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Two photons in a pair generated in the nonlinear optical process of spontaneous parametric

down-conversion are, in general, strongly quantum entangled. Accordingly, they contain

extremely strong energy, time, polarization and momentum quantum correlations. This

entanglement involves more than one quantum variable and has served as a powerful tool in

fundamental studies of quantum theory. It is now playing a large role in the development of

novel information processing techniques and new optical measurement technologies. Here we

review some of these technologies and their origins.

1. Introduction

Entangled photons allow one to carry out quantum

mechanical information processing and precise optical

measurements with novel characteristics. The nonlinear

optical process of spontaneous parametric down-conver-

sion, which arises in a nonlinear optical medium such as a

beta-barium borate (BBO) crystal when pumped by laser

light, produces entangled photons in the required quantum

states. Theses states are those in which photons are created

with strongly correlated properties that remain correlated

even after the photons have propagated to widely separated

locations in space [1 – 3]. These strong quantum correla-

tions naturally present between down-conversion photons

allow for uniquely quantum mechanical, often superior,

forms of measurement to be performed. These quantum

states are also capable of encoding information, with

robust coherence properties associated with entanglement

that allow this information to be transported and

transformed in unique ways. Their resistance to the

decoherence phenomena, which have hampered other

approaches to quantum information processing, has put

entangled-photon optics in a position of added importance.

Practical technological applications can often benefit from

the fact that in these states, although each individual

subsystem may exhibit inherent uncertainties, the compo-

nents of the entangled pair may exhibit no such uncertainty

relative to one another. This beneficial property of

quantum entanglement for the development of new forms

of optical measurement has given rise to the new field of

quantum optical metrology.

Entangled states have been used effectively during the

last two decades to carry out research demonstrating

quantum efficiency measurements [4], non-local dispersion

cancellation [5], entangled-photon-induced transparency

[6] and entangled-photon spectroscopy with monochro-

matic light [7]. The practical availability of entangled

beams has also made it possible to conduct experiments

without having to resort to costly, rare devices. We

discuss here a new generation of recently developed

techniques for quantum information processing and

quantum metrology.

Entangled photons first became of great interest in

probing the foundations of quantum mechanics. Debates

surrounding the foundations of quantum mechanics have

been ongoing since the introduction of the theory,

particularly since the 1930s, with entangled-photon states

often playing a central role in providing essential empirical

information about the quantum world. Entangled states of

increasingly better quality have continually been sought in

order to progressively better differentiate quantum beha-

viour from classical phenomena. Entangled quantum

systems are defined as those quantum systems composed

of at least two component subsystems which are described

by states that cannot be written as a product of

independent subsystem states,
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jCi 6¼ jc1i � jc2i ; ð1Þ

for any two quantum states |cn i of the individual

subsystems. As Schrödinger [8], who first defined entangle-

ment stated, entanglement is ‘the characteristic trait of

quantum mechanics’.

The process known as spontaneous parametric down-

conversion (SPDC) has become the most widely accepted

method for creating such quantum states. New, high-

intensity sources of SPDC have been developed over the

last two decades (see, for example, [9]). Spontaneous

parametric down-conversion of one photon into a pair is

said to be of one of two definite types, based on the

satisfaction of ‘phase-matching’ conditions of either type I

or of type II, corresponding to whether the two photons of

the down-conversion pair have the same polarization or

orthogonal polarizations, respectively. The two photons of

a pair, often arbitrarily called signal (s) and idler (i) for

historical reasons, can also leave the down-converting

medium either in the same direction or in different

directions, known as the the collinear and non-collinear

cases, respectively.

The medium of down-conversion is usually some sort of

birefringent crystal, for example, potassium dihydrogen

phosphate (KDP), possessing a w(2) optical nonlinearity.

Upon entrance to a nonlinear crystal, there is a small

probability (on the order of 10– 7) that a given photon from

the incident pump beam will be down-converted into a

photon pair (see figure 1). If down-conversion occurs, the

conserved quantities, energy and momentum, are carried

into the resulting photon pair under the constraints of their

respective conservation laws, with the result that the phases

of the corresponding wave-functions match, in accordance

with the relations

os þ oi ¼ op ; ks þ ki ¼ kp ; ð2Þ

referred to as the phase-matching conditions, where the ki
and oi are momenta and frequencies for the three waves

involved. When the two photons of a pair have different

momenta or energies, entanglement will arise in SPDC,

provided that the alternatives are in principle experimen-

tally indistinguishable.

The state describing photon pairs produced in type-I

down-conversion can be written

jCi ¼
X
s; i

dðos þ oi � opÞdðks þ ki � kpÞjksi � jkii : ð3Þ

In this case, by definition, the two photons leave the

nonlinear medium with the same polarization, namely that

orthogonal to the polarization of the pump beam photons.

Down-conversion photons are produced in two thick

spectral cones, one for each photon, within which two-

photons appear each as a pair of photons on opposite sides

of the pump-beam direction (see figure 1).

Entanglement between two particles in one particular

quantum variable, such as spin, for example

jCi ¼ 1

21=2
ðj "ij #i � j #ij "iÞ ; ð4Þ

was discussed by David Bohm in his famous book of the

1950s, Quantum Theory [10], and analysed by Bohm and

Aharonov [11]. The nonlinear process of SPDC provides a

more rich source of entanglement, instead involving several

quantum variables, such as frequency, momentum, wave-

vector and polarization [12].

In the mid-1980s, Hong et al. [13] created non-collinear,

type-I phase-matched SPDC photon pairs in KDP crystal

using an ultraviolet continuous-wave (cw) laser pump

Figure 1. Spontaneous parametric down-conversion (SPDC). Here a pump laser beam strikes a nonlinear optical crystal possessing a

second-order optical nonlinearity. Pairs of different colour (energy) photons emerge on the opposite sides of the pump laser forming two

beams in entangled quantum states, which are cylindrically symmetrical relative to the pump direction. The central spot on the

photograph is a residual pump radiation after the laser beam stop.
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beam. This seminal experiment empirically demonstrated

the strong temporal correlation between the two photons of

a down-conversion pair. Filters were placed in the

apparatus, restricting the frequency spread of the down-

converted photons allowed to interfere. Note that since this

experiment used type-I down-conversion, where the polar-

izations of the two photons are identical, there is no chance

for the state entanglement to involve the polarization

variable.

