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Quantum Lorentz-group invariants of n-qubit systems
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We consider the behavior of quantum states under stochastic local quantum operations and classical com-
munication~SLOCC! for an arbitrary fixed number of qubits. We use a real~Lorentz! group to describe the
action of SLOCC operations onn-qubit states. We discuss the natural quantum Lorentz-group group-invariant
length for an arbitrary number of qubits. We relate this approach to that based on local operations and classical
communication and provide an example of how the invariant length can be used to describe entanglement. We
also note that this invariant length is the Minkowskian analog to the quantum state purity, which is the
corresponding Euclidean length.
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I. INTRODUCTION

It is known that the state of a single classical spin has
associated invariant length under transformations of
proper Lorentz group O0(1,3), of classical state transforma
tions @1#. In the study of quantum information, one is mo
often concerned with the effect on quantum spins~i.e., qu-
bits! of transformations corresponding to local operatio
and classical communications~LOCC! @2,3# and stochastic
local operations and classical communication~SLOCC!
@4,5#. The latter are most often described by the gro
SL~2,C! acting on the complex, density-matrix description
the quantum state of these qubits, which is homomorphi
the Lorentz group, of which it is a double cover@6#. Here, we
discuss the real description of the quantum state and exa
the corresponding Lorentz-group invariant length for ev
possible finite number of qubits. This length is th
Minkowskian analog of the quantum state purity, which
the corresponding Euclidean length. It is a new tool for d
scribing the behavior of states of any finite number of qub
under SLOCC, the invariants of which had until its introdu
tion @14# been studied for only two qubits~and two-qubit
reduced states from three-qubit pure states! using matrix
methods but with encouraging results@5#.

II. SINGLE QUBITS

In classical physics, one can use the expectation value
the Pauli spin matrices to fully characterize a state of sp
and to visualize it geometrically via a Poincare´ sphere. As
Han et al. @7# have pointed out, these classical paramet
form a Minkowskian four-vector under the group of transfo
mations corresponding to ordinary and hyperbolic state r
tions. In particular, the elements of the group of proper L
entz transformations O0(1,3) acting on the classical Stoke
vector can be represented as products of real and hyper
rotations, for example,
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R~a!5S 1 0 0 0

0 cosa 2sina 0

0 sina cosa 0

0 0 0 1

D , ~1a!

B~x!5S coshx sinhx 0 0

sinhx coshx 0 0

0 0 1 0

0 0 0 1

D ~1b!

that preserve an associated invariant length~cf. @6#!. To simi-
larly investigate the properties of qubit states, it is illumina
ing first to consider the Lorentz group transformations
correspondence to transformations on elements ofH(2), the
vector space of all 232 complex Hermitian matrices tha
includes the density matrices describing states of single
bits.

The state of a quantum ensemble of independent qu
can be completely described by the set of expectation va

xm5Tr~rsm! ~m50,1,2,3!, ~2!

where s051232 and s i , i 51,2,3 are the Pauli matrices
Likewise, one can write the density matrix as

r5
1

2 (
m50

3

xmsm , ~3!

and the vector space for one-qubit state vectors isC 2. Since
sm

2 51 and1
2 Tr(smsn)5dmn , the four Pauli matrices form a

basis for H(2) of which the density matricesr are the
positive-definite, elements of unit trace~i.e., those for which
x0[1), that capture the general qubit state, pure or mixe

Now consider these expectation-value vectors in
Minkowskian real vector spaceR1,3

4 the four-dimensional
real vector spaceR4 endowed with the Minkowski metric
(1,2,2,2), i.e., together with a metric tensorgmn pos-
sessing, as nonzero elements, the diagonal entries11, 21,
21, and21. The length of a four-vectorxm in R1,3

4 is given
©2003 The American Physical Society05-1
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by ^x,x&5gmnxmxn . More explicitly, inR1,3
4 , the length of a

vectorx5(x0 ,x1 ,x2 ,x3) is given by

ixiR
1,3
4

2
5x0

22x1
22x2

22x3
2 . ~4!

