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Abstract. A method of calculating the characteristics of noncollinear
phase matching in both uniaxial and biaxial crystals is presented. Al-
though significant work has been done to characterize collinear phase
matching and to present many of its applications, noncollinear phase
matching also has unique characteristics, leading to several useful ap-
plications. The method presented enables calculations of both the collin-
ear and noncollinear cases, and enables a far larger set of nonlinear
crystals and configurations to be studied. © 2000 Society of Photo-Optical In-
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1 Introduction

The process of spontaneous parametric downconversio
which a ‘‘pump’’ photon is effectively split into a pair o
lower energy ‘‘signal’’ and ‘‘idler’’ photons in a nonlinea
optical medium, has proved abundantly useful in the l
decade. The twin photons, which are entangled in ene
momentum, and emission time, have been used in a va
of striking demonstrations of the most nonclassical asp
of quantum theory.1,2 In addition, the downconverted pho
tons have found applications in the field of metrolog
where they can be used to determine the quantum
ciency of photon-counting detectors, and also to determ
the spectral radiance of an infrared source. The photon
relations of down-converted light enable these meas
ment applications to be performed in a fundamentally
solute manner as opposed to conventional methods, w
rely on previously calibrated standards.3,4

Calculation of the three-wave down-conversion inter
tion requires the use of conservation of energy and con
vation of momentum, commonly referred to as pha
matching. Because the process is nonresonant, a down
verted photon may be emitted over a wide range of wa
lengths, so long as the energy and momentum conserva
conditions for the pair of photons are met. The individu
photons of a pair may also propagate along different dir
tions; this is referred to as noncollinear phase match
Collinear phase matching, where the incident photon
the output pair of photons propagate in the same direc
inside the crystal, is generally well understood, while t
noncollinear geometry is more difficult to calculate a
thus is poorly documented. One of the advantages of n
collinear phase matching over the collinear case is tha
enables easy discrimination between each of the two do
converted photons and the pump beam.

*http://physics.nist.gov/Divisions/Div844/facilities/cprad/cprad.html
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In this paper, we describe a broadly applicable meth
of finding noncollinear phase-matching configurations. W
also provide examples obtained from a computer progr
we have developed that implements our method and
freely available on the Internet. We hope that the bro
pool of calculable crystal data included with this progra
~both uniaxial and biaxial crystal are included! and wide
spectral ranges that can now be calculationally inve
gated will aid other researchers in designing their param
ric down-conversion experiments.

2 Theory: Phase-Matching Conditions in
Uniaxial and Biaxial Crystals

2.1 Coordinate System, Equations, and Variables

Consider a three-wave mixing process, where one pho
incident on the crystal interacts to produce a pair of low
energy correlated photons by parametric down-convers
This study is carried out for the most general case, incl
ing biaxial and uniaxial crystals, for noncollinear or collin
ear geometries and for pairs of downconverted phot
with or without equal frequencies. The two main co
straints are the conservation of energy,

vpump5vsignal1v idler , ~1!

where vpump is the frequency of the incident photon an
vsignal and v idler are the frequencies of the two down
converted photons, and the conservation of momentum

kpump5ksignal1k idler , ~2!

where kpump, ksignal, and k idler are the pump, signal, an
idler wave vectors, respectively.

Using spherical coordinates, the pump wave vector
expressed in the crystal principal dielectric axesx̂, ŷ, andẑ
with the polar and azimuthal anglesupump and wpump de-
.00 © 2000 Society of Photo-Optical Instrumentation Engineers
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Boeuf et al.: Calculating characteristics of noncollinear . . .
fined as shown in Fig. 1. In uniaxial crystals there is on
one axis enabling symmetry of revolution, so the direct
of the pump can be specified by a single angleupump. Thus,
for uniaxial crystals the result of the calculations will n
depend on the azimuthal anglewpump. However, for biaxial
crystals, which lack that symmetry, two angles are
quired. The angles are defined here according to the p
tive nonlinear optics frame convention of Roberts.5