Since this experiment, the common approach to quan-

tum interferometry has been to choose a single entangled

parameter of interest and eliminate the dependence of the

quantum state on all other parameters. For example, when

investigating polarization entanglement, both strong spec-

tral and spatial filtering are typically imposed in an attempt

to restrict attention to polarization alone. A more general

approach to this problem is to consider and exploit the

multi-faceted nature of down-conversion photon entangle-

ment from the outset. In such an approach, the observed

quantum-interference pattern in one parameter, such as

polarization, can be modified by controlling the depen-

dence of the state on the other parameters, such as

frequency and transverse wave-vector. A more complete

theory of spontaneous parametric down-conversion allows

us to understand the full character of fourth-order

quantum interference in many valuable experiments [12].

SPDC gives rise to a quantum state that is generally

entangled in three-dimensional wave-vector, energy and

polarization. This means that consideration of only part of

the wavefunction, such as the polarization function alone,

is insufficient to capture all the quantum correlations

present in the system.

Many experiments designed to verify the non-factoriz-

ability of classes of quantum states that defines entangle-

ment are carried out in the context of models that fail to

consider the overall relevant Hilbert space and are

restricted to entanglement of only a single aspect of the

quantum state, such as energy [14], momentum [15], or

polarization [16]. Indeed, inconsistencies can emerge in the

analysis of quantum-interferometric experiments involving

down-conversion under such circumstances. This fact has

been underlined by the failure of the conventional theory of

ultrafast (femtosecond time-scale) parametric down-con-

version to characterize quantum-interference experiments

because femtosecond SPDC models have traditionally

ignored transverse wave-vector components and have

thereby not accounted for the previously demonstrated

angular spread [17] of such down-converted light [18, 19].

Our techniques involve the use of these several variables

and can benefit from their entanglement as our under-

standing of the relevant quantum states evolves yet further.

Several practical applications become available when one

has the ability to efficiently produce entangled states of

light. Such states have been used with great effectiveness

during the last twenty years for carrying out definitive

experiments. Although each individual subsystem of an

entangled system exhibits inherent uncertainty, the ele-

ments of the entangled pair may exhibit no such

uncertainty relative to one another. For example, the time

of arrival of an individual particle may be totally random

but the two photons of an entangled pair produced in

down-conversion that follow the same path always arrive

simultaneously. Quantum correlations between photons

generated in SPDC are not diminished by arbitrary

separations between them during propagation, even when

lying outside one another’s light cone, allowing for what

has been referred to as ‘passion at a distance’ [3]. It has

been found that the interferometers developed for this

purpose can exploit this robustness of entanglement over

distance for the purposes of quantum communications, in

particular for quantum cryptography [20 – 23].

The uniquely quantum correlations present in two-

photon entangled states have opened up new realms of

communications and information processing, and high-

accuracy and absolute optical metrology. Research during

the last two decades has produced several new technologies:

(1) quantum cryptography; (2) a technique for determining

polarization mode dispersion (PMD) with attosecond

precision; (3) a method of absolute ellipsometry, which

requires neither source nor detector calibration, nor a

reference sample; (4) a novel quantum-optical optical

coherence tomography technique. Quantum cryptography

is a method of sending cryptographic key material under

conditions of physical, rather than merely computational

security. Attosecond-resolution PMD measurements pro-

vide unprecedented accuracy in determining that property

which is a fundamental characteristic of optical fibres for

telecommunications. Absolute ellipsometry allows one to

measure the thickness and optical constants of thin films,

such as semiconductors, without the need for reference

samples. Quantum optical coherence tomography provides

a new and potentially superior technique for the probing of

volumes, providing information about their internal

structure. We will now discuss each of these techniques in

detail.

2. Quantum cryptography

Quantum cryptography has been based on two major

techniques for quantum key distribution (QKD), both of

which utilize the quantum state of the photon [20]. One

approach makes use of approximately single-photon states

prepared from light in a coherent state and has one major

drawback: the presences of statistical fluctuations in the

number of photons in the original coherent state. This adds

the possibility of having two identical (unentangled)

photons simultaneously in the communication channel,

allowing an eavesdropper to use one photon to extract
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partial information while the second proceeds to the

receiver unaffected [20]. The other approach is based on

the non-local character of two-photon entangled (EPR)

states generated in the nonlinear process of spontaneous

parametric conversion (SPDC). The unique correlation of

entangled photon pairs in space, time, energy and

momentum resolves the problem of the first approach.

Until recently, the applicability of the latter technique has

been severely limited due to the low visibility and poor

system stability inherent in the use of type-I SPDC in the

past, and the need for the synchronous manipulation of two

Mach –Zehnder interferometers which are well separated in

space, as have also been used. Based on our previous

studies of quantum states and their practical utilization, we

have found a way to take advantage of doubly entangled

EPR states generated by type-II SPDC to provide a much

more flexible, robust and reliable quantum apparatus for

quantum key distribution.

The high contrast and stability of the fourth-order

quantum interference patterns of entangled photons well

coupled into a communications single-mode optical fibre,

demonstrated in our initial experiments [21], promise to

bring the performance of EPR-based quantum cryptogra-

phy systems up to the level of the best single-photon

systems. It has been shown recently that the use of high-

repetition-rate femtosecond pulses significantly enhances

the flux of entangled-photon pairs available for reliable and

secure key distribution. The down-converted entangled

pairs appear only at those well-defined times when pump

pulses are present (repetition rate about 80 MHz). This

provides narrow windows where coincidences can be

obtained, separated by fixed time intervals during which

the photon detectors can recover, thereby significantly

enhancing the overall coincidence rate.

