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Abstract A pair of photons generated in the nonlinear process of spontaneous parametric
down conversion is, in general, entangled so as to contain strong energy, time,
polarization, and momentum quantum correlations. This entanglement involving
more than one pair of quantum variable, known as hyper-entanglement, serves as a
powerful tool in fundamental studies of foundations of the quantum theory, in the
development of novel information processing techniques, and in the construction
of new quantum measurement technologies, such as quantum ellipsometry.

Keywords: Quantum information/ quantum optics/ quantum communication/ entanglement/
quantum technology

1. Introduction

Entangled-photon states produced by spontaneous parametric down- conver-
sion provide a natural basis for quantum measurement and quantum informa-
tion processing, because they are not prone to decoherence and are composed
of photons that remain higher correlated even after propagating to widely sepa-
rated locations in space. The strong quantum correlations naturally present be-
tween down-conversion photons allow for uniquely quantum mechanical forms
of measurement to be performed, which offer advantages over their classical
counterparts. These states also allow quantum information to be encoded, and
their robust coherence allows information to be processed in uniquely quantum
mechanical ways. In order to realize the full potential of entangled-photon
states, it is vital to understand and exploit all those features present in their
quantum states from the point of their creation, during their propagation and
until their detection. Here we consider such states of multi-photons produced
by spontaneous parametric down-conversion (SPDC). The unique properties
of quantum systems captured by these states are strikingly manifested when
quantum intensity correlation interferometry is performed.

Quantum-interference patterns generally arise in contexts where only a sin-
gle parameter, such as polarization, is actively manipulated. However, it has
been shown [1] that by making use of all the parameters naturally relevant
one can, in fact, modify the interference pattern associated with one param-
eter such as polarization, by manipulating others, such as the frequency and
transverse wave vector. This interdependence of physical parameters has its
origin in the non-factorizability of the quantum state produced in the process of
spontaneous parametric down-conversion (SPDC) into a product of functions
of single parameters, such as polarization, frequency and wave-vector. For ex-
ample, inconsistencies between existing theoretical models and the results of
femtosecond down-conversion experiments commonly arise as a result of fail-
ing to consider the full Hilbert space occupied by the entangled quantum state,
with its dependency on multiple variables. In particular, femtosecond SPDC
models have ignored transverse wave-vector components and, as a result, have
not accounted for the previously demonstrated angular spread of such down-
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converted light [2]. However, a comprehensive approach to quantum states,
such as has been recently pursued, permits intelligent engineering of quantum
states. This approach will be discussed in the following section.

In many practical applications, technology can benefit from the fact that,
though each individual subsystem may actually possess inherent uncertainties,
the components of the entangled pair may exhibit no such uncertainty relative
to one another. One can exploit this unique aspect of entanglement for the
development of a new class of optical measurements, those of quantum optical
metrology. Entangled states have been used with great effectiveness during
the last twenty years for carrying out striking experiments, for example those
demonstrating non-local dispersion cancellation [3], entangled-photon-induced
transparency [4], and entangled-photon spectroscopy with monochromatic light
[5]. The practical availability of entangled beams has made it possible to con-
duct such fundamental physics experiments without having to resort to costly
instruments such as particle colliders and synchrotrons. A new generation of
techniques for quantum metrology and quantum information processing is un-
der development, which will be discussed in detail in following sections.

Entangled photons first became of interest in probing the foundations of
quantum theory. The often deeply counterintuitive predictions of quantum
mechanics have been the focus of intensive discussions and debates among
physicists since the introduction of the formal theory in the 1930’s. Since then,
entangled states of increasing quality have been prepared in order to progres-
sively better differentiate quantum behavior from classical behavior. Entangled
quantum systems are composed of at least two component subsystems and are
described by states that cannot be written as a product of independent subsystem
states,

|Ψ〉 6= |ψ1〉 ⊗ |ψ2〉 , (1)

for any two quantum states |ψn〉 of the individual subsystems. Schrödinger [6],
who first defined entanglement, stated, called entanglement “the characteristic
trait of quantum mechanics.” In 1935, Einstein, Podolsky and Rosen (EPR) [7]
presented an influential argument based on analyzing entangled states of two
systems described by infinite superpositions of such as

|Ψ(x1, x2)〉 =
∞
∑

i=1

cn(x1, x2)|ψn(x1)〉|φn(x2)〉 , (2)

where the ψi and φi are elements of orthogonal state bases, that quantum me-
chanics is an incomplete theory of physical objects, as judged from the per-
spective of metaphysical realism.

This theoretical argument was later followed by experiments by Wu and
Shaknov [8] on electron-positron singlets that amounted to practical tests of
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nonclassical behavior. Simpler entangled states such as these,

|Ψ〉 =
1√
2
(| ↑〉| ↓〉 − | ↓〉| ↑〉) , (3)

were discussed by David Bohm [9] and analyzed by Bohm and Aharonov [10].
The systematic study of quantum-scale behavior that could not be explained
by the class of local, deterministic hidden variables theories then began, with
a focus on such states of strongly entangled particle pairs. In 1964, John Bell
derived a general inequality that introduced a clear empirical boundary between
local, classically explicable behavior and less intuitive forms of behavior, in-
volving a notion that he called “nonlocality” [11].

By the early 1980s, advances in laser physics and optics had allowed for an
entirely new generation of experiments by the group of Aspect at Orsay, France
based on the use of photon pairs produced by nonlinear laser excitations of
an atomic radiative cascade [12]. These experiments paved the way for future
quantum-interferometric experiments involving entangled photons, finally pro-
ducing an unambiguous violation of a Bell-type inequality by tens of standard
deviations and strong agreement with quantum-mechanical predictions. By
that time, a more powerful source of entangled photons, the optical parametric
oscillator (OPO), had also already been developed, independently of tests of ba-
sic principles of quantum mechanics. Indeed, OPOs were operational in major
nonlinear optics research groups around the world almost immediately follow-
ing the development of the laser (for more details, see [13]). Shortly after the
first OPOs were introduced, a number of experimental groups independently
discovered the spontaneous emission of polarized photons in an optical para-
metric amplifier. OPO spontaneous noise, which was very weak, occupied a
very broad spectral range, from near the blue pump frequency through to the
infrared absorption band. A corresponding spatial distribution of different fre-
quencies followed the well known and simple phase-matching conditions of
nonlinear optical systems.

The statistics of photons appearing in such spontaneous conversion of one
photon into a pair had been analyzed in the 1960s, demonstrating the very strong
correlations between these photons in space, time and frequency. Burnham and
Weinberg [14] first demonstrated the unique and explicitly nonclassical features
of states of two-photons generated in the spontaneous regime from the para-
metric amplifier. Quantum correlations involving photon pairs were exploited
again 10 years later in experimental work by Malygin, Penin and Sergienko
[15]. The use of highly correlated pairs of photons for the explicit demonstra-
tion of Bell inequality violations has become popular and convenient since the
mid-1980s and has been widely exploited since then. The process of generat-
ing these states is now known as “spontaneous parametric down-conversion”
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(SPDC), and has become widely utilized. New, high-intensity sources of SPDC
have been developed over the last two decades (see, for example, [16]).

