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Quantum Lorentz-group invariants of n-qubit systems
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We consider the behavior of quantum states under stochastic local quantum operations and classical com-
munication(SLOCQ for an arbitrary fixed number of qubits. We use a rdairent group to describe the
action of SLOCC operations amqubit states. We discuss the natural quantum Lorentz-group group-invariant
length for an arbitrary number of qubits. We relate this approach to that based on local operations and classical
communication and provide an example of how the invariant length can be used to describe entanglement. We
also note that this invariant length is the Minkowskian analog to the quantum state purity, which is the
corresponding Euclidean length.
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. INTRODUCTION 1 0 0 0
It is known that the state of a single classical spin has an R(a)= 0 C_Osa sina 0 , (18
associated invariant length under transformations of the 0 sina cosa O
proper Lorentz group §§1,3), of classical state transforma- 0 0 0 1
tions[1]. In the study of quantum information, one is most
often concerned with the effect on quantum spins., qu- coshy sinhy 0 O
bits) of transformations corresponding to local operations sinhy coshy O 0
and classical communicatiorisOCC) [2,3] and stochastic B(x)= X X (1b)
local operations and classical communicatiéBLOCO 0 0 10
[4,5]. The latter are most often described by the group 0 0 0 1

SL(2,0) acting on the complex, density-matrix description of

the quantum state of these qubits, which is homomorphic tthat preserve an associated invariant lerigth[6]). To simi-

the Lorentz group, of which it is a double coJél. Here, we larly investigate the properties of qubit states, it is illuminat-
discuss the real description of the quantum state and examinieg first to consider the Lorentz group transformations in
the corresponding Lorentz-group invariant length for everycorrespondence to transformations on elements (&), the
possible finite number of qubits. This length is the vector space of all X2 complex Hermitian matrices that
Minkowskian analog of the quantum state purity, which isin_cludes the density matrices describing states of single qu-
the corresponding Euclidean length. It is a new tool for de-bits.

scribing the behavior of states of any finite number of qubits The state of a quantum ensemble of independent qubits
under SLOCC, the invariants of which had until its introduc-¢an be completely described by the set of expectation values
tion [14] been studied for only two qubit&nd two-qubit

reduced states from three-qubit pure statesing matrix X,=Tr(po,) (1=0123, @

methods but with encouraging resuity. where o0g=1,4, and o, 1=1,2,3 are the Pauli matrices.

Likewise, one can write the density matrix as

II. SINGLE QUBITS

3
1
. . . == X , 3
In classical physics, one can use the expectation values of P=32 Z‘o uTn ®

the Pauli spin matrices to fully characterize a state of spin,
and to visualize it geometrically via a Poincasphere. As and the vector space for one-qubit state vecto?isSince
Han et al. [7] have pointed out, these classical parametersrff 1 and%Tr(aﬂov)= d,.,, the four Pauli matrices form a
form a Minkowskian four-vector under the group of transfor- basis for H(2) of which the density matricep are the
mations corresponding to ordinary and hyperbolic state rotapositive-definite, elements of unit tragee., those for which
tions. In particular, the elements of the group of proper Lor-Xo=1), that capture the general qubit state, pure or mixed.
entz transformations §01,3) acting on the classical Stokes ~Now consider these expectation-value vectors in the
vector can be represented as products of real and hyperbolMinkowskian real vector spac®] 5 the four-dimensional
rotations, for example, real vector spac®* endowed with the Minkowski metric
(+,—,—,—), i.e., together with a metric tensg*” pos-
sessing, as nonzero elements, the diagonal entries—1,
*Corresponding author. Email address: jaeger@photon.bu.edu —1, and—1. The length of a four-vector, in R‘l‘y3 is given
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by (x,x)=g""x,x, . More explicitly, in R13, the length of a yond the state information provided by density matrices
vectorxz(xo,xl,xz,x3) is given by alone, and can be used to study the behavior of states of a
quantum ensemble under both unitary and nonunitary state
||x||§{113= X5—X2—Xx5—X3. (4)  transformations of the density matrix.
Using the standard vector basis fBf, e,=(1,0,0,0), e, Ill. TWO OR MORE QUBITS

=(0,1,0,0),e,=(0,0,1,0),e5=(0,0,0,1), there exists a natu-
4

ral vector-space isomorphism;R; s—H(2), relating the roup on two-qubit systems, and find the corresponding in-

spaceRl3 of these vectors and the space of state matricegy ian length. It is valuable to introduce the joint observ-

H(2) defined by ablesx,,,=Tr(po,®0,), whereu,v=0,1,2,3, and express

the matrix of the general state of a two-qubit ensemi6)&]:

Let us now consider the effect of SLOCEhe Lorentz

V(Xo,xl,X2,X3):X00'0+X10'1+X20'2+X30'3. (5)

Moreover, this isomorphism straightforwardly relates the
corresponding basis elements for the space of expectation-
value vectors to those for the space of density matrices,

namely, »(€)=o; [6]. If we then define the norm on the whereo,® 0, (u,»=0,1,2,3) are simply tensor products of
space of density matricebi(2) to be the |dent|ty and Pauli matrices, and the state-vector space for
pure states of two qubits €22C2. The four-vectorx,, ,
must then be generalized to a 16-element tergpiin order

to capture all the quantum correlations potentially present in

a two-qubit state.

The two-qubit density matrices are positive, unit-trace
elements of the 16-dimensional complex vector space of
Hermitian 4<4 matricesH(4). Thetensorso,®o,=0,,
provide a basis foH(4), which is isomorphic to the tensor-
product spaceH(2)®H(2) of the same dimension, since
iTH(0 400 ap) = 8,00,5 and 02 ,= 14,4, in analogy to the
(7)  single-qubit case. We can write the two-qubit expectation

. . . values ag48,9
The associated mathematical structures are described In $8.9)

detail in Appendix A. We see immediately from Ed) that
the Minkowskian length? of the vector of expectation val-

13
:ZE X0, ®0,, 9

I =detX ¥ XeH(2), (6)

then the isomorphism between the spaces of these real
vectors and the Hermitian matrices becomes a Iength
preserving mapping, i.e., an isometry, since we have the fol-
lowing simple relat|0nsh|p between lengths in the two
spaces:

2
HV(Xo:Xl1X2,Xs)Ha(z)EdetxzXg_xi_X§_X§:||X”R4113-

Xy, =Tr(po,®0,). (10

uesis A density matrix for the general state of a two-qubit system
is thus an element dfi(4)=H(2)®H(2) of the form
12=x5—xZ—x3—X3, (8) (4)=H(2)®H(2)
3 3
similar to its analog in the classical realm and invariant un- 1

der the Lorentz group of transformations represented by the P~ 2 U°®U°+2 XioTi® oo Z X0jT0% 0]

basic formsR and B. This group of transformations goes
beyond the limited context of unitary transformations of den-
sity matrices(for which x,=1) (LUTSs), to include nonuni- +|J§_: Xijjoi@oj |,
tary transformations corresponding in the real description to

transformations such @& The loci of constant? are three-
dimensional hyperboloids lying within what is the analog of
the “forward light cone” of special relativity and the “null
cone.” These matrices belong to equivalence classes, each 3 3 3

represented by a set of pure state density matrices but posg— eo®eo+2 Xi0€ ® €+ 2 Xojeo®ej+ 2 CEL
sessing a range of ensemble relative sizgs, When the

corresponding transformation of the density matrix is an el- (12
ement of the S(2) subgroup of SI2,C), corresponding to a

unitary transformation of density matrices into density ma-in R} s®R] 5, expressed in terms of the elements of standard
trices (LUT) and xq is strictly unity, the states lie within a vector basis for R* €,=(1,0,0,0), e;,=(0,1,0,0), e,
locus of a fixed distance from the, axis. However, when =(0,0,1,0),e3=(0,0,0,1). The density matrices describing
this transformation is one such & probability is lost or each qubit, 1 and 2, are given by partial tracing over the
gained, so that this constraint is no longer obeyedxgchn  states of the other qubltpl—TrH(Z)p 2(A+23 xi007),
take other valuesy,, and move to other locations within the p,=Try;)p= 2(14—2, 1X0ioi). In Appendix B, we de-
hyperboloid corresponding to the same value of the invarianscribe the associated mathematical structures in detail.

|2, Expectation-value vectors thus contain information be- Again the length given by the tensor norm

3
(11

an element of the Hilbert-Schmidt spddg that corresponds
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) 3 present tensorial treatment is entirely gengfdl]. Specifi-
|§25||X||R411 3®R113=<x,x)=(x00)2—i21 (Xig)? cally, one can write the n-qubit state matrix in the form

AL
—> | 2 X Tg,® - ®0 . (14
1

i1, . ip=0 ton

3 3 3
_2 (XOj)2+z E (Xij)2 (13 P
=1 =

Since dimH(2") =dim ®}_,H(2)=dim ®}_,R] ;=4", all
these spaces are isomorphic, whei@") is the vector space
f 2"x 2" Hermitian matrices. Tha-qubit ensemble expec-
tion values are then

is invariant under Lorentz-group transformationg,B)
€ 0y(1,3)X0y(1,3).