The key feature of quantum cryptography, the impossi-

bility of extracting information without destroying it,

cannot be exploited without suffering from a limitation

on the distance of secure information transfer arising from

unavoidable losses due to photon absorption in realistic

quantum channels. As a matter of principle, it is impossible

to amplify the quantum state, since amplification itself

(cloning) requires the extraction of quantum information

[24]. As a result, resource-consuming quantum error

correction techniques and entanglement concentration

methods are often required. The level of signal attenuation

in modern optical fibres currently poses a limit of 60 –

75 km for reliable quantum cryptography. Open-air com-

munication may be more feasible especially when fibres are

not available (as in ship-to-ship, or in-field communica-

tion). The problem of secure communication to a satellite is

also one of the most vital issues in modern telecommunica-

tion. Open-air quantum cryptography will become a crucial

tool in these situations. Our technique, described below,

can be realized in either manner.

The two experimental approaches to quantum crypto-

systems, those that rely on weak coherent single-photon

states to distribute cryptographic key bits and those that

instead rely on multi-particle entanglement, can be readily

compared. The weak coherent schemes are based on the

protocols developed by Bennett and Brassard [25]. In these

schemes, one party prepares a single-photon state by

attenuating a pulsed laser to obtain a photon count of

roughly 0.1 photons per pulse. The entanglement scheme

developed by Ekert [26] instead involves the creation of a

maximally entangled two-photon state (EPR state) and the

measurement of the two particles by spatially distant

parties.

There are specific advantages to using entangled states

for QKD. In weak-coherent-state QKD, a laser pulse train

with randomly distributed photon occupation is attenuated

to achieve a high probability of 0 or 1 photons per

transmitted pulse. In determining the attenuation, there is a

trade-off between the shared key-bits per second and the

probability that a transmitted pulse may contain more than

a single photon. Since a multiple-photon pulse is vulnerable

to undetected monitoring (for example, by the use of a

beam splitter), the attenuation is usually increased until the

probability of two photons is on the order of 0.01. This has

the effect that one in ten pulses transmitted by the

attenuator has a photon, reducing the possible commu-

nication rate by an order of magnitude. By contrast, in

EPR QKD, each photon created and measured is

accompanied by exactly one other perfectly synchronized

photon, preventing any attempts at undetected beam-

splitting. Furthermore, in EPR QKD the detector at the

first party is capable of activating, via an authenticated

message over a public line, the detector of the second party

for a short temporal window, enabling the rate of false

detection to be brought down to an acceptable level,

making EPR QKD ideally suited for free space transmis-

sion during daylight.

A second problem with coherent state QKD is that,

since the arrival of photons at the detector of the second

party is governed by a random process, the active optical

elements used to create the shared key must be connected

to the fibre throughout the transmission. This makes

them vulnerable to probe beams injected by an eaves-

dropper in order to determine the classical state of lasers,

polarizers and phase modulators. Since the second

detector in the EPR QKD is triggered for only a short

duration by the response of the first detector, the

eavesdropper is unable to reliably determine the classical

settings of the optical elements at the precise time of the

coincident detections. It should be noted that, while EPR

QKD is distinguished from weak-coherent-state QKD by

its inherent security advantages, both techniques can be

seen as single-photon-state preparations and measure-

ments, since even the state of the other photon of an
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EPR pair collapses immediately onto an eigenstate when

the first measurement is made. Previous attempts to

develop the quantum cryptography with EPR states were

initiated immediately after the main idea was introduced

[26]. This approach requires the use of a Franson-type

interferometer [27] and has been severely limited because

of the low visibility inherent in the need of synchronous

manipulation of the two spatially separated Mach –

Zehnder interferometers mentioned above. Type-II SPDC

provides a richer tool due to the two-photon entangle-

ment both in space – time and in spin (polarization),

which are not both present in entanglement generated in

type-I SPDC. The unique double entanglement of the

two-photon state in type-II SPDC provides us with

control of the relative position of these two photons in

space – time.

In our scheme [21], polarization-entangled photons are

created by sending laser light through an appropriately

oriented type-II second-order nonlinear crystal such as

BBO. We use a collinear configuration of type-II SPDC

based on the use of a double, strongly unbalanced and

distributed polarization interferometer similar to the one

we designed for the polarization mode dispersion measure-

ment (see figure 2 and section 3 below). The photons enter

two spatially separated arms via a polarization-insensitive

50/50 beam splitter (BS), allowing photons of either

orthogonal linear polarization to be reflected and trans-

mitted with equal probability. One arm contains a

controllable polarization-dependent optical delay (the

e-ray/o-ray loop) that is required for the initial alignment

of the apparatus. The introduction of polarization analy-

sers oriented at 458 in front of each photon-counting

detector completes the polarization interferometer. Signal

correlation is registered by detecting the coincidence counts

between the two detectors as a function of the polarization

delay and of polarization angle. A phase shift imposed on

one of the entangled photons does work for both of them,

even though they are well separated in space. The 908 shift
of the phase in one of the analysers will change the

quantum interference immediately to be constructive in the

central fringe with a very high (roughly 99%) contrast. The

results for the Bell inequality tests using raw key-bit

transmission shown in figure 3 demonstrate that the use of

a polarization intensity interferometer and type-II SPDC,

Figure 2. Entangled-photon quantum key distribution scheme [21]. Entangled photons are produced by spontaneous parameteric down-

conversion (see figure 1) in a collinear configuration (same direction), strike a beam splitter and reach two photon detectors (APDs)

where they are measured in coincidence after passing an appropriately oriented polarization analyser. Counts at the two distant detectors

are random but correlated, providing a shared, secret cryptographic key.
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in contrast to spatial interferometers in type-I SPDC,

provides much higher rates and contrast (visibility of

quantum interference).

The final element of the procedure of quantum key

distribution using this design is to randomly modulate

polarization parameters of the two-photon entangled state

by switching each analyser-modulator between two sets of

polarization settings 08/908 or 458/1358. This can be

accomplished using fast Pockels cell polarization rotators

in front of detectors. Alternatively, one can implement a

passive choice of basis by introducing a pair of detector

suites for each of the photons, preceeded by an ordinary

beam splitter that randomly sends photons to one of these

two detector suites which accept polarizations in the two

different polarization bases, with each photon polarization

state finally distinguished by a polarizing beam splitter

followed by a pair of detectors. Using a public commu-

nication line, one then can proceed with one of the standard

quantum cryptography protocols described in the literature

[25, 26]. The phase-sensitive quantum interference of two

entangled photons in a strongly unbalanced polarization

intensity interferometer delivers robust quantum hardware

suitable for practical quantum cryptography applications.

