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Two-coherent-state interferometry
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We examine interference phenomena involving entangled pairs of quantum coherent states. Two-coherent-
state interferometry, which can involve macroscopic numbers of photons, is shown to share several character-
istics of two-particle quantum interferometry in such a macroscopic limit. These include the complementarity
between one-system and two-system interference visibilities in the extreme cases of product and maximally
entangled quantum states, and the violation of a Bell-type inequality.

PACS number~s!: 03.65.Bz, 42.50.Dv
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I. INTRODUCTION

Over the last decade coherent-state interferometry
two-particle interferometry have provided new confirmatio
of quantum mechanics and greater violations of Bell-ty
inequalities@1–22#. Two-particle interferometry involves en
tangled microscopic~photon! systems. Two-coherent-sta
interferometry involves~coherent-state! systems that can b
macroscopic while still behaving similarly to microscop
~photon! pairs@1–6#, where a macroscopic state is charact
ized by having a large mean number of photons. T
coherent-state superpositions are often referred to as ‘‘Sc¨-
dinger cat states,’’ emphasizing that quantum mechanic
being used to describe macroscopic physical systems@7–12#.
Almost all of the analyses of quantum optical interferome
have centered on elements of strictly orthogonal Hilb
bases. However, the orthogonality of coherent states is
approximate and is strictly presently only in the large av
age particle number limit,uau→`.

Here, in addition to showing evidence for the compleme
tarity of one- and two-coherent state interference visibilit
that is in accord with what is found in two-particle interfe
ometry, we find a counter-intuitive result for a Bell-type i
equality at odds with the correspondence principle. The c
respondence principle demands that as a system gets
macroscopic, in the sense of going to large particle numb
its behavior should become increasingly like that of the c
responding classical mechanical system. Thus, one exp
that in the macroscopic limit quantum effects such as
violation of a Bell-type inequality will disappear. A previou
analysis of Bell-type inequalities used nonorthogonal coh
ent states in the Schmidt decomposition. Surprisingly,
violation of a Bell-type inequality was shown to increase
the intensity of the coherent states increases@13#. Here, using
a more concrete approach, we similarly find that violation
a Bell-type inequality increases as the system gets more m
roscopic. This throws further doubt on the applicability
the correspondence principle here and, by extension, on
reducibility of classical to quantum optics.
1050-2947/2000/62~1!/012101~6!/$15.00 62 0121
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II. THE TWO-COHERENT-STATE INTERFEROMETER

Two-coherent-state interferometry is the application
techniques of coherent-state recombination to macrosc
photon-system pairs of the general form

uC&5
1

A2
@ ua&1ug&21 i ud&1ub&2], ~1!

where ua&1 and ud&1 are near-orthonormal coherent-sta
vectors in the Hilbert spaceH1 of system 1, andub&2 and
ug&2 are elements ofH2 of system 2. States of the form~1!
are entangled, i.e., they cannot be factorized in any way
the form ux&1uj&2, whereux&1PH1 and uj&2PH2. The new
phenomena studied here arise when the production of
tangled coherent-state pairs is combined with interferome
techniques tailored to coherent states. Here, we demons
that two-coherent-state interferometry produces res
analogous to those achieved in two-particle interferome
In particular, detection probabilities consistent with
complementarity between one-coherent-state and t
coherent-state visibilities are given and the violation of
Bell-type inequality is demonstrated. The following poin
are also emphasized:~i! two-coherent-state interferometr
depends on the preparation of entangled coherent-state p
~ii ! entangled states like theuC& of Eq. ~1! could be pro-
duced via the nonlinear interaction with Hamiltonian@7#

ĤI5\x~ â†â!n ~2!

for n.1 an integer,x being proportional to the medium’
nonlinear susceptibility of order 2n21; ~iii ! the phenomena
described here depend on the utilization of a nonlinear v
sion of well-known interferometers, such as the Mac
Zehnder interferometer; and~iv! quantum effects persist in
macroscopic limit.

