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We examine interference phenomena involving entangled pairs of quantum coherent states. Two-coherent-
state interferometry, which can involve macroscopic numbers of photons, is shown to share several character-
istics of two-particle quantum interferometry in such a macroscopic limit. These include the complementarity
between one-system and two-system interference visibilities in the extreme cases of product and maximally
entangled quantum states, and the violation of a Bell-type inequality.

PACS numbd(s): 03.65.Bz, 42.50.Dv
I. INTRODUCTION Il. THE TWO-COHERENT-STATE INTERFEROMETER

Two-coherent-state interferometry is the application of

Over _the_ last decade coherent-s_tate mterferometry_ anféchniques of coherent-state recombination to macroscopic
two-particle interferometry have provided new Conf'rmat'onsphoton-system pairs of the general form

of quantum mechanics and greater violations of Bell-type

inequalitied 1-22|. Two-particle interferometry involves en-

tangled microscopidphotorn) systems. Two-coherent-state |‘P>:i[|a>1|’)’>2+i|5>1|,3>2] 1)
interferometry involvegcoherent-statesystems that can be J2 '
macroscopic while still behaving similarly to microscopic

(photon) pairs[1-6], where a macroscopic state is characteryhere |a); and |5), are near-orthonormal coherent-state
ized by having a large mean number of photons. Thectors in the Hilbert spackl; of system 1, andg), and
coherent-state superpositions are often referred to as “Schr ), are elements ofl, of system 2. States of the for(d)
dinger cat states,” emphasizing that quantum mechanics igre entangled, i.e., they cannot be factorized in any way into
being used to describe macroscopic phyS|_caI s_ys{éfm$2]. the form|x)4|&),, where|x); e H, and|£), € H,. The new
Almost all of the analyses of quantur_n optical mterferometryphenomena studied here arise when the production of en-
have centered on elements of strictly orthogonal Hilbersngieq coherent-state pairs is combined with interferometric
bases. However, the orthogonality of coherent states is onhgcpniques tailored to coherent states. Here, we demonstrate
approximate and is strictly presently only in the large averha; two-coherent-state interferometry produces  results
age particle number limifa|—e. analogous to those achieved in two-particle interferometry.
Here, in addition to showing evidence for the complemeny, particular, detection probabilities consistent with a
tarity of one- and two-coherent state interference V'S'b'“t'escomplementarity between one-coherent-state and two-
that is in accord with what is found in two-particle interfer- ¢operent-state visibilities are given and the violation of a
ometry, we find a counter-intuitive result for a Bell-type in- ge||.type inequality is demonstrated. The following points
equality at odds_wr_[h the correspondence principle. The corye 50 emphasizedi) two-coherent-state interferometry
respondence principle demands that as a system gets mQigpends on the preparation of entangled coherent-state pairs;
macroscopic, in the sense of going to large particle numbersﬁi) entangled states like thel) of Eq. (1) could be pro-

its behavior should become increasingly like that of the corced via the nonlinear interaction with Hamiltonigf
responding classical mechanical system. Thus, one expects

that in the macroscopic limit quantum effects such as the - T

violation of a Bell-type inequality will disappear. A previous H=%x(a'a) )
analysis of Bell-type inequalities used nonorthogonal coher-

ent states in the Schmidt decomposition. Surprisingly, théor n>1 an integer,y being proportional to the medium’s
violation of a Bell-type inequality was shown to increase asnonlinear susceptibility of orderr2-1; (iii) the phenomena
the intensity of the coherent states incred4&$ Here, using described here depend on the utilization of a nonlinear ver-
a more concrete approach, we similarly find that violation ofsion of well-known interferometers, such as the Mach-
a Bell-type inequality increases as the system gets more maZehnder interferometer; arid/) quantum effects persist in a
roscopic. This throws further doubt on the applicability of macroscopic limit.

the correspondence principle here and, by extension, on the The general schematic arrangement that we propose for
reducibility of classical to quantum optics. two-coherent state interferometry is shown in Fig. 1. A
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This transformation is analogous to that for a normal phase-