The high contrast and stability of quantum interference

demonstrated in our experiments surpasses the perfor-

mance of the best single-photon polarization techniques,

without the limitations outlined above.

3. Quantum metrology: measurement of polarization mode

dispersion

Conventional polarization measurement techniques were

developed over the years to a very high degree of

V 0.976 0.003

Figure 3. High visibility quantum polarization interference for

quantum key bit transmission with entangled states. The solid

curve is a cosine fit to evaluate the visibility of modulation.

Figure 4. Schematic of a two-photon polarization interferometer in comparison with its traditional analogue, the Hong –Ou –Mandel

intensity interferometer (top right). This interferometric dip (lower right) is shifted proportional to the temporal delay introduced by

polarization mode dispersion in the sample under measurement [28].
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performance and are used every day in many research

and industrial applications. Traditional, non-polarization-

based techniques for the measurement of optical delay

usually make use of monochromatic light. The introduc-

tion of an optical sample in one arm of the inter-

ferometer causes a sudden shift of interference pattern

(sometimes over tens or hundreds of wavelengths)

proportional to the absolute value of the optical delay.

This approach requires one to keep track of the total

number of shifted interference fringes in order to evaluate

the absolute value of the optical delay. The accuracy of

this approach is limited by the stability of the inter-

Figure 5. (a) Schematic of a two-photon polarization interferometer with a postponed optical delay. A non-symmetric delay is

introduced only in one arm after the beam splitter. (b) Measurement of intensity correlations as a function of relative femtosecond

polarization delay tt. Note that the V-shaped feature is modulated in this arrangement [29].

347Quantum information processing and precise optical measurement with entangled-photon pairs



ferometer, the signal-to-noise level of the detector and the

wavelength of the monochromatic radiation used. Con-

ventional polarization interferometers used in ellipsome-

try measurements provide very high resolution but have a

similar problem of tracking the absolute number of 2p
shifts of optical phase during the polarization mode

dispersion measurement.

Optical engineers have come up with several ways to get

around this problem, using additional complex measure-

ment procedures. The use of monochromatic classical

polarized light does not allow one to measure the relative

delay between two orthogonal waves in a single measure-

ment, so several measurements at different frequencies must

be used to reconstruct the polarization dispersion proper-

ties of materials. The use of highly monochromatic laser

sources creates the additional problem of multiple reflec-

tions and strong irregular optical interference, especially in

studying surface effects. Ellipsometry with low-coherence

sources (white light) has received attention as a convenient

method for the evaluation of dispersions in optical

materials, particularly of communication fibres. While the

technique provides the high timing resolution, along with

the absolute nature of the optical delay measurement, it

suffers from the problem of low visibility and instability of

the interference pattern.

The unique double entanglement of the two-photon

state in type-II phase-matched SPDC again provides us

with ultimate control of the relative position of photon

pairs in space – time, providing a way of avoiding the

limitations of conventional techniques. The study of

polarization entanglement and of the natural rectangular

shape of the two-photon wave function in space – time in

type-II phase-matched SPDC allows us to measure

propagation time delay in optical materials with sub-

femtosecond resolution. This entangled photon state

intrinsically provides an absolute value for polarization

optical delay that is not limited to producing only a

value relative to one wave cycle of light as is the case in

conventional methods. The probe light does not disturb

the physical conditions of the sample under test, and can

be used continuously during the growth and assembly

processes to monitor major optical parameters of the

device in situ. By manipulating the optical delay between

the orthogonally polarized photons, a V-shaped correla-

tion function feature is realized by a coincidence photon

counting measurement [28]. The general principle and

Figure 6. Measurement of the optical delay in the crystal quartz sample using a 50 mm nonlinear crystal for SPDC [29]. The horizontal

scale is the femtosecond polarization time delay tt introduced by the variable-thickness birefringent optical device located after the beam

splitter, BS.
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schematic experimental set-up is illustrated in figure 5.

The sharp V in the intensity correlation function can be

made just 5 – 10 fs wide. The introduction of any

additional sample of optical material or photonic device

with different group velocities for o-rays, (uo,) than for e-

rays, (ue,) in the optical path before the beam splitter will

shift the V-shape distribution on a sub-femtosecond time

scale. This shift is proportional to the optical delay in the

sample of the length L:

d ¼ ð1=uo � 1=ueÞL � ðno � neÞL=c : ð5Þ

In our realization, a 351 nm Ar+ laser pumps the BBO

crystal in a collinear and frequency-degenerate configura-

tion. Pairs of orthogonally polarized photons generated in

the BBO nonlinear crystal enter two spatially separated

arms via a polarization-insensitive 50/50 beam splitter (BS),

so both ordinary and extraordinary polarized photons have

equal probability to be reflected and transmitted. The two

analysers (oriented at 458) in front of each photon-counting

detector D1 (D2) complete the creation of what are, in

essence, two spatially separated polarization interferometers

for the originally X (Y)-oriented signal and idler photons.

Signal correlation is registered by coincidence events

between detectors D1 and D2, as a function of a variable

polarization delay (PD) in the interferometer. Spontaneous

parametric down-conversion in a BBO nonlinear crystal

with L=0.05 to 1 mm generates signal and idler photons

with coherence lengths of tens to hundreds of femtoseconds.

This approach explicitly utilizes a self-referencing feature of

(polarization) entangled states discussed earlier.

A very useful new feature is realized in our experiment

due to the non-symmetric manipulation of the relative

optical delay t between ordinary and extraordinary

photons in only one of the two spatially separated

interferometers. Namely, the observed coincidence prob-

ability interferogram has its triangular envelope now filled

with an almost 100% modulation, which is associated with

the period of pump radiation. The additional introduction

of a sample of optical or photonic material with different o-

ray and e-ray group velocities in the optical path before the

beam splitter shifts the interference pattern proportional to

tsample= d/c, the difference in propagation times of the two

polarizations. This allows one to measure directly the

absolute value of total optical delay between two ortho-

gonally polarized waves in the sample on a very fine, sub-

femtosecond time scale [28, 29].