The general schematic arrangement that we propose
two-coherent state interferometry is shown in Fig. 1.
©2000 The American Physical Society01-1
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source simultaneously produces macroscopic photon sys
1 and 2. In the most interesting case, each pair is prepare
the state

uC&5
1

A2
@ ua&1u2a&21 i u2a&1ua&2], ~3!

a coherent superposition of two distinct pairs of correla
coherent states of systems 1 and 2. This state can be cr
by injecting coherent statesua& andu2a& into the two input
ports of a nonlinear Mach-Zehnder interferometer@11,20–
22#. In one of these pairs, system 1 is in coherent stateua&
and undergoes a phase shift upon encountering the cohe
state phase shifterf1 @20# on the way to nonlinear cell 1
from which it enters detector 1; similarly, system 2 is
coherent-stateu2a& and encounters the coherent-state ph
shifterf2 on the way to nonlinear cell 2, after which it ente
detector 2. In the other pair of correlated coherent-sta
system 1 is in coherent-stateu2a&, encounters coherent-sta
phase shifterf1, proceeds to cell 1 and enters detector
while system 2, in stateua& encountersf2, cell 2 and then
enters detector 2. Note that in the limit ofuau→`, the state
~3! can be converted to a Bell state by local unitary ope
tions. Hence, the violation of Bell’s inequality in this limit i
expected to be maximal if the appropriate measurements
be made.

The transformation operator

K̂5exp@2 ix~ â†â!2# ~4!

is associated with the optical Kerr nonlinearity@24–26#. For
the valuex5p/2, this nonlinear operator acting on a cohe
ent state creates a so-called Schro¨dinger cat state, a superpo
sition of theua& and u2a& coherent states@11#:

K̂u6a&5
1

A2
~e2 ip/4u6a&1eip/4u7a&). ~5!

The unitary operator@20#

f̂a5exp~ ifua&^au! ~6!

denotes the evolution due to the coherent-phase shifters.
transforms a coherent input stateua& with the result

f̂aua&5eifua&. ~7!

FIG. 1. Schematic experimental arrangement for two-coher
state interferometry. The sourceS creates the entangled state giv
in Eq. ~2!. The output to wing 1~2! proceeds to the coherent pha
shifterf1(f2), and then to the nonlinear cellx1(x2), and finally to
the coherent state detectorD1(D2).
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This transformation is analogous to that for a normal pha
shifter transforming a single photon state, with the pha
term outsidethe ket. However, due to the nonorthogonal
of the coherent statesua& and u2a& the coherent phase
shifter for ua&, f̂a , does not leave theu2a& state com-
pletely unaltered; rather, one has

f̂au2a&5u2a&1~eif21!^au2a&ua&. ~8!

Nonetheless, ifa is large, so thatuau→`, then u^au2a&u
→0 and the stateu2a& will remain effectively unchanged
by the operation of the coherent phase shifter for thef̂a . An
exact experimental realization of the unitary operator~6!
may not be possible, but an approximate realization is p
sible by exploiting media with higher-order nonlinear su
ceptibilities. This approximate realization is discussed in A
pendix A.

Alternatively, the entangled coherent state with a varia
phase shift,

uC&5
1

A2
@eif1ua&1u2a&21 ieif2u2a&1ua&2] ~9!

can be created directly@23#.
In our two-coherent-state interferometer, the initial sta

~3! first encounters the coherent phase shifters@20# f1 and
f2, with the effect

uC&→
1

A2
@eif1ua&1u2a&21 ieif2u2a&1ua&21gua&1ua&2],

~10!

whereg is given by

g5e22uau2@eif1~eif221!1 ieif2~eif121!#. ~11!

Each nonlinear cell behaves analogously to a beamsplitte
a Mach-Zehnder interferometer, by recombining theua& and
u2a& states. Traversing the nonlinear cells, the normaliz
quantum state transforms as

uC&→N@~ ieif12eif21g!ua&1ua&21~ ieif12eif22g!

3u2a&1u2a&21~eif12 ieif21 ig!ua&1u2a&2

1~2eif11 ieif21 ig!u2a&1ua&2], ~12!

whereN is the normalization factor,

N5
1

A2
$41exp~24uau2!@221sin~f12f2!

1sinf12sinf21cosf11cosf2#%21/2. ~13!

III. BELL-TYPE INEQUALITY VIOLATION

The amplitudes for a coincidence measurement of
combination of the statesu6a&1 and u6a&2 given the state
~12! are

A~6a,6auf1 ,f2!5N@~11e24uau2!~ ieif12eif2!

1g~6112ie22uau27e24uau2!#,

~14!

t-
1-2
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A~6a,7auf1 ,f2!5N@6~11e24uau2!~eif12 ieif2!

12e22uau2~ ieif12eif2!

1 ig~11e24uau2!#. ~15!

The probabilities for a coincidence measurement are t
calculated by multiplying the relevant amplitude with i
complex conjugate. These coincident measurements of
cific combinations of the coherent states can be achieve
applying quadrature-phase homodyne measurements@27–
30#.