Spontaneous parametric down-conversion of one photon into a pair is said to
be of one of two types, based on the satisfaction of “phase-matching” conditions
of either type I or of type II, corresponding to whether the two photons of the
down-conversion pair have the same polarization or orthogonal polarizations,
respectively. The two photons of a pair can also leave the down-converting
medium either in the same direction or in different directions, referred to as
the collinear and non-collinear cases, respectively. A medium is required for
down-conversion, as conservation laws exclude the decay of one photon into a
pair in vacuum. The medium is usually some sort of birefringent crystal, such
as potassium dihydrogen phosphate (KDP), having a χ(2) optical nonlinearity.
Upon striking such a nonlinear crystal, there is a small probability (on the order
of 10−7) that an incident pump photon will be down-converted into a two-
photon (see Fig. 1). If down-conversion occurs, these conserved quantities
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Figure 1. Spontaneous parametric down-conversion [17].

are carried into that of the resulting photon pair under the constraints of their
respective conservation laws, so that the phases of the corresponding wave-
functions match, in accordance with the relations

ωs + ωi = ωp, ks + ki = kp, (4)
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referred to as the phase-matching conditions, where the ki and ωi are momenta
and frequencies for the three waves involved. The individual photons resulting
from down-conversion are often arbitrarily called “signal” (s) and “idler” (i),
for historical reasons.

When the two photons of a pair have different momenta or energies, en-
tanglement will arise in SPDC, provided that the alternatives are in principle
experimentally indistinguishable. The two-photon state produced in type-I
down-conversion can be written

|Ψ〉 =
∑

s,i

δ(ωs + ωi − ωp)δ(ks + ki − kp)|ks〉 ⊗ |ki〉 . (5)

In this case, the two photons leave the nonlinear medium with the same polar-
ization, namely that orthogonal to the polarization of the pump beam. Down-
conversion photons are thus produced in two thick spectral cones, one for each
photon, within which two-photons appear each as a pair of photons on opposite
sides of the pump-beam direction (see Fig. 1). In the mid-1980s, Hong, Ou and
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Figure 2. Hong-Ou-Mandel interferometer [18].

Mandel [18] created noncollinear, type-I phase-matched SPDC photon pairs in
KDP crystal using an ultraviolet continuous-wave (cw) laser pump beam (see
Fig. 2). This experiment empirically demonstrated the strong temporal corre-
lation of the two-photons. Filters were placed in the apparatus, determining the
frequency spread of the down-converted photons permitted to interfere. Since
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this experiment, the common approach to quantum interferometry has been to
choose a single entangled parameter of interest and to eliminate the dependence
of the quantum state on all other parameters. For example, when investigat-
ing polarization entanglement, strong spectral and spatial filtering are typically
imposed in an attempt to restrict attention to the polarization variable alone.

A more general approach to this problem is to exploit the multi-faceted na-
ture of photon entanglement from the outset. In such an approach, the observed
quantum-interference pattern in one parameter, such as polarization, can be
modified by controlling the dependence of the state on the other parameters,
such as frequency and transverse wave vector. A more complete theory of spon-
taneous parametric down-conversion allows us to understand the full character
of fourth-order quantum interference in many valuable experiments. SPDC
gives rise to a quantum state that is entangled in multiple parameters, such as
three-dimensional wave-vector and polarization. Many experiments designed
to verify the non-factorizability of classes of quantum states, the mathematical
essence of entanglement, are carried out in the context of models that fail to
consider the overall relevant Hilbert space and are restricted to entanglement
of only a single aspect of the quantum state, such as energy [19], momentum
[20], or polarization [21]. Indeed, inconsistencies emerge in the analysis of
quantum-interferometric experiments involving down-conversion under such
circumstances, a fact that has been highlighted by the failure of the conven-
tional theory of ultrafast parametric down-conversion to characterize quantum-
interference experiments. This is because femtosecond SPDC models have
ignored transverse wave-vector components and have thereby not accounted
for the previously demonstrated angular spread of such down-converted light
[22].

2. Hyperentangled State Engineering

In order to better understand the quantum systems produced in spontaneous
parametric down-conversion and the possibilities they provide, it is useful to
analyze their behavior during each of the three distinct stages of their passage
through any experimental apparatus, that is, the generation, propagation, and
detection of the two-photon optical state. Begining with quantum state genera-
tion, one can see how to take advantage of the state by systematically controlling
it during propagation and to extract useful information through the use of of a
properly chosen detection scheme [23].

2.1 Generation

The relatively weak interaction between the three modes of the electro-
magnetic field participating in SPDC within the nonlinear crystal allows us
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to consider the two-photon state generated within the confines of first-order
time-dependent perturbation theory. The two-photon state can be written

|Ψ(2)〉 ∼ i

h̄

t
∫

t0

dt′ Ĥint(t
′) |0〉 , (6)

with the interaction Hamiltonian

Ĥint(t) ∼ χ(2)
∫

V
dr Ê(+)

p (r, t)Ê(−)
o (r, t)Ê(−)

e (r, t) +H.c. , (7)

where χ(2) is the second-order susceptibility and V is the volume in which the
interaction can take place. The field operator Ê(±)

j (r, t) represents the positive-
(negative-) frequency portion of the electric-field operatorEj , with the subscript
j representing the pump (p), ordinary (o), and extraordinary (e) waves at position
r and time t, and H.c. stands for Hermitian conjugate. The high intensity of the
pump field allows one to represent it by a classical c-number, with an arbitrary
spatiotemporal profile given by

Ep(r, t) =

∫

dkp Ẽp(kp)e
ikp·re−iωp(kp)t , (8)

where Ẽp(kp) is the complex-amplitude of the field, as a function of the
wave-vector kp. Decomposing the three-dimensional wavevector kp into two-
dimensional transverse wavevector qp and a frequency part ωp, this is

Ep(r, t) =

∫

dqp dωp Ẽp(qp;ωp)e
iκpzeiqp·xe−iωpt , (9)

where x spans the transverse plane perpendicular to the propagation direction
z, as illustrated in Fig. 3. The ordinary and extraordinary modes of the field
can similarly be expressed in terms of the creation operators â†(q, ω) as

Ê
(−)
j (r, t) =

∫

dqj dωj e
−iκjze−iqj ·xeiωjt â†j(qj , ωj) , (10)

where j = o, e. The longitudinal component of momentum, k, which we denote
byκ, can be written in terms of the (q, ω)pair [24] asκ =

√

[n(ω, θ)ω/c]2 − |q|2,
where c is the speed of light in vacuum, θ is the angle between k and the optical
axis of the nonlinear crystal (see Fig. 3), and n(ω, θ) is the index of refraction
in the nonlinear medium.

