write solutions to the SchroÈ dinger equation
obtained by taking as the total potential

V = V N + V SO + V ext ( 5)

The wave function is written as

Y(x, z, t) = X(x) Z(z) T ( t) ( 6)

where the geometry shows that there is no dependence upon y. If the
neutron has a definite energy E and a definite z-component of linear
momentum, then

T ( t) = exp( 2 iEt/h) ( 7)

and

Z(z) = exp( ik z z) ( 8)

The authors claim, furthermore, that because of V SO , the function X(x )
must be a superposition of multiples of the spinors U and D , which can be
written ( somewhat more generally than they do) as

X(x) = ( cos a) XU(x) U + (sin a) exp( iw ) XD(x) D ( 9)
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The physics of Bragg diffraction requires that XU and XD are both standing
waves, approximately of the general form ( 3)

XU(x ) = sin[ (Gx/2) 2 (h/2) ] ( 10)

XD(x ) = sin[ (Gx/2) 2 (h¢ /2) ] ( 11)

There are four parameters in Eqs. (8) ± ( 11) for X(x) , which the authors of
Ref. 1 propose to determine by the extremum principle that `̀ the expecta-
tion value of the total potential á V ñ X is an extremum.’’ Actually, they
state and use this extremum principle only for the purpose of determining
the parameters h and Q , since they invoke left ± right/up ± down symmetries
in order to infer h¢ = 2 h, and they assert the equality of the amplitudes
cos a and sin a on the grounds of the `̀physics of Bragg diffraction’’ without
further explanation. We use the extremum principle to obtain constraints
on all four parameters, but we also invoke physical considerations to
eliminate some of the sets of parameters that satisfy the extremum prin-
ciple. We also note that k z , the z-component of the wave number, is con-
strained by the average value of the potential energy and hence by the
parameters h, h ¢ , w , and a, a constraint that is taken into account in the
calculation below.

The main theoretical question which we address in this note is how to
justify rigorously the extremum principle, which the authors of Ref. 1
justify only by a weak induction, noting that it holds in the already known
cases when at least one of the three magnitudes V 1 , V 2 , and V 3 is zero. It
is gratifying to report that a suitable generalization of the third equation of
the first( 4) of SchroÈ dinger’s initial series of papers on wave mechanics in
1926 provides the desired answer.

3. AN APPLICATION OF THE VARIATIONAL PRINCIPLE OF

NONRELATIVISTIC QUANTUM MECHANICS

SchroÈ dinger( 4) writes a variational principle for his wave equation in
the special case of a coulomb potential and spinless particle. Further details
are given by Morse and Feshbach. ( 5) Generalizing to a spin-half particle
with an arbitrary potential, we have the variational principle:

dJ = d # dx dy dz dt[ ( 2 a2/2m ) (grad Y + )(grad Y ) 2 Y + VY ] = 0 (12)

Here Y is spinorial, and the symbol + stands for the hermitian adjoint. The
variation d is within the class of functions constrained by Eqs. (5) ± ( 10),
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hence only over the parameters h, h ¢ , w , and a occurring in those equations.
(The first three of these parameters have values in the interval [0, 2p ) , but
the fourth is restricted to [0, p/2].) Conservation of energy entails that the
sum of the average of the kinetic energy á KE ñ and the average of the
potential energy á V ñ is equal to the total energy E, where the former
average is the integral of the first term in the brackets in Eq. (12) and the
latter average is the integral of the second term in the brackets. The
standard Lagrange multiplier technique deals with the constraint by replac-
ing Eq. (12) with

d[J 2 l( á KE ñ + á V ñ 2 E ) ]

= d # dx dy dz dt[ (1 2 l)( 2 a2/2m )( grad Y
+ ) (grad Y )

2 ( 1 2 l) Y + VY + lE c + c ] = 0 (12a)

Because Y is independent of y, the y-integration in Eq. ( 12a) is trivial.
Furthermore, Y is periodic in x, z, and t, and the integration with respect
to these variables will be performed over a very large region comprising
many equivalent cells. The integral of the kinetic energy density± ± i.e., the
first term in the integrand of Eq. (12a) ± ± is not explicitly dependent on the
four parameters. Furthermore, the integration with respect to z and t of
the potential energy density± ± i.e., the second term of the integrand of
Eq. ( 11) ± ± is trivial, leaving, after cancellation of ( 1 + l) ,

d á V ñ X = d # dx{X(x) + VX(x)} = 0 (13)

This is exactly the extremum principle stated without proof in Ref. 1. The
main purpose of this note is therefore accomplished. Since we have used
more parameters than in Ref. 1, however, it is important to work out the
consequences of the extremum principle in detail.