The powers ofe2uau2 that appear in Eqs.~14! and~15! are
due to the nonorthogonality of the statesua& andu2a&, since
for an output stateu2a& there is a nonzero probability o
measuring this system asua&. One result of this nonorthogo
nality is that in the limituau→0,

P~a,a!,P~2a,2a!,P~a,2a!,P~2a,a!→1. ~16!

However, in the macroscopic limit whereuau→`,

0<P~a,a!,P~2a,2a!,P~a,2a!,P~2a,a!<1/2,
~17!

as occurs for two-particle interferometry with a pair of pa
ticles@1–6#. Give each detection a value: the detection of
ua& state is designated byD(a)51, and the detection of the
u2a& state byD(2a)521. Then, for a single experimen
we have

E~a,f1 ,f2!5P~a,auf1 ,f2!1P~2a,2auf1 ,f2!

2P~a,2auf1 ,f2!2P~2a,auf1 ,f2!.

~18!

As is usual for the CHSH-type Bell inequalities@31#, we
construct the function

B~a,f1 ,f2 ,f18 ,f28!5E~a,f1 ,f2!1E~a,f1 ,f28!

1E~a,f18 ,f2!2E~a,f18 ,f28!.

~19!

A Bell-locality violation would then be indicated by the re
sult uBu.2. The value ofuBu is maximized when

f15
3p

4
, f250, f185

p

4
, f285

p

2
. ~20!

There is then a violation for sufficiently large values ofuau.
The larger uau, the larger the Bell locality violation, ap
proaching the limituBu→2A2 asuau→`.

For uau→`, we find thate22uau2→0 ande24uau2→0. In
this case, the coincidence detection probabilities become
suming perfect detector efficiencies~see Sec. IV below!,

P~a,auf1 ,f2!→ 1

4
@11sin~f12f2!#, ~21!
01210
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P~2a,2auf1 ,f2!→ 1

4
@11sin~f12f2!#, ~22!

P~a,2auf1 ,f2!→ 1

4
@12sin~f12f2!#, ~23!

P~2a,auf1 ,f2!→ 1

4
@12sin~f12f2!#. ~24!

The results in Eqs.~21!, ~22!, ~23!, and~24! are analogous to
those obtained for two-particle interferometry using e
tangled photon pairs@4,5,32#, and a Bell-type inequality is
similarly violated.

IV. EVIDENCE OF A VISIBILITY COMPLEMENTARITY

Assuming the detectors to have the efficiencyh, the prob-
ability for joint detection of subsystems 1 and 2 in the sta
ua&1 and ua&2, when the phase shiftersi 51,2 give phase
shifts f i , to ua& i , is h2 times the square of the total ampl
tudeA(a,auf1 ,f2). This amplitude is the superposition o
the amplitudes associated with each of the two pairs of c
related coherent states:

A~a,auf1 ,f2!5
1

A2
@~221/2!~221/2i !eif1

1~221/2i !~221/2!~eif2!i #, ~25!

where the factorseif1 andeif2 arise from the phase shifter
encountered along the respective beams and the factors21/2

and 221/2i arise from the encounters with the Kerr cells
statesua& and u2a&, respectively. These factors are ana
gous to encounters of single particles with an ordinary be
splitter from opposite sides. Expressions analogous to
~25! can be given for the amplitudesA(a,2auf1 ,f2),
A(2a,auf1 ,f2), andA(2a,2auf1 ,f2) as well.

The probabilities of corresponding joint detections areh2

times the absolute square of the respective amplitudes:

P~a,auf1 ,f2!5P~2a,2auf1 ,f2!

5h2F1

4
1

1

4
sin~f12f2!G , ~26!

P~a,2auf1 ,f2!5P~2a,auf1 ,f2!

5h2F1

4
2

1

4
sin~f12f2!G . ~27!

The sinusoidal dependence of the joint detection probab
ties on the phase shifts in~26! and ~27! is characteristic of
quantum mechanical interference. The modulation of coin
dence detection while shiftingf1 andf2 gives rise to inter-
ference fringes but does not give rise to fringes in sin
coherent-state detection. This can be seen from the follow
probabilities of single coherent-state detections:
1-3
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P~a,2uf1 ,f2!5P~2a,2uf1 ,f2!

5P~2,auf1 ,f2!

5P~2,2auf1 ,f2!