:'_D VR D_D shifter transforming a single photon state, with the phase
e term outsidethe ket. However, due to the nonorthogonality
D, X 9, S 6, X, D, of the coherent stately) and |—a) the coherent phase

shifter for |a), ¢,, does not leave thé¢—«) state com-
FIG. 1. Schematic experimental arrangement for two-coherentpletely unaltered; rather, one has
state interferometry. The sour&creates the entangled state given . )
in Eq. (2). The output to wing 12) proceeds to the coherent phase dol—a)=|—a)+(e—1)(a|— a)|a). (8)
shifter ¢1(¢»), and then to the nonlinear cell(x»), and finally to

the coherent state detectd(D.). Nonetheless, ifx is large, so thata|—, then|{a|— a)]

—0 and the stat¢— «) will remain effectively unchanged

source simultaneously produces macroscopic photon systerRY the operation of the coherent phase shifter forghe An

1 and 2. In the most interesting case, each pair is prepared f@ct experimental realization of the unitary operatér
the state may not be possible, but an approximate realization is pos-

sible by exploiting media with higher-order nonlinear sus-
ceptibilities. This approximate realization is discussed in Ap-

1 .
_ = _ Til— pendix A. _ _ _
) \/§[|a>1l a)pti|=anla)l, © Alternatively, the entangled coherent state with a variable
phase shift,

a coherent superposition of two distinct pairs of correlated 1

coherent states of systems 1 and 2. This state can be created | y)= —[¢ %))y — a),+ie' 2| —a)|a),] 9)
by injecting coherent statég) and|— «) into the two input V2

ports of a nonlinear Mach-Zehnder interferomeftét, 20—
22]. In one of these pairs, system 1 is in coherent dtaje
and undergoes a phase shift upon encountering the cohere
state phase shiftep; [20] on the way to nonlinear cell 1,
from which it enters detector 1; similarly, system 2 is in
coherent-state— a) and encounters the coherent-state phase 1 _

shifter ¢, on the way to nonlinear cell 2, after which it enters |¥)— —=[€'?1|a),|— a),+ie'??| — a)i| ), + y|a)1| @),
detector 2. In the other pair of correlated coherent-states,

system 1 is in coherent-stgte «), encounters coherent-state (10
phase shifter,, proceeds to cell 1 and enters detector 1,wherey is given by
while system 2, in statex) encountersp,, cell 2 and then , _ _ _
enters detector 2. Note that in the limit [af| —, the state y=e A eli(e%2—1) +iel2(e1—1)]. (11

(.3) can be convertgd tp a Bell s'fatg by Iopal_unltgry OPETAE4ch nonlinear cell behaves analogously to a beamsplitter in
tions. Hence, the violation of Bell's inequality in this limit is

ted o b imal if th iat i a Mach-Zehnder interferometer, by recombining fthg and
expected to be maximal [T the appropriate measurements ¢an. .y states. Traversing the nonlinear cells, the normalized

be made. _ quantum state transforms as
The transformation operator ) , ) .
| W) —N[(ie'’1—e'%2+ y)|a)1|a),+ (ie'P1— e P2 y)

K=exd —ix(ata)?] (4) X|— @)y — @Yo+ (€ P1—ie2+iy)|a)y — a),

can be created direct23].

_In our two-coherent-state interferometer, the initial state
?é) first encounters the coherent phase shiffe® ¢, and
¢, with the effect

is associated with the optical Kerr nonlineari4—26. For +(—€'%1+ie'2+iy)| —a)y| @)y, (12
the valuey= /2, this nonlinear operator acting on a coher-
ent state creates a so-called Sclinger cat state, a superpo-
sition of the|a@) and|—a) coherent statefsl1]:

whereN is the normalization factor,

N:i{4+exﬁ_4|a|2)[_2+5i”(¢1_ ®2)
L V2
K|+ a)zﬁ(e*‘”’ﬂ +a)+e ™ T a)). 5) +sin¢;—sing,+cosg, +cosg,]} Y2 (13