Since the crystal dielectric axes are not convenient
calculating the resulting output, we express the signal
the idler wave vectors in the lab frame defined by the
tated axesx̂9, ŷ9, and ẑ9, as shown in Fig. 1. In the lab
frame, the signal and idler wave vectors are

kpump5npump~upump,wpump!
vpump

c
ŝpump,

ksignal5nsignal~usignal,wsignal!
vsignal

c
ŝsignal, ~3!

k idler5nidler~u idler ,w idler!
v idler

c
ŝidler ,

where ni( i 5pump, signal, idler) are the refractive indice
for the photons~for their individual states of polarization!
in the given direction of propagationŝi . Hereupump is the
angle betweenŝpump and theẑ axis, whilewpump is the azi-
muthal angle~aboutẑ) from the x̂ axis to ŝpump in the x-y
plane. For the downconversion beams, the opening an
usignal andu idler are specified relative toŝpump, and the azi-
muthal angleswsignalandw idler refer to rotations in the plane
normal toŝpump ~see Fig. 2.!

Fig. 1 Crystal axes and the laboratory frame axes (x,y,z), are
crystal dielectric axes (the optical plane is the x-z plane and nz

.ny.nx); (x8,y8,z8), rotated axes (rotation angle w, about the axis
z); and (x9,y9,z9), laboratory frame axes (rotation angle w, about
the axis y8).
-

s

The cosine vectors of the propagation directionŝ are:
sx5sinu cosw, sy5sinu sinw andsz5cosu. Note that the
pump direction is specified with respect to the crystal a
~or axes! in the xyz ~lab! frame via

ŝpump5S sinupumpcoswpump

sinupumpsinwpump

cosupump

D
x,y,z

, ~4!

while the signal and idler beams are specified relative to
pump beam via

ŝsignal5S sinusignalcoswsignal

sinusignalsinwsignal

cosusignal

D
x9,y9,z9

,

ŝidler5S sinu idler cosw idler

sinu idler sinw idler

cosu idler

D
x9,y9,z9

. ~5!

The transformation between coordinate systems is given

S x
y
z
D 5S cosu cosw 2sinw sinu cosw

cosu sinw cosw sinu sinw

2sinu 0 cosu
D S x9

y9
z9
D ~6!

S x9
y9
z9
D 5S cosu cosw cosu sinw 2sinu

2sinw cosw 0

sinu cosw sinu sinw cosu
D S x

y
z
D , ~7!

whereu5upump andw5wpump.

Fig. 2 Another view of the crystal and laboratory frame coordinates,
showing a typical experimental arrangement for parametric down-
conversion within a crystal. In this figure, the x-z plane (wpump50
plane) is in the plane of the page. For uniaxial crystals, the choice
wpump50 can always be made, but for biaxial crystals, this drawing
represents a special case in which the crystal axes C1 and C2 , and
the pump beam all lie in the plane of the page. The signal beam is
emerging low and toward the viewer, while the idler beam is propa-
gating high and away from the viewer. The azimuthal angles wsignal

and w idler are measured from the x-z plane. Dots indicate the points
where the rays intersect the surface of the crystal.
1017Optical Engineering, Vol. 39 No. 4, April 2000
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Boeuf et al.: Calculating characteristics of noncollinear . . .
The problem to be solved has variables:upump, wpump,
usignal, wsignal, u idler , w idler , vpump, vsignal, and v idler .
These are related by Eqs.~1! and~2!, which yield one and
three equations, respectively. Thus, we have nine varia
related by four equations. Five variables can therefore
chosen as parameters to reduce the number of unknow
equal the number of equations. The pump direction a
frequency ~as given byupump, wpump, and vpump) can
clearly be chosen as parameters. In addition, one of
downconverted photon frequencies can be chosen, as
as its azimuthal angle.~In our analysis,vsignal and wsignal
are selected.!