The quantum state after the nonlinear crystal is thus

|Ψ(2)〉 ∼
∫

dqodqe dωodωe Φ(qo,qe;ωo, ωe)â
†
o(qo, ωo)â

†
e(qe, ωe)|0〉 , (11)
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Figure 3. Decomposition of a three-dimensional wavevector (k) into longitudinal (κ) and
transverse (q) components [23]. The angle between the optical axis of the nonlinear crystal
(OA) and the wavevector k is θ. θOA is the angle between the optical axis and the longitudinal
axis (e3). The spatial walk-off of the extraordinary polarization component of a field travelling
through the nonlinear crystal is characterized by M .

with

Φ(qo,qe;ωo, ωe) = Ẽp(qo + qe;ωo + ωe)L sinc

(

L∆

2

)

e−iL∆

2 , (12)

where L is the thickness of the crystal and ∆ = κp − κo − κe, κj (j = p, o, e)
being related to the indices (qj , ωj). Recall that the inextricable dependencies
of the function Φ(qo,qe;ωo, ωe) on its several variables in Eqs. (11) and (12)
is the essence of multi-parameter entanglement.

2.2 Propagation

Propagation of the down-converted light between the planes of genera-
tion and detection is described by the transfer function of the optical system.
The photon-pair probability amplitude at the space-time points (xA, tA) and
(xB , tB) of detection is defined by

A(xA,xB ; tA, tB) = 〈0|Ê(+)
A (xA, tA)Ê

(+)
B (xB , tB)|Ψ(2)〉 , (13)
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Figure 4. (a) Illustration of the idealized setup for observation of quantum interference using
SPDC [23]. BBO represents a beta-barium borate nonlinear optical crystal, Hij(xi,q; ω) is
the transfer function of the system, and the detection plane is represented by xi. (b) For most
experimental configurations the transfer function can be factorized into diffraction-dependent
[H(xi,q; ω)] and diffraction-independent (Tij) components.

where the quantum operators at the detection locations are [25]

Ê
(+)
A (xA, tA) =

∫

dq dω e−iωtA [HAe(xA,q;ω)âe(q, ω)+

+ HAo(xA,q;ω)âo(q, ω)] ,

Ê
(+)
B (xB , tB) =

∫

dq dω e−iωtB [HBe(xB ,q;ω)âe(q, ω)+

+HBo(xB ,q;ω)âo(q, ω)] . (14)

The transfer function Hij (i = A,B and j = e, o) describes the propagation of
a (q, ω) mode from the nonlinear-crystal output plane to the detection plane.
The photon-pair probability amplitude is thus:

A(xA,xB ; tA, tB) =

∫

dqodqe dωodωeΦ(qo,qe;ωo, ωe)

×
[

HAe(xA,qe;ωe)HBo(xB ,qo;ωo) e
−i(ωetA+ωotB)

+HAo(xA,qo;ωo)HBe(xB ,qe;ωe) e
−i(ωotA+ωetB)

]

. (15)
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By appropriately choosing the optical system, the overall probability amplitude
can be constructed as desired. The influence of the optical system on the photon-
pair wave-function appearts in the above expressions through the functionsHAe ,
HAo, HBe, and HBo.

2.3 Detection

The character of the detection process will depend on the nature of the appara-
tus. Slow detectors, for example, perform temporal integration while detectors
of finite area perform spatial integration. One limit is that when the temporal
response of a point detector is spread negligibly with respect to the character-
istic time scale of SPDC, which is given by the inverse of down-conversion
bandwidth. In this limit, the coincidence rate reduces to

R = |A(xA,xB ; tA, tB)|2 . (16)

The other limit, typical of quantum-interference experiments, is reached as a
result of the use of slow bucket detectors. In such a situation, the coincidence
count rate R is given in terms of the photon-pair probability amplitude by

R =

∫

dxAdxB dtAdtB |A(xA,xB ; tA, tB)|2 . (17)

2.4 Engineering Basics

Having completed this formal analysis, one can begin to consider specific
configurations of a quantum interferometer that might take practical advantage
of the multiple parameter dependence of hyperentangled quantum states. This
choice corresponds to a specific form of the the transfer function Hij . Almost
all quantum-interference experiments performed to date have the common fea-
ture that Hij in Eq. (14), with i = A,B and j = o, e, can be separated into
diffraction-dependent and polarization-dependent terms as

Hij(xi,q;ω) = Tij H(xi,q;ω), (18)

where the diffraction-dependent terms are grouped in H and the diffraction-
independent terms are grouped in Tij (see Fig. 4). Free space, apertures, and
lenses, for example, can be treated as diffraction-dependent elements while
beam splitters and waveplates can be considered as diffraction-independent
elements.

For example, in collinear SPDC configurations in the presence of a rela-
tive optical-path delay τ between the ordinary and the extraordinary polarized
photons, Tij is Tij = (ei · ej) e

−iωτδej , where the δej is the Kronecker delta,
with δee = 1 and δeo = 0, the unit vector ei specifies the orientation of each
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polarization analyzer in the experimental apparatus, and ej is the unit vector
that describes the polarization of each down-converted photon.

The general photon-pair probability amplitude given in Eq. (14), can be
separated into diffraction-dependent and -independent elements:

A(xA,xB ; tA, tB) =

∫

dqodqe dωodωe Φ(qo,qe;ωo, ωe)

×
[

TAeH(xA,qe;ωe)TBoH(xB ,qo;ωo) e
−i(ωetA+ωotB)

+TAoH(xA,qo;ωo)TBeH(xB ,qe;ωe) e
−i(ωotA+ωetB)

]

. (19)

Taking the angle between ei and ej to be 45◦, Tij can be simplified by using
(ei ·ej) = ± 1√

2
[21], and the photon-pair probability amplitude can be written

A(xA,xB ; tA, tB) =

∫

dqodqe dωodωe Ẽp(qo + qe;ωo + ωe)L

×sinc

(

L∆

2

)

e−iL∆

2 e−iωeτ

×
[

H(xA,qe;ωe)H(xB ,qo;ωo) e
−i(ωetA+ωotB)

−H(xA,qo;ωo)H(xB ,qe;ωe) e
−i(ωotA+ωetB)

]

. (20)

Substitution of Eq. (19) into Eq. (17) provides the coincidence-count rate, given
an arbitrary pump profile and optical system.

