PHYSICAL REVIEW A

VOLUME 48, NUMBER 2

AUGUST 1993
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In a two-particle interferometer, one can study the variation of both single- and joint-detection proba-
bilities as functions of the phase shifts of the beams. By combining the usual definition for one-particle
fringe visibility v; (i =1,2) with a reasonable proposed definition for two-particle fringe visibility v,,, we
show that v?+v?%, <1 or, equivalently, v;v,, < 1. Some extensions are discussed.

PACS number(s): 03.65.Bz, 07.60.Ly

I. INTRODUCTION

In the last decade the techniques of standard one-
particle interferometry have been extended to beams con-
taining pairs of particles in quantum-mechanically-
entangled states, i.e., states that cannot be expressed as
products of two one-particle states. There have been
numerous theoretical analyses and experiments (e.g.,
[1-5])—the latter all performed with photon pairs. A
schematic arrangement is given in Fig. 1. From the
source S, a pair of particles 1+2 emerges, one of which
propagates in beams A4 and/or A4’, impinging on the ideal
symmetric beam splitter H,, and is then detected in ei-
ther beam U, or beam L, while the other propagates in
beams B and/or B’ to the ideal symmetric beam splitter
H, and is detected in either U, or L,. The locution
“and/or” is a brief way of referring to a quantum-
mechanical superposition, the details of which are
specified by the state of 1 +2. For example, the state

W)= AB) ] 4, [B"),) (1)
is entangled, whereas
1 ) 1 ,
\¢>>=—‘/—§(|A>1+|A )1)7§(|B>2+|B ),) (2)

is a product state, though both involve superpositions.
Figure 1 also shows two variable phase shifters ¢; and ¢,
placed on beams A4 and B, respectively.

It is easy to show (see, for instance, Ref. [5]) that if the
state of 142 is |¥) of Eq. (1), then the probabilities of
joint and single detections by the various detectors are

P(U,U,)=P(L,Ly,)=1[1—cos(¢;+¢,)], (3a)
P(U,L,)=P(L,Uy)=1[14cos(¢;+¢,)] , (3b)

P(U,)=P(L,)=P(U,)=P(L,)= (30)

1
5

On the other hand, the probabilities of joint and single
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detections when the state is |® ) of Eq. (2) are

P(U,U,)=P(U,)P(U,), etc. “4)
(for all pairs of outcomes), and

P(U,;)=14(1—sing,) , (5a)

P(L,)=1(1+sing,), (5b)

P(U,)=1(1—sing,) , (5¢)

P(L,)=14(1+sing,) . (5d)

Clearly, Egs. (3) show that the preparation of 142 in
state |W) yields two-particle fringes but no one-particle
fringes, where we use the word “fringe” to refer to
sinusoidal dependence upon the variable phase angles.
The product state |®) produces one-particle fringes but
no genuine two-particle fringes, since the variation of
P(U,U,) with ¢, and ¢, is due only to the variation of
P(U,) and P(U,) separately, as shown in Eq. (4).

Of course, the most striking feature of the foregoing
equations is the sinusoidal behavior of the joint probabili-
ties in Egs. (3a) and (3b) while the singles are flat [Eq.
(3¢)]. This feature illustrates a natural extension of
Feynman’s famous rule:

“When an event can occur in several alternative ways,
the probability amplitude for the event is the sum of the
probability amplitudes for each way considered separate-
ly. There is interference.... If an experiment is per-
formed which is capable of determining whether one or

U, & A

1
ho><® | s
L, A

FIG. 1. Schematic two-particle four-beam interferometer us-
ing beam splitters H, and H,.
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another alternative is actually taken, the probability of
the event is the sum of the probabilities for each alterna-
tive. The interference is lost.” (Ref. [6], p. 37-10).

The second part of Feynman’s rule can be naturally ex-
tended in the spirit of Einstein, Podolsky, and Rosen [7]
by replacing “is performed” by “could be performed
without disturbing the system.” When 1+2 is prepared
in state |¥), one could determine which path particle 1
takes from S to H, by placing detectors in the beams B
and B’, and this determination does not disturb particle
1, hence there is no one-particle interference; likewise for
particle 2. Once the pair of particles has gone beyond the
beam splitters, however, there is no way to determine
whether 1+2 takes the composite path A4,B or the com-
posite path A',B’, and hence there is two-particle in-
terference. If 1+2 is prepared in the product state |®),
there is no correlation of the one-particle paths, and
hence it is not possible to determine the path of one parti-
cle by catching the other; therefore, there is one-particle
interference.