The observed result of the measurement of intensity

correlations, corresponding to the coincidence probability,

as a function of relative polarization delay d, is illustrated

in figure 6. The SPDC signal is delivered to the detectors

without the use of any limiting spectral filters. The full

width at half-maximum (FWHM) of the correlation

function envelope is defined by

d ¼ ð1=uo � 1=ueÞLcrystal : ð6Þ

The high visibility of the interference pattern and the

extremely high stability of the polarization interferometer

in such a collinear configuration allows one to identify the

absolute shift of the wide envelope with an accuracy defined

by the fringe size of an internal modulation.

It is important to note the high contrast of observed

quantum interference, approximately 90%. The resolution

is further enhanced by reducing the total width of the

envelope [28]. This can be done by widening the phase

matching spectrum by reducing the crystal length to 50 mm.

This arrangement was used to measure the optical delay of

a quartz sample introduced into the optical path before the

beam splitter BS. The result of this measurement

(performed with the 50 mm nonlinear crystal) is illustrated

in figure 6. The 10 fs width of the envelope enables us to

clearly identify the central fringe position. Based on our

signal-to-noise ratio, we expect to resolve at least 1/100 of a

fringe about (10– 17 s).

This technique for linear polarization dispersion mea-

surement is easily convertible to the case of circular

polarization. All advantages of using quantum correlation

remain intact. This technique is also easily modified to

study optical interactions at the surfaces of materials. To

do this we exploit a reflection configuration, rather than the

transmission configuration, and take advantage of the

strong polarization dependence of evanescent waves. This

approach is a uniquely sensitive tool for the analysis of the

orientation, structure, morphology and optical properties

of single and multiple layers of atoms, either grown or

deposited on a substrate. The technique may also be

sensitive to the chemical identity of adsorbed molecules and

atoms, in which case it would be applicable for use in

chemical sensors.

Figure 7. The null ellipsometer. S is an optical source, P is a

linear polarizer, l/4 is a quarter-wave plate (compensator), A is

a linear polarization analyser and D is an optical detector; yi is
the angle of incidence. The sample is characterized by the

ellipsometric parameters c and D [31].
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4. Quantum ellipsometry

Ellipsometry [30 – 35] is a well-known metrological techni-

que used to determine the thickness and optical constants

of thin-film samples, especially in the semiconductor

industry. One important example of the application of

ellipsometric techniques is their use in non-destructive

measurements of the film thicknesses of layers used for gate

isolation in integrated circuits. As the dimensions of the

components used for integrated circuits decrease, the

thicknesses of these isolating layers also needs to be

decreased [36]. The accuracy of these measurements is

increasingly important for process control. A thin film can

be characterized by two parameters, c and D: c is related

to the magnitude of the ratio of the eigen-polarization

complex reflection coefficients of the sample, ~rr1 and ~rr2, via

tanc ¼ j~rr1=~rr2j and D is the phase shift between them [31].

The high accuracy required in traditional ellipsometric

measurements necessitates the absolute calibration of both

the source and the detector. Ellipsometry makes use of a

myriad of experimental techniques for circumventing the

imperfections of the devices involved. The most common

techniques are null and interferometric ellipsometry. Both

techniques suffer the drawback of requiring a reference

sample for calibration prior to inserting the sample of

interest.

In the traditional null ellipsometer [31], depicted in figure

7, the sample is illuminated with a beam of light that can be

prepared in any polarization state. The reflected light,

generally in an elliptically polarized state, is then analysed.

The polarization of the incident beam is adjusted to

compensate for the change in the relative amplitude and

phase between the two eigen-polarizations induced by the

sample, so that the reflected beam is linearly polarized. If

passed through an orthogonal linear polarizer, this beam

will yield a null (zero) measurement at the optical detector.

The null ellipsometer does not require a calibrated detector

since it does not measure intensity, but instead records a

null. The principal drawback of null measurement techni-

ques is the need for a reference to calibrate the null. This is

needed, for example, to find its initial location (the

rotational axis of reference at which an initial null is

obtained) for comparison with the subsequent location

after inserting the sample into the apparatus. Such a

technique alleviates the problem of an unreliable source

and detector, but necessitates the use of a reference sample.

The accuracy and reliability of all measurements depend on

previous knowledge of the parameters of this reference

sample. In this case, the measurements are a function of c,
D and the parameters of the reference sample.

Another possibility is to perform a type of ellipsometry

that employs an interferometric configuration, in which the

light from the source follows more than one path, usually

created via beam splitters, before reaching the detector. The

sample is placed in one of those paths. Assuming that the

source is reliable, one can then estimate the efficiency of the

detector by performing measurements when the sample is

removed. Although this configuration alleviates the pro-

blem of an unreliable detector, it depends on the reliability

of the source and suffers from the drawback of requiring

several optical components (beam splitters, mirrors, etc.).

The ellipsometric measurements are a function of c, D,
source intensity and the parameters of the optical elements.

The accuracy of the measurements is therefore limited by

knowledge of the parameters characterizing these optical

components, necessitating the use of a reference sample.

The stability of the optical arrangement is also of

importance to the performance of such a device.

Standard reference materials, such as thermal oxide on

silicon, offered by the National Institute of Standards &

Technology (NIST), yield certified values of D and c for

specific angles of incidence and at a specific wavelength

(usually 632.8 nm). This means that for any other angle of

incidence or wavelength used, reliable values of D and c
cannot be provided. Furthermore, even at the specified

angle of incidence and wavelength, c and D are only as

accurate as the technique used to determine them, which

must rely on the use of some other reference. Recently,

work has been carried out on manufacturing reference

materials for which c is an insensitive parameter around

specific angles of incidence [37]. Although these new

reference materials promise improvements, the ellipso-

metric parameters are still not certified over the entire

range of angles of incidence. Furthermore, the certification

data provided with standard reference materials are based

on the assumption that one has a fully working ellipsometer

in error-free operation. NIST only guarantees, provided

one has well-characterized polarizers and optical compo-

nents, the exact wavelength of choice and the exact angle of

incidence of interest, that the reference material will yield

the expected values of c and D. A major problem is that

one cannot separate errors arising from the ellipsometer

from those associated with the reference material.