5h/2, ~28!

where the ‘‘2 ’’ mark by itself indicates that the result of th
corresponding detection is ignored. This exhibits the ess
tially two-coherent-state interference, inexplicable in ter
of individual coherent-state behavior, and is directly ana
gous to what has been shown for two-particle interfere
@5,6#. Both sorts of phenomena are due to quantum entan
ment in two-system states, in this caseuC&.

When our two-coherent-state system is in a product st
by contrast, essentially single coherent-state behavior a
and no essentially two-coherent-state behavior is obser
For example, consider the detection probabilities whenuC&
is replaced byuF&:

uF&5
1

A2
~ ua&11 i u2a&1)

1

A2
~ ua&21 i u2a&2), ~29!

a state still involving superpositions of elements of t
single-system detection basis but of product form. In t
case one obtains, for example, the joint-detection amplitu

A~a,auf1 ,f2!5
1

4
@ei (f11f2)2eif12eif211#, ~30!

A~a,2auf1 ,f2!5
1

4
@ iei (f11f2)1 ieif12 ieif22 i #,

~31!

the joint-detection probabilities

P~a,auf1 ,f2!5
1

4
~12cosf1!~12cosf2!, ~32!

P~a,2auf1 ,f2!5
1

4
~12cosf1!~11cosf2!, ~33!

and the single-detection probabilities for the first cohere
state system:

P~a!5
1

2
~12cosf1!, ~34!

P~2a!5
1

2
~11cosf1!. ~35!

These results show that the stateuF& gives rise to single
coherent-state fringes but no genuine two-coherent-s
fringes. Equations~30!–~33! show that the apparent joint
detection fringing is actually explicable entirely in terms
single-detection fringing, in contrast to that of Eqs.~24!–
~26!.
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V. CONCLUSIONS

We have shown how the interferometry of entangled pa
of quantum coherent states has several characteristic
common with two-particle quantum interferometry. The
include the complementarity between one-system and t
system interference visibilities in the extreme cases of pr
uct and maximally entangled quantum states, and the vi
tion of Bell-type inequalities. This quantum behavior persi
even in the limit of macroscopic average particle numbe
Indeed, a Bell-type inequality is maximally violated in th
limit.

The correspondence principle demands that as a sys
gets more macroscopic, its behavior should become incr
ingly like that of the corresponding classical mechanical s
tem. Thus, the correspondence principle suggests that a
herent states become more macroscopic, the possibilit
violating a Bell-type inequality should diminish. The resu
presented here throw doubt upon the universal validity of
correspondence principle. In these results, as the cohe
states become more macroscopic, the results in fact bec
less classical, which is indicated by the increasing violat
of a Bell-type inequality asuau→`. This demonstrates tha
the standard quantum mechanics of an isolated system, o
own, does not naturally give rise to classical mechanics
any scale. However, in normal settings, field modes will d
cohere faster for higher values ofa, so that classicality is
usually observed.

APPENDIX: REALIZATION OF THE COHERENT-STATE
PHASE SHIFTER

An approximate realization of the phase shift unitary o
eratoreifp̂a, for p̂a5ua&^au a coherent-state phase shift o
erator, is possible. Given thatp̂05:e2a†a:, for : : denoting
normal ordering@33#, the coherent-state projection operat
is

eifp̂a5 1̂1~eif21!p̂a5D~a!@ 1̂1~eif21!p̂0#D†~a!

5D~a!exp@ if:e2a†a:#D†~a!,

~A1!

whereD(a) is the displacement operator@34#

D~a!5eaa†2a* a. ~A2!

In the system we are considering, there are two state
concern:u6a&. Without loss of generality, we assume thata
is real. In order to effect the phase shift operation, we act
either state first withD†(a). This mapsua& to u0& and
u2a& to u22a&. We then follow with the vacuum phas
shift operator
1-4



f

-

ia

e
on
r
e

ies

d

pa

th

is
ble

-

TWO-COHERENT-STATE INTERFEROMETRY PHYSICAL REVIEW A62 012101
eif:e2a†a:'expF ifS 12a†a1
1

2
a†2a22

1

3!
a†3a36••• D G

5expF ifS 12n̂1
1

2
n̂~ n̂21!

2
1

3!
n̂~ n̂21!~ n̂22!6••• D G . ~A3!

In the Fock state basis$un&%,

^mueif:e2a†a:un&5expF if(
k50

n

~21!kS n

kD Gdmn . ~A4!