The generalization of the above methods to the case g
n-qubits is straightforward, and allows us to find the invari-
ant length for any finite number of qubits. Unlike previous Xi
approaches to applying the Lorentz group to quantum states
[5], which used matrix methods and are therefore limited to Under the Lorentz group, the norm defined@hLlR‘l‘s
transformations representable in simple matrix form, someremains invariant, i.e., under transformations of the form
thing problematic for an arbitrary number of qubits, the 8(A;) 6(A,)- - - 0(A,) with Ay e SL(2C), we have

l--~in=Tr(P0'il®"'®0'in)- (15

3 3

n 3 n
12, = IX2=xE 0= 2 2 (Koo 0)?+ 2 2 (Xowogo i) (=D X (xi..)% (16)
k=1i=1 k KI=1 i =1 ko g ip=1 1

the invariant length associated with the generglibit state.  transformationx
The n-qubit tensorx; ... transforms under the group

’ . .
papty iy Xy, OF @ given n-qubit

expectation-value tensor will give rise to a new Hermitian

Oo(1.3) as 5 state matrixp’. After transformation, the tensor element
, -3 La. . Ln 17 Xp...0 IS the newn-qubit ensemble relative size. Again,
Xil"'in_jl _____ =0 1 in iy i renormalizingp’ provides the resulting density matrix for

_ the ensemblep”=p'/Tr(p’).
where thel! are the Lorentz-group transformations acting in ~ We note also that the quantum state purity,o¥r for a
the spaces of qubits, 1. . ,n. Again, each Lorentz group of generaln-photon state,

1\n n 3
2_
Trp —Tr[(z) 5 Z Xil...i 0'i1®"'®0'in(§) iy EJ le"'jna-jl®.”®o-jn , (18)

also has a particularly simple form in terms of the elementof studies of entanglement monotones as explored by
n-qubit four-tensor; sinced; ® o} )® -+ - ®(0; ® 0} )=0y Nielsen[2], Vidal [3], and others with an emphasis on its

®---®0y if and only ifiy=],, for all k=1,2,...pn, only  extension to nontriyial case of three. qubits._The standard
the coefficient of the ternry® - - - ® o, contributes to the approach to LOCC invariance of multiple-qubit systems be-

trace, and we have gins with the pure stateisy) in Hi®H,®---®H,, Kraus
operatorsA(k') :H;—H/ acting in the Hilbert spaceld; with
3 EKA(k')TA(k')=Ii (I; being the identity orH;), the investiga-
Tr pZZF > xizl R (190  tion of entanglement monotones and the search for invariant
ig, . ip=0

guantities; an entanglement monotone is a real-valued func-
o . tion E(|¢)) such that
The state purity is thus seen to be the Euclidean analog of
the Minkowskian invariant length introduced here. 0
(11® AR ®1,)|4)
E(J))=2 pE (20
2 px

IV. RELATION TO LOCC INVARIANTS

We now discuss our Lorentz-grodLOCQ invariants in .
relation to known local invariants under LOCC in the contextfor any state|), operation A(k') and spacei, where py

052305-3



M. TEODORESCU-FRUMOSU AND G. JAEGER PHYSICAL REVIEW &7, 052305 (2003

=|(11®---@AP®---@I,)|¥)|? which is nonincreasing under qubit state expectation values form a Minkowskian tensor
LOCC and possesses other valuable properties. and give rise to invariant lengths, first introduced in R&#]

One approach for finding local invariants has been that ofor each possible numberof qubits under the action of the
seeking them as polynomials. In the three-qubit case, wéorentz group. This length is the Minkowskian analog of the
now point out that several LOCC polynomial invariants quantum state purity, which is the corresponding Euclidean
[11,12 are simply related to our Lorentz-group invariant length. We showed how in the case of three-qubit pure states,
lengths. To see this, first note that, given a wave functiorthe known LOCC invariants can be expressed in terms of
|#), one can write the equivalent density matrip, this length forn=2 for appropriate mixed states. We noted
=|4)(y| and define a corresponding “spin-flipped” density also that the quantum Lorentz-invariant length for2 is
matrix [13] asp=(0,® - - - ® 075) p* (0,® - - - ® 7,), Where identical to the tangle in the case of pure states. This length
* denotes complex conjugation. Note also that one generallfPr generain [14] is thus a natural, geometrical tool for de-
obtains a state only representable as a density médsx Scribing the behavior of states of any finite number of qubits
opposed to a state-veciowhen one traces out properties under SLOCC, which have thus far been studied, with posi-
associated with some particles of a multiple-qubit system byiVe results but for only two-qubit states and two-qubit re-
partial tracing over them in order to describe only thoseduced states of three-qubit pure stggk Our approach to
properties of other subsystems. SLOCC also has the advantage of being founded on a clear

It is readily verified that one can write our quantum 9eometrical basis.