Another issue of concern with standard reference

materials is that their utility is limited when used outside

their specified tolerances. For example, standard reference

materials that are semiconductors become oxidized with

time, and so must be considered as three-phase (ambient –

thin film– substrate) systems rather than two-phase systems

as when new. Some of these oxides have been shown to

exhibit small variations in thickness over the full wafer,

leading to disagreements with the assumed model. Some

have used hydrogen-terminated single-crystal silicon (Si)

because its surface is said to be stable, containing no native

oxides. However, this stability lasts for only a few tens of

minutes [32], after which this sample can no longer be

considered a reliable reference material. A surface with

properties that change with time cannot be considered self-

verifiable, and thus cannot be used as a reliable reference.
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A novel technique for obtaining reliable ellipsometric

measurements has been proposed that is based on the use

of photon pairs produced by spontaneous optical

parametric downconversion (SPDC) [1, 19, 38 – 41]. We

have extended the use of this non-classical light source to

the field of ellipsometry [42, 43], and demonstrated that

absolute ellipsometric results can be obtained from a

semiconductor sample. All classical optical sources

(including ideal amplitude-stabilized lasers) suffer from

unavoidable quantum fluctuations, even if all other

extraneous noise sources are removed. Fluctuations in

the photon number can only be eliminated by construct-

ing a source that emits non-overlapping wave packets,

each of which contains a fixed photon number. Such

sources have been investigated, and indeed sub-Poisson

light sources have been demonstrated [44 – 46]. One such

source may be readily realized via SPDC from a second-

order nonlinear crystal illuminated with a monochro-

matic laser pump [1].

Recall that, in type-II phase-matched SPDC, the signal

and idler photons have orthogonal polarizations, one

extraordinary and the other ordinary. These two photons

emerge from the nonlinear crystal (NLC) with a relative

time delay due to its birefringence [47]. Passing the pair

through an appropriate birefringent material of suitable

length will compensate for this time delay. Such compensa-

tion is required for extracting c and D from the

measurements. When compensation is not employed one

may obtain c, but cannot obtain D.
Recall also that the signal and idler in SPDC may be

emitted in two different directions (the non-collinear case)

or in the same direction (the collinear case). In the non-

collinear case, the SPDC state is polarization entangled,

with its quantum state described by [47]

jCi ¼ 1

21=2
ðjHijVi þ jVijHiÞ ; ð7Þ

where |H i and |V i represent horizontal and vertical

polarizations, respectively [48]. Again, it is understood that

the first polarization indicated is that of the signal photon

and the second is that of the idler. Such a state cannot be

written as the product of states of the signal and idler

photons. Although equation (7) represents a pure quantum

state, the signal and idler photons considered separately are

each unpolarized [49, 50]. The state represented in equation

(7) assumes that there is no relative phase between single-

particle (signal or idler) state vectors. Although the relative

phase may be non-zero, it can usually be arbitrarily chosen

by making small adjustments to the NLC. In the collinear

case, the quantum state produced by down-conversion is a

polarization-product state

jCi ¼ jHijVi : ð8Þ

Because it is factorizable (i.e. it may be written as the

product of states of the signal and idler photons), this state

is not entangled.

Consider now a configuration based on the use of non-

collinear type-II down-conversion. Such an apparatus,

referred to as the ‘entangled twin-photon ellipsometer’

[42, 43], or quantum ellipsometer, makes use of polariza-

tion-entangled photon pairs (see figure 8). An advantage of

such a device over its idealized null ellipsometric counter-

part is that the arms of the ellipsometer are separate and

the light beams traverse them independently in different

directions. This allows various instrumentation errors of

the classical set-up to be avoided. For example, placing

optical elements before the sample causes beam deviation

errors [51] when the faces of the optical components are not

exactly parallel, leading to an error in the angle of incidence

and to errors in the estimated parameters. In our case, no

optical components are placed between the (NLC) source

and the sample, since any desired polarization manipula-

tion can be performed in the other arm of the entangled

twin-photon ellipsometer. Furthermore, one can change the

angle of incidence to the sample easily and repeatedly.

It can be shown that

Nc ¼ C½tanc cos2 y1 sin
2 y2 þ sin2 y1 cos2 y2

þ 2ðtancÞ1=2 cosD cos y1 cos y2 sin y1 sin y2� ;
ð9Þ

where the constant of proportionality C depends on the

efficiencies of the detectors and the duration of accumula-

tion of coincidences [43]. One can obtain C, c and D by

setting, for example, y1=08, y1=908, and y1=458, while
y2 is scanned at each setting of y1.

If the sample is replaced by a perfect mirror, the

coincidence rate in equation (9) becomes a sinusoidal

pattern of 100% visibility, C sin2(y1+ y2), as previously

Figure 8. Polarization-entangled twin-photon ellipsometer. The

quantum correlations between photons, each going to its own

detector, are used in coincidence to obtain ellipsometric

quantities from detector count rates [43].
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indicated. In practice, by judicious control of the apertures

placed in the down-converted beams, visibilities close to

100% can be obtained. To understand the need for

temporal compensation discussed previously, we re-derive

equation (9), which assumes full compensation, for the case

when a birefringent compensator is placed in one of the

arms of the configuration:

Nc ¼ C½tanc cos2 y1 sin
2 y2 þ sin2 y1 cos2 y2

þ 2ðtancÞ1=2 cosD cos y1 cos y2 sin y1 sin y2FðtÞ cos ðootÞ� :
ð10Þ

Here t is the birefringent delay, oo is half the pump

frequency and F(t) is the Fourier transform of the SPDC

normalized power spectrum. When t=0 we recover

equation (9), whereas when t is larger than the inverse of

the SPDC bandwidth, the third term that includes D
becomes zero and thus D cannot be determined. An

interesting feature of this interferometer is that it is not

sensitive to an overall mismatch in the length of the two

arms of the set-up, which increases the robustness of the

arrangement.