States |¥) and |® ) are extreme cases, the first exhibit-
ing maximum visibility of two-particle interference
fringes and minimum visibility of the one-particle fringes,
the second exhibiting the opposite. (For the present we
use the term “‘visibility” intuitively, anticipating a precise
definition in Sec. II.) These two cases suggest a kind of
complementarity between one-particle interference and
two-particle interference, as was already noted by Horne
and Zeilinger [8]. The purpose of this paper is to formu-
late this complementarity precisely and to demonstrate it
for the most general state of 1+2 that can be formulated
in terms of the single-particle states |4 ),, |4'),, |B),,
and |B ! > 2.

II. DEFINITION OF “VISIBILITY”

The standard definition of visibility in ordinary inter-
ferometry is
U:Imax_Imin ) )
1 max +1 min
When we deal with a single particle i (i =1,2) that has
varying probability P(U;) depending on ¢;, it is natural
to replace Eq. (6) by
[P( Ui )]max_[P( Ui )]min

U P (U ot [P (U T 7

Clearly v; lies in the interval [0,1] and has the minimum
value O if P(U;) does not vary with ¢; and the maximum
value 1 if P(U;) vanishes for some values of ¢,.
It is tempting to write an analogous definition for the
visibility of two-particle fringes:
[P( U,U, )]max_ [P( u,v, )]min

= . 8
Y2 T (U, Uy o H P (U, Ul 0 @

However, this definition fails to capture the intended
sense of two-particle visibility because it yields the value
v, =1 when 142 are prepared in the product state |® ),
even though the variation of P(U,U,) with ¢,,¢, is due

[according to Eq. 3(a)] entirely to the variation of P(U,)
with ¢, and of P(U,) with ¢,. Hence one is motivated to
define a “‘corrected” joint probability

P'(U,U,)=P(U,U,)—P(U,)P(U,) )

and replace P(U,U,) throughout Eq. (8) by P'(U,U,).
But the resulting definition for v, is also unsatisfactory
because of excessive subtraction. It has the consequence
that [P'(U,U,)], can be negative and the denominator
[P(UU;y) ] pax T [P'(U;Uy) ] in can be zero. A better
“corrected” joint probability is

P(U,U,)=P(U,U,))—P(U)P(U,+1L. (10)

This expression compensates for the excessive subtraction
inherent in P'(U,U,) by adding 4, which is the value of
P(U,)P(U,) for all ¢,,¢, when 1+2 is prepared in the
state |¥) of Eq. (1). The definition we propose for two-
particle visibility is

[ﬁ( Ul UZ)]rnax_[p( Ul UZ)]min
Vp=—2 — . (11)
[P(UUy) Imax +[P(U, U, ]

max min

Obviously v, is unity when 142 is prepared in |¥) and
zero when it is prepared in |® ), in agreement with the in-
tuitive considerations of Sec. I. When we examine the
most general state definable in terms of |4 ), |4’),,
|B ),, and |B’),, it will be clear that v,, always lies in the
interval [0,1].

III. COMPLEMENTARITY IN A SPECIAL
FAMILY OF STATES

In order to exhibit the complementarity of one- and
two-particle interference without distracting complica-
tions, we shall first restrict our attention to the following
one-parameter family of cases:

1
|\P(a))=7-2:cos(a)[|A MBY,+14'),|B"),)

1 .
+‘/—_ism(a)[|A)IIB’)Z—HA')IIB)Z]. (12)
Clearly a=0 yields the |¥) of Eq. (1) and a=1/4 yields
the |®) of Eq. (2). It is straightforward to show (as in
Ref. [5]) that

P(U,-)=%[1—sin(2a)sin¢,»] (i=1,2) (13)
and that
P(U,U,)=1[1—M cos(¢,) cos(¢,)+ N sin(¢,) sing,] ,
(14)
where
M =cos(2a), N =cos*(2a) . (15)

To find [P(U,U,)],p.x and [P(U,U,)],n» We set deriva-
tives to zero:
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aF(U, U,) . —N .
O=T=cos(¢l)sln¢2=7 sin(¢,) cose, ,
(16a)
0=T=sln(¢1)cos¢2=7 cos(¢,) sing, .

(16b)

If N==1M, then cos2a==1 and a=0 or 7 /2, in which
case we recover the |W) of Eq. (1) or the similar state
with |[B) and |B’) interchanged. In either case v;=0
and v;,=1. If N¥M, then P(U,U,) is stationary only
when cos(¢,) cos$, and sin(¢,) sing, have the following
pairs of values:

(£1,0)0=P(U,U,)=L(1F M), (17a)

(17v)

1
ry
(0,£1)=P(U,U,)=1(1£N) .