Lorentz-group invariant lengths in terms of density opera-
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With this in mind, one can then see that three of the ﬁvecouragement from A. V. Sergienko.

polynomial LOCC invariants of the three-qubit pure state
polynomial invariants[11], namely, I, |,, and I; are APPENDIX'A

readily expressible in terms of such traces over two-qubit gjce the Pauli matrices are traceless ﬂfiﬂklzxz(ﬂ
reduced density matrices. In particular, one finds that =0,1,2,3), we obtain the following expression for the in-

1 verse,vfl:H(Z)—>R‘l"13, of the vector-space isomorphism of
li=1=5[Tr(pijpij)) + Tr(pikpi) I, 22 Eq.(7:

1
that is, v H(X)= 5 (T(X), Tr(Xay), Tr(Xo),

,izl_%(hzjﬂizk , 23 Tr(Xog)) V Xe H(2), (A1)

which maps the space 0f2 Hermitian matrices containing
for {i,j,k}={1,2,3,{2,1,3,{3,1,2. the density matrices into the spadéig, containing the

Finally, we present a specific simple example of how thequantum four-vectors. In particular, the density matrices of
Lorentz-group invariant length is useful for the study of quantum mechanics are identified within the space of Her-
quantum informatior(see Ref[14] for a discussion of this mitian matricesH(2) as those having trace one, a condition
length in a practical, optical contextThis is particularly — guaranteeing that the sum of probabilities of all the possible
simple for a pair of entangled qubits. Namely, in the particu-events for the quantum state is unity.
lar case of pure states of two qubits, this invariant length  We now define the contraction mapH(2)—H(2),
coincides with the concurrence squared, i.e., the tangle
(23], A(X)z%XVXeH(Z) ,
=417, (24)
which allows us to define the directly applicable isomor-

which has been a useful tool for measuring pure state enshism w(x):)\oy;R‘l‘3_>H(2) of the space containing
tanglement that is directly related to the entanglement okypectation-value vectors to that containing the density ma-
formation, h(3[1+ y1—41%,]), whereh(x)=—x logx—(1 trices:
—X)log,(1—x), the well-known bipartite system entangle-
ment monotone.

w(Xo,X1,X2,X3) =

V. CONCLUSION (A2)

3
_ 4
2, X0, YX=(Xg,X1,X2,X3) €Ry 5.

N| =

We have considered the application of the Lorentz group The corresponding inverse m;,i,;fl;|-|(2)_>R‘1‘3 is
beyond the level of two-qubit states to the quantum state of ’
an n-qubit quantum system. We showed that the multiple- o YX)=[Tr(X),Tr(Xoy),Tr(Xoy), Tr(Xo3)]. (A3)
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As with the initial isomorphisny,  becomes an isometry if any pair of objects obtained by composition of mappings are
we definel|w(Xq,X1, x2 x3)||H(2)—det(2X)—||x||R4 : equal.

The mappingw ! now directly returns the vector of ex-
pectation valuesx, = Tr(po,) (#=0,1,2,3), as desired.

Consider the group actiom: SL(2,C)XH(2)—H(2),
defined by

SL(2,C) X H(2) —— H(2)

a(A,X)=AXA* ¥ AeSL(2,C) and VXeH(2),
(A4)

B
Oy(1,3)XRY 3 ———RT

involving the density matrices. We see that the norm induced

by the isomorphismw is preserved under the mapping APPENDIX B

since
The isomorphism between the space of two-qubit expec—

tation values and two-qubit density matrices® w: R13
||AXA*||ﬁ(2)=de(AXA*)=|detA|2detx=detx=HXHE.((Z) ' ®R} 5~ H(2)®H(2)=H(4) is defined as
A5

(0Rw)(vOW)=w(v)® w(W), (B1)

The natural group actiong:Op(1,3)X R} 3—>R13, of the for all v,we Ris- o,®0, form a basis for the required
Lorentz group @(1,3) on the quantum observables, the ele-space of two-qubit Hermitian matricé$(2)@H(2)=H(4)
ments ofR‘l"3 including the vectors describing this ensembleand  (@W®w)(e,®e,)=w(e,)Rw(e,)=0,80, (u,v

is defined by =0,1,2,3). Furthermore, the inverse map taking density ma-
trices to two-qubit tensorsu(® w) ~* H(4)—>Rl 3X ng is
given by
B(x)=Bx V BeOy(1l,3 V xe R13, (AB)
(0@ w) HX)=Tr(Xo,®0,), (B2)
and is norm preserving(by definition, i.e. ”BXH 4 for all Xe H(4). To describe the effect of the full set of
Ri3 group transformations, we use the map® a:SL(2,C)
_||X||R4 : X SL(2C) X H(2)®H(2)—H(2)®H(2), since for each