An advantage of this set-up over its idealized null

ellipsometric counterpart, discussed earlier, is that the two

arms of the ellipsometer are separate and the light beams

traverse them independently in different directions. This

allows various instrumentation errors of the classical set-up

to be circumvented. For example, placing optical elements

before the sample causes beam deviation errors [51] when

the faces of the optical components are not exactly parallel.

This leads to an error in the angle of incidence and,

consequently, errors in the estimated parameters. In our

case, no optical components are placed between the source

(NLC) and the sample; any desired polarization manipula-

tion may be performed in the other arm of the entangled

twin-photon ellipsometer. Furthermore, one can change the

angle of incidence to the sample easily and repeatedly.

A significant limitation of classical ellipsometry is the

difficulty of fully controlling the polarization of the

incoming light. A linear polarizer is usually employed at

the input of the ellipsometer, but the finite extinction

coefficient of this polarizer causes errors in the estimated

parameters [31]. In the entangled twin-photon ellips-

ometer, the polarization of the incoming light is dictated

by the phase-matching conditions (equation (2)) of the

nonlinear interaction in the nonlinear crystal. The

polarizations defined by the orientation of the optical

axis of the crystal play the role of the input polarization in

classical ellipsometry. The crystal is aligned for type-II

phase-matching, where only one polarization component

of the pump generates SPDC since the orthogonal

component cannot satisfy the phase-matching conditions.

The advantage is that the down-conversion process

assures the stability of polarization along a particular

direction.

Our experiments have shown that polarization-entangled

photon pairs can be used to obtain values of c that are

comparable to those obtained from traditional ellipsometers.

In our apparatus, configured shown in figure 8, a Si sample

was tested at an angle of incidence of 308. A 406 nm cwKr+

laser pump illuminated a BBO NLC to produce degenerate

twinphotons centredat 812 nm.Twoavalanchephotodiodes

operating in the Geiger mode were used as detectors (D1 and

D2). Interference filters centred at 810 nm with 10 nm

bandwidths were placed in front of each detector.

In the initial step of the procedure, the angle of the

analyser A1, denoted y1, was set to 908 while y2 was

scanned. The sinusoidal pattern for the coincidence rate at
Figure 9. Coincidence interference pattern determined by

scanning the angle yy2, with yy1 fixed at 908.

Figure 10. Coincidence interference pattern determined by

scanning the angle yy2, with yy1 fixed at 088.
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this setting is shown in figure 9, which, for y1=908, is

described by

Nc ¼ C cos2 y2 ð11Þ
so the amplitude of this curve provides the value for C. In

the second step of the procedure, y1 was set to 08 while y2
was again scanned. The results for the coincidences are

shown in figure 10, described by

Nc ¼ C½tanc sin2 y2� ; ð12Þ
so that the amplitude of this function is equal to C tan c.
One can therefore determine c simply by dividing the two

functions. Using this approach, c was determined to be

40.28 for our Si sample. The expected value for c at this

angle of incidence is 40.48, in accordance with calculations

carried out using the appropriate Sellmeier dispersion

formula [52, 53].

The interference patterns obtained using a technique

similar to the one described above did not provide a

reasonable value for D, however. The main reason for

this is that the expressions used to obtain c presumed

a visibility of 100%. In order to obtain D, a visibility

term must be included that can take a value less than

100%. Another potential source of error resides in the

model used to determine the ellipsometric parameters.

As mentioned above, unless specially treated, semi-

conductors become oxidized by air and develop thin

oxide layers. The sample model must account for this

thin oxide layer by considering one to have a three-

phase, rather than a two-phase, system. Either model

would lead to a significantly different D for the same

sample.

We have explained that entangled twin-photon ellipso-

metry is self-referencing and therefore eliminates the

necessity of constructing an interferometer altogether. This

remarkable property is due to fourth-order (coincidence)

quantum interference of photon pairs associated with non-

local polarization entanglement. Preliminary results for c
with a silicon sample have been obtained. Our quantum

ellipsometer is subject to the same shot-noise-limited, as

well as angularly resolved, precision that is obtained with

traditional ellipsometers (interferometric and null systems,

respectively), but removes the limitation in accuracy that

results from the necessity of using a reference sample as in

traditional ellipsometers.

5. Quantum optical coherence tomography

Another new quantum technique, for carrying out

tomographic measurements with dispersion-cancelled re-

solution, has been introduced, called quantum optical

coherence tomography (QOCT). QOCT makes use of a

two-photon interferometer in which a swept delay

permits a coincidence interferogram to be traced. The

use of a non-classical entangled twin-photon light source

permits measurements to be made at depths greater than

those accessible via ordinary, classical optical coherence

tomography (OCT) which works by focusing a beam of

light into materials and measuring the intensity and

position of the resulting reflections and suffers from the

negative effects of sample dispersion [54]. QOCT offers

higher sensitivity than classical OCT and a doubling of

resolution for the same source bandwidth [55]. In this

case, simple type-I SPDC satisfies our correlation

requirements.

The twin-photon source we use is characterized by a

frequency-entangled state given by [56]

jCi ¼
Z

dOzðOÞjo0 þ O;o0 � Oi; ð13Þ

where O is the angular frequency deviation about the

central angular frequency o0 of the twin-photon wave

packet, z(O) is the spectral probability amplitude and the

spectral distribution of the wave packet S(O)= |z(O)|2 is

normalized such that
R
dOS(O)=1. For simplicity, assume

S is a symmetric function and that both photons reside in a

common single spatial and polarization mode. The HOM

beam splitter interferometer [13] is modified by placing a

reflective sample in one of the paths in the interferometer

and a temporal delay t is inserted in the other path, as

shown in figure 11. The two photons, represented by beams

1 and 2, are then directed to the two input ports of a

symmetric beam splitter. Beams 3 and 4, the outputs of the

beam splitter, are directed to two single-photon-counting

detectors, D1 and D2. The coincidences of photons arriving

at the two detectors are recorded within a time window

determined by a coincidence circuit. The delay t is swept

and the coincidence rate C(t) is monitored.