In general~for uniaxial and biaxial crystals!, there are
two different indices of refraction for a single direction
propagation. For uniaxial crystals, those are the ‘‘ordinar
and the ‘‘extraordinary’’ indices of refraction. For biaxia
crystals, they are referred to as the ‘‘fast’’ and the ‘‘slow
where the fast index is the smaller of the two indices. H
ing two possible indices for each wavelength enables
phase-matching ofkpump, ksignal, andk idler to be achieved
in several ways, for example,

kpump~ fast!5ksignal~slow!1k idler~slow!,

kpump~ fast!5ksignal~ fast!1k idler~slow!, ~8!

kpump~ fast!5ksignal~slow!1k idler~ fast!.

These are the most common phase-matching config
tions, and are usually classified by type.6 The first line of
Eq. ~8!, where the signal and idler beams have similar p
larizations is referred to as type I phase matching. The s
ond and third lines are examples of type II phase match
in which the signal and idler polarizations are orthogon
the terms ‘‘signal’’ and ‘‘idler’’ are arbitrary, and can b
assigned to either the fast or the slow waves. While i
theoretically possible for the pump to be the slow ray, t
does not usually lead to phase matching in most mater

Phase matching in uniaxial crystals is often described
terms of the ordinary and extraordinary indices. For e
ample, in a ‘‘positive uniaxial’’ crystal—one for which th
extraordinary ray travels slower than the ordinary ray
phase matching is achieved with the following combin
tions of the ordinary and the extraordinary light:

kpump~o!5ksignal~e!1k idler~e!

kpump~o!5ksignal~o!1k idler~e! ~9!

kpump~o!5ksignal~e!1k idler~o!.

We find the index of refractionn( ŝ) in a given direction
ŝ5(sx ,sy ,sz) using the indicatrix equation given b
Fresnel’s equation of wave normals, expressed in term
the crystal principal dielectric axes7

sx
2

n22~ ŝ!2nx
22 1

sy
2

n22~ ŝ!2ny
22 1

sz
2

n22~ ŝ!2nz
22 50. ~10!
1018 Optical Engineering, Vol. 39 No. 4, April 2000
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Here nx , ny , and nz are the crystal principal refractive
indices at a given wavelength. For a biaxial crystal,nx

,ny,nz , while for a uniaxial crystal,nx5ny5no ~ordi-
nary! andnz5ne ~extraordinary!. Equation~10! can be re-
written as

x22Fsx
2S 1

ny
2 1

1

nz
2D 1sy

2S 1

nx
2 1

1

nz
2D 1sz

2S 1

nx
2 1

1

ny
2D Gx

1S sx
2

ny
2nz

2 1
sy

2

nx
2nz

2 1
sz

2

nx
2ny

2D 50 ~11!

wherex51/@n2( ŝ)#. Solving forx, we obtain one solution
for each possible polarization~fast or slow!:

nfast5F 2

B1~B224C!1/2G 1/2

,

nslow5H 2

B2~B224C!1/2J 1/2

, ~12!

with

B5Fsx
2S 1

ny
2 1

1

nz
2D 1sy

2S 1

nx
2 1

1

nz
2D 1sz

2S 1

nx
2 1

1

ny
2D G ,

C5F sx
2

ny
2
•nz

2 1
sy

2

nx
2
•nz

2 1
sz

2

nx
2
•ny

2G .
To solve the phase-matching problem, we choose a c

tal and type of phase matching. The only data required
the indices of refraction of the crystal. As already me
tioned, we can select the pump frequency and direct
(vpump,upump,wpump) and the signal frequency and az
muthal angle (vsignal,wsignal). It is also clear from Eq.~2!
that the three wave vectors must lie in a plane, so

w idler5wsignal1p. ~13!