4. DETERMINATION OF THE PARAMETERS

We represent the spinor U by a column matrix with 1 as the upper ele-
ment and 0 as the lower element, and D by a column matrix with 0 as the
upper and 1 as the lower element; and we write the potentials of Eqs. (3)
and (4) as

V SO = [2V 2 sin(Gx) ] s 3 ( 14)

439An Extremum Principle for Neutron Diffraction



and

V ext = 2 V 3 s 1 ( 15)

where s 1 and s 3 are conveniently chosen Pauli matrices. Then the integral
of Eq. ( 13) becomes

á V ñ x = # dx{cos2 a sin2[ (Gx/2) 2 (h/2) ][V 0 + 2V 1 cos(Gx) + 2V 2 sin(Gx)]

+ sin2
a sin2[ (Gx/2) 2 (h ¢ /2) ][V 0 + 2V 1 cos(Gx) 2 2V 2 sin(Gx) ]

+ cos a sin a sin[ (Gx/2) 2 (h/2) ]

3 sin [ (Gx/2) 2 (h¢ /2) ]( 2 V 3) 2 cos w} ( 16)

By trigonometric identities,

sin2[ (Gx/2) 2 (h/2) ] = ( 1
2 )[1 2 cos Gx cos h 2 sin Gx sin h] ( 17)

and likewise with h ¢ substituted for h. Also by identities,

sin[ (Gx/2) 2 (h/2) ] sin[ (Gx/2) 2 (h¢ /2) ]

= ( 1
2 ) cos[ ( 1

2 ) (h¢ 2 h) ] 2 ( 1
2) cos[Gx 2 ( 1

2 )(h + h ¢ ) ] ( 18)

If Eqs. (17) and (18) are inserted in Eq. (16) , the integration over a poten-
tial period of length d can be performed by inspection:

á V ñ X = constant + (d/2){cos2
a[ 2 V 1 cos h 2 V 2 sin h]

+ sin2
a[ 2 V 1 cos h ¢ + V 2 sin h ¢ ]

2 V 3 cos a sin a 2 cos w cos[ ( 1
2 )(h ¢ 2 h) ]} ( 19)

where the constant is independent of the four parameters.
Setting to zero the derivatives of Eq. ( 19) with respect to each of the

four parameters yields

cos2
a[ + V 1 sin h 2 V 2 cos h]

2 V 3 cos a sin a sin[ ( 1
2) (h ¢ 2 h) ] cos w = 0 (20)

sin2
a[V 1 sin h ¢ + V 2 cos h ¢ ]

+ V 3 cos a sin a sin[ ( 1
2) (h ¢ 2 h) ] cos w = 0 (21)

V 3 cos a sin a cos[ ( 1
2 )(h ¢ 2 h) ] sin w = 0 (22)

cos a sin a{ (V 1 cos h + V 2 sin h) + ( 2 V 1 cos h¢ + V 2 sin h ¢ )

+ V 3( 2 sin 2 a+ cos2 a) cos[ ( 1
2 ) (h ¢ 2 h) ] cos w} = 0 (23)
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We consider several cases in seeking solutions to Eqs. (20) ± ( 23).

Case (1):

cos a= sin a, and sin w = 0 (24)

Then Eq. (22) is satisfied, the last term of Eq. (23) vanishes, and Eqs. ( 20)
and (21) yield

2 V 1 sin h + V 2 cos h = V 1 sin h¢ + V 2 cos h¢ ( 25)

By introducing the notation

sin c = V 1 /(V 2
1 + V 2

2 ) 1/2, cos c = V 2 /(V 2
1 + V 2

2 ) 1/2 ( 26)

we can rewrite Eq. (25) as

cos(c + h) = cos( c 2 h¢ ) ( 27)

Hence, either

h ¢ = 2 h (28a)

or

h ¢ = h + 2c ( 28b)

Now using Eqs. (24) and (16) in Eq. ( 23), we have

sin( c + h) = sin( c 2 h¢ ) ( 29)

whence either Eq. (28a) is obtained again or

h ¢ = h + 2c 2 p (29a)

Since Eq. ( 29a) is inconsistent with Eq. ( 28b) , the only way to satisfy both
Eq. ( 27) and Eq. ( 29) is by taking the option Eq. (28a). Since Eq. ( 24)
allows two values of w , namely, 0 and p, the insertion of these values in
Eq. ( 20) , or equivalently into Eq. ( 21) , yields four choices of the parameters
w , h, and h ¢ ( cos a= sin a= 1/Ï 2 in all subcases):

w = 0, h = tan 2 1 [V 2 /(V 1 + V 3 )] + g ( 30a,b)

w = p, h = tan 2 1 [V 2 /(V 1 2 V 3 ) ] + g (30c,d)

where g is either 0 or p, and tan 2 1 ( . . . ) lies in the interval [0, p ) .
Equations (30a) ± (30d) state solutions obtained in Ref. 1.
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Case (2):

cos[ ( 1
2 )(h¢ 2 h) ] = 0, sin[ ( 1

2 )(h ¢ 2 h) ] = ±1 (31a)