The diffraction-dependent elements in most of these experimental arrange-
ments are illustrated in Fig. 5(b). To describe this system via the function H ,
one needs to derive the impulse response function (the point-spread function)
for these optical systems. A typical aperture diameter of b = 1 cm at a distance
d = 1 m from the crystal output plane yields b4/4λd3 < 10−2 using λ = 0.5
µm, guaranteeing the validity of the Fresnel approximation. Without loss of
generality, one can use a two-dimensional (one longitudinal, one transverse
dimension) analysis of the impulse response function. The extension to three
dimensions is then straightforward. The impulse response function of the full
optical system, from the crystal output plane to the detector input plane is

h(xi, x;ω) = F(ω) ei
ω
c
(d1+d2+f) e−i

ωx2

i
2cf

[

d2

f
−1
]

e
i ωx2

2cd1

∫

dx′p(x′)e
iωx′2

2cd1 e
−iω

c
x′

[

x
d1

+
xi
f

]

, (21)

which allows one to determine the transfer function of the system to be deter-
mined in terms of transverse wave-vectors via

H(xi,q;ω) =

∫

dxh(xi,x;ω) eiq·x , (22)
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Figure 5. (a) Schematic of the experimental setup for observation of quantum interference
using type-II collinear SPDC [23]. (b) The path from the crystal output plane to the detector input
plane. F(ω) represents an (optional) filter transmission function, p(x) is an aperture function,
and f is the focal length of the lens.

so that the transfer function takes the explicit form

H(xi,q;ω) =

[

ei
ω
c
(d1+d2+f)e−i

ω|xi|
2

2cf

[

d2

f
−1
]

e−i
cd1

2ω
|q|2P̃

(

ω

cf
xi − q

)

]

F(ω),

(23)
where P̃

(

ω
cf

xi − q
)

is

P̃

(

ω

cf
xi − q

)

=

∫

dx′p(x′)e−i
ωx

′·xi
cf eiq·x

′
. (24)

Using Eq. (23) one can now describe the propagation of the down-converted
light from the crystal to the detection planes. Note that, since no birefringence
is assumed, this transfer function is the same for both polarization modes (o,e).

Continuing the analysis in the Fresnel approximation and using the approx-
imation that the SPDC fields are quasi-monochromatic, one finds the form of
the coincidence-count rate defined in Eq. (17):

R(τ) = R0 [1− V (τ)] , (25)
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where R0 is the coincidence rate outside the region of quantum interference.
In the absence of spectral filtering, we have

V (τ) = Λ

(

2τ

LD
− 1

)

sinc

[

ω0
pL

2M2

4cd1

τ

LD
Λ

(

2τ

LD
− 1

)

]

P̃A

(

−
ω0

pLM

4cd1

2τ

LD
e2

)

P̃B

(

ω0
pLM

4cd1

2τ

LD
e2

)

, (26)

whereD = 1/uo−1/ue with uj denoting the group velocity for the j-polarized
photon (j = o, e), M = ∂ lnne(ω

0
p/2, θOA)/∂θe, Λ(x) = 1 − |x| for −1 ≤

x ≤ 1 and zero otherwise, and P̃i (with i = A,B) is the normalized Fourier
transform of the squared magnitude of the aperture function pi(x):

P̃i(q) =

∫ ∫

dy pi(y)p∗i (y) e−iy·q
∫ ∫

dy pi(y)p∗i (y)
. (27)

The profile of the function P̃i within Eq. (25) plays a key role in our analysis.
Extremely small apertures are commonly used to reach the one-dimensional

plane wave limit. However, the interest here is in just those effects that this
excludes. As shown in Eq. (25), this gives P̃i functions that are broad in
comparison with Λ, so that Λ determines the shape of the quantum interference
pattern, resulting in a symmetric triangular dip. The sinc function in Eq. (25)
is approximately equal to unity for all practical experimental configurations,
and therefore plays an insignificant role. On the other hand, this sinc function
represents the difference between the familiar one-dimensional model (which
predictsR(τ) = R0

[

1− Λ
(

2τ
LD

− 1
)]

, a perfectly triangular interference dip)
and a three-dimensional model in the presence of a very small on-axis aperture.
It is clear from Eq. (25) that V (τ) can be altered dramatically by carefully
selecting the aperture profile.

2.5 Realizations

These results allow one to go about quantum state engineering in a system-
atic fashion in various situations. For example, consider the effect on quantum
interference of polarization of a circular aperture of diameter b. Both the aper-
ture shape and size, via the function P̃ (q), will have significant effects on the
polarization quantum-interference patterns. Such an aperture can be described
by the Bessel function J1,

P̃(q) = 2
J1 (b |q|)
b |q| . (28)

Consider the experimental arrangement illustrated in Fig. 5(a). An experi-
ment has been performed with SPDC with the pump being a single-mode cw
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argon-ion laser with a wavelength of 351.1 nm and a power of 200 mW de-
livered to a β-BaB2O4 (BBO) crystal with a thickness of 1.5 mm, aligned
to produce collinear and degenerate Type-II spontaneous parametric down-
conversion. Collinear down-conversion beams were sent through a delay line
comprised of a z-cut crystalline quartz element (with its fast axis orthogonal
to that of the BBO crystal) whose thickness was varied to control the relative
optical-path delay between the photons of a down-converted pair. The charac-
teristic thickness of the quartz element was much less than the distance between
the crystal and the detection planes, yielding negligible effects on the spatial
properties of the SPDC. The photon pairs were then sent to a non-polarizing
beam splitter. Each arm of the polarization intensity interferometer following
this beam splitter contained a Glan-Thompson polarization analyzer set to 45◦,
a convex lens to focus the incoming beam, and an actively quenched Peltier-
cooled single-photon-counting avalanche photodiode detector [denoted DA and
DB in Fig. 5(a)]. Note also that no spectral filtering was used in the selection
of the signal and idler photons for detection. The counts from the detectors
were conveyed to a coincidence counting circuit with a 3-ns coincidence-time
window.

Figure 6. Normalized coincidence-count rate R(τ )/R0, as a function of the relative optical-
path delay τ , for different diameters of a circular aperture placed 1 m from the crystal [23].
The symbols represent experimental results and the solid curves are theoretical plots. The
dashed curve represents the one-dimensional (1D) plane wave theory, which is seen clearly to
be inadequate for large aperture diameters.
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For this situation involving a cw laser pump, the observed normalized coin-
cidence rates correspond to the sort of quantum-interference pattern displayed
in Fig. 6, as relative optical-path delay is varied, for various values of aper-
ture diameter b placed 1 m from the crystal. The observed interference pattern
is seen to be more strongly asymmetric for larger values of b. As the aper-
ture becomes wider, the phase-matching condition between the pump and the
generated down-conversion allows a greater range of (q, ω) modes to be ad-
mitted. Those (q, ω) modes that overlap less introduce more distinguishability
and reduce the visibility of the quantum-interference pattern and introducing an
asymmetric shape. The experimentally observed visibility for various aperture
diameters, using the 1.5-mm thick BBO crystal employed in our experiments
(symbols in Fig. 6), is consistent with this theory. When the pump field is
pulsed, there are additional limitations on the visibility that emerge as a result
of the broad spectral bandwidth of the pump field [1, 26, 2, 27]. The asymmetry
of the interference pattern for increasing crystal thickness is also more visible
in the pulsed than in the cw regime.