Using the standard vector basis forR4, e05(1,0,0,0), e1
5(0,1,0,0),e25(0,0,1,0),e35(0,0,0,1), there exists a natu
ral vector-space isomorphism,n:R1,3

4 →H(2), relating the
spaceR1,3

4 of these vectors and the space of state matr
H(2) defined by

n~x0 ,x1 ,x2 ,x3!5x0s01x1s11x2s21x3s3 . ~5!

Moreover, this isomorphism straightforwardly relates t
corresponding basis elements for the space of expecta
value vectors to those for the space of density matric
namely,n(ei)5s i @6#. If we then define the norm on th
space of density matrices,H(2) to be

iXiH(2)
2 5detX ; XPH~2!, ~6!

then the isomorphismn between the spaces of these re
vectors and the Hermitian matrices becomes a len
preserving mapping, i.e., an isometry, since we have the
lowing simple relationship between lengths in the tw
spaces:

in~x0 ,x1 ,x2 ,x3!iH(2)
2 [detX5x0

22x1
22x2

22x3
25ixiR

1,3
4

2
.

~7!

The associated mathematical structures are describe
detail in Appendix A. We see immediately from Eq.~4! that
the Minkowskian lengthl 2 of the vector of expectation val
ues is

l 25x0
22x1

22x2
22x3

2 , ~8!

similar to its analog in the classical realm and invariant u
der the Lorentz group of transformations represented by
basic formsR and B. This group of transformations goe
beyond the limited context of unitary transformations of de
sity matrices~for which x0[1) ~LUTs!, to include nonuni-
tary transformations corresponding in the real description
transformations such asB. The loci of constantl 2 are three-
dimensional hyperboloids lying within what is the analog
the ‘‘forward light cone’’ of special relativity and the ‘‘nul
cone.’’ These matrices belong to equivalence classes,
represented by a set of pure state density matrices but
sessing a range of ensemble relative sizes,x0. When the
corresponding transformation of the density matrix is an
ement of the SU~2! subgroup of SL~2,C!, corresponding to a
unitary transformation of density matrices into density m
trices ~LUT! and x0 is strictly unity, the states lie within a
locus of a fixed distance from thex0 axis. However, when
this transformation is one such asB, probability is lost or
gained, so that this constraint is no longer obeyed andx0 can
take other values,x08 , and move to other locations within th
hyperboloid corresponding to the same value of the invar
l 2. Expectation-value vectors thus contain information b
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yond the state information provided by density matric
alone, and can be used to study the behavior of states
quantum ensemble under both unitary and nonunitary s
transformations of the density matrix.

III. TWO OR MORE QUBITS

Let us now consider the effect of SLOCC~the Lorentz
group! on two-qubit systems, and find the corresponding
variant length. It is valuable to introduce the joint obser
ablesxmn5Tr(rsm ^ sn), wherem,n50,1,2,3, and expres
the matrix of the general state of a two-qubit ensemble@6,7#:

r5
1

4 (
m,n50

3

xmnsm ^ sn , ~9!

wheresm ^ sn (m,n50,1,2,3) are simply tensor products o
the identity and Pauli matrices, and the state-vector space
pure states of two qubits isC 2

^ C 2. The four-vector,xm ,
must then be generalized to a 16-element tensorxmn in order
to capture all the quantum correlations potentially presen
a two-qubit state.

The two-qubit density matricesr are positive, unit-trace
elements of the 16-dimensional complex vector space
Hermitian 434 matricesH(4). The tensorssm ^ sn[smn

provide a basis forH(4), which is isomorphic to the tensor
product spaceH(2)^ H(2) of the same dimension, sinc
1
4 Tr(smnsab)5dmadnb and smn

2 51434, in analogy to the
single-qubit case. We can write the two-qubit expectat
values as@8,9#

xmn5Tr~rsm ^ sn!. ~10!