This relation makes one of the three component eq
tions represented by Eq.~2! redundant. So now we hav
three equations and three unknowns remaining. Of th
Eq. ~1! simply relatesv idler to vpump and vsignal, leaving
just two coupled equations and two unknowns.

2.2 Solving the Equations

The remaining variables,usignal and u idler must be found
simultaneously using Eq.~2!. This problem is complex be
cause the index of refraction depends on the wave ve
direction, so in the general biaxial case, we must solve
~10! to find an index. This affects the magnitude of th
wave vector, as shown in Eq.~3!, requiring that we solve
Eq. ~2! using both Eqs.~3! and~10!. Because this problem
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Boeuf et al.: Calculating characteristics of noncollinear . . .
has no analytic solution, it requires an iterative search r
tine. We can deal with this situation three different wa
First, we can use two equations of Eq.~2! to find a relation
betweenusignal andu idler and then use the remaining equ
tion of Eq.~2! to find its root with a root finding subroutin
~one equation and one unknown!. Second, we can rewrite
Eq. ~2! as

uDku50, ~14!

where

Dk5kpump2ksignal2k idler , ~15!

and find its minimum as a function ofusignal andu idler . A
final method is to apply a 1-D minimization algorithm aft
obtaining a relation betweenusignal andu idler .

The first method finds theDk minimum by resolving Eq.
~14! into the three following equations:

Dkx50, ~16!

Dky50, ~17!

Dkz50. ~18!

Then a root-finding subroutine is required to solve the
equations. This method works well for uniaxial crystals, b
produces erroneous results for some biaxial crystals:Dkx

50, Dky50, andDkz50 can be solved independently, b
the resultinguDku may not necessarily equal zero. This c
happen because theusignal and u idler values required for
Dkx50 can be different from those required forDky50
andDkz50. Therefore, although this method is faster th
the other methods, it requires an independent check
uDku50. Furthermore, in the case of a finite length crys
it is difficult to determine whether phase-matching is
lowed, because in practice one can have phase-matc
even whenuDkuÞ0.

The second method treatsDk as a vector quantity and
finds the minimum ofuDku5 f (usignal,u idler). For the ideal-
ized case of an infinitely long crystal and infinitely wid
pump beam,uDku50 is required for phase-matching, b
cause the interaction Hamiltonian contains an integral o
all space8 producing a delta function:

E E
V

E exp~ i •Dk•r !d3r}d~Dk!. ~19!

However, for a finite crystal lengthL and a Gaussian
transverse pump intensity profile of finite widthW, it is
possible for downconversion to occur even whenDkÞ0,
that is, with imperfect phase matching. In this case,
interaction Hamiltonian integral yields the phase-match
function:
f

g

F5expS 2
1

2
W2~Dkx

21Dky
2! D •S sinS 1

2
LDkzD

1

2
LDkz

D 2

. ~20!

This function is a weighting function for the intensity o
the emitted downconversion that has a maximum value o
for uDku50, and falls to zero as the phase mismatchuDku
increases. We may then arbitrarily say that phase-match
occurs for values ofuDku that yield F>1/2 ~see Fig. 3!.
This corresponds to uDkzu<2.783/L in the
direction of pump propagation (Dktransverse50) or
uDktransverseu<1.177/W in the plane orthogonal to pump d
rection (Dkz50). For this situation, the goal of our metho
is still to find the minimum ofuDku as a function of two
variables,usignal andu idler , but we now must also evaluat
the resulting value ofF and determine whetherF>1/2 or
not.