Then Eq. (22) is satisfied without any assumptions about w or a. Equa-
tion (31) implies

h 2 h = p or 3p ( 31b)

so that

cos h ¢ = 2 cos h, sin h ¢ = 2 sin h ( 31c)

If Eqs. ( 31a) and (31c) are inserted into Eq. (23) , we obtain

cos a sin a 2V 1 cos h = 0 (32)

whence either

cos a= 0 or sin a= 0 (32a)

or

h = p/2 (and h ¢ = 3p/2) or h = 3p/2 (and h ¢ = p/2) ( 32b)

The options of Eq. (32a) are shown in Sec. 5 to be unphysical. Either of the
options of Eq. ( 32b), when applied to Eqs. ( 20) and (21) , yields

sin2
a= cos2

a ( 33)

Using Eq. ( 33) and Eq. ( 32b) in Eq. (20) implies

cos w = V 1 /V 3 ( 34)

Hence another set of solutions of Eqs. (20) ± ( 23), not mentioned in Ref. 1,
is

w = cos 2 1 V 1 /V 3 , h = p/2 or 3p/2, h¢ = (p + h)(mod 2p )
( 35)

a= p/4

Case (3):

cos2 aÞ sin2 a ( 36)
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We do not attempt to find the parameters satisfying Eqs. (20) ± ( 23) for this
case, because the checking in Sec. 5 of physical possibility poses problems
which go beyond the scope of this paper. However, the special case of
Case 3 stated in Eq. (32a) , in which the neutrons are completely spin
polarized, is discussed in Sec. 5.

5. THE SCHROÈ DINGER EQUATION

If the expressions for the potential of Eqs. (5) , ( 2), ( 14), and (15) are
used in the variational principle Eq. ( 12) , then the standard Euler ±
Lagrange method yields the SchroÈ dinger equation,

( ia ) ¶ Y/ ¶ t = ( 2 a2/2m ) grad2
Y

+ [V 0 + 2V 1 cos(Gx) + 2V 2 sin(Gx) s 3 2 V 3 s 1] Y ( 37)

If we insert the trial functions given by Eqs. (6) ± ( 11) and perform the t, y
and z integrations, we obtain the coupled equations

cos a{ ( 2 a/2m ) (d 2/dx2 ) + (a2/2m ) k 2
z

2 E + V 0 + 2V 1 cos(Gx) + 2V 2 sin(Gx)} sin[ (Gx/2) 2 (h/2)]

= sin a sin[ (Gx/2) 2 (h ¢ /2)] exp( iw ) (38a)

sin a{ ( 2 a2/2m )(d 2/dx2 ) + (a 2/2m ) k 2
z 2 E + V 0

+ 2V 1 cos(Gx) 2 2V 2 sin(Gx)} sin[ (Gx/2) 2 (h¢ /2) ] exp( iw )

= +cos a sin[ (Gx/2) 2 (h/2) ] ( 38b)

Equations (38a) and (38b) imply that w = 0.
We do not expect these equations to be satisfied exactly for any values

of the parameters, because in the case that has been investigated rigo-
rously, (3) when V 2 and V 3 are zero, the exact solutions for the uncoupled
equations are not sine functions but Mathieu functions. In Ref. 3 it is
shown that the sine functions of Eqs. ( 10) and (11) are good approxima-
tions when the kinetic energy of the neutrons greatly exceeds the average
potential energy. Rigorous solutions of the coupled Eqs. (38a) and (38b)
are beyond the scope of this note, but we anticipate that they, too, will
involve Mathieu functions.

We can, however, treat the subcase mentioned in Sec. 4, in which
either cos a or sin a is zero, i.e., the neutrons are spin polarized along either
U or D. For concreteness assume the former. Then the left-hand side of
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Eq. ( 38a) is zero, while the right-hand side is a sine function with
amplitude unity. Thus, Eq. (38a) is grossly violated. Hence one of the
choices of parameters which satisfies the extremum principle of Secs. 3 and
4 is shown by a direct inspection of the SchroÈ dinger equation to be physi-
cally impossible. Of course, spin-polarized solutions of Eqs. ( 38a) and
(38b) are not precluded if the wave functions are taken to be linear com-
binations of the sine functions of the form of Eqs. ( 10) or ( 11) , or linear
combinations of Mathieu functions, but these possibilities are not
investigated here.
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