Since | M| is never less than |N| by Egs. (15), it follows
that

[P(U,Uy) e =41+ M), (18a)

[P(U U pin=3(1—M]), (18b)
Hence by Eq. (11),

v, =|cos(2a)| . (19a)
But from Egs. (6) and (12)

v, =0, =sin(2a)| (19b)
Consequently, in all cases

v v, =1 (i=1,2). (20)

As expected, the increase in visibility of the two-particle
fringes is compensated by the decrease in visibility of the
one-particle fringes, and conversely. The extreme cases of
the states |¥) and |®), discussed previously, are in-
stances of the complementarity equation (20).

It must be emphasized, however, that in the general
case (to be discussed in Sec. IV) v?+v2, only has unity as
an upper bound.

IV. COMPLEMENTARITY IN THE GENERAL CASE

The most general state that can be formed from |4 ),
|4'),|B ), and [B'), is

|©)=cos(a)[cos(B)| 4),|B),
+e*sin(B)| 4'),|B"),]
+sin(a)[ecos(y)|4),|B"),
+e'Vsin(y)|4'),|B),], 21

since any overall phase can be omitted. We wish to obtain
expressions for the visibilities v; and v,, as functions of
the parameters a, 3, ¥, A, i, and v appearing in |©). It
is evident, however, that the visibilities are independent
of A, u, and v, because the basis change (which could be

accomplished by inserting phase shifters)

|4),=e"l4d),, (22a)
|4"),=e®|4d"),, (22b)
|B),=e'’|B),, (22c¢)
|B’),=e'"|B"),, (22d)

with properly chosen p, p’, 0, and o', yields an expression
for |©) with all real coefficients. If we then drop the bars
from |A),, |4'),, |B),, and |B"), for notational con-
venience, we obtain as the most general state for our pur-
poses

|©(a,B,7)) =cos(a)[cos(B)| 4 ),|B),
+sin(B)| 4" ),/B"),]
+sin(a)[cos(y)| 4 ),|B"),
+sin(y)| 4'),|B),] . (23)

Another way to put the matter is that the phases A, u,
and v of Eq. (21) only have the effect of shifting the
values of ¢, and ¢, that maximize or minimize
P(U,),P(U,) and P(U,,U,), and these shifts do not
affect the visibilities.

Straightforward calculations using |6(a,3,7)) yield

P(U,)=1{1—sin(2a)[sin(B) cosy +cos(B) siny ] sing,} ,
(24a)
P(U,)=1{1—sin(2a)[cos(B) cosy +sin(B) siny ] sing,} ,
(24b)

and

P(U,U,)=1[1—M’'cos(¢,) cos¢,+ N'sin(¢,) sing,] ,

(25)
where
'=cos*(a)sin(28)—sin*(a) sin(2y) , (26a)
N'=cosXa)sin(2f3)+sin¥a) sin(2y)
—2sin*(a) cos®(a)[sin(2B)+sin(2y )]
=M'cos(2a) . (26b)

Since P(U,U,) has exactly the same dependence upon
¢, and ¢, as in Eq. (13) of Sec. III, we obtain results cor-
responding to Egs. (16a) and (16b) for the stationary
values of P(U,U,). If N'#M’' then

P(U,U,)=11FM"), 27a)
P(U,U,)=1(1£N") . (27b)
By Eq. (26b), however, |[M’| > |N’|. Hence
[P(U Uy lmax =11+ M]) (28a)
[P(UU)]min=4(1=IM"]), (28b)



sin?(2a)[ 1 +sin(2B) sin(2y ) —cos(28) cos(2y)] ,
(29a)
v3=1sin?(2a)[1+sin(2B)sin(2y ) +cos(2B) cos(2y)] ,

(29b)
v}, =cos*(a)sin*(2B)
—2sin?(a) cos*(a) sin(23) sin(2y )
+sin*(a)sin®(2y) , (29¢)

and
v+, =1—[sin*(a) cos(2y)—(—1) cos*(a) cos(2p)]?
(i=12). (30
By inspection,
v +v?, <1, (31
or equivalently (because visibilities are non-negative)

0=<vv,=1. (32)
If N'==2M' then =0 or 7 /2, and the same results (31)
and (32) are obtained by separate calculations. Inequali-
ties (31) and (32) are the desired expressions for the com-
plementarity of one- and two-particle fringes.