Smce the isomorphism of the expectation value space qubit the group of transformations SL(®, acts via the ac-
to the space containing the quantum states is an isometry, vii®n @ on the vector spacei(2) that includes the density
can also define a ma@:SL(2,C)—0y(1,3), between the matrices. The action on the two-qubit Hermitian matrices is
transformations on elements bif(2), including the density ~defined as
matrices, to those transformations of eIementsRi)g The .
action of a matrixA on the matricesX e H(2) induces a (a®@)[(AB), X@Y]=(AXA")®(BYB") (B3
correspondr;ng rI;orentz_Eransfcirmano;?(A) of \ﬁctors in for all (A,B) e SL(2C) X SL(2C), andVX,Y e H(2). The
Rl 3 such that o™ (AXA )”Ri,s_He(A)“’ (X)HRig actiona® « is norm preserving on the tensor-product space,

=llo™* (X)llre , - since

Note thaté has the property of being a group homomor- 5 2
phism, i.e., givenXe H(2) andA,Be SL(2,C), 6 has the IAXA [[52)=I1XF 2y (B4a)
following properties: ) )

(i) O(AB)w Y(X)=w HABXB'A)=0(A)w (BXB*) IBY B [[52)= 1Yl - (B4b)
=0(A)0(B)w~X(X), i.e., 8(AB)=6(A)#(B), and . :

(i(i)) Sl)(?)liz)w‘ll(x)(zwzl(lix)lz)(!&(lz)w‘l(X) Similarly, the actiong of the Lorentz group ¢{(1,3) on
., 0(1,)=1,. ' the space of expectation valuégg,, generallzes in the two-

Finally, by defining a mapy of the quantum state trans- 9ubit case to B®B:0p(1,3)X Og(1,3)X RIg®Ri5—Ris
formations into the corresponding transformations of the qu® R 3,

bit expectation valuesy:SL(2,C) X H(2)— Ogy(1,3)X Rls, (8 B)[(C.D).0@W]=(Cv)® (Dw) (B5)

YA X)=[0(A), 0" XX)], (A7)  forall (C,D)e0y(1,3)x0y(1,3) andVv@we R} R} 5.
Since the isomorphisnw® w is an isometry, as in the
one-qubit case, we define the group homomorphi8m
we obtain a commuting diagram, i.e., a set of mathematicak #:SL(2,C) X SL(2,C) — 0Oqy(1,3)X Oy(1,3). The action of
objects and mappings such that any two mappings betwedhe transformation& X B e SL(2,C) X SL(2,C) on the matri-
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cesX®YeH(2)®H(2), which include the density matri- (y®@y)[(A,B),(X®Y)]

ces, induces a corresponding Lorentz-group transformation .

6(A)x #(B) on the space of expectation-value tensors =([(6xX60)(AB)], (0®w) (X®Y))

Ri® Rl = (0A)0B)], 0 X020 HY),  (BT)

(0@ w) T(AXA*)®(BYB)]
for all (A,B) e SL(2C)XSL(2,C) and for allX®Y e H(2)

=0 HAXA*)@w '(BYB") ®H(2), thefollowing diagram is seen to commute:
=0(A)o Y X)®6(B)w L(Y). (B6) a® a
_ SL(2,C)XSL(2,C)XH(2)®H(2) H(2)®H(2)
The 8(A) X 6(B) are well-defined Lorentz-group transfor-
mations since, as before,
lo™HAXA)[re =[6(A) 0™ H(X) 2 =[l0~ (X7 rey ©ee
1,3 1,3 1,3
and Py
00(1,3)X0y(1,3)XR} ; ® R 5 R};®RT,

lo *(BYB)llgs =l16(B)w (Vs =llo (V)7 .
' ' ' demonstrating the welldefinedness of the mathematical struc-
Hence, defining the map acting on the sp&b@)®H(2) tures used in our analysis in the case of two qubits. This
including the density matricesy® v:SL(2,C)XSL(2,C) construction generalizes in the now obvious way for the case
XH(2)®H(2)—0y(1,3)X Oy(1,3)X R} ;@ R] 5, by of any finite number of qubits.
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