Because there is no general analytical method to find
minimum value ofuDku for each possible signal angle un
der a given set of pumping conditions, we search for t
minimum iteratively, via a computer algorithm. Th
method is slower than the first, but produces more relia
results for both uniaxial and biaxial crystals. It is impl
mented in our computer program~see Sec. 3! as follows:

1. Set the value oflpump, upump, wpump, lsignal, and
wsignal.

2. Calculatekpump.

3. Calculatel idler andw idler @cf. Eqs.~1! and ~13!#.

4. Initialize both the unknownsusignal and u idler to the
valueS times 0.03 rad, whereS is a scale factor cho-
sen by the user. Alternatively, after the first iteratio
the user may choose to initialize these variables w
the optimum values found in the previous iteration

5. Call UNCMND, a 2-D minimization routine that re
turns the minimum value ofuDku and the optimum
phase-matching values ofusignal and u idler , which
correspond to this minimum. UNCMND compute
uDku and its first derivative, and uses Newton
method to find the zero of the first derivative.*

6. Write these values to an output file.

*UNCMND is a public-domain FORTRAN routine available at the fo
lowing web site maintained by NIST: http://math.nist.gov/cgi-bin/gam
serve/list-module-components/NMS/UNCMND/5673.

Fig. 3 Imperfect phase matching of the pump, signal, and idler
propagation vectors.
1019Optical Engineering, Vol. 39 No. 4, April 2000
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Boeuf et al.: Calculating characteristics of noncollinear . . .
7. If lsignal or wsignal is final value, then end; otherwise
incrementlsignal or wsignal and go to step 3.

The third method for solving Eq.~2! begins by rewriting
it as follows:

nidler

v idler

vsignal
sin~u idler!5nsignalsin~usignal!, ~21!

nidler

v idler

vsignal
cos~u idler!5npump

vpump

vsignal
2nsignalcos~usignal!.

~22!

By adding the squares of these two equations, one obta

nidler

v idler

vsignal
5Fnsignal

2 1npump
2

vpump
2

vsignal
2

22npumpnsignal

vpump

vsignal
cos~usignal!G1/2

. ~23!

Then, using Eq.~23!, Eq. ~21! can be rewritten as

u idler5arcsinS nsignalsin~usignal!

Ansignal
2 1npump

2
vpump

2

vsignal
2 22nsignalnpump

vpump

vsignal
cos~usignal!

D
~24!

to provide a relation between the two unknowns. We c
then use a one dimensional minimization function forDk.
Although it can save calculation time, this method was
implemented because it assumesusignal is given by a defi-
nite relation tou idler ~i.e., perfect phase matching! and so it
does not lend itself to finding output spreading whereDk
Þ0.

3 Practice: Computational Results

We have implemented the second of the above method
a FORTRAN program designed to solve the pha
matching problem for a wide variety of pumping conditio
and crystal materials. The program can be freely dow
loaded from the web at: http://physics.nist.gov/Division
Div844/facilities/cprad/cprad.html. It is capable of gener
ing data for the following kinds of plots~f indicates a
function of the variables in parentheses!:

1. 2-D plot,nx ,ny ,nz5 f (lpump)
2. 3-D plot,nslow2nfast5 f (usignal,wsignal)
3. 3-D plot,Dkminimum5 f (usignal,wsignal)
4. 3-D plot, phase-matching functio

F5 f (Dktransverse,Dkz)
5. 2-D plot,usignal versusu idler (lsignal fixed! for a cho-

sen value of the phase-matching function
6. Polar plot (optimumusignal, optimumu idler)

5 f (wsignal)
7. 2-D plot, optimum usignal5 f (lsignal) at chosen

wsignal with spreading inusignal andwsignal, u idler and
w idler fixed
1020 Optical Engineering, Vol. 39 No. 4, April 2000
:

n

8. 2-D plot, optimum usignal5 f (lsignal) at chosen
wsignal with spreading inusignal andwsignal

9. 3-D plot, phase-matching function F
5 f (lsignal,usignal)

10. 3-D plot, phase-matching function F
5 f (lsignal,wsignal)

We now proceed to give examples and discussion of
results for each of these options.