Ill. BELL-TYPE INEQUALITY VIOLATION

The amplitudes for a coincidence measurement of any
combination of the statest a), and|= a), given the state

bo=explipla)(al) ©  (12) are

The unitary operatof20]

denotes the evolution due to the coherent-phase shifters. This A(* a,* a|¢1,$,)=N[(1+ e~ 4al)(jeit1—gld2)

transforms a coherent input stdte) with the result ) 2 2
+y(x1+2ie Al ze el

bolay=€"a). (7 (14)
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+aq. F — NI + —4la?\(@ib1_iaid 1
Az Taldy gz =N[=(1+e ) (@R -ie™) P(—a,=al¢ydo) = g [1+sid=d2)], (22

+2e 2l (jglv1— git2)

Fip(dre ], s Pla,—aldr o= g [1-sindi— )], (@3

The probabilities for a coincidence measurement are then

calculated by multiplying the relevant amplitude with its 1

complex conjugate. These coincident measurements of spe- P(—a,a|¢y,$)— 2L1=sin(d1=¢o)]. (24)
cific combinations of the coherent states can be achieved by

gg]plylng quadrature-phase homodyne measuremigits The results in Eqs21), (22), (23), and(24) are analogous to
i those obtained for two-particle interferometry using en-

lal? .
The powers o™~ “! that appear in Eq¢14) and(15) are  angled photon pairf4,5,32, and a Bell-type inequality is
due to the nonorthogonality of the states and|— «), since similarly violated.

for an output staté— «) there is a nonzero probability of

measuring this system &s). One result of this nonorthogo-

nality is that in the |imit|a|—>0, IV. EVIDENCE OF A VISIBILITY COMPLEMENTARITY
Assuming the detectors to have the efficiengythe prob-

ability for joint detection of subsystems 1 and 2 in the states

|a); and |a),, when the phase shifteis=1,2 give phase

shifts ¢; , to |a);, is #? times the square of the total ampli-
0<P(a,a),P(—a,—a),P(a,—a),P(—a,a)<1/2, tudeA(a3a| b1,95). T_his amplitude is the superpos_ition of

(17) the amplitudes associated with each of the two pairs of cor-
related coherent states:

as occurs for two-particle interferometry with a pair of par-

ticles[1-6]. Give each detection a value: the detection of the 1 o1

|a) state is designated ly(a)=1, and the detection of the Ala,aldy, dr)= E[(Z )(27V4)e'

| - a) state byD(—a)=—1. Then, for a single experiment

we have +(27Y4) (27 (e'?2)i], (29

P(a,a),P(—a,—a),P(a,—a),P(—a,a)—1. (16)

However, in the macroscopic limit whete|— <,

E(a,¢1,62)=Pla,ald1,d2) +P(—a,~al¢1,47) where the factorg'?: ande' 2 arise from the phase shg‘tzgrs
_ _ _p(— encountered along the respective beams and the factors 2
Pla,—alr¢2)~P(~aaldr o). and 2 Y3 arise from the encounters with the Kerr cells of
(18 states|a) and|— a), respectively. These factors are analo-
gous to encounters of single particles with an ordinary beam
splitter from opposite sides. Expressions analogous to Eq.
(25 can be given for the amplitudeA(a,— a|dpq,¢,),
A(—a,a|py,¢,), andA(—a,— a|d1,p,) as well.
The probabilities of corresponding joint detections gfe

As is usual for the CHSH-type Bell inequaliti¢81], we
construct the function

Bla,1,d2,01,¢5)=E(a,d1,¢5) +E(a, by, d3)

+E(a, ¢}, ¢b2) —E(a, o}, pb). times the absolute square of the respective amplitudes:
(19 P(a,a| by, b2)=P(—a,~al¢1,¢2)
A Bell-locality violation would then be indicated by the re- J1 1
sult |B|>2. The value of B| is maximized when =0zt gsindi—d2) |, (26)
37 , T ,
(f)l:Tv ¢2:01 ¢1:Z1 ¢2:E- (20) P(av_a|¢lv¢2):P(_a=a|¢li¢2)
1 1