Figure 7. Normalized coincidence-count rate as a function of the relative optical-path delay
for a 1× 7-mm horizontal slit (circles) [23]. The data were obtained using a 351-nm cw pump
and no spectral filters. Experimental results for a vertical slit are indicated by squares. Solid
curves are the theoretical plots for the two orientations.

Circular apertures are used after the down-conversion crystal in the major-
ity of quantum-interference experiments involving relative optical-path delay.
However, by again departing from convention, one can also use a vertical slit
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aperture to investigate the effect of and exploit transverse symmetry of the gen-
erated photon pairs. The solid curve of Fig. 7 shows the theoretical interference
pattern expect for the vertical slit aperture. The data for the case of a horizontal
slit shown by triangles is the normalized coincidence rate for a cw-pumped 1.5-
mm BBO. Noting that the optical axis of the crystal falls along the vertical axis,
these results verify that the dominant portion of distinguishability lies along
the optical axis. The orthogonal axis (horizontal here) provides a negligible
contribution to distinguishability, so that virtually full visibility is achievable,
despite the wide aperture along the horizontal axis. The most dramatic effect
observed is the symmetrization of the quantum-interference pattern and the re-
covery of the high visibility, despite the wide aperture along the horizontal axis.
A practical benefit of such a slit aperture is that the count rate can be increased
dramatically by limiting the range of transverse wave-vectors along the optical
axis of the crystal, inducing indistinguishability and allowing a wider range
along the orthogonal axis to increase the collection efficiency. A high count
rate is required for many applications of entangled photon pairs. Researchers
have generally suggested complex means of generating high-flux photon pairs
[16], but we see that intelligent state engineering provides an elegant solution.

The optical elements in the situations above have been assumed to be placed
concentrically about the longitudinal (z) axis. Under such circumstances, a
single aperture before the beam splitter yields the same transfer function as two
identical apertures placed in each arm after the beam splitter, as shown in Fig. 8.
However, the quantum-interference pattern is also sensitive to a relative shift
of the apertures in the transverse plane. To account for this, one must include
an additional factor in Eq. (25):

cos

[

ωpLM

4cd1

2τ

LD
e2 · (sA − sB)

]

, (29)

where si (with i = A,B) is the displacement of each aperture from the longi-
tudinal (z) axis. This extra factor provides yet another degree of control on the
quantum-interference pattern for a given aperture form.

As in the case of the shifted slit, V (τ) becomes negative for certain values
of the relative optical-path delay (τ ), and the interference pattern displays a
peak rather than a triangular dip, as shown in Fig. 8, something of significant
practical value. One can thus use one physical parameters to effect a change
in the interference pattern associated with another parameter. In this example,
observations made at the center of the interference pattern show what would
be a polarization destructive interference minimum become an polarization
interference maximum, when a spatial parameter (wave-vector) is altered.

The interference patterns generated in these experiments are seen to be in-
fluenced by the profiles of the apertures in the optical system, which admit
wave vectors in specified directions. Including a finite bandwidth for the pump
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Figure 8. Inversion of the central interference feature of polarization interference through the
use of spatial parameters [23]. The normalized coincidence-count rate is shown as a function of
the relative optical-path delay, for an annular aperture in one of the arms of the interferometer.

field strengthens this dependence on the aperture profiles, clarifying why the
asymmetry was first observed in the ultrafast regime. The multi-parameter en-
tangled nature of the two-photon state generated by SPDC allows transverse
spatial effects to play a role in polarization-based quantum-interference experi-
ments. In contrast to the usual single-direction polarization entangled state, the
wide-angle polarization-entangled state offers a richness that can be exploited
in a variety of applications.

3. Quantum Metrology and Quantum Information

There are several practical applications that become available when using
entangled states of light. Such states have been used with great effectiveness
during the last twenty years for innovative research out definitive experiments,
such as realizing non-local dispersion cancellation, entangled-photon-induced
transparency, and entangled-photon spectroscopy with monochromatic light.
Though each individual subsystem of an entangled system exhibits inherent
uncertainties, the elements of the entangled pair may exhibit no uncertainty
relative to one another. For example, while the time of arrival of an individ-
ual particle may be totally random, an entangled pair following the same path
always arrives simultaneously. One can exploit this unique aspect of entan-
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glement for the development of a new class of optical measurements, those of
quantum optical metrology. The availability of entangled beams has made it
possible to conduct such experiments without having to resort to costly instru-
ments such as particle colliders, and synchrotrons. Non-classical correlations
between photons generated in SPDC are not diminished by separations, however
large, between them during propagation, even when lying outside one another’s
the light cone. The interferometers developed for this purpose can exploit the
persistence of entanglement over distances for the purposes of quantum com-
munications, such as in quantum cryptography.

The non-local features of two-photon entangled states have opened up new
realms of high-accuracy and absolute optical metrology. The research of the
last two decades has produced several new technologies: 1) Quantum key dis-
tribution, more commonly known as quantum cryptography; 2) A method for
absolute measurement of photodetector quantum efficiency that does not re-
quire the use of conventional standards of optical radiation, such as blackbody
radiation; 3) A technique for determining polarization-mode-dispersion with
attosecond precision; 4) A method of absolute ellipsometry which requires nei-
ther source nor detector calibration, nor a reference sample. While attention
here is restricted to the above four techniques, a range of other new quantum
techniques has also been pursued, including quantum imaging [28, 29], optical
coherence tomography [30] and quantum holography [31].

3.1 Quantum Cryptography Using Entangled Photon
Pairs

The currently most advanced form of quantum information experimenta-
tion is that taking place in quantum cryptography, in particular in quantum
(cryptographic) key distribution (QKD). The security of QKD is not based on
complexity, but on quantum mechanics, since it is generally not possible to
measure an unknown quantum system without altering it and quantum states
cannot be perfectly copied [32]. The basic QKD protocols are the BB84 scheme
(Bennett and Brassard [33]) and the Ekert scheme [34]. BB84 uses single pho-
tons transmitted from sender (Alice) to receiver (Bob), which are prepared at
random in four partly orthogonal polarization states: 0, 45, 90 and 135 degrees.
When an eavesdropper, Eve, tries to obtain information about the polarization,
she introduces observable bit errors, which Alice and Bob can detect by com-
paring a random subset of the generated keys. By contrast, the Ekert protocol
uses entangled pairs and a Bell-type inequality to transmit quantum key bits.
In the Ekert scheme, both Alice and Bob receive one particle of the entangled
pair. They perform measurements along at least three different directions on
each side, where measurements along parallel axes are used for key generation,
and those along oblique angles are used for security verification.
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Several innovative experiments have been made using entangled photon pairs
to implement quantum cryptography, for example [35, 36, 37]. Quantum cryp-
tography experiments have had two principal implementations: weak coherent
state realizations of QKD and those using two-photons. The latter approach
made use of the nonlocal character of polarization Bell states generated by spon-
taneous parametric down-conversion. The strong correlation of photon pairs,
entangled in both energy/time and momentum/space, eliminates the problem of
excess photons faced by the coherent-state approach, where the exact number
of photons actually injected is uncertain. In the entangled-photon technique,
one of the pair of entangled photons is measured by the sender, confirming for
the sender that the state is the appropriate one. It has thus become the favored
experimental technique. The unique stability of a special two-photon polariza-
tion interferometer, initially designed to perform polarization mode dispersion
measurements in optical materials, allows on to realization a method quan-
tum key distribution that surpasses the performance of quantum cryptographic
techniques using weak coherent states of light [35].