3.1 Option 1: 2-D Plot, nx ,ny ,nz5f(lpump)

This plots the most basic information available for a sp
cific crystal material, namely, the variation of the indices
refraction with wavelength. The program includes the c
efficients in the Sellmeier-type index dispersion relation9

for a number of common nonlinear optical materials, dra
from references that are cited in comment lines in the co
Plots of this kind provide the first clue as to whether a
phase matching will be possible for a particular combin
tion of pump, signal, and idler wavelengths. Such a plot
b-barium borate~BBO! is shown in Fig. 4.

3.2 Option 2: 3-D Plot, nslow2nfast5f(usignal ,wsignal)

Although it is fairly simple to determine crystal configura
tions that produce phase matching in a uniaxial crystal~be-
cause there is only a single variable,upump), determining
phase-matching regions in a biaxial crystal, such as KNb3
is more complex.10–12To determine the effect of both vari
ables (upump andwpump), graphs ofnslow2nfast versusupump

andwpump can be produced~Fig. 5!. As is seen in the next
option, phase matching usually occurs wherenslow2nfast
differs significantly from zero.

3.3 Option 3: 3-D Plot, Dkminimum5f(usignal ,wsignal)

Graphs of the minimum value ofuDku versusupump and
wpump can also be produced~see Fig. 6!. One can notice the
similarity between Figs. 5 and 6. Ifnslow2nfast>0, then
Dkminimum is large, while if nslow2nfast is large, then
uDkminimumu >0. It is clear that some difference betwee

Fig. 4 Indices of refraction versus wavelength for BBO, a negative
uniaxial crystal. The graph indicates that ‘‘extraordinary’’ waves (po-
larized parallel to the optical axis z) travel faster than ‘‘ordinary’’
waves (polarized transverse to this axis).
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Boeuf et al.: Calculating characteristics of noncollinear . . .
nslow and nfast is required for phase matching. These plo
can be then used to quickly determine which crystal co
figurations lead to phase matching.

3.4 Option 4: 3-D Plot, Phase-Matching Function F
5f(Dktranverse ,Dkz)

For crystals of finite length, the signal and idler vecto
need not sum exactly to the pump vector for some dow
conversion to occur~see Fig. 3!. For these cases, the down
conversion intensity will be weighted by the phas
matching functionF, as defined in Eq.~20!. This option
generates data for plots ofF ~see Fig. 7!, indicating the
regions of momentum space around the pump vector
which the sum of the signal and idler vectors must fall f
down-conversion to occur. The down-conversion intens
will be highest for the central regions whereF>1 ~i.e.,
uDku>0! and lowest for the outer regions whereF>0.
Note that the longer the crystal, the more constricted
phase-matching region becomes in theẑ direction. Simi-
larly, a wider pump beam would restrict the phas
matching region, but in the transverse direction.

Fig. 5 Plot for nslow2nfast versus upump and wpump in a KNbO3 crystal
with lpump50.633 mm.

Fig. 6 Graph of uDku versus upump and wpump in a KNbO3 crystal with
lpump50.633 mm and lsignal50.950 mm.
3.5 Option 5: 2-D Plot, usignal versus u idler (lsignal
Fixed) for a Chosen Value of the Phase-
Matching Function

For a crystal of finite length and pump beam of finite widt
there are many combinations of signal and idler open
angles that can lead to down-conversion at a given pai
signal and idler wavelengths. This option generates a
of all possible combinations ofusignal versusu idler , which
result in the phase-matching function falling to some s
cific value, say,F50.5, for a particular pair of fixed down
conversion wavelengths~see Fig. 8!.