A density matrix for the general state of a two-qubit syste
is thus an element ofH(4).H(2)^ H(2) of the form

r5
1

4 S s0^ s01(
i 51

3

xi0s i ^ s01(
j 51

3

x0 js0^ s j

1 (
i , j 51

3

xi j s i ^ s j D , ~11!

an element of the Hilbert-Schmidt space@7# that corresponds
to

x5e0^ e01(
i 51

3

xi0ei ^ e01(
j 51

3

x0 je0^ ej1 (
i , j 51

3

xi j ei ^ ej

~12!

in R1,3
4

^ R1,3
4 , expressed in terms of the elements of stand

vector basis for R4, e05(1,0,0,0), e15(0,1,0,0), e2
5(0,0,1,0), e35(0,0,0,1). The density matrices describin
each qubit, 1 and 2, are given by partial tracing over
states of the other qubit:r15TrH(2)r5 1

2 (11( i 51
3 xi0s i),

r15TrH(2)r5 1
2 (11( i 51

3 x0is i). In Appendix B, we de-
scribe the associated mathematical structures in detail.

Again the length given by the tensor norm
5-2
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l 12
2 [ixiR

1,3
4

^ R
1,3
4

2
5^x,x&5~x00!

22(
i 51

3

~xi0!2

2(
j 51

3

~x0 j !
21(

i 51

3

(
j 51

3

~xi j !
2 ~13!

is invariant under Lorentz-group transformations (A,B)
PO0(1,3)3O0(1,3).

The generalization of the above methods to the case
n-qubits is straightforward, and allows us to find the inva
ant length for any finite number of qubits. Unlike previo
approaches to applying the Lorentz group to quantum st
@5#, which used matrix methods and are therefore limited
transformations representable in simple matrix form, som
thing problematic for an arbitrary number of qubits, t
p
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f

nt

g

x
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present tensorial treatment is entirely general@10#. Specifi-
cally, one can write the n-qubit state matrix in the form

r5S 1

2D n

(
i 1 , . . . ,i n50

3

xi 1 . . . i n
s i 1

^ •••^ s i n
. ~14!

Since dimH(2n)5dim ^ k51
n H(2)5dim ^ k51

n R1,3
4 54n, all

these spaces are isomorphic, whereH(2n) is the vector space
of 2n32n Hermitian matrices. Then-qubit ensemble expec
tation values are then

xi 1••• i n
5Tr~rs i 1

^ •••^ s i n
!. ~15!

Under the Lorentz group, the norm defined in̂k51
n R1,3

4

remains invariant, i.e., under transformations of the fo
u(A1)u(A2)•••u(An) with AkPSL(2,C), we have
l 12•••n
2 5ixi25x0•••0

2 2 (
k51

n

(
i k51

3

~x0••• i k•••0!21 (
k,l 51

n

(
i k ,i l51

3

~x0••• i k••• i l•••0!21•••1~21!n (
i 1••• i n51

3

~xi 1••• i n
!2, ~16!
an
nt
,
r

the invariant length associated with the generaln-qubit state.
The n-qubit tensorxi 1••• i n

transforms under the grou

O0(1,3) as

xi 1••• i n
8 5 (

j 1 , . . . ,j n50

3

Li 1

j 1
•••Li n

j nxj 1••• j n
, ~17!

where theLi
j are the Lorentz-group transformations acting

the spaces of qubits 1, . . . ,n. Again, each Lorentz group o
transformationxm1m2•••mn
→xm1m2•••mn

8 of a given n-qubit

expectation-value tensor will give rise to a new Hermiti
state matrixr8. After transformation, the tensor eleme
x0•••08 is the new n-qubit ensemble relative size. Again
renormalizingr8 provides the resulting density matrix fo
the ensemble:r95r8/Tr(r8).

We note also that the quantum state purity, Trr2, for a
generaln-photon state,
Tr r25TrF S 1

2D n

(
i 1 , . . . ,i n50

3

xi 1 . . . i n
s i 1

^ •••^ s i nS 1

2D n

(
j 1 , . . . ,j n50

3

xj 1 . . . j n
s j 1

^ •••^ s j nG , ~18!
by
ts
ard
e-

iant
nc-
also has a particularly simple form in terms of the eleme
n-qubit four-tensor; since (s i 1

^ s j 1
) ^ •••^ (s i n

^ s j n
)5s0

^ •••^ s0 if and only if i k5 j k , for all k51,2, . . . ,n, only
the coefficient of the terms0^ •••^ s0 contributes to the
trace, and we have

Tr r25
1

2n (
i 1 , . . . ,i n50

3

xi 1 . . . i n
2 . ~19!