3.2 Absolute Calibration of Quantum Efficiency of
Photon-counting Detectors.

One of the important, and difficult, problems in optical measurement is the
absolute calibration of optical radiation intensity and the measurement of the
absolute value of quantum efficiency of photodetectors, especially when they
operate at the single-photon level and in the infrared spectral range. A novel
technique for the measurement of the absolute value of quantum efficiency
of single-photon detectors in the 0.42µm-wavelength region of the infrared
spectrum with high precision has been developed [15]. This technique also does
not exist in the realm of classical optics, since these required properties have
their origin in vacuum fluctuations. They thus have a universal character that is
everywhere present, allowing for a level of accuracy commensurate with that of
a national metrology facility at every laboratory, astronomical observatory, and
detector-manufacturing facility around the globe. This method also exploits
the universal nature of the entangled super-correlation between entangled light
quanta generated in spontaneous parametric down-conversion. As a result of
the universal nature of vacuum fluctuations, this method does not require the
use of an external optical standard.

Traditionally, two principal approaches for determining the absolute quan-
tum efficiency have been used: 1) comparison with an optical signal which has
well-known parameters (comprising different optical standards); and 2) mea-
surement of an optical signal by using a preliminary calibrated photoelectric
detector. The physical principle used for both the optical standard and photode-
tector calibration methods is the spectral distribution of the intensity of thermal
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Figure 9. Principle of absolute calibration of quantum efficiency without using standards.

optical radiation, which is characterized by the Planck blackbody radiation law.
Unfortunately, these techniques are useful only for the measurement of intense
optical signals. They cannot be used for the measurement of optical radiation at
ultra-low levels, nor for the determination of the quantum efficiency of single-
photon detectors such as those required in astronomy and spectroscopy. The
principle of this technique is illustrated in Fig. 9. In addition to the number of
pulses registered by detector 1 (N1) and by detector 2 (N2), one must detect the
number of coincidence counts NC . All down-conversion photons arrive only
in pairs due to their temporal correlation. The number of single photons in the
two arms will also be exactly the same due to momentum correlation between
the photons of each pair, so that N1 = N2 = N , which is exactly the number
of pairs Npairs = N . As a result, the absolute value of quantum efficiency is
simply determined by η = NC/N2 . In case we have a photon-number resolv-
ing detector (such as has recently been developed at NIST-Boulder), the same
calibration can be performed with a single detector.

The absolute value of quantum efficiency for the photon-counting photomul-
tiplier is derived based on the distinction between its capability of distinguishing
single-photon and double-photon events. This piece of information can be eval-
uated by measuring the pulse-height distribution. The photodetection process
is usually characterized by the value of quantum efficiency, η, that can be used
as a measure of successful conversion of optical quanta into macroscopic elec-
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tric signal. If the average intensity of the photon flux, i.e. number of photons,
arriving at the surface of photodetector in the unit of time is < N >, then the
probability of successful photodetection will be P1 = η < N >, while that of
no detection will be defined by the complimentary value P0 = (1−η) < N >.
The presence of SPDC radiation consisting of rigorously correlated photon
pairs with continuous distribution in a broad spectral and angular range makes
it possible to determine the spectral distribution of the measured quantities of
photodetectors.

The average number of pairs < Npairs > per unit of time is clearly equal
to the number of either signal < Ns > or idler < Ni > photons: < Ns >=<
Ni >=< Npairs >. From the theory of photodetection, the probability of
having a double-photon event and a double-electron pulse will be P2 = η2 <
Npairs >. The probability of observing a single-photon detection event and a
single-electron pulse will apparently involve the loss of one photon in the pair.
Since this can happen in two different ways for every pair, the total probability
of having a single-photon detection will be P1 = 2η(1 − η) < Npairs >. One
can then conclude immediately that the value of quantum efficiency can be
evaluated using the following formula:

η = (1 + P1/2P2)− 1. (30)

However, the gain fluctuation and thermal noise in real photodetectors usually
result in a very broad pulse-height distribution corresponding to single- and
double-photon detection events. This has stimulated the development of a
more realistic version of this technique that would be efficient, robust, and
insensitive to such imperfections in real photon-counting detectors. In order
to eliminate the influence of the broad pulse-height distribution, one can use a
simple comparison between the numbers of registered detection events counted:
when a photodetector is exposed to a pairs of entangled photons and when
exposed to a signal (or idler) photon only. The total probability of detecting an
electrical pulse when pairs of entangled photons arrive at the photocathode will
consist of sum of probabilities P1 and P2:

Ppair = P1 + P2 = 2η(1 − η) < Npairs > +η2 < Npairs > . (31)

The probability of detecting a photoelectric pulse in the case of exposure to
signal (or idler) photons only will be

Psingle = η < Ns >= η < Ni >= η < Npairs > . (32)

The absolute value of quantum efficiency can thus be evaluated based on the
results of these two measurements:

η = 2− (Ppair/Psingle) (33)
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3.3 Quantum Metrology: measurement of polarization
mode dispersion with attosecond resolution.

Conventional ellipsometry techniques were developed over the years to a
very high degree of performance, and are used every day in many research and
industrial applications. Traditional, non-polarization-based techniques for the
measurement of optical delay usually make use of monochromatic light. The
introduction of an optical sample in the one arm of the interferometer causes a
sudden shift of interference pattern (sometimes over tens or hundreds of wave-
lengths) that is proportional to the absolute value of the optical delay. This
approach requires one to keep track of the total number of shifted interference
fringes in order to evaluate the absolute value of the optical delay. The accuracy
of this approach is limited by the stability of the interferometer, the signal-to-
noise level of the detector, and the wavelength of the monochromatic radiation
used. Conventional polarization interferometers used in ellipsometry measure-
ments provide very high resolution, but have a similar problem of tracking the
absolute number of 2π shifts of optical phase during the polarization-mode-
dispersion measurement.