V. EXTENSIONS

Most two-particle experiments have been carried out
more or less in the framework sketched in this paper,
with each particle impinging on (both sides of) a beam
splitter having two exit channels. However, the first
two-particle experiment—that of Ghosh and Mandel
[9]—placed small detectors in the region of overlap of
beams A4 and A4’, and of B and B’, respectively, and con-
tinuously scanned the two-particle radiation. The posi-
tions x; and x, of the detectors along a single axis took
the place of the phase angles ¢, and ¢, our schematic ar-
rangement. Thus their experimental arrangement per-
mitted a continuum of outcomes for each particle, rather
than only two. This is also the case in Ref. [10]. Never-
theless, with small modifications, the concepts of one-
and two-particle visibilities of this paper can be extended
to the situation of continuous outcomes. One need only
replace the corrected joint probability P(U, U,) of Eq. (9)
by a corrected joint probability density
2

Y (33)

PUX1,x,)=p(x;,x,)—p(x,)p(x,)+

Here p(x;) is the probability density of catching particle i

at x; (i=1,2), p(x,,x,) is the probability density of
catching the two particles at x; and x,, respectively, and
K=2Tsin |2 (34)

A being the wavelength of the radiation and 6 the cross-
ing angles of the beams. The term (K /27)? plays the role
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of 1 of Eq. (9), and the single- and joint-probability densi-
ties have been normalized to one cycle of the fringe pat-
tern. Visibility v, can be defined in terms of p analo-
gously to Eq. (10). The inequalities (31) and (32) are val-
id.

The experiment proposed by Franson [11] and carried
out by Ou et al. [12] and Kwiat et al. [13] falls roughly
under the framework of this paper, since it works with
fixed detectors. We have not carried out a detailed calcu-
lation of complementarity for the Franson arrangement,
but it would be worthwhile to do so, because that ar-
rangement permits an easy scanning from the case of
high one-particle and low two-particle visibility to the op-
posite case [14]. We note that the foregoing complemen-
tarity can be generalized to systems of three or more par-
ticles, but the expressions are more complex.
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APPENDIX

We stress that the general state |©) of Eq. (21) can be
prepared. First, we modify the arrangement of Fig. 1, as
shown in Fig. 2. The detectors and phase shifters of Fig.
1 are omitted. The beam splitters are retained but are not
assumed to be symmetrical, so that their reflectivity » and
transmittivity ¢ are any positive real numbers such that
ri+e?=1.

There is no need for our purpose to make the ’s (and
hence the #’s) of H, and H, different. We label the beams
emerging from H | and H, with the same letters as the in-
cident beams in the same direction. Finally, an absorber
and a phase shifter are inserted in each emerging beam.
The absorber in 4 multiplies the amplitude in that beam
by a(0=a =1), and the phase shift is p; in 4’ the param-
eters are a’ and p’, in B they are b and o, and in B’ they
are b’ and o’'.

If the column vector (&) represents c|A4)+c’'|A')
when we are concerned with particle 1 and ¢|B ) +c¢'|B’)
when we are concerned with particle 2, then the matrix
representing the transformation T of the initial state of

particle i is
t ir
ir t

ae'fir ]
b

ae'f 0

T,= i
1 0 a'elP

ae'Pt
a'e’Pir a'e'f't
be'? 0
0 b:eia"

bei’t be'%ir ]
b

t ir
ir t

b'e'%ir b'e'“t

and the direct product
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T=T,T, (A3)

represents the transformation effected by the entire ap-
paratus on the initial state of 1+2.

If the initial state emerging from the source is |¥) of
Eq. (1), its representation by column vectors (if the nor-

malization factor 2~ /2 is suppressed) is
|¥) ! + 0 0 (A4)
= ® [ .
0,7 0], 1,7 (1],
The final state (not normalized) is
W) =T|¥,)=T ! T :
== L y= ®
f i tio|,= 20|,
0 0
+T, 1 1® T, 1
ae'Pt bei’t
a'e®ir |, |b'e'ir|,
ae'Pir be'ir
a'e''t 1® b'e't |, (A3)

Rewriting explicitly in terms of |4 ),, |4'),, |B),, and

FIG. 2. Production of a general state. Each box beyond the
beam splitters represents both an absorber and a phase shifter.

|B'), yields
| W, )=(abe'P* ) (t2—r?)| 4 ),|B),
+(ab’e!lPto /Dy 4),|B"),
+(a'be' P ot T2 N)ort| 47),|B ),

+(@'b'e" P TINE =) A )|B'), . (A6)
It is easily checked that the proper choice of ¢, a, a’, b, b’,
p,p’»0,and o', will yield | ¥, ), in agreement with [©) of
Eq. (21), except for normalization.

Note that the foregoing argument does not depend
upon taking the initial state to be |¥;) of Eq. (14). Any
entangled state will suffice to generate the general state
|©) of Eq. (21), but no product state will suffice. Finally,
in order to do interferometry with the general state |©),
one inserts the apparatus of Fig. 2 as the source S of Fig.
1.
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