The state purity is thus seen to be the Euclidean analo
the Minkowskian invariant length introduced here.

IV. RELATION TO LOCC INVARIANTS

We now discuss our Lorentz-group~SLOCC! invariants in
relation to known local invariants under LOCC in the conte
s

of

t

of studies of entanglement monotones as explored
Nielsen @2#, Vidal @3#, and others with an emphasis on i
extension to nontrivial case of three qubits. The stand
approach to LOCC invariance of multiple-qubit systems b
gins with the pure statesuc& in H1^ H2^ •••^ Hn , Kraus
operatorsAk

( i ) :Hi→Hi8 acting in the Hilbert spacesHi with
(kAk

( i )†Ak
( i )5I i (I i being the identity onHi), the investiga-

tion of entanglement monotones and the search for invar
quantities; an entanglement monotone is a real-valued fu
tion E(uc&) such that

E~ uc&)>(
k

pkES ~ I 1^¯^ Ak
( i )

^¯^ I n!uc&

Apk
D ~20!

for any stateuc&, operationAk
( i ) and spacei, where pk
5-3
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5i(I1^•••^Ak
(i)

^•••^In)uc&i2, which is nonincreasing unde
LOCC and possesses other valuable properties.

One approach for finding local invariants has been tha
seeking them as polynomials. In the three-qubit case,
now point out that several LOCC polynomial invarian
@11,12# are simply related to our Lorentz-group invaria
lengths. To see this, first note that, given a wave funct
uc&, one can write the equivalent density matrix,r
5uc&^cu and define a corresponding ‘‘spin-flipped’’ densi
matrix @13# as r̃[(s2^ •••^ s2)r* (s2^ •••^ s2), where
* denotes complex conjugation. Note also that one gener
obtains a state only representable as a density matrix~as
opposed to a state-vector! when one traces out propertie
associated with some particles of a multiple-qubit system
partial tracing over them in order to describe only tho
properties of other subsystems.

It is readily verified that one can write our quantu
Lorentz-group invariant lengths in terms of density ope
tors, that is,

l 12•••n
2 52nTr~r12•••nr̃12•••n!. ~21!

With this in mind, one can then see that three of the fi
polynomial LOCC invariants of the three-qubit pure sta
polynomial invariants@11#, namely, I 1 , I 2 , and I 3 are
readily expressible in terms of such traces over two-qu
reduced density matrices. In particular, one finds that

I i512
1

2
@Tr~r i j r̃ i j !1Tr~r ikr̃ ik!#, ~22!

that is,

I i512
1

23 ~ l i j
2 1 l ik

2 !, ~23!

for $ i , j ,k%5$1,2,3%,$2,1,3%,$3,1,2%.
Finally, we present a specific simple example of how

Lorentz-group invariant length is useful for the study
quantum information~see Ref.@14# for a discussion of this
length in a practical, optical context!. This is particularly
simple for a pair of entangled qubits. Namely, in the partic
lar case of pure states of two qubits, this invariant len
coincides with the concurrence squared, i.e., the tangt
@13#,

t54l 12
2 , ~24!

which has been a useful tool for measuring pure state
tanglement that is directly related to the entanglement

formation,h( 1
2 @11A124l 12

2 #), whereh(x)[2x log2x2(1
2x)log2(12x), the well-known bipartite system entangl
ment monotone.

V. CONCLUSION

We have considered the application of the Lorentz gro
beyond the level of two-qubit states to the quantum state
an n-qubit quantum system. We showed that the multip
05230
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qubit state expectation values form a Minkowskian ten
and give rise to invariant lengths, first introduced in Ref.@14#
for each possible numbern of qubits under the action of the
Lorentz group. This length is the Minkowskian analog of t
quantum state purity, which is the corresponding Euclide
length. We showed how in the case of three-qubit pure sta
the known LOCC invariants can be expressed in terms
this length forn52 for appropriate mixed states. We note
also that the quantum Lorentz-invariant length forn52 is
identical to the tangle in the case of pure states. This len
for generaln @14# is thus a natural, geometrical tool for de
scribing the behavior of states of any finite number of qub
under SLOCC, which have thus far been studied, with po
tive results but for only two-qubit states and two-qubit r
duced states of three-qubit pure states@3#. Our approach to
SLOCC also has the advantage of being founded on a c
geometrical basis.
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APPENDIX A