There is then a violation for sufficiently large values|af. =7’ 7 7 Sin(é1— ¢z)} (27

The larger|a|, the larger the Bell locality violation, ap-

proaching the Iimiljl_3|H2\/§ f‘;ﬁﬂﬂm' alal? The sinusoidal dependence of the joint detection probabili-
_For|a|—2, we find thate”4*" —0 ande” *“"—0. In  ties on the phase shifts i26) and (27) is characteristic of
this case, the coincidence detection probabilities become, aguantum mechanical interference. The modulation of coinci-

suming perfect detector efficienciésee Sec. IV beloyy dence detection while shifting, and ¢, gives rise to inter-
1 ference fringes but does not give rise to fringes in single
: coherent-state detection. This can be seen from the following
—[1+ - S - .
Pa.a|¢1,d2)— gL tsin(ds= )], 21) probabilities of single coherent-state detections:
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P(a,~|d1,42)=P(—a,~[¢1,¢2) V. CONCLUSIONS
=P(—,a|d1,¢,) We have shown how the interferometry of entangled pairs
of quantum coherent states has several characteristics in
=P(—,—a|¢1,¢,) common with two-particle quantum interferometry. These
= pl2 (28) include the complementarity between one-system and two-

system interference visibilities in the extreme cases of prod-

where the “—" mark by itself indicates that the result of the Uct and maximally entangled quantum states, and the viola-
corresponding detection is ignored. This exhibits the esserfion of Bell-type inequalities. This quantum behavior persists
tially two-coherent-state interference, inexplicable in termseven in the limit of macroscopic average particle numbers.
of individual coherent-state behavior, and is directly analoIndeed, a Bell-type inequality is maximally violated in this
gous to what has been shown for two-particle interferencéimit. o
[5,6]. Both sorts of phenomena are due to quantum entangle- The correspondence principle demands that as a system
ment in two-system states, in this cdde). gets more macroscopic, its behavior should become increas-
When our two-coherent-state system is in a product statengly like that of the corresponding classical mechanical sys-
by contrast, essentially single coherent-state behavior ariseésm. Thus, the correspondence principle suggests that as co-
and no essentially two-coherent-state behavior is observetierent states become more macroscopic, the possibility of
For example, consider the detection probabilities whih  violating a Bell-type inequality should diminish. The results
is replaced byd): presented here throw doubt upon the universal validity of the
correspondence principle. In these results, as the coherent
1 _ 1 _ states become more macroscopic, the results in fact become
|D)= E(M)ﬁ'|—a>1)ﬁ(|a>z+'|—a>2), (29 less classical, which is indicated by the increasing violation
of a Bell-type inequality a$a|— 0. This demonstrates that
- . . the standard quantum mechanics of an isolated system, on its
a state still involving superpositions of elements of the . : ) k
. . . —own, does not naturally give rise to classical mechanics at
single-system detection basis but of product form. In this . : . .
. L . : any scale. However, in normal settings, field modes will de-
case one obtains, for example, the joint-detection amplitudes . SO
Cohere faster for higher values af, so that classicality is
usually observed.

1 . )
A(a,a|¢1,¢2)= Z[el(¢1+¢2)_el¢1_el¢2+ 1], (30

APPENDIX: REALIZATION OF THE COHERENT-STATE

A(a,—a|q')1,¢2)= %[iei(‘l’l*%)%—iei¢1—iei¢2—i], PHASE SHIFTER
(32) An approximate realization of the phase shift unitary op-
o . » eratore' *"«, for 7r,=|a)(a| a coherent-state phase shift op-
the joint-detection probabilities erator, is possible. Given that,=:e 22, for : : denoting

1 normal ordering 33], the coherent-state projection operator
P(aaldy,d)=7(1-cospy)(1-cosd,), (32 *°