3.6 Option 6: Polar Plot,
(Optimum usignal ,Optimum u idler)5f(wsignal)

To map the down-conversion output, this option produc
2-D graphs of the signal and idler output directions for
given signal frequency~Fig. 9!. This graph corresponds to
single crystal configuration (upump andvpump are fixed with
wpump arbitrary because BBO is uniaxial! and a single

Fig. 7 Phase-matching function for KDP crystals of three different
lengths and constant pump beam width of 2 mm (FWHM).
1021Optical Engineering, Vol. 39 No. 4, April 2000
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vsignal @which can be used with Eq.~1! to calculatev idler].
The configuration in Fig. 9 was chosen because it sho
both the collinear (u idler5usignal50) and noncollinear
cases. Both the internal and external angles for the emis
are calculated, although only the internal results are sho
below. Multiple plots of this kind with different signal an
idler frequencies can be examined if more complete res
of the downconversion are desired.

3.7 Option 7: 2-D Plot, Optimum usignal5f(lsignal) at
Chosen wsignal with Spreading in usignal and
wsignal , u idler and w idler Fixed

For any given pair of conjugate signal and idler wav
lengths, there may exist an optimum pair of emiss
anglesusignal and u idler producing perfect phase matchin
@i.e., satisfying Eq. ~2! and yielding F51]. Down-
conversion will be strongest for these optimum combin
tions of wavelengths and angles. This option provides d

Fig. 8 Graph of usignal versus u idler (F50.5) for a KDP crystal (5-mm
crystal length and 2-mm pump width) with lpump50.351 mm, wpump

50 deg, upump552 deg, lsignal50.633 mm, and wsignal50 deg.

Fig. 9 Polar plot of the direction of signal and idler output photons
(lsignal, idler50.702 mm) for upump549.2 deg and lpump50.351 mm
from a BBO crystal. The pump beam propagates out of the page at
the origin.
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for plotting the optimum signal angle as a function of sign
wavelength, as shown in Fig. 10. For type I dow
conversion, the terms ‘‘signal’’ and ‘‘idler’’ are completel
arbitrary, so that this is in fact a graph of both the sign
and idler emission angles. For type II down-conversio
one may find the idler angles by running the option ag
and choosing the ‘‘signal’’~now really the idler! to be the
slow wave instead of the fast wave, or vice versa. Both
internal and external angles are reported~Fig. 10 displays
internal angles!. The opening angles can be plotted for a
choice of emission plane, such aswsignal50 deg.

If the crystal were infinitely long, down-conversio
would occur only at these optimal combinations of wav
length and angle. For crystals of finite length, howev
some emission will occur in a range of angles about
optimum for each wavelength. The broader the pha
matching function, the larger this range of angles becom
as one might guess from examining Figs. 3 and 7. The
fore, option 7 also provides a first-order estimate of t
spreading in bothusignal andwsignal as a function of wave-
length. For each signal wavelength, the spreading in
signal angles is calculated assuming that the conjugate
photon is emitted at precisely the optimum opening an
for its wavelength, so that onlyusignal and wsignal are al-
lowed to vary. The largest nonoptimal values ofusignal and
wsignal that result inF falling to some specific value, say
F50.5, are found, and the difference between these n
optimal angles and the optimal angles are reported in
data set as ‘‘spreads.’’ They may be used to construct er
bars or plotted independently, as in Fig. 10.

3.8 Option 8: 2-D Plot, Optimum usignal5f(lsignal) at
Chosen wsignal with Spreading in usignal and
wsignal

This option is the same as option 7, but the spreads inusignal
at each wavelength are computed in an iterative fash
that enables both the signal and the idler to be emitted
nonoptimal opening angle~Fig. 11!. This provides a more
realistic estimate for the spreads than that given by
previous option, but also requires more computing tim
However, the spread inwsignal is computed exactly as in th
previous option. For if the idler were not constrained to
emitted in the plane chosen by the user~say, w idler5180

Fig. 10 Upper curve shows optimum usignal5f(lsignal), while the
lower two curves show the spreads in usignal and fsignal , with u idler

and f idler fixed, F50.5. All curves for a 5-mm-long KDP crystal and
2-mm pump beam width, lpump50.351 mm, upump552 deg,
fpump50 deg, and fsignal50 deg.
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deg corresponding to the choice of optimumwsignal50 deg!
then the sequence of iterations would simply map out
entire circle of emission for both the signal and the idl
As in option 7, the spreads that result inF falling to some
user-defined ‘‘target’’ value likeF50.5 are computed.