Since the Pauli matrices are traceless andsm
2 51232(m

50,1,2,3), we obtain the following expression for the i
verse,n21:H(2)→R1,3

4 , of the vector-space isomorphism o
Eq. ~7!:

n21~X!5
1

2
„Tr~X!,Tr~Xs1!,Tr~Xs2!,

Tr~Xs3!… ; XPH~2!, ~A1!

which maps the space of 232 Hermitian matrices containing
the density matrices into the space,R1,3

4 , containing the
quantum four-vectors. In particular, the density matrices
quantum mechanics are identified within the space of H
mitian matricesH(2) as those having trace one, a conditi
guaranteeing that the sum of probabilities of all the poss
events for the quantum state is unity.

We now define the contraction mapl:H(2)→H(2),

l~X!5
1

2
X ; XPH~2! ,

which allows us to define the directly applicable isomo
phism v(x)5l+n:R1,3

4 →H(2) of the space containing
expectation-value vectors to that containing the density m
trices:

v~x0 ,x1 ,x2 ,x3!5
1

2 (
i 50

3

xmsm , ;x5~x0 ,x1 ,x2 ,x3!PR1,3
4 .

~A2!

The corresponding inverse mapv21:H(2)→R1,3
4 is

v21~X!5@Tr~X!,Tr~Xs1!,Tr~Xs2!,Tr~Xs3!#. ~A3!
5-4
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As with the initial isomorphismn, v becomes an isometry i
we defineiv(x0 ,x1 ,x2 ,x3)iH(2)

2 [det(2X)5ixiR
1,3
4

2
.

The mappingv21 now directly returns the vector of ex
pectation values,xm5Tr(rsm) (m50,1,2,3), as desired.

Consider the group actiona: SL(2,C)3H(2)→H(2),
defined by

a~A,X!5AXA* ; APSL~2,C! and ;XPH~2!,
~A4!

involving the density matrices. We see that the norm indu
by the isomorphismv is preserved under the mappinga,
since

iAXA* iH(2)
2 5det~AXA* !5udetAu2detX5detX5iXiH(2)

2 .
~A5!

The natural group action,b:O0(1,3)3R1,3
4 →R1,3

4 , of the
Lorentz group O0(1,3) on the quantum observables, the e
ments ofR1,3

4 including the vectors describing this ensemb
is defined by

b~x!5Bx ; BPO0~1,3! ; xPR1,3
4 , ~A6!

and is norm preserving~by definition!, i.e., iBxiR
1,3
4

2

5ixiR
1,3
4

2
.

Since the isomorphismv of the expectation value spac
to the space containing the quantum states is an isometry
can also define a map,u:SL(2,C)→O0(1,3), between the
transformations on elements ofH(2), including the density
matrices, to those transformations of elements ofR1,3

4 . The
action of a matrixA on the matricesXPH~2! induces a
corresponding Lorentz transformationu(A) of vectors in
R1,3

4 , such that iv21(AXA* )iR
1,3
4 5iu(A)v21(X)iR

1,3
4

5iv21(X)iR
1,3
4 .

Note thatu has the property of being a group homomo
phism, i.e., givenXPH(2) andA,BP SL~2,C!, u has the
following properties:

~i! u(AB)v21(X)5v21(ABXB*A* )5u(A)v21(BXB* )
5u(A)u(B)v21(X), i.e., u(AB)5u(A)u(B), and

~ii ! v21(X)125v21(X)5v21(12X12)5u(12)v21(X),
i.e., u(12)512 .

Finally, by defining a mapg of the quantum state trans
formations into the corresponding transformations of the
bit expectation values,g:SL(2,C)3H(2)→O0(1,3)3R1,3

4 ,

g~A,X!5@u~A!,v21~X!#, ~A7!

we obtain a commuting diagram, i.e., a set of mathemat
objects and mappings such that any two mappings betw
05230
d
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any pair of objects obtained by composition of mappings
equal.