1 6Ta=T4 (e~ 1) 7 = T+ (e®—1)m D'
Pla.—algy,dy)= 7 (1-cospy)(1+coss,), (39 © (7T DTIDllHETm UMD @
=D(a)exdide 21D (a),
and the single-detection probabilities for the first coherent- (A1)
state system:

1 . .
P(a)= E(l—COS(ﬁl), (34) whereD («) is the displacement operatf84]

_acal—a*a
P(—a)= %(1+cos¢1). (35) D(a)=e . (A2)

These results show that the stide) gives rise to single In the system we are considering, there are two states of
coherent-state fringes but no genuine two-coherent-stateoncern] = a). Without loss of generality, we assume that
fringes. Equationg30)—(33) show that the apparent joint- is real. In order to effect the phase shift operation, we act on
detection fringing is actually explicable entirely in terms of either state first withD"(«). This maps|a) to |0) and
single-detection fringing, in contrast to that of Eq@4)— |—«a) to |—2a). We then follow with the vacuum phase
(26). shift operator
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o _ata . 1 - 1 a3 the expansior{A5) is sufficient. For the vacuum state, this
e¥e " “~expig| 1-a'a+ Ea* a®— gaT ast. .. condition is trivially satisfied, but the other state must be able
' to be accurately truncated as
: ~ 1. 4
=expgig¢ 1—n+§n(n—1) |0>_2a|1>+2a2|2>_§a3|3>
| —2a)~ . (A8)
1. . R 16
(= hHn=2)x--- ). (A3) L+4a?+4a*s ol
In the Fock state basign)}, Therefore,
S _ata " n i</>:e‘aTa: — Al
<m|el¢>:e :|n>=ex;{i¢2 (_1)k( ) S (A4) e |0> e |0> (A9)
k=0 k
and
In order to realize the unitary transformatidA3), an 4
interaction of the typétruncated at third order in powers of e'?|0)—2a|1)+2a?2)— = a?|3)
A o ata 3
the number operatar) glde | —24)~
. 1 \/1+4 24 40+ 10
H, /i~¢| 1—a'a+ EaTza2—§aT3a3 (A5) aTaaT
must be established. This interaction is a generalization of _ e’—1
the Hamiltonian in Eq(2). In an optical system the interac- =[-2a)+ 16 0).
tion Hamiltonian \/1+4a2+ 4at+ —ob
9
H/t= ¢+ rkata+ kzat?a®+ksa@a+---  (A6)
(A10)

can be produced, in principle, by choosing an appropriatQNe can see that the interactigA5) leads to the desired

222::222: rsnues(ilzn,:i'b;ll—:e(ﬁ)o Zf:g'i?‘;” iﬁ,{ggggﬂﬂ?n?letﬂ r:h:;n transformation for sufficiently smadt, and the algorithm for
P W j extending(A5) for larger « is straightforward.

optical system, it would be challenging to construct a me- W . . .
! o e now act on either state witb(«a), which mapg0) to
dium satisfying(A5) because subsequent odd-ordered nonTOl> and|—2a) to |- a). The Wholéagrocess ther%ioge pro-

linear susceptibilities do not diminish greatly. However, /
e o duces the transformations
other realizations of superposition coherent states, for ex-
ample, in ion traps, offer higher nonlinear susceptibilities ipre—aa |y _ s
and a greater promise of realizing this interactig. D(a)e DY(a)|a)=€’|a) (ALD
The approximate expressi@A5) relies on the validity of and
truncating the Fock-state expansion for the two states under

consideration, namelyp) and|—2a). If a state|) can be D(a)e‘¢:e_aTa:DT(a)|—a)
represented reasonably accurately in the Fock-state expan- )
sion as elv—1
~|—a)+ |a).
= " \/ 2 4 16 6
|9)= 2 gy~ 2, wlm), (A7) 1+4a’+4a’+ —a
L . (A12)
for N some non-negative integer, then the expansion of the
unitary operator(A3) is valid to some order. IN<3, then  This compares favorably with Eqé7) and (8).
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