For a sample described by H(o)
Ð
0
? dzr(z, o) exp [i2j(z,

o)], the coincidence rate C(t) is given by

Figure 11. Set-up for quantum optical coherence tomography

(QOCT). BS stands for beam splitter and tt is a temporal delay.

D1 and D2 are single-photon-counting detectors that feed a

coincidence circuit [55].
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CðtÞ / L0 �RefLð2tÞg; ð14Þ
where the self-interference term L0 and the cross-inter-

ference term L(t) are defined as follows:

L0 ¼
Z

dOjHðo0 þ OÞj2SðOÞ ð15Þ

and

LðtÞ ¼
Z

dOH ðo0 þ OÞH 	ðo0 � OÞSðOÞ exp ð�iOtÞ
¼ hqðtÞ 	 sðtÞ;

ð16Þ

where hq(t) is the inverse Fourier transform of Hq(O)=
H(o0+O)H*(o0 –O) with respect to O.

There are important differences and similarities be-

tween QOCT and OCT interferograms. The unity OCT

background level in OCT is absent for QOCT, with the

QOCT cross-interference term in equation (16) being

related to the reflection from the sample quadratically;

the sample reflection is therefore simultaneously probed

at two frequencies, o0+O and o0 –O. Moreover, the

factor of 2 by which the delay in the QOCT cross-

interference term in equation (14) is scaled, in compar-

ison to that for OCT, leads to an enhancement of

resolution in the former.

An idealized sample model can be used with a discrete

summation in place of the continuous sum above

HðoÞ ¼
X
j

r jðoÞ exp ½i2jjðoÞ�; ð17Þ

over the layers that constitute the sample. This is a suitable

approximation for samples that are layered as many

biological samples and semiconductor devices are, but not

one necessary to apply the technique.

Equations (16) and (17) result in a cross-interference

term given by the sum of two contributions:

LðtÞ ¼
X
j

jrj j2s t� 4
zj
v0

� �
þ
X
j 6¼k

rjr
	
ks

ðjkÞ
d

t� 2
zj þ zk
v0

� �
exp ½i2b0ðzj � zkÞ�;

ð18Þ

where the first contribution represents reflections from

each layer without group-velocity dispersion and the

second contribution represents cross-terms arising from

interference between reflections from each pair of

layers. The quantity s(�) is the correlation function of

Figure 12. Normalized intensity I(t) (thin rapidly varying grey curve and left ordinate) and normalized coincidence rate C(t) (thick
black curves and right ordinate) versus normalized delay (scaled by half the group velocity, v0/2) for quantum optical coherence

tomography of a two-layer sample underneath a dispersive medium. The black broken curve represents the full QOCT signal (equation

(18)) whereas the black solid curve represents the QOCT signal after averaging over the pump frequency (equation (18), first

contribution). The black broken curve coincides with the black solid curve everywhere except where the black broken curve can be seen.

The structure of the sample is shown at the top of the figure [55].
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the source defined previously and the quantity sd
(jk)(�) is

a Fresnel transformation. In contrast to OCT, only

dispersion between the jth and kth layers survives, as is

evident by the superscript (jk). The terms of the first

contribution in equation (18) include the information

that is often sought in OCT: characterization of the

depth and reflectance of the layers that constitute the

sample. The terms comprising the second contribution

in equation (18) are dispersed due to propagation

through the inter-layer distances zj – zk but carry further

information about the sample that is inaccessible via

OCT.

Consider a sample comprised of two reflective layers

buried at some depth below the surface of a medium, as

illustrated at the very top of figure 12. Neglecting reflection

from the top surface of the sample and assuming a highly

dispersive material, with the knowledge that ‘higher

dispersion crown glass’ [57] is even more highly dispersive

than assumed here, one obtains results of the type shown in

figure 12 for OCT (thin rapidly varying grey curve) and

QOCT (black broken curve representing the full signal;

black solid curve representing the signal averaged over

pump frequency). Due to dispersion, it is clear that no

useful information about the sample is available from OCT

in this realistic case. QOCT, on the other hand, yields a pair

of high-resolution dispersion-cancelled coincidence-rate

dips at delays corresponding to reflections from the two

surfaces. Moreover, the QOCT resolution is a factor of 2

better than that achievable via OCT in a dispersion-free

medium. The peak between the two dips evidenced in the

full QOCT signal (black broken curve) that could

alternatively be a dip, depending on the phases of the

terms in the second contribution in equation (18), is the

result of quantum interference between the probability

amplitudes arising from reflection from the two different

surfaces. This is in contrast to the black solid-curve dips,

which are a result of quantum interference between the

probability amplitudes arising from reflection from each

surface independently. The width of the middle peak is

determined only by the dispersion of the medium residing

between the two reflective surfaces and not by the nature of

the material under which they are buried. The dispersion of

the region between the two surfaces is determined by

measuring the broadening of the middle peak in compar-

ison with the two dips.

6. Conclusion

Entangled-photon states, particularly entangled-photon

pairs created by spontaneous parametric down-conversion,

provide a natural basis for quantum information proces-

sing and quantum measurement due to the strong correla-

tions between photons, even when widely separated. The

interdependence of physical parameters due to entangle-

ment allows one to consider greater properties of the

Hilbert space occupied by the complete entangled quantum

state with its dependency on multiple variables. The strong

quantum correlations naturally present between down-

conversion photons allow for uniquely quantum mechan-

ical, often superior, forms of measurement to be performed.

Practical technological applications benefit from the fact

that, in these states, although each individual subsystem

can exhibit inherent uncertainties, the components of the

entangled pair may exhibit no such uncertainty relative to

one another.

Unique new forms of information encoding and

manipulation and high-precision measurements can be

performed using entangled quantum states providing

several advantages over classical techniques. We have

shown how entangled states allow quantum information

to be encoded and this quantum information securely

transmitted to a remote location, in a manner superior

to other proposed quantum-mechanical methods. En-

tanglement has also allowed for the development of new

forms of optical measurement, giving rise to the new

field of quantum optical metrology. We showed how

one is also able to exploit the correlations of entangled

photons to create new metrological techniques, including

polarization-mode-dispersion measurements, quantum el-

lipsometry and quantum optical coherence tomography,

having significant advantages over their classical coun-

terparts.
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