Optical engineers have come up with several ways to get around this problem,
using additional complex measurement procedures. Since use of monochro-
matic classical polarized light does not allow one to measure the relative delay
between two orthogonal waves in a single measurement, several measurements
at different frequencies are used to reconstruct the polarization dispersion prop-
erties of materials. The use of highly monochromatic laser sources creates the
additional problem of multiple reflections and strong irregular optical interfer-
ence, especially in studying surface effects. Ellipsometry with low-coherence
sources (white light) has received attention as a convenient method for the eval-
uation of dispersions in optical materials, particularly of communication fibers.
While the technique provides the high timing resolution, along with the abso-
lute nature of the optical delay measurement, its suffers from the problem of
low visibility and instability of the interference pattern.

The unique double entanglement of the two-photon state in type-II phase-
matched SPDC provides us with ultimate control of the relative position of
photon pairs in space-time. The study of polarization entanglement and of the
natural rectangular shape of the two-photon wave function in space-time in
type-II phase-matched SPDC allows one to measure propagation time delay in
optical materials with sub-femtosecond resolution. This technique intrinsically
provides an absolute value of polarization optical delay that is not limited by
the usual value relative to one wave cycle of light. The probe light does not
disturb the physical conditions of the sample under test, and can be used con-
tinuously during the growth and assembly processes to monitor major optical
parameters of the device in situ. By manipulating the optical delay between
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Figure 10. Schematic of a two-photon polarization interferometer.

the orthogonally polarized photons, a V-shaped correlation function feature is
realized by a coincidence photon counting measurement. The general principle
and a schematic experimental setup is illustrated in Fig. 10. The sharp V in
the intensity correlation function can be made as narrow as 5-10 femtosecond
wide. The introduction of any additional sample of optical material or photonic
device with different group velocities for o-rays, (uo,) than for e-rays, (ue,) in
the optical path before the beamsplitter will shift the V-shape distribution on
a sub-femtosecond time scale. The shift is proportional to the optical delay in
the sample of the length L:

d = (1/uo − 1/ue)L ≈ (no − ne)L/c. (34)

In our realization, a 351nm Ar+ laser pumps the BBO crystal in a collinear
and frequency-degenerate configuration. Orthogonally polarized photons gen-
erated in the BBO nonlinear crystal enter two spatially separated arms via a
polarization-insensitive 50-50 beam-splitter (BS), so both ordinary and extraor-
dinary polarized photons have equal probability of being reflected and transmit-
ted. The two analyzers (oriented at 45 degrees) in front of each photon-counting
detector D1 (D2) complete the creation of what are, in effect, two spatially sep-
arated polarization interferometers for the originally X (Y)-oriented signal and
idler photons. Signal correlation is registered by coincidence events between
detectors D1 and D2, as a function of a variable polarization delay (PD) in the
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interferometer. Spontaneous parametric down-conversion in a BBO nonlinear
crystal with L = 0.05 mm to 1 mm generates signal and idler photons with
coherence lengths of tens to hundreds of femtoseconds. Such an apparatus is
illustrated in Fig. 11a.

A very useful new feature realized in such an apparatus is due to the non-
symmetric manipulation of the relative optical delay t between ordinary and
extraordinary photons in only one of the two spatially separated interferometers.
As a result, the observed coincidence probability interferogram has its triangular
envelope now filled with an almost 100 percent modulation, which is associated
with the period of pump radiation. The additional introduction of a sample of
optical or photonic material with different o-ray and e-ray group velocities in the
optical path before the beam-splitter shifts the interference pattern proportional
to τsample = d/c, the difference in propagation times of the two polarizations.

This allows one to measure directly the absolute value of total optical de-
lay between two orthogonally polarized waves in the sample on a very fine,
sub-femtosecond time scale. The experimental result of the measurement of
intensity correlations (coincidence probability) as a function of relative polar-
ization delay d is illustrated in Fig. 11b. The SPDC signal is delivered to
the detectors without the use of any limiting spectral filters. The full width at
half-maximum (FWHM) of the correlation function envelope is defined by

δ = (1/uo − 1/ue)Lcrystal . (35)

The high visibility of the interference pattern and the extremely high stability
of the polarization interferometer in such a collinear configuration allows one
to identify the absolute shift of the wide envelope with an accuracy defined by
the fringe size of an internal modulation.

The observed quantum interference is very high contrast, approximately 90
percent. Resolution is further enhanced by reducing the total width of the
envelope. This can be done by widening the phase matching spectrum by
reducing the crystal length to 50 µm. This arrangement was used to measure
the optical delay of a crystal quartz sample introduced into the optical path
before the beam-splitter BS. The result of this measurement (performed with
the 50µm nonlinear crystal) is illustrated in Fig. 12. The 25 fs width of the
envelope enables one to clearly identify the central fringe position. Based on
the signal-to-noise ratio, one can expect to resolve at least 1/100 of a fringe
about (10−17 s).

This technique for the linear polarization dispersion measurement is easy
convertible to the case of circular polarization. All advantages of using quan-
tum correlation remain. This technique can be easily modified to study optical
interactions at the surfaces of materials. One can use a reflection configuration,
rather than the transmission mode, and to take advantage of the strong polar-
ization dependence of evanescent waves. This approach is a uniquely sensitive
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Figure 11. a) Schematic of a two-photon polarization interferometer with a postponed optical
delay. This non-symmetric delay is introduced only in one arm after the beam splitter. b)
Measurement of intensity correlations as a function of relative polarization delay d.

tool for the analysis of the orientation, structure, morphology, and optical prop-
erties of single and multiple layers of atoms either grown or deposited on a
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Figure 12. Measurement of the optical delay in the crystal quartz sample using a 50 µm
nonlinear crystal. The horizontal scale is the time delay of the delay line located after the
beamsplitter, BS.

substrate. Furthermore, if the technique can be demonstrated to be sensitive to
the chemical identity of adsorbed molecules and atoms, then one can explore
the application of the method to the field of chemical sensors.

3.4 Quantum Ellipsometry

In an ideal ellipsometer, the light emitted from a reliable optical source is di-
rected into an unknown optical system and then into a reliable detector. The user
keeps track of the emitted and detected radiation in order to infer information
about the optical system. This device can perform ellipsometry if the source can
be made to emit light of any chosen polarization. The sample is characterized
by the two parameters, ψ and ∆. Parameter ψ is related to the magnitude of the
ratio of the polarization (complex) reflection coefficients, r̃1 and r̃2, for polar-
ization eigenstates, with tan ψ = |r̃1/r̃2|, while ∆ is the phase shift between
them. Because of the high accuracy required in measuring these parameters,
an ideal ellipsometric measurement would require absolute calibration of both
the source and the detector. In practice, however, ellipsometry makes use of
an array of techniques for accomodating imperfect implementations, the most
common techniques being null and interferometric ellipsometry.