3.9 Option 9: 3-D plot, Phase-Matching Function
F5f(lsignal ,usignal)

In this option, the value of the phase-matching function
computed for the entire range of signal wavelength a
angle combinations, within the domain of validity of th
Sellmeier coefficients for the chosen crystal. This is do
by repetition of option 8, with the ‘‘target’’ value ofF
incremented from 0.1 to 1. Because the phase-matc
function is a weight function for the emission of dow
converted pairs, a 3-D plot ofF(lsignal,usignal) can serve as
a crude picture of the relative intensity of the downconv

Fig. 12 Plot for F5f(lsignal ,usignal) for a KDP crystal (5-mm crystal
length and 2-mm pump width) with lpump50.351 mm, wpump50 deg,
upump552 deg, wsignal50 deg. (Here usignal is an external angle.)

Fig. 11 Upper curve shows optimum usignal5f(lsignal), while the
lower two curves show the spreads in usignal and wsignal , with w idler

fixed, F50.5, for a 5-mm crystal length and 2-mm pump width. Here
u idler is allowed to vary, as opposed to in Fig. 10 where u idler is fixed.
This difference produces a larger spread in usignal. All curves for a
5-mm-long KDP crystal and 2-mm pump beam width, lpump

50.351 mm, upump552 deg, fpump50 deg, and fsignal50 deg.
sion as a function of wavelength and angle~see Fig. 12!.
The intensity will be highest for the optimum phas
matching combinations that result inF51. Note that such
plots cannot provide completely accurate pictures of
down-conversion intensity, since the probability of dow
conversion is also affected by the strength of the nonlin
electric susceptibility—another frequency-dependent qu
tity. However, if the values ofF are compared over a rang
of frequencies with nearly constant susceptibility, then th
interpretation as relative intensities for the downconvers
should be valid over that range.

3.10 Option 10: 3-D Plot, Phase-Matching F
5f(lsignal ,wsignal)

This option shows the variation ofF as a function of signal
wavelength and signal azimuthal angle~rather than opening
angle as in the previous option!, assuming that the azi
muthal angle of the idler is fixed~as in options 7 and 8.! A
3-D plot of the results~shown in Fig. 13! can be interpreted
as plots of relative down-conversion intensity versus wa
length and azimuthal angle, with the same caveats as li
for option 9.

4 Conclusion

The methods presented here for calculating both collin
and noncollinear phase matching enable experimental c
figurations including either uniaxial or biaxial crystals to b
modeled in detail. These computational techniques can
vide preliminary answers to a variety of questions that m
be asked about a particular downconversion source be
it is constructed in the laboratory, such as ‘‘Over wh
range of wavelengths is downconversion possible? W
should the cut of the crystal’s optical axis be? At wh
angles can we expect to find certain wavelengths emi
from the crystal?’’ and so on. To our knowledge, the pr
gram made available here is the first comprehens

Fig. 13 Graph of F5f(lsignal ,wsignal) for a KDP crystal (5-mm crys-
tal length and 2-mm pump width) with lpump50.351 mm, wpump50
deg, upump552 deg, and wsignal50 deg.
1023Optical Engineering, Vol. 39 No. 4, April 2000
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scheme that can provide answers to such questions for
collinear and noncollinear phase matching, and in b
uniaxial and biaxial crystals. We hope that this method a
its implementation will aid researchers in designing dow
conversion schemes that rely on these more complic
phase-matching conditions.

The computer program that performs these calculati
is continually being improved. In the future we hope
make updated versions available that include the effect
curved pump wavefronts on the spatial profiles of t
down-conversion beams, as well as the effects of
extended-source nature of the down-conversion reg
within the crystal.
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