APPENDIX B

The isomorphism between the space of two-qubit exp
tation values and two-qubit density matrices,v ^ v: R1,3

4

^ R1,3
4 →H(2)^ H(2).H(4) is defined as

~v ^ v!~v ^ w![v~v ! ^ v~w!, ~B1!

for all v,wPR1,3
4 . sm ^ sn form a basis for the required

space of two-qubit Hermitian matricesH(2)^ H(2).H(4)
and (v ^ v)(em ^ en)5v(em) ^ v(en)5sm ^ sn (m,n
50,1,2,3). Furthermore, the inverse map taking density m
trices to two-qubit tensors, (v ^ v)21, H(4)→R1,3

4 3R1,3
4 is

given by

~v ^ v!21~X!5Tr~Xsm ^ sn!, ~B2!

for all XPH(4). To describe the effect of the full set o
group transformations, we use the mapa ^ a:SL(2,C)
3SL(2,C)3H(2)^ H(2)→H(2)^ H(2), since for each
qubit the group of transformations SL(2,C) acts via the ac-
tion a on the vector spaceH(2) that includes the density
matrices. The action on the two-qubit Hermitian matrices
defined as

~a ^ a!@~A,B!,X^ Y#5~AXA* ! ^ ~BYB* ! ~B3!

for all (A,B)PSL(2,C)3SL(2,C), and;X,YP H(2). The
actiona ^ a is norm preserving on the tensor-product spa
since

iAXA* iH(2)
2 5iXiH(2)

2 , ~B4a!

iBYB* iH(2)
2 5iYiH(2)

2 . ~B4b!

Similarly, the actionb of the Lorentz group O0(1,3) on
the space of expectation values,R1,3

4 , generalizes in the two-
qubit case to b ^ b:O0(1,3)3O0(1,3)3R1,3

4
^ R1,3

4 →R1,3
4

^ R1,3
4 ,

~b ^ b!@~C,D !,v ^ w#5~Cv ! ^ ~Dw! ~B5!

for all (C,D)PO0(1,3)3O0(1,3) and;v ^ wPR1,3
4

^ R1,3
4 .

Since the isomorphismv ^ v is an isometry, as in the
one-qubit case, we define the group homomorphismu
3u:SL(2,C)3SL(2,C)→O0(1,3)3O0(1,3). The action of
the transformationsA3BPSL(2,C)3SL(2,C) on the matri-
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ces X^ YPH(2)^ H(2), which include the density matri
ces, induces a corresponding Lorentz-group transforma
u(A)3u(B) on the space of expectation-value tens
R1,3

4
^ R1,3

4 ,

~v ^ v!21@~AXA* ! ^ ~BYB* !#

5v21~AXA* ! ^ v21~BYB* !

5u~A!v21~X! ^ u~B!v21~Y!. ~B6!

Theu(A)3u(B) are well-defined Lorentz-group transfo
mations since, as before,

iv21~AXA* !iR
1,3
4

2
5iu~A!v21~X!iR

1,3
4

2
5iv21~X!iR

1,3
4

2

and

iv21~BYB* !iR
1,3
4

2
5iu~B!v21~Y!iR

1,3
4

2
5iv21~Y!iR

1,3
4

2
.

Hence, defining the map acting on the spaceH(2)^ H(2)
including the density matrices,g ^ g:SL(2,C)3SL(2,C)
3H(2)^ H(2)→O0(1,3)3O0(1,3)3R1,3

4
^ R1,3

4 , by
an

.V

05230
n
s

~g ^ g!@~A,B!,~X^ Y!#

5„@~u3u!~A,B!#, ~v ^ v!21~X^ Y!…

5„@u~A!,u~B!#, v21~X! ^ v21~Y!…, ~B7!

for all (A,B)PSL(2,C)3SL(2,C) and for allX^ YPH(2)
^ H(2), thefollowing diagram is seen to commute:

demonstrating the welldefinedness of the mathematical st
tures used in our analysis in the case of two qubits. T
construction generalizes in the now obvious way for the c
of any finite number of qubits.
o
y
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