28

In a null ellipsometer, the sample is illuminated with a beam of light that
can be prepared in any state of polarization. The reflected light is then ana-
lyzed. The polarization of the incident beam is adjusted to compensate for the
change in the relative amplitude and phase between the polarization eigen-states
introduced by the sample. The resulting reflected beam is linearly polarized.
If passed through an orthogonal linear polarizer, this beam will yield a null
measurement at the optical detector. This method does not require a calibrated
detector, since it does not measure intensity but instead records a null result.
However, it does require a reference sample to calibrate the null, for example,
to find the rotational axis of reference at which an initial null is obtained, to
be compared with that after inserting the sample into the apparatus. The ac-
curacy and reliability of all measurements thus depend on our knowledge of
this reference sample. Another classical technique is to employ an interfero-
metric configuration, usually created by beam splitters. The sample is placed
in one of the two interferometric paths. One can then estimate the efficiency
of the detector given the source intensity, by performing measurements when
the sample is removed from the interferometer. This configuration thus allevi-
ates the problem of an unreliable detector. However, this method depends on
the reliability of the source and suffers from the drawback of requiring several
optical components (beam splitters, mirrors, and so on), and so depends on the
parameters of these as well.

Figure 13. Entangled twin-photon ellipsometer [40].
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The quantum technique again takes advantage of the characteristics of quan-
tum states produced in type-II-phase-matched SPDC [40]. Recall that type-II
phase-matching requires the signal and idler photons to have orthogonal polar-
izations, one extraordinary and the other ordinary. These two photons emerge
from the NLC with a relative time delay, due to the birefringence of the NLC.
As has been discussed above, sending the pair through an appropriate birefrin-
gent element can compensate for this time delay. This temporal compensation
allows one to extract ψ and ∆. The NLC of the apparatus is adjusted to produce
SPDC in a type II non-collinear configuration, as illustrated in Fig. 13.

The fields at the detectors can be found as follows. Let âs(ω) and âi(ω
′)

be bosonic annihilation operators are the annihilation operators for the signal-
frequency mode ω and idler frequency mode ω ′. The twin-photon Jones vector
of the field following the beam splitter is then

Ĵ1 =

(

j[−Âs(ω) + Âi(ω
′)]

Âs(ω) + Âi(ω
′)

)

(36)

where Âs(ω)

(

1
0

)

Âi(ω
′)
(

0
1

)

. The vectors
(

1
0

)

(horizontal) and
(

0
1

)

(vertical) are the Jones vectors representing orthogonal polarizations. The first
element in Ĵ1 is the annihilation operator of the field in beam 1, while the second
element is the annihilation operator of the field in beam 2.

One can define a photon-pair Jones matrix by

T =

(

T11 T12

T21 T22

)

(37)

where the Tkl are the standard (single-photon) Jones matrices describing the
action of a deterministic optical element, in terms of input and output beam
pairings k, l. The indices refer to the spatial modes of the input and output
beams. The beams 1 and 2 impinge on the two polarization analyzers A1 and
A2 directly, in absence of the sample, so the photon-pair Jones matrix is

Tp =

(

P(−θ1) 0
0 P(θ2)

)

, (38)

where

P(−θ1) =

(

cos2 θ cos θ sin θ cos θ
cos θ sin θ sin2 θ

)

, (39)

and θ1 and θ2 are the angles of the axes of the analyzers with respect to the
horizontal direction.

The twin-photon Jones vector following the analyzers is therefore

Ĵ2 = TpĴ1 =

(

jP(−θ1)[−Âs(ω) + Âi(ω
′)]

P(−θ2)Âs(ω) + Âi(ω
′)

)

(40)
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which yields expressions for the fields at the detectors. The positive frequency
components of the field at detectors D1 and D2, E+

1 and E+
2 respectively, are

given by

E+
1 = j

[

− cos θ1

∫

dω exp(−jωt)âs(ω) + sin θ1
∫

dω′ exp(−jω′t)âi(ω
′)
](

cos θ1
sin θ1

)

(41)

E+
2 =

[

− cos θ2

∫

dω exp(−jωt)âs(ω) + sin θ2
∫

dω′ exp(−jω′t)âi(ω
′)
] (

sin θ2
cos θ2

)

, (42)

while the negative frequency components are given by their Hermitian con-
jugates. Finally, with the sample present in beam one, there is an additional
effect on the Jones vector before the polarization analyzer, described by the
transformation Ts, so that we have the Jones vector Ĵ3 = TpTsĴ1 where

Ts =

(

R 0

0 I

)

, (43)

and

R =

(

r̃1 0
0 r̃2

)

. (44)

In this case the field E+
2 is as before and E+

1 becomes

E+
1 = j

[

− r̃1 cos θ1

∫

dω exp(−jωt)âs(ω) + r̃2 sin θ1
∫

dω′ exp(−jω′t)âi(ω
′)
] (

cos θ1
sin θ1

)

. (45)

The coincidence rate Nc ∝ sin2(θ1 − θ2) is therefore

R = C[tanψ cos2 θ1 sin2 θ2 + sin2 θ1 cos2 θ2

+2
√

tanψ cos ∆ cos θ1 cos θ2 sin θ1 sin θ2]. (46)

One can then obtain C , ψ and ∆ with a minimum of three measurements with
different analyzer settings θ2 = 0◦, θ2 = 90◦ and θ2 = 45◦ with θ1 at any fixed
position other than 0◦ and 90◦.

An advantage of this setup over its idealized null ellipsometric competi-
tor is that the two arms of the ellipsometer are separate, and the light beams
traverse them independently in different directions. This allows various instru-
mentation errors of the classical setup to be avoided. In the present case, no
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optical components are placed between the source (NLC) and the sample; any
desired polarization manipulation may be performed in the other arm of the en-
tangled twin-photon ellipsometer. Entangled twin-photon ellipsometry is thus
self-referencing, eliminating the necessity of constructing an interferometer
altogether.

4. Conclusion

Entangled-photon states provide a natural basis for quantum measurement
and quantum information processing due to their strong correlations, even when
widely separated in space, in particular entangled-photon pairs created by spon-
taneous parametric down-conversion (SPDC). A comprehensive approach to
these states has permits one to perform intelligent engineering of quantum
states. The interdependence of physical parameters due to entanglement re-
quires us to consider the full Hilbert space occupied by the entangled quantum
state with its dependency on multiple variables. By exploiting this interdepen-
dence, one can modify the interference pattern associated with one parameter
by manipulating other parameters.

Unique new forms of measurement can be performed using entangled quan-
tum states. These states also allow quantum information to be encoded and this
quantum information securely transmitted to a remote location, in a manner su-
perior to other proposed quantum-mechanical methods. Practical use can thus
be made of several of the correlation features present in entangled states. The
unique properties of quantum systems were exploited in the practical quantum
techniques that have been developed based on multiphoton interferometry.
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