In order to realize the unitary transformation~A3!, an
interaction of the type~truncated at third order in powers o
the number operatorn̂)

HI /\'fS 12a†a1
1

2
a†2a22

1

3!
a†3a3D ~A5!

must be established. This interaction is a generalization
the Hamiltonian in Eq.~2!. In an optical system the interac
tion Hamiltonian

H/\5f1k1a†a1k3a†2a21k5a†3a31••• ~A6!

can be produced, in principle, by choosing an appropr
nonlinear medium. The coefficientkn is proportional to the
nonlinear susceptibilityx (n) and the interaction time. In an
optical system, it would be challenging to construct a m
dium satisfying~A5! because subsequent odd-ordered n
linear susceptibilities do not diminish greatly. Howeve
other realizations of superposition coherent states, for
ample, in ion traps, offer higher nonlinear susceptibilit
and a greater promise of realizing this interaction@35#.

The approximate expression~A5! relies on the validity of
truncating the Fock-state expansion for the two states un
consideration, namely,u0& and u22a&. If a stateuc& can be
represented reasonably accurately in the Fock-state ex
sion as

uc&5 (
n50

`

cnun&' (
n50

N

cnun&, ~A7!

for N some non-negative integer, then the expansion of
unitary operator~A3! is valid to some order. IfN<3, then
tt.
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the expansion~A5! is sufficient. For the vacuum state, th
condition is trivially satisfied, but the other state must be a
to be accurately truncated as

u22a&'

u0&22au1&12a2u2&2
4

3
a3u3&

A114a214a41
16

9
a6

. ~A8!

Therefore,

eif:e2a†a:u0&5eifu0& ~A9!

and

eif:e2a†a:u22a&'

eifu0&22au1&12a2u2&2
4

3
a3u3&

A114a214a41
16

9
a6

5u22a&1
eif21

A114a214a41
16

9
a6

u0&.

~A10!

We can see that the interaction~A5! leads to the desired
transformation for sufficiently smalla, and the algorithm for
extending~A5! for largera is straightforward.

We now act on either state withD(a), which mapsu0& to
ua& and u22a& to u2a&. The whole process therefore pro
duces the transformations

D~a!eif:e2a†a:D†~a!ua&5eifua& ~A11!

and

D~a!eif:e2a†a:D†~a!u2a&

'u2a&1
eif21

A114a214a41
16

9
a6

ua&.

~A12!

This compares favorably with Eqs.~7! and ~8!.
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@15# I. Jex, P. To¨rmä, and S. Stenholm, J. Mod. Opt.42, 1377

~1995!.
@16# C.C. Gerry, Phys. Rev. A55, 2478~1997!.
@17# G-C. Guo and S-B. Zheng, Opt. Commun.133, 142 ~1997!.
@18# J.M. Raimond, M. Brune, and S. Haroche, Phys. Rev. Lett.79,

1964 ~1997!.
@19# S. Bose, K. Jacobs, and P.L. Knight, Phys. Rev. A56, 4175

~1997!.
@20# D.A. Rice and B.C. Sanders, Quantum Semiclassic. Opt.10,

L41 ~1998!.
@21# B.C. Sanders and D.A. Rice, Opt. Quantum Electron.31, 525

~1999!.
@22# B.C. Sanders and D.A. Rice, Phys. Rev. A61, 013805~2000!.
@23# S-B. Zheng, Quantum Semiclassic. Opt.10, 699 ~1998!.
@24# G.J. Milburn, Phys. Rev. A33, 674 ~1986!.
01210
@25# G.J. Milburn and C.A. Holmes, Phys. Rev. Lett.56, 2237
~1986!.

@26# A cavity with a moving mirror also causes a similar transfo
mation ~Ref. @19#!.

@27# B. Yurke and D. Stoler, Phys. Rev. Lett.79, 4941~1997!.
@28# A. Gilchrist, P. Deuar, and M.D. Reid, Phys. Rev. Lett.80,

3169 ~1998!.
@29# W.J. Munro and G.J. Milburn, Phys. Rev. Lett.81, 4285

~1998!.
@30# W.J. Munro, Phys. Rev. A59, 4197~1999!.
@31# J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, Phy

Rev. Lett.23, 880 ~1969!.
@32# M.A. Horne and A. Zeilinger, inSymposium on the Founda

tions of Modern Physics, edited by P. Lahti and P. Mittelstaed
~World Scientific, Singapore, 1985!, p. 435.

@33# Hong-Yi Fan and H.R. Zaidi, Opt. Commun.68, 143 ~1988!.
@34# R.J. Glauber, Phys. Rev.131, 2766~1963!.
@35# P.T. Cochrane, G.J. Milburn, and W.J. Munro, Phys. Rev.

59, 2631~1